
A Framework to Evaluate Complexity and Completeness

of KAOS Goal Models

Patrícia Espada, Miguel Goulão, João Araújo

CITI, Departamento de Informática

Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Lisbon, Portugal

titiespada@gmail.com,

{mgoul, joao.araujo}@fct.unl.pt

Abstract. Goal-Oriented Requirements Engineering (GORE) approaches have

been developed to facilitate the requirements engineers work by, for example,

providing abstraction mechanisms to help eliciting and modeling requirements.

One of the well-established GORE approaches is KAOS. Nevertheless, in large-

scale systems building KAOS models may result in incomplete and/or complex

goal models, which are difficult to understand and change. This may lead to an

increase in costs of product development and evolution. Thus, for large-scale

systems, the effective management of complexity and completeness of goal

models is vital. In this paper, we propose a metrics framework for supporting

the quantitative assessment of complexity and completeness of KAOS goal

models. Those metrics are formally specified, implemented and incorporated in

a KAOS modeling tool. We validate the metrics with a set of real-world case

studies and discuss the identified recurring modeling practices.

Keywords: Goal-Oriented Requirements Engineering, Requirements Metrics,

Model Complexity, Model Completeness.

1 Introduction

Goal-Oriented Requirements Engineering (GORE) is considered an established para-

digm in requirements engineering to handle elicitation, specification, analysis, negoti-

ation and evolution of requirements by using goals [1]. KAOS [2], i* framework [3],

GBRAM [4] and GRL [5] are among the most representative GORE approaches. In

this paper, our focus is on the KAOS approach.

GORE approaches were developed to support the development of large-scale sys-

tems by providing different models, where the goal model is naturally the central one.

Eliciting requirements for such large-scale models is typically performed in a step-

wise manner. The higher-level goals are decomposed into less abstract goals. In this

refinement process, it is useful to have a measure of completeness, which can help

practitioners realize how close they are to achieving model completion.

Another challenge is that while designing such systems with the help of GORE

approaches it is common to reach a point where the models are so complex that their

mailto:titiespada@gmail.com
mailto:joao.araujo%7d@fct.unl.pt

analysis becomes difficult. Part of this complexity is intrinsic to the system. However,

complexity can also be accidental, i.e., it can result from the way the approach is used

to build the models [6]. From this point of view, one should minimize the accidental

complexity of models as a way to improve their quality.

In [7] we made an initial proposal to evaluate completeness and complexity of

KAOS goal models. By applying manually these metrics to two versions of an exam-

ple, one being a refinement of the other, we illustrated how completeness and com-

plexity metrics could be used by requirements engineers to better manage their mod-

els. Requirements engineers need models that are relatively easy to understand, to

facilitate requirements evolution. Tool support should be used to evaluate such mod-

els, giving useful feedback to the user while building them. This would help them (1)

to know the extent to which a model is close to being complete – this can be very hard

to acknowledge in large models; (ii) to assess the complexity of models and identify-

ing model refactoring opportunities by locating, for example, models that have a very

deep goal hierarchy or agents with too many responsibilities; and (iii) to prevent un-

anticipated extra costs in the development phase, as a result by better managing the

completeness and complexity of the models.

In this paper, we propose a tool supported approach to assist requirements engi-

neers in the evaluation of the completeness and complexity of KAOS goal models, in

an incremental way, while building those models. The developer can measure the

current status of his model and take on corrective actions, if necessary, during model

construction. The tool support is based on the integration of a KAOS editor with a

KAOS metrics suite and is mostly targeted to the requirements elicitation process,

although it can also support post-mortem analysis from which lessons can be learned

for future projects. We extend our previous work to include new metrics and formally

define all metrics using Object Constraint Language (OCL) [8]. We then validate the

metrics set and their implementation by extending an existing tool for editing KAOS

goal models (modularKAOS) [9], which was developed in an Eclipse platform by

using Model-Driven Development (MDD) techniques.

This paper is organized as follows. Section 2 describes background information on

KAOS. Section 3 describes the metrics set (defined using the GQM approach) and a

concrete example of its application to a real-world model. Section 4 reports the evalu-

ation process, including a presentation of the case studies used, the results obtained by

applying the metrics on those case studies, and a discussion on the results. Section 5

discusses the related work. Section 6 draws some conclusions and points out direc-

tions for future work.

2 Background

KAOS is a GORE framework whose emphasis is on semi-formal and formal reason-

ing about behavioral goals to derive goal refinements, operationalizations, conflict

management and risk analysis [2]. In KAOS, goals can be refined into subgoals

through and/or decompositions. Goals can also be refined into requirements (i.e., a

goal whose responsibility is assigned to a software agent), or expectations (i.e., a goal

whose responsibility is assigned to an environment agent). KAOS also introduces the

concept of obstacle as a situation that prevents the achievement of a goal [10]. The

resolution to the obstacle is expressed in the form of a goal that can also be refined.

The main steps for building KAOS specifications from high level goals are [2]: (i)

goals development – identification of goals and their refinement; (ii) objects identi-

fication – objects identification in the formulation of the goal, definition of the links

among them, and description of the domain properties; (iii) operations identification

– identification of object state transitions to the goal; (iv) goals operationalization –

specification of operations to satisfy all goals; (v) responsibilities assignment –

mapping of agents to leaf goals and operations assignment to agents.

We use the modularKAOS approach and tool [9], which includes a Domain-

Specific Language (DSL), implemented using MDD techniques, for building well-

formed KAOS models. This DSL was implemented based on the metamodel defined

in [11], using Ecore [12]. Our metrics suite is implemented and integrated in this tool.

The modularKAOS metamodel can be found in [9].

3 The KAOS Goal Model Evaluation Metrics

The purpose of this study is to evaluate the completeness and complexity of KAOS

goal models from the perspective of requirements engineers in the context of GORE.

Metrics can be valuable to analyze these properties. We propose a metrics-based

analysis framework for KAOS models, using the Goal-Question-Metric (GQM) ap-

proach [13]. Table 1 summarizes our GQM-based proposal for a set of metrics that

will allow satisfying the goals of completeness and complexity evaluation. For each

goal, the first column presents questions that will allow evaluating whether the corre-

sponding goals are being achieved. The second column shows the respective metrics.

Table 1. GQM for KAOS goal models evaluation

Goal: Completeness

Question Metric

Q1. How close are we to completing the assign-

ment of all goal responsibilities to agents?

PLGWA. Percentage of Leaf Goals With an Agent.

Q2. How detailed is the goal model with respect to
objects?

PLGWO. Percentage of Leaf Goals With an Object.

Q3. How close are we to complete the resolution

of all the goal obstacles?

PLOWS. Percentage of Leaf Obstacles With a

reSolution.

Q4. How detailed is the goal model with respect to
operations?

PLGWOp. Percentage of Leaf Goals With an

Operation.

Q5. How well supported are the operations in the
goal model?

POpWA. Percentage of Operations With an Agent.

Goal: Complexity

Q6. Does an agent have too much responsibility in

the model?

ANLG. Number of Leaf Goals per Agent.

Q7. Does a leaf goal have too many/few objects? GNO. Number of Objects per Goal.

Q8. How difficult is it to understand a model, with

respect to the number of refinement levels?

MD. Model Depth.

Q9. How complex is a model, with respect to its

goal refinements?

RNSG. Root Number of Sub-Goals.

To achieve the completeness goal for KAOS goal models, we formulated five dif-

ferent questions. Those address: (Q1) attributing responsibilities of goals to agents,

(Q2) associating objects to goals, (Q3) providing resolutions to obstacles, (Q4) asso-

ciating operations to goals, and (Q5) associating operations to agents.

Concerning the complexity goal, we defined four questions that address (Q6) the

amount of responsibility supported by an agent in a model, (Q7) the number of ob-

jects associated to a leaf goal, (Q8) the understandability of the goal model with re-

spect to the refinement levels (i.e., depth of goal hierarchy), and (Q9) the number of

goal refinements.

3.1 Metrics Definition

Table 2 presents the set of questions related to the evaluation of the completeness

goal. Table 3 defines the set of questions concerning the complexity goal. For each

question we present an informal definition of the metric specified to answer it, and its

formal definition using OCL upon the modularKAOS metamodel. Whenever needed,

we include the formal pre-conditions for the metrics computation. These define when

it makes sense to compute a metric (e.g., if we measure the percentage of leaf goals in

the model which have an agent and there are no leaf goals, it makes no sense to com-

pute the metric). We also provide an informal definition for the auxiliary metrics used

in each definition
1
. The included comments further explain the main metric for each

question. Last, but the least, we provide practical recommendations for interpreting

each of the proposed metrics, thus helping practitioners to monitor the completeness

and complexity of their models.

For the sake of completeness of the goal model, each leaf goal must be assigned to

an agent [1]. The PLGWA metric addresses this issue. This metric also covers the

case where a parent goal is assigned to an agent. In such cases, the sub-goals are also

assigned to that agent. Associating objects with leaf goals is optional, but contributes

to model completeness with information that is used in later stages of system devel-

opment. The PLGWO metric captures this perspective of completeness. Providing a

resolution to obstacles contributes to the completeness of a KAOS goal model. The

PLOWS metric measures the obstacle resolution coverage. Operations represent well

determined solutions that fulfill the goals. A model does not necessarily need to have

all its goals operationalized. One may deliberately decide to postpone the operational-

ization of a goal to a later stage. The PLGWOp metric can be used to assess the extent

to which the model goals are realized. Finally, KAOS operations must be performed

by agents. The POpWA metric evaluates the percentage of operations with an as-

signed agent.

Table 2. Metrics to satisfy the completeness goal – Q1 through Q5

Q1 - How close are we to completing the assignment of all goal responsibilities to agents?

Name PLGWA – Percentage of Leaf Goals With an Agent

Informal definition Percentage of leaf goals that have an associated agent in the model.

1 All metrics are available at http://ctp.di.fct.unl.pt/~mgoul/papers/2013/CAISE2013KAOSMetrics.pdf

Formal definition context KAOS

def: PLGWA(): Real = self.NLGWA() / self.NLG()

Pre-condition context KAOS::PLGWA()

pre: self.NLG() > 0

Comments If there are no leaf goals the result is undefined. This requires:

NLG – Number of Leaf Goals

NLGWA– Number of Leaf Goals With an Agent

Recommendation In a complete model, all leaf goals should be assigned to an agent.

Q2 - How detailed is the goal model with respect to objects?

Name PLGWO – Percentage of Leaf Goals With an Object

Informal definition Percentage of leaf goals that have an associated object in the model.

Formal definition context KAOS

def: PLGWO(): Real = self.NLGWO() / self.NLG()

Pre-condition context KAOS::PLGWO()
pre: self.NLG() > 0

Comments If there are no leaf goals the result is undefined. This requires:

NLGWO – Number of Leaf Goals With an Object

NLG – Number of Leaf Goals

Recommendation In a complete model, goals should have associated objects.

Q3 - How close are we to complete the resolution of all the goal obstacles?

Name PLOWS – Percentage of Leaf Obstacles With a goal reSolution

Informal definition Percentage of leaf obstacles that have an associated goal resolution in the model.

Formal definition context KAOS

def: PLOWS(): Real = self.NLOWS() / self.NLO()

Pre-condition context KAOS::PLOWS()

pre: self.NLO() > 0

Comments If there are no leaf obstacles the result is undefined. This requires:

NLO – Number of Leaf Obstacles

NLOWS – Number of Leaf Obstacles With a reSolution

Recommendation Resolutions should be assigned to obstacles to contribute to the resilience of the

system to exceptional situations.

Q4 - How detailed is the goal model with respect to operations?

Name PLGWOp – Percentage of Leaf Goals With an Operation

Informal definition Percentage of leaf goals that have at least one associated operation in the model.

Formal definition context KAOS

def: PLGWOp(): Real = self.NLGWOp() / self.NLG()

Pre-condition context KAOS::PLGWOp()
pre: self.NLG() > 0

Comments If there are no leaf goals, this metric is undefined. This requires:

NLGWOp – Number of Leaf Goals With an Operation
NLG – Number of Leaf Goals

Recommendation Operations should be assigned to leaf goals, to get closer to completing the specifica-

tion of the desired functionalities.

Q5 - How well supported are the operations in the goal model?

Name POpWA – Percentage of Operations With an Agent

Informal definition Percentage of operations that have an associated agent in the model.

Formal definition context KAOS

def: POpWA(): Real = self.NOpWA() / self.NOp()

Pre-condition context KAOS::POpWA()

pre: self.NOp() > 0

Comments If there are no operations, this metric is undefined. This requires:

NOp – Number of Operations
NOpWA– Number of Operations With an Agent

Recommendation All operations must be performed by agents, so assigning agents to operations is a

necessary step to model completion.

Table 3 presents the metrics to satisfy the complexity goal. The ANLG metric

counts the number of leaf goals assigned to an agent, including the inherited ones. It

measures the complexity of that agent in terms of the amount of its responsibilities.

The GNO metric addresses the complexity related to the number of objects associated

to a leaf goal. It is essentially a size metric of the model that can be used to evaluate if

a goal has an associated complex behavior by manipulating a certain amount of ob-

jects. A deeper model hierarchy makes it harder to understand the rationale for a leaf

goal or an obstacle. The MD metric measures the height of the goal graph. Finally, the

RNSG metric represents the number of sub-goals resulting from the refinement of the

root goal. This is a size metric of the whole goal model, and can be used as a surro-

gate for model complexity. In addition, the auxiliary metric NGSG can be used for

any sub-goal to help identifying structural problems in goal decomposition. A goal

with too many sub-goals should be scrutinized for a potential lack of cohesion.

Table 3. Metrics to satisfy the complexity goal – Q6 through Q9

Q6 - Does an agent have too much responsibility in the model?

Name ANLG – Number of Leaf Goals of an Agent

Informal definition Number of direct or indirect leaf goals connected to this agent.

Formal definition context Agent

def: ANLG(): Integer = self.ALG()->size()

Comments This requires:

ALG – Set of all direct or indirect Agent Leaf Goals

Recommendation Too much responsibility to an agent should be avoided. In general this hints the
agent is too generic, so more specialized agents should be considered.

Q7 - Does a leaf goal have too many/few associated objects?

Name GNO – Number of Objects of a Goal

Informal definition Number of objects (entities) connected to this goal.

Formal definition context Goal

def: GNO(): Integer = self.goalConcerns->collect(concernsObject)->size()

Comments: This is a simple count of objects connected to a goal.

Recommendation Too many objects associated with a goal should be avoided. In general this is a hint
for the need of decomposing a goal into sub-goals.

Q8 - How difficult is understanding a leaf goal, with respect to its parent goals?

Name MD – Model Depth

Informal definition Depth of the model, considering goals and obstacles.

Formal definition context KAOS

def: MD(): Integer = self.NDR(self.root.oclAsType(Nodes), Set{}, Set{0}, 0)-

>iterate(i: Integer; maxD: Integer = -1 |
 if maxD = -1 then i else maxD.max(i) endif)

Comments The model depth includes goals and obstacles. This requires:

NDR – Nodes Distance to Root

Recommendation The deeper the model, the harder it is to understand it, so model depth should be
kept to a minimum in terms of how it depends on system size.

Q9 - How complex is a goal, with respect to its refinements?

Name RNSG – Root Number of Sub-Goals

Informal definition Number of direct or indirect sub-goals of the root.

Formal definition context KAOS

def: RNSG(): Integer = self.root.NGSG()

Comments This requires:
NGSG – Number of direct or indirect Sub-Goals of a Goal

Recommendation A goal with too many sub-goals should be scrutinized for potential lack of cohe-

sion.

3.2 Example

We now present the modularKAOS tool
2
 through an example (Fig. 1). The tool allows

Requirements Engineers to build goal models using a visual language and provides

some feedback on the model (such as design warnings and metrics values). These

values can be updated at any time, while using the tool. As such, they can be valuable

for developers to detect potential problems early in the process (e.g. a high accidental

complexity caused by some modeling option) and gauge how close they are from

completion. In this sense, the proposed framework should be mostly regarded as a

facilitator during the modeling process, rather than as a post-mortem analysis tool,

although it supports both activities.

Fig. 1 shows a fragment of the Bay Area Rapid Transit System (BARTS) case

study [14], whose main objective is to make a train system more efficient by running

trains more closely spaced. The goal Maintain[CmdMsgTransmitted-InTime]

specifies that the command messages must be transmitted in time, to avoid collisions

with other trains. This goal represents the case where a message requiring a safe ac-

celeration, based on the speed and position of the following and preceding trains, is

exchanged between the train and the control system. This goal is refined into three

sub-goals: Achieve[CmdMsgSentInTime], where the command message is sent in

time by the TrainControlSystem to the train; Maintain [SafeAcc/SpeedCmdIn-

CmdMsg], where the TrainControlSystem tries to maintain a safe acceleration in

the messages that send to the trains; and Achieve[SentCmdMsgDeliveredInTime],

where the CommunicationInfrastructure guarantees that the messages are sent.

Fig. 1. Application of the modularKAOS tool and the metrics to the BARTS case study

The diagram contains some obstacles and respective resolutions. If the obstacles have

no direct or indirect solutions, a warning is thrown (e.g., in the Avoid resolution re-

2 The tool is available at http://ctp.di.fct.unl.pt/~mgoul/papers/2013/CAiSE2013/modularKAOS/

quirement). Whenever leaf goals are neither linked to an object nor to an operation a

warning is thrown (e.g., in the Avoid leaf goal). The operation presented in the model

throws a warning as it should be performed by an agent and no agent is assigned to it.

The warnings are listed in the problems tab below the metrics tab presenting the

metrics values of this model. We have 5 leaf goals (NLG = 5 - Main-

tain[SafeAcc/SpeedCmdInCmd-Msg], Avoid[TrainsCollisionsWhenCmdMsg-

NotTransmittedInTime], Achieve[CmdMsgSentInTime], Achieve[UnsafeCmd-

MsgSent], Achieve[SentCmdMsgDeliveredInTime]), of which 4 have an agent

(NLGWA = 4 – first four goals listed above), and so on. Note that some of the auxil-

iary metrics, presented in this screenshot, are not discussed in this paper (e.g.,

MaxNLGWA – the maximum number of leaf goals with an agent in the model), but

are defined in the previously mentioned complete list of metrics.

4 Evaluation

4.1 Case Studies

We modelled well-known KAOS real world case studies, namely the Bay Area Rapid

Transit (BARTS) [14], the London Ambulance Service (LAS) [14], the Elevator Sys-

tem (ES) [15], the Meeting Scheduler (MS) [2], the Library Management System

(LMS) [2], the Mine Safety Control System (MSCS) [2], and the Car Park Manage-

ment System (CPMS) [16] with modularKAOS, and then collected the corresponding

metrics. These case studies are described as part of a text book [2], a PhD dissertation

[14] and tutorials [15, 16], so they provide enough detail, in contrast with what could

happen with examples taken from papers published in conferences and, to a lesser

extent, in journals.

4.2 Results and discussion for the completeness metrics

For each question related to the completeness goal, we present a column chart. Each

column is associated to a different system, on the left side of the picture, and a box-

plot chart, with the dispersion, skewness and outliers, on the right side of the picture.

Q1) PLGWA: This question concerns how far a model is from assigning all its

goal responsibilities to agents. On the left side of Fig. 2.a), we see the percentage of

leaf goals with an agent for each goal model of each case study. The CPMS has the

most complete model, concerning goal responsibility assignment, while BARTS has a

much lower percentage than the other case studies. BARTS is an outlier in the boxplot

chart, indicating a significantly lower focus on agent’s responsibilities assignment in

this system. Overall, around 70% of the leaf goals in the goal models follow the com-

pleteness rule that specifies that a leaf goal should be assigned to an agent.

Q2) PLGWO: The second question concerns the level of detail of a goal model

with respect to the percentage of leaf goals with an object. Fig. 2.b) shows that most

case studies barely specify objects in their goal models. BARTS and LASS provide

more leaf goals with objects in the model, although with a percentage lower than

50%. CPMS, LMS and MSS do not represent objects at all. In the boxplot the median

is below 10%, but no outliers are identified. These case studies seem to indicate that

object identification was not regarded as a priority at this requirements stage.

Q3) PLOWS: The third question concerns the goal model level of detail with respect

to obstacles that have resolutions. Fig. 2.c) shows that the CPMS and ES (both taken

from KAOS tutorials) are the ones that provide more obstacles with resolutions. The

remaining case studies have a lower PLOWS, suggesting that the specification of a

resolution for obstacles is not a major concern at this requirements stage. LMS is a

missing value here, because there are no leaf obstacles in this model (and, therefore,

no resolution for them). With an even number (six) of observations, there is no single

middle value and the median is the mean of the two middle values [17].

a) Percentage of Leaf Goals with an Agent

b) Percentage of Leaf Goals with an Object

c) Percentage of Leaf Obstacles with a reSolution

d) Percentage of Leaf Goals with an Operation

e) Percentage of Operations with an Agent

Fig. 2. Metrics values for our case studies

Q4) PLGWOp: The fourth question concerns the level of detail of a goal model

with respect to operations associated to leaf goals. Fig. 2.d) shows that operations

were rarely specified in the goal models of the case studies with a rate of leaf goals

with operation lower than 25%. MSCS is the case study where operations appear

more frequently. The median shown in the boxplot is below 10%, but no outliers are

identified. Operations identification and association to leaf goals do not seem to be a

major concern at this stage.

Q5) POpWA: The fifth question concerns the level of detail of a goal model with

respect to operations associated to agents. Note that, as seen in Fig. 2.d), CPMS and

MSS have no operations specified. Therefore, they are missing values, as shown in

Fig. 2.e) (it does not make sense to compute the POpWA metric on them, as specified

in the pre-condition shown in Table 2). Three case studies (BARTS, LASS and

MSCS) out of the remaining five have no operations assigned to an agent. Only ES

and LMS use this feature, and do so for around half of the operations. These results

suggest a lower emphasis on the complete specification of operations in the goal

models, regarding their assignment to agents.

4.3 Results for the metrics related to the complexity goal

For the first two questions related to the complexity goal we show only a boxplot

chart (since percentages are not involved, only discrete values). For the last two ques-

tions we show both a column and a boxplot chart.

Q6) ANLG: Question six concerns the degree of responsibility of an agent. As

seen in Fig. 3.a), most models have between 1 and 5 leaf goals per agent. The two

case studies taken from tutorials (CPMS and ES) have a significantly higher number

of leaf goals per agent. The most extreme case has a very high ANLG suggesting too

many responsibilities for the CarParkController agent. This would be a candidate for

further agent decomposition.

Q7) GNO: Question 7 concerns the number of objects associated with a goal. Fig.

3.b) shows how the majority of the case studies do not consider objects in the goal

models. BARTS and LASS are the exceptions where objects are more frequently

used. The extreme values in the ES and MSCS case studies, with one object per goal,

confirm how rarely these model elements are used in those case studies.

Q8) MD: Question 8 concerns the level of understandability of a goal model,

based on its depth (using a complexity metric similar to the one proposed in [18] for

object-oriented design). Fig. 3.c) shows that, in our sample, the most complex system

is CPMS, with 13 levels of refinement. However, the median shown in the boxplot

reveals that the number of refinement levels is around 10 and no outliers were identi-

fied, suggesting a fairly consistent number of decomposition levels is used. Extreme

values of this metric could indicate variations in the accidental complexity of models.

A much lower level of MD could suggest a simplistic structuring of the model, while

extremely high values could hint for possible “over-refinement” of the model.

Q9) RNSG: Question 9 addresses the essential complexity evaluation by consider-

ing the total number of model elements (in particular, the number of subgoals). Fig.

3.d) shows that CPMS has the highest number of goals and the boxplot shows it as an

outlier, with more than 200 subgoals, while the median considering all the case stud-

ies is below 50. This suggests that the CPMS case study itself is defined with more

details than the other ones.

a) Number of Leaf Goals per Agent

b) Objects per Goal

c) Model Depth

d) Root Number of Sub-Goals

Fig. 3. Metrics values for our case studies

4.4 Discussion on the metrics definitions

Concerning our completeness metrics, all of them are defined in such a way that a

percentage of the artifacts present in the model, against their potential maximum

number for the same model, is computed. The recommendations presented in Table 2

closely follow the guidelines generally accepted by the KAOS modeling community

(see, for example, [2]). They can be used as metrics-based heuristics to hint develop-

ers to potential incompleteness problems in their model which may be detectable by

analyzing the structure of the KAOS goal model. As such, we consider them adequate

for the task of assessing model completeness in their respective perspective.

There are, of course, other important completeness perspectives which are not de-

tectable through this approach. The completeness of a goal model also depends on

aspects such as the quality of the requirements definition phase. If a goal is not identi-

fied during the interviews with stakeholders, it will not be represented in the corre-

sponding KAOS goal model. So, the goal coverage rate depends mostly on those in-

terviews and on the thoroughness of validation meetings where the stakeholders re-

view the proposed goal models, to address potential conflicts and, possibly identify

goals that were missed in a previous phase of the requirements elicitation process.

Another technique that helps mitigating difficulties in the production of complete

requirement models is to use pattern-based refinement techniques that support com-

pleteness and consistency of the goal models.

Concerning complexity, a more detailed discussion is required. First of all, it is

important to note that models have two sorts of complexity: the essential complexity,

which is intrinsic to the system being modeled, and the accidental complexity, which

results from the way the system is being modeled (including the chosen modeling

approach). In general, this accidental complexity should be minimized, if possible.

To the best of our knowledge, there are no guidelines concerning what is consid-

ered an “acceptable” level of complexity in KAOS goal models. However, there is a

large body of work concerning metrics-based model complexity evaluation for other

classes of software models. In particular, Object-Oriented model complexity evalua-

tion has been often addressed using software metrics (e.g. [18]). A common way of

using complexity metrics to help developers, is to collect such metrics from models

generally considered as good design examples (or, conversely, from bad ones). The

rationale is that, if a sufficiently large body of examples can be collected, typical val-

ues can then be identified, in order to support design heuristics. Complexity metrics

can be used to help detecting bad design smells (e.g. the presence of a god class), or

bad code smells (e.g. the presence of a long method), when “unusual values” are de-

tected.

In this paper, we adapt this idea to the context of goal models. Although a larger

number of case studies would be necessary in order for these typical values of a good

(or bad) design to start emerging with statistical significance, we can already have a

first look at some modeling tendencies from these case studies. We can also identify

some modeling issues that might require further attention. For example, the extremely

high number of leaf goals per agent assigned to the CarParkController agent, in

figure 3.a, would be a likely candidate for a closer analysis, considering how different

this number is, when compared to the number of leaf goals assigned to other agents in

the rest of this system (and, in fact, in all the other case studies in this paper). For each

of the proposed complexity metrics, we briefly present a hands-on recommendation,

in table 3, alerting to the potential problem in the goal model that the metric helps

identifying. Note that although the “unusual value” of the complexity metric is a hint

for a potential problem in the goal model, this has then to be checked. It may be the

case that a high complexity value results from the essential complexity of the prob-

lem, rather than from a less than optimal model.

The body of work in software complexity metrics includes approaches to their val-

idation. Weyuker proposed a set of 9 desirable properties for program complexity

metrics [19]. These were frequently adopted for assessing metrics sets not only in

programs, but also in design documents such as class diagrams. We adapt those defi-

nitions to the context of complexity metrics for GORE models.

Consider P, Q, and R as models. Let |P|, |Q|, and |R| be their complexity, respec-

tively, as measured by a complexity metric. Let |P; Q| be the resulting complexity of P

composed with Q. Table 4 presents the adapted Weyuker properties, in natural lan-

guage and formally, and identifies which metrics satisfy those properties.

Most of these properties for complexity metrics are preserved by our complexity

metrics. Property 9 is a noticeable exception. We assume that the composition of two

models does not introduce model elements which are not present in at least one of the

original models. With these metrics, a composed model cannot exhibit higher metrics

values than the sum of its parts. Without this assumption, property 9 would hold for

these metrics. RNSG does not preserve property 7. A reorganization of the model that

does not introduce new model elements does not change the number of sub-goals in

the model. It is common to find high impact complexity metrics (e.g. [18]) that do not

fulfill all of these “desirable” properties (see, for instance, [20]).

Table 4. Adapted Weyuker Properties

Adapted Weyuker Property ANLG GNO MD RNSG

1 At least some different models should exhibit different values for the same

complexity metric.
Yes

Yes

Yes

Yes

∃ P, ∃ Q : P ≠ Q ∧ |P| ≠ |Q|

2 There is a finite number n of models for which the complexity is c (a non-
negative number). Let S be the set of models with c complexity, and n the

cardinal of the set S.

Yes

Yes

Yes

Yes

∀ c ∈ℝ0
+, ∀ P : |P| = c ⇒ P ∈ S, ∃ n ∈N0: #S = n

3 Different models P and Q may have the same complexity. Yes Yes Yes Yes
∃ P , ∃ Q : P Q ∧ |P| = |Q|

4 Different models which are functionally equivalent may have different

complexities.
Yes Yes Yes Yes

∃ P , ∃ Q : P ≡ Q ∧ |P| ≠ |Q|

5 Monotonicity is a fundamental property of all complexity measures. A

model in isolation is at most as complex as its composition with another
model.

Yes Yes Yes Yes

∀ P , ∀ Q : |P| ≤ |P; Q|∧ |Q| ≤ |P; Q|

6 The resulting complexities of composing the same model (R) with two

different models of the same complexity (P and Q) are not necessarily

equal. Conversely, the complexities of composing two different models (P
and Q) of the same complexity with a third program (R) are also not neces-

sarily equal.

Yes Yes Yes Yes

∃ P, ∃ Q, ∃ R : P ≠ Q ∧ |P| = |Q|∧ |P; R| ≠ |Q; R|

∃ P, ∃ Q, ∃ R : P ≠ Q ∧ |P| = |Q|∧ |R; P| ≠ |R; Q|

7 Weyuker’s property 7 states that program’s complexity should be respon-

sive to the order of its statements, and hence to their potential interaction.

In a KAOS goal model, the adapted rule would be that the model complexi-
ty should be responsive to the organization of its model elements in the

goal model graph. Let P be a model and Q another model such that Q is

formed by permuting the order of the elements in P. Assume we name this
permutation operation Perm().

Yes Yes Yes No

∃ P, ∃ Q : Q = Perm(P) ∧ |P| ≠ |Q|

8 If a model is a renaming of another model, then their complexity should be
the same. Assume that the operation Rename() transforms program P in its

renamed version Q.

Yes Yes Yes Yes

∀ P, ∀Q : Q = Rename(P) ⇒ |P| = |Q|

9 The complexity of the composition of two models P and Q may be greater

than the sum of the complexities of models P and Q. The extra complexity
may result from the interaction between programs P and Q.

No No No No

∃P , ∃Q : |P| + |Q| < |P; Q|

4.5 Summary

Concerning completeness, in our sample of KAOS models: (i) most models handle

responsibility assignment of leaf goals to agents; (ii) objects are not frequently used in

the case studies; (iii) when obstacles are specified, we find a big variation (from 0%

to 100%) of the percentage of obstacles with a resolution, suggesting the concern for

specifying obstacle resolutions is not consistently spread among the requirements

engineers (some may prefer to postpone this to later stages); (iv) operations are even

more rarely used than objects – again, this seems to point to a preference for postpon-

ing their definition to later stages; (v) only two of the case studies model the assign-

ment of operations to agents, showing this is a fairly unexplored modeling feature.

Concerning the complexity goal, we found that: (i) in most cases, the number of

leaf goals assigned to an agent is relatively small, indicating, with few exceptions, a

general concern of not attributing too many responsibilities to a single agent; (ii) as-

signing objects to goals is a mostly unexplored feature of models (iii) model depth

varies much less than the number of model elements, suggesting a fairly consistent

state of practice with respect to what is considered an adequate model decomposition

level; (iv) we found big variations in the case studies, concerning the number of sub-

goals defined in each model; although the average number is around 40 subgoals, in

one of the examples it is over 200 goals. A closer inspection of the CPMS model

showed that the main source of variation was the significantly higher level of detail

with which this model was built.

4.6 Validity threats

The case studies used in this paper are generally considered as good examples of real-

world KAOS models and can be, in that sense, used as a reference for best practices

in goal modeling. However, other industry-based specifications may show different

profiles of utilization of the modeling mechanisms. Nevertheless, for the purposes of

validating the proposed metrics set, our sample of case studies covers all the situa-

tions we are addressing with this metrics set.

5 Related Work

Ramos et al. claim that early identification of syntactical problems (e.g., large and

unclear descriptions, duplicated information) and the removal of their causes can

improve the quality of use case models [19]. They describe the AIRDoc approach,

which aims to facilitate the identification of potential problems in requirements doc-

uments using refactoring and patterns. To evaluate use case models, the AIRDoc pro-

cess uses the GQM approach to elaborate goals and define questions to be addressed

by metrics. Their target quality attributes are reusability and maintainability, different

from ours. Their metrics were neither formally defined nor implemented in a tool.

Vasconcelos et al. [20] claim that GORE and MDD can be integrated to fulfill the

requirements of a software process maturity model in order to support the application

of GORE methodologies in industry scenarios. The proposed approach, called GO-

MDD, describes a six-stage process that integrates the i* framework into a concrete

MDD process (OO-Method), applying the CMMi perspective. The fourth stage of this

process concerns the verification, analysis and evaluation of the models defined in the

previous stages; and uses a set of measurements, specified with OCL rules, that eval-

uate the completeness of the MDD model generation with respect to the requirements

specified in the i* model. The set of metrics used in this stage is presented in [21],

using GQM. Compared to ours, their approach focuses on a different set of metrics as

their goal was to support the evaluation of i* models to generate MDD models.

Franch and Grau in [22] propose a framework for defining metrics in i* models, to

analyze the quality of individual models, and to compare alternative models over

certain properties. This framework uses a catalogue of patterns for defining metrics,

and OCL to formulate these metrics. In a follow up work, Franch proposes a generic

method to better guide the analyst throughout the metrics definition process, over i*

models [23]. The method is applied to evaluate business process performance.

6 Conclusions and Future Work

In this paper, we proposed a metrics suite for evaluating the completeness and com-

plexity of KAOS goal models, formally specified (using OCL) and incorporated in a

DSL based modeling tool. In the context of large-scale systems, neglecting complete-

ness at early stages may ultimately lead to unexpected extra costs in the later devel-

opment stages. Moreover, completeness analysis is useful to help requirements engi-

neers to evaluate how close they are to completing their models. Complexity analysis

is particularly useful for identifying issues with the quality of the produced models. In

particular, it can be used to help identifying opportunities for requirements refactor-

ing. Leveraging tool-supported completeness and complexity evaluation contributes

to a deeper understanding of requirements models and can be used to enhance the

overall quality of those models. We validated these metrics by applying them to sev-

eral real-world case studies that are generally considered as good examples of GORE.

As such, the obtained metrics values mirror a pattern of usage in goal modeling.

In a near future, we intend to extend the metrics set to cover other model quality

attributes and replicate this evaluation with other KAOS models. This would be a

stepping stone towards integrating metrics-based modeling heuristics in GORE tools.

We also plan to address completeness in terms of requirements coverage, by tracing

the model elements to requirements sources and identifying the requirements in those

sources that are yet to be covered by the goal models.

Acknowledgments. The authors would like to thank the AMPLE project and CITI –

PEst-OE/EEI/UI0527/2011, and to FFCT/UNL and the ASSD project, supported by

ESA, for the financial support for this work, and Robert Darimont for providing us

the documentation on the CPMS case study.

References

1. Lamsweerde, A.v.: Goal-Oriented Requirements Engineering: A Guided Tour. In: 5th IEEE

International Symposium on Requirements Engineering, pp. 249-262. IEEE. (2001)

2. Lamsweerde, A.v.: Requirements Engineering: From System Goals to UML Models to

Software Specifications. Wiley. (2009)

3. Yu, E.: Modelling strategic relationships for process reengineering. Ph.D. Thesis,

Department of Computer Science, University of Toronto, Toronto, Canada. (1995)

4. Anton, A.I.: Goal-Based Requirements Analysis. In: 2nd International Conference on

Requirements Engineering (ICRE '96). IEEE. (1996)

5. ITU-T: Recommendation Z.151 (09/08): User Requirements Notation (URN)–Language

definition. International Telecommunications Union, Geneva, Switzerland. (2008)

6. Brooks, F.P.: No silver bullet: essence and accidents of software engineering. IEEE

Computer, vol. 20, pp. 10-19. (1987)

7. Espada, P., Goulão, M., Araújo, J.: Measuring Complexity and Completeness of KAOS

Goal Models. In: International Workshop on Empirical Requirements Engineering, EmpiRE

2011. IEEE. (2011)

8. OMG: OMG Object Constraint Language (OCL). Object Management Group. (2012)

9. Dias, A., Amaral, V., Araújo, J.: Towards a Domain Specific Language for a Goal-Oriented

Approach based on KAOS. In: Third International Conference on Research Challenges in

Information Systems (RCIS'09). IEEE. (2009)

10. Lamsweerde, A.v., Letier, E.: Handling Obstacles in Goal-Oriented Requirements

Engineering. IEEE Transactions on Software Engineering, vol. 26, pp. 978-1005. (2000)

11. Matulevicius R., Heymans, P.: Analysis of KAOS Meta-model. University of Namur,

Computer Science Department, Belgium. (2005)

12. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling

Framework. Addison-Wesley Professional. (2003)

13. Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach. In:

Marciniak, J. J. (ed.) Encyclopedia of Software Engineeringm, pp. 528-532. Wiley. (1994)

14. Letier, E.: Reasoning about Agents in Goal-Oriented Requirements Engineering. PhD

Thesis, Catholic University of Louvain, Belgium. (2001)

15. Respect-IT: A KAOS Tutorial, version 1.0. (2007)

16. Respect-IT: e-Learn GORE & Objectiver. http://www.objectiver.com/index.php?id=108

17. Weisstein, E.W.: Statistical Median - MathWorld - A Wolfram Web Resource.

http://mathworld.wolfram.com/StatisticalMedian.html

18. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design. IEEE

Transactions on Software Engineering, vol. 20, pp. 476-493. (1994)

19. Ramos, R., Castro, J., Araújo, J., Moreira, A., Alencar, F., Santos, E., Penteado, R.:

AIRDoc–An Approach to Improve Requirements Documents. In: 22nd Brazilian

Symposium on Software Engineering (SBES’08). (2008)

20. Vasconcelos, A., Giachetti, G., Marín, B., Pastor, O.: Towards a CMMI-Compliant Goal-

Oriented Software Process through Model-Driven Development. In: 4th IFIP WG 8.1

Working Conference on Practice of Enterprise Modeling (PoEM 2011), LNBIP, 92, pp.

253-267. Springer Berlin Heidelberg. (2011)

21. Giachetti, G., Alencar, F., Franch, X., Pastor, O.: Applying i* Metrics for the Integration of

Goal-Oriented Modeling into MDD Processes. Universitat Politècnica de Catalunya,

Barcelona, Spain. (2010)

22. Franch, X., Grau, G.: Towards a Catalogue of Patterns for Defining Metrics over i* Models.

In: 20th International Conference on Advanced Information Systems Engineering (CAiSE

'08). Springer. (2008)

23. Franch, X.: A Method for the Definition of Metrics over i* Models. In: 21st International

Conference on Advanced Information Systems Engineering (CAiSE'09). (2009)

http://www.objectiver.com/index.php?id=108
http://mathworld.wolfram.com/StatisticalMedian.html

