
Advanced Modularity for Building SPL Feature Models: a
Model-Driven Approach

João Araújo, Miguel Goulão,
CITI/FCT,

Universidade Nova de Lisboa,
2829-516 Caparica, Portugal

joao.araujo@fct.unl.pt,
mgoul@fct.unl.pt

Ana Moreira, Inês Simão,
Vasco Amaral,

CITI/FCT,
Universidade Nova de Lisboa,
2829-516 Caparica, Portugal

amm@fct.unl.pt,
nessimao@gmail.com, vma@fct.unl.pt

Elisa Baniassad,
Australian National University,
Canberra ACT 0200, Australia
elisa.baniassad@anu.edu.au

ABSTRACT

Feature Models are commonly used to specify commonalities and
variabilities in Software Product Lines (SPL). Our goal is to
enhance feature modeling with traceability and improved support
for crosscutting concerns. While traceability will show the
features’ requirement-origins, providing means to reason about
their existence, crosscutting concerns will be handled through
advanced modularity mechanisms (e.g. aspects), making the
impact of changes to SPL models less difficult to understand and
analyze. The result is Theme/SPL, a novel SPL requirements
technique based on a concern-driven approach (Theme/Doc).
Theme/SPL includes the proposal of a domain-specific language
for specifying Theme/Doc models and uses model-driven
development to generate automatically feature models from them.
We show the applicability of the technique through a case study
using a within-group design to evaluate the final results and tools
developed.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications –
languages, methodologies.

General Terms

Design.

Keywords

Model-Driven Development, Software Product Lines, Advanced
Modularity

1. INTRODUCTION
Software Product Lines (SPL) use feature modeling as a key
technique for capturing commonalities and variabilities of a
software product family [14].

We aim at using feature models for SPL requirements modeling
and simultaneously offer both means to trace the requirements
origin of features present in a particular product line, and

improved early modularity support by identifying and
modularizing concerns that otherwise would be scattered
throughout the feature models.

Feature models [12] show a very specific perspective of a product
line, but other perspectives are necessary to offer the rationale or
origins for each feature. Requirements descriptions are the source
to identify features, thus providing a basis for justifying their
origins and rationale. Intuition and domain knowledge help
developers predict which features will be present in a system, but
these alone cannot provide system-specific scope of a feature. For
example, in mobile phones SPL, a security feature is expected to
be present, but the respective feature model provides no rationale
for the inclusion of this, or any other, feature. Although this
rationale might be present in the system's requirements, firstly,
security is not necessarily restricted to one portion of the
requirements, and secondly, it is intractable to exhaustively search
through all the requirements to find the rationale for each feature
in an unstructured fashion. Traceability mechanisms should be
used, as they provide support to solve this problem.

The second issue addressed in this paper is to capture crosscutting
concerns in an SPL that are scattered throughout its
specifications, from requirements to the feature model. Going
back to the mobile phones SPL example, let us consider a check

balance service and a security feature that may be replicated in
several components. To facilitate product derivation, each concern
or feature should be encapsulated in separate modules. Aspect-
oriented approaches [6][15] offer a step forward to improved or
advanced modularization of crosscutting concerns from
requirements to code.

We looked for an aspect-oriented approach that could be tailored
to address the aforementioned problems at the early stages of SPL
development. We chose Theme/Doc [6], an advanced separation
of concerns method for requirements traceability that aims at
identifying, modeling and composing crosscutting requirements
through the identification of themes (i.e., concerns that
encapsulate behavior) and their relationships. Theme/Doc offers
traceability, by recording a link between each model element and
its requirements origins. But Theme/Doc is not tailored for use
with SPL, therefore missing model elements for managing
variability. That is, although Theme/Doc is a good theoretical fit
for our two problems, its adaptation to SPL development is not
trivial, as its constructs need to be extended to express SPL
concepts and properties.

The goal of this paper is to extend Theme/Doc by adopting
Model-Driven Development (MDD) [18] techniques
(metamodeling and model transformations). The result is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’13, March 18–22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03…$15.00.

Theme/SPL, an approach supported by an Eclipse based tool
defined and implemented using a Domain-Specific Language
(DSL) [10]. Two metamodels were developed, one for
Theme/SPL models and another for feature models. The
transformations of Theme/SPL models into feature models are
also defined using ATL [3] and supported by the tool. The
approach was applied to several examples, and the resulting
models were evaluated. We also evaluated the usability of the tool
support.

This paper is structured in 9 sections. Section 2 summarizes the
background of this work. Section 3 describes the new Theme/SPL
approach. While Section 4 describes the requirements and theme
elicitation activities, Section 5 provides heuristics to build a
Theme/SPL model and Section 6 shows the required
transformation rules. Section 7 completes the core of our
contribution by presenting the evaluation results. Finally, Section
8 discusses some related work and Section 9 summarizes our
conclusions and indicates future work.

2. BACKGROUND
SPL development has two main activities: domain engineering
and application engineering [14]. In this paper we focus on the
domain engineering activity at requirements level, where the
commonalities and variabilities in product lines are captured using
a feature model. A feature may be[7][12]: (i) mandatory (the
feature must be present in all members of the product line), (ii)
optional (the feature may or may not be present in a product of an
SPL), (iii) inclusive-or (a feature that is composed of a set of
features of which one or more is chosen), or (iv) alternative (a
feature that is composed of a set of features of which exactly one
is chosen). We use the cardinality-based feature model developed
by Czarnecki et al. [7], which gives more semantics to the
traditional feature model [12].

The Theme/Doc approach is defined for analysis based on the
concept of theme [6]. Themes are obtained from a requirements
list, which is the starting point of Theme/Doc. This list is analyzed
and the main concerns – the themes – are identified, consisting of
a verb plus an object. For example, requirements stating that
mobile phones should allow making phone calls and sending SMS
originate the themes “Make a call” and “Send an SMS”. These
themes encapsulate concerns that are related to specific system
functionalities. There are two kinds of themes: base themes,
which can be affected by aspectual behaviors that are specified by
crosscutting themes (also known as aspectual themes, or just
aspects). Also, Theme/Doc defines entity as an object that
interacts with a theme.

Theme/Doc identifies themes in requirements documents and
provides heuristics to identify which of the themes are

crosscutting (the aspects), and which are not (the bases).
Theme/SPL extends the Theme/Doc approach by including new
heuristics to support SPL, adding the variability information to
the Theme models, and then mapping Theme models to a
corresponding feature model. The basic concept we use to bridge
the gap between Theme and SPL is concern, which encapsulates a
system’s property. We map a theme to a feature as both are
concern representations.

3. THEME/SPL APPROACH OVERVIEW
Figure 1 gives an overview of the process of the approach
(modeled using a UML activity diagram). It builds Theme/Doc
and feature models for Domain Engineering. The process is
divided into three main activities:

1. Elicit requirements and themes. Examine the requirements
documentation of the system to elicit requirements and
themes. The deliverables of this stage are lists of
requirements and themes (see examples in Section 4).

2. Build Theme model. Use requirements and themes to
identify entities and to define the relationship among themes
and between themes and entities, captured in the Theme
model (see example in Figure 2). The 10 heuristics described
in Section 5.1 support this activity. We finish with the
stakeholders’ validation of themes and requirements.

3. Build feature model. Automatically derive the feature
model, where features are primarily identified and variability
analyzed, using the Theme model defined in the previous
activity. The Theme model is used as input for the ATL
transformation rules defined in Section 6. Then, validate the
feature model. The identification of aspectual themes may
lead to a refinement of the feature model, which is finally
validated (in this paper we will not focus on validation, but it
must be carried out by the stakeholders in inspection
sessions, for example).

This process is supported by a rigorous DSL for specifying
Theme/SPL models as well as model transformations specified in
ATL [3], to derive feature models from Theme/SPL models. The
models obtained by applying this process can then be used to
guide the remaining development activities. Concerning
evolution, this is benefited as the modularization of crosscutting
concerns obtained will make it easier the modifications as they
will be localized. Throughout this paper, we use a small part of a
mobile phone software product line as a running example. The
example’s aim is to develop software components to make calls,
put phone calls on hold, insert contacts in a contacts list, send

and receive SMS and MMS, take pictures, and transfer data

between two mobile phones.

Figure 1. Theme/SPL Domain Engineering process.

4. REQUIREMENTS AND THEMES

ELICITATION
The first step is to build a requirements list, using the typical
inputs from clients, such as documentation and interviews. Table
1 shows a partial requirements list for the mobile phone SPL.

Table 1. Requirements List

Based on this list we identify a (non-exhaustive) set of themes,
following the theme elicitation process [6]: (T1) Make a call; (T2)
Put phone call on hold; (T3) Receive MMS/SMS, (T4) send
MMS/SMS; (T5) Take pictures; (T6) Transfer data. Basically, by
analyzing the requirements, the main concerns (the themes) are
extracted from them — they are based on the verbs (and objects)
that can be abstracted from these requirements. So, each theme is
related to one or more requirements. For example, a theme “Make
a call” can be extracted from the requirements R4 and R5.

5. THEME/SPL MODEL CREATION
We propose ten heuristics designed to evaluate the requirements
list (the input to this process) to produce the Theme model, which
is then used to generate the feature model. These heuristics are
applied to the requirements list. The requirements must follow a
particular style, as described next. In this section, we discuss the
heuristics and the DSL created to support the construction of the
Theme model. We extend the Theme model with SPL concepts,
defining the following relationships: alternative, obligatory and
part-of. Also, each theme is mapped into a feature.

5.1 Heuristics for the theme model creation
H1. Identify the root. Find a requirement that says what the
system is. Model parts (possibilities) that make up the root and
each component will lead to a root theme. The link type is
explained in heuristics H2 and H3.

H2. Identify optionality. If a requirement contains descriptions
that indicate optionality, such as “when X, Y may run”, obtain the
themes X and Y; Y is optional and is represented by a link with
the stereotype «alternative». This is the case of the theme
“Make call” (i.e., X) and “Put call on hold” (i.e., Y).

H3. Identify mandatory dependent features. If a requirement
contains descriptions to indicate a mandatory dependency
situation, such as “when X, it has to have Y”, “when X, there

must be Y”, or “X requires Y”, if X runs, Y must be executed.
This is represented by a link with the stereotype «obligatory»
from X to Y.

H4. Identify themes aggregation. If there are requirements
related to a theme that identifies other themes that compose it, the
relationship is represented by a connection with the stereotype
«part_of». Therefore, in the action view, the theme “Take

Picture” is part of “Send MMS”.

H5. Identify generalized themes. If two or more themes are
closely related, then a new theme is created so that it generalizes
those themes. The themes “Send SMS” and “Send MMS” differ
on the kind of information to be sent, so we create a new theme
“Send Message”, whose sub-themes will be those which
originated it.

H6. Identify OR alternatives. If a requirement contains
expressions describing several alternatives such as “selects at

least one of several”, then we have a theme called ThemeGroup
(i.e., a theme that is decomposed into alternatives) that contains a
minimum and maximum number of alternatives. The alternatives
are called GroupedThemes, and they are linked to the
ThemeGroup through a link with the stereotype
«alternative_or». For example, for the ThemeGroup
“Transfer Data” we can choose from 1 to 3 GroupedThemes
(“Bluetooth”, “Infrared”, “USB”).

H7. Identify XOR alternatives. If a requirement contains
expressions such as “only one can be selected” among several
alternatives, then we have also a ThemeGroup, and the
alternatives (GroupedThemes) and are linked to ThemeGroup
with the stereotype «alternative_xor». For example, for the
ThemeGroup “Choose Payment Method” we choose either the
“ATM” or the “bank’s website” GroupedTheme.

H8. Identify relationships between themes and entities. If in a
requirement there is a theme related to an entity (i.e., objects in
the Theme model), that entity will be “part-of” the theme.

H9. Identify aspectual themes. An aspectual theme is a theme
that appears repeatedly in two or more requirements. After
identifying it, a relationship from the aspectual theme to the base
theme with the stereotype «crosscutting» is defined. In this
example, an aspectual theme is “Manage Contacts” since it is
needed to “Make Call” and to “Send Message”.

H10. Identify “requires” relationships. In a requirement, if there
are themes or entities where one needs another, in expressions
such as “X using Y” or “X through Y”, then there is a link
between the two. This link from X to Y is decorated with the

Req. Requirements description

R4 To make a call a user should search the receiver contact in
contacts list and press the call key.

R5 To make a call the user needs to check the balance on the
phone.

R6 If there is no balance in phone, display the message “Out of
balance”.

R7 If there is enough balance, the phone call is made.

R8 When the user is making a call, another call may be on hold,
showing on the display the message “Call Waiting”.

R10 The user, using the camera phone, takes a picture and sends it
by MMS to another user.

R11 To send an MMS, the user must attach the photo to the
message, write the text on the photo if s/he wants, and find the
contact in the contact list

R12 To send an MMS the user needs to check the phone balance.

R13 If there is no balance in mobile phone, display a message
“Without balance”.

R14 If the mobile phone has balance, display a message
“Multimedia message sent”.

R15 When user receives an MMS a message “New message
received” will be shown on the display.

R17 To send an SMS, the user will have to write the message and
find the contact in the contacts list, since it can be sent to one
or more recipients.

R19 To send an SMS the user needs to check the phone balance.

R20 If there is no balance the mobile phone displays the message
“No balance”.

R21 If there is balance, the mobile phone displays the message
“Message sent”.

R31 It allowed the user to transfer data between mobile phones for
at least one of the mechanisms: Bluetooth, Infrared or USB.

R32 To make the data transfer the user has to activate the transfer
mechanism, select the data type to send, photo or SMS, and
select the file.

stereotype «requires». For example, the theme “Take picture”
requires the entity “Camera”, as described in the requirement
R10 “using a camera, take a picture”, so there is a «requires»
link from the theme “Take picture” to the entity “Camera”.

After applying these ten heuristics, we obtain a theme-relationship
view model. The heuristic H1 gives the root, important to
establish the traceability between the Theme model and the
feature model. Variability is addressed explicitly in H2, H3, H6
and H7, resulting in an extension of original Theme/Doc approach
with stereotypes that extend Theme with SPL concepts. H5 is
important as an extensibility mechanism, to facilitate the
introduction of new sub-themes. The part-of relationship covered
by H4 and H8 and the requires relationship in H10 are also
extensions of Theme/Doc. Here we obtain indirectly additional
mandatory features. H9 is crucial to obtain a better modularized
model, which will have similar impact on the generated feature
model.

The advantages of these heuristics are threefold: (i) the obtained
Theme model is closer to feature model, but not exactly the same,
as we want to preserve some semantics of themes relationships

that do not exist in the feature model; (ii) the Theme model
justifies the features by tracing them back to the requirements list
– the traceability is achieved as features are obtained from themes
by transformation, and themes are originated from requirements;
(iii) the aspectual themes identification and mapping into separate
features promote an improved modularity of the feature model.

Figure 2 presents a resulting screen shot of a Theme model for
Theme/SPL DSL editor tool after applying the heuristics. Features
are represented as diamonds, and their relationships, as
stereotyped arrows. In the figure, the root is called MobileSPL.
Also, we see three compartments that group features related to
data transfer, sending messages and receiving messages. It is also
shown obligatory (e.g., between the root and the theme Send

Message) and alternative (e.g., between the root and the theme
Transfer Data) relationships between themes. Crosscutting
relationships are also exemplified (e.g., from the theme Manage

Contacts to the themes Make Call and Send Message). A part-of
relationship is illustrated between the Send SMS and Write Text
themes.

Fig. 2. Theme model for the mobile phone SPL

5.2 A DSL for Theme/SPL
We created a DSL for the Theme/SPL approach. We first defined
a metamodel for Theme/SPL and another for the feature model
(based on the metamodel described in [7]) using the models in the
Ecore metamodeling language.

The Theme/SPL approach metamodel contains a root node called
ThemeApproach which links the classes that represent nodes and
links between nodes. Figure 3 illustrates the Ecore model, where
the identified nodes are RootTheme, Themes, Aspect, Entity,
ThemeGroup and GroupedTheme. The possible links are:

Obligatory, Alternative, Part_of, Crosscuting, Alternative_or,
Alternative_xor, Require and Extend.

The metamodel for the feature model contains a root node named
FeatureModel. As in the Theme approach metamodel, there are
classes that represent the Nodes and Links between nodes. We
identified the nodes RootFeature, Feature, FeatureGroup and
GroupedFeature, and the links Optional, Mandatory,
Alternative_or, Alternative_xor, Requires and Excludes. The
metamodel is not shown here for space reasons. Figure 4 shows a
screen shot of a generated feature model.

Figure 3. Ecore model for Theme/SPL approach.

6. FEATURE MODEL GENERATION
The mapping from the Theme/SPL model to a feature model is
straightforward. Each theme becomes a feature and the
relationships between the themes are directly mapped to the
feature model. Each aspectual theme appears only once in the
feature model. To specify and implement the transformation from
the Theme/SPL model to feature model, we used the Ecore model
for the Theme/SPL approach (Figure 3) as the metamodel of the
transformation source. Then, through transformation rules, and
using the Ecore model for feature model as a target metamodel,
we generate the feature model that can be visualized and edited by
the graphical editor (Figure 4).

In Table 3 we present part of the set of transformation rules
implemented in ATL to transform automatically the Theme/SPL
models into the feature models. The complete set of rules can be
found at http://ctp.di.fct.unl.pt/~ja/ThemeSPLrules.pdf.

These rules are in accordance with the heuristics defined in
Section 5.1. Table 3 shows the transformation rules to map
themes to features, aspect to features, and for the “Part_of”
relationship. The ATL code is presented on the left hand side of
Table 3. On the right hand side of the table, we explain each rule
informally. Figure 4 shows the resulting feature model after the
application of the transformation rules to the Theme/SPL model
shown in Figure 2. Note that some features have multiple parent
features (e.g., Manage contact list); those are crosscutting
features, that are modularized in a separate feature as a result of
the Theme analysis.

Table 3. ATL transformation rules

ATL Transformation rule Comments

rule ThemesToFeature {

from

 p: Theme!Themes

to

 out: FM!Feature (nameF

<- p.name)}

In the ThemesToFeature
rule (related to heuristic H4),
for each instance Themes of
the origin metamodel, an
instance Feature of the
destination metamodel is
created, in which the name of
the feature matches the name
of the theme.

rule AspectToFeature {

from

 p: Theme!Aspect

to

 out: FM!Feature (nameF

<- p.name)}

In the AspectToFeature
rule (related to heuristic H9),
for each Aspect instance of
the origin metamodel, a
Feature instance of the
target metamodel is created,
in which the name of the
feature is the name of the
aspect.

rule Part_of{

from

 p: Theme!Part_of

to

 out:FM!Mandatory(

 sourceFeature <-

p.LinkToNodeFrom,

 targetFeature <-

p.LinkToNodeTo)}

In the Part_of rule (related
to heuristic H3), for each
instance Part_of of the
source metamodel source,

an instance Mandatory of
the target metamodel is
created, in which the source
link, source feature,

corresponds to the
LinkToNodeFrom link, and
target link, target

feature, corresponds to

the LinkToNodeTo link.

Figure 4. Feature model resulting from the transformation.

7. EVALUATION
Our evaluation strategy was twofold. On the one hand, we applied
the Theme/SPL approach to case studies from different domains
where the combination of traceability and crosscutting concerns
support was considered very important. This allowed us to assess
the feasibility of the approach. On the other hand, we also wanted
to assess the utility and usability of our prototypal tool support to
the Theme/SPL approach.

7.1 On the feasibility of the approach
The approach was applied successfully to the Smart Home case
study, a real case study used in the European project AMPLE [1].
The Smart Home case study defines a SPL targeted to embedded
systems, in the context of home automation. The rationale for
using a SPL in this context was that the instantiation of a specific
Smart Home product should be easy and cost effective. This
required the base assets to be of good quality and easy to reuse, as
well as sophisticated support for product derivation, as different
homes require tailored configurations of the Smart Home. These
requirements were the reason why technologies like MDD or
AOSD were selected. When applying this case study to our
approach, the generated feature model from the Theme/SPL
models was very similar to the existing feature model that was
built with AMPLE techniques which did not involve the use of
DSLs and high level transformation languages, as we did here.

The approach was also successfully applied in the realm of case
studies from the mobile phones domain (briefly described in this
paper), and public health care.

7.2 On the feasibility of the approach
Having an effective tool support for the Theme/SPL is essential
for its applicability. In this section, we describe a usability
evaluation aimed at assessing the Theme/SPL tool support. Using
Wohlin’s experimental objectives template definition [21] we can
briefly summarize the objectives of our evaluation:

Our goal was to analyze the Theme/SPL approach, for the

purpose of characterizing its existing tool support, with respect to

its usability and usefulness, from the point of view of software

engineers engaged in building feature models, in the context of a

case study conducted in an academic environment.

Usability and usefulness are too abstract to be assessed directly,
so we can be break them into more specific goals. In particular,
we consider the following: (G1) Ease of feature identification with
Theme/SPL; (G2) Ease to build feature model using Theme/SPL;
(G3) Extent to which the Theme/SPL approach introduces quality
problems, i.e., leading to incorrect, incomplete, or unnecessarily
complex models, when compared to the baseline; (G4) Extent to
which the tool support for Theme/SPL was useful in increasing
the efficiency and correctness in model building; (G5) Extent to
which the tool support for Theme/SPL was easy to use.

The evaluation was performed using 10 graduate computer
science students from our university as subjects. Participants were
asked to use the Theme/SPL approach to partially model a SPL in
the domain of public health monitoring. The participants’ answers
were made anonymous, to mitigate the risks of biases, such as
evaluation apprehension and hypotheses guessing, by the
participants. All participants had previous experience with aspect-
oriented and feature modeling, but not with Theme/SPL. As such,
participants’ skills were comparable to those of junior software
engineers being introduced to the Theme/SPL approach. Evidence
collected elsewhere [16] suggests that the results obtained by
students of a profile similar to our participants are close to those
obtained by novice professionals.

Participants were given basic training in Theme/SPL. They were
then provided with a Theme/SPL model in the realm of health
monitoring systems. After studying the model, participants were
asked to design a feature model for a health monitoring systems
SPL, based on their understanding of the requirements of the
system, complemented with the information within the
Theme/SPL model. Finally, using the Theme/SPL model as input,
the transformation was carried out from Theme/SPL to the tool-
generated feature model. By the end of the modeling tasks, each
participant had his “hand-made” feature model, and the
corresponding tool-generated feature model. All participants were
able to manually produce a high-quality feature model in a
timeframe ranging from 15 to 20 minutes. The “hand-made”
feature model was then used as a baseline by participants, while
answering a survey concerning the research goals previously
described in this section (G1..G5).

The questionnaire included the 5 questions (Q1..Q5) listed next,
which were aimed at addressing each of the research goals
(G1..G5), respectively. The questionnaire was designed using a 5-
level Likert scale, where 1 stands for the worse scenario, and 5 for

the best scenario, from the Theme/SPL tool user point of view. A
level 3 answer would correspond to an average answer, which is
considered as indifferent. In other words, the “average” answer
corresponds to not identifying significant benefits, or drawbacks
in using the Theme/SPL approach, when compared to the baseline
alternative. The questions were as follows: (Q1) How easy was it
to identify features, using the Theme/SPL approach? (1 – Very
difficult .. 5 – Very Easy); (Q2) How easy was it to build a feature
model (including the relationships among the features)? (1 – Very
difficult .. 5 – Very easy); (Q3) Does the tool generated model
introduce quality problems, when compared to the baseline? (1 –
A lot .. 5 – None); (Q4) How useful was the tool support? (1 –
Not useful .. 5 – Very useful); (Q5) How difficult is it to use the
tool? (1 – Very difficult .. 5 – Very easy).

Table 4 summarizes the results of the qualitative assessment of the
tool support. The first 6 columns represent, from left to right, the
question identification and the frequency of answers in each of
our 5-level scale, for each question (L1 through L5). The sum of
the answers is always 10, indicating that all participants answered
to all the questions in the questionnaire. Overall, we can observe
that there is a concentration of higher frequencies in the favorable
evaluations to the tool support. Although it does not make sense
to sum the frequencies of answers in each level, as we would be
counting frequencies in different scales (as noted by the value
explanations for each of the questions), note that none of the
respondents chose to use the two lower levels, for any of the
questions, and even level 3, which would indicate an indifference
between using the approach described in this paper and the
baseline was rarely used (twice, in Q1, and once, in Q4).

Table 4. Summary of tool support assessment

Question L1 L2 L3 L4 L5 Chi-

Square

df Asymp.

Sig.

Q1 0 0 2 5 3 9,000 4 0,061

Q2 0 0 0 4 6 16,000 4 0,003

Q3 0 0 0 0 10 40,000 4 0,000

Q4 0 0 1 4 5 11,000 4 0,027

Q5 0 0 0 5 5 15,000 4 0,005

If subjects were to answer randomly to the tool assessment
questionnaire, we would have an equal probability of getting
answers in each of the levels. We need to test whether the answers
obtained in our questionnaires are significantly different from
those we would obtain by chance. To test this hypothesis, we
formulate a null (H0) and an alternative (H1) hypothesis as
follows: (H0) There is no significant difference between the
expected (all answers were equally probable) and the observed
distributions of answers; (H1) There is a significant difference
between the expected and the observed distributions of answers.

We use a Chi-Square test [20] to test the null hypothesis (H0). The
Chi-Square test is a statistical test used to determine if observed
data deviate from those expected under a particular hypothesis (in
this case, the random distribution of answers. The last three
columns in Table 4 present the Chi-Square statistic, the number of
degrees of freedom, and the asymptotic significance of the Chi-

Square statistic (values in bold are significant at the 0,05 level,

while values in italic bold are significant at the 0,01 level). We
can reject the null hypothesis for questions from Q2 to Q5 (4 out
of 5 questions). Q2, Q3, and Q5 have a p-value < 0,01, while
question Q4 can be rejected with a p-value < 0,05. The observed
difference between the observed and expected values for Q1 is not

statistically significant at the 0,05 level, so we cannot reject the
null hypothesis for Q1. The overall results provide a very
encouraging feedback from the participants. The answers to
question Q2 indicate that participants found the approach to be
helpful in feature model development, when compared to the
baseline (the answers to Q1 seem to support this tendency, but are
statistically inconclusive). The unanimous response concerning
question Q3 points to a “doing no harm” property of the
approach, in the sense that the feature model generation was not
perceived as introducing quality problems. This is an important
aspect in model generation, as the potential introduction of quality
problems in the feature models would be a significant drawback to
the approach: it is unclear whether what the effort to find and
remove such problems would be, if problems were to be
introduced. The answers to questions Q4 and Q5 convey a good
overall judgment of the tool’s usefulness and usability,
respectively.

In any empirical assessment, we must always consider the
potential threats to the validity of the results, not only to set the
boundaries of applicability of those results, but also to identify
opportunities for extending the work. A first category of threats
we can identify concerns the selection of participants. The number
of participants (10) is relatively small. Nevertheless, usability
experts have observed that, in general, having as little as 5
usability testers allows identifying around 80% of the usability
problems [13]. Nevertheless, the overall consensus level in
several of the questions is encouraging.

To circumvent the threats concerning the participants’ number
and profile, an adequate future evolution of this work would be to
replicate the assessment in a different setting, thus increasing the
number of overall participants and their diversity of backgrounds.
Ideally, this replication should be performed by a completely
independent team, so that other potential threats such as
hypothesis guessing by participants would be further mitigated.
Another threat concerns the usage of modeling problems from a
single product line in this assessment. Again, replicating this
assessment with other product lines from different domains would
add to the external validity of this assessment.

8. RELATED WORK
Weston et al. [19] present an approach that helps to construct
feature models from a set of documents where requirements are
expressed in natural language. This approach is more appropriate
when requirements are expressed textually, as it is based on
natural language processing, but not suitable to analyze models.
Our approach relies on MDD, which is more suitable when
models are used.

FeatureMapper [9] is an Eclipse tool that allows for mapping
features to arbitrary modeling artifacts. These include UML2,
domain-specific modeling languages, and textual languages.
FeatureMapper relates features and model elements and derives
product models by removing all model elements associated with
features not selected for that product. Compared to ours, this does
not identify features from requirements.

In the AHEAD approach [4], a program has many representations
besides source code, including UML documents and performance
models, where each representation is written in its own language
or DSL. When a feature is added to a program, any or all of the
program’s representations may be updated. Again, this approach
does not consider the identification of features from requirements.

Trujillo et al. [17] discuss an MDD approach to create a product
line (illustrated with the portlets SPL, i.e. components of web
portals) by composing features to create models, and then
transforming these models into executables.

FeatureHouse [2] is a general approach to the composition of
software artifacts written in different languages supported by a
tool. Both approaches are MDD, but without dealing with feature
identification from requirements.

Jayaraman et al. [11] present an approach based on UML to
maintain the separation of features during the modeling, using a
composition language based on graphs transformation. The
language can be used to compose SPL models for a given set of
features. However, this work does not provide heuristics to
identify features.

Carton et al. [5] present a tool that integrates the Theme/UML
with an MDD process. The approach transforms Theme/UML
models into platform-specific models and code. This method is
adequate for the design phase, but not thought for SPL
development.

Groher and Volter [8] present a model-driven and AO approach
for SPL. Features are separated in models and composed by
composition techniques on model level. However, little attention
is given to aspects and MDD at early requirements as we do.

9. CONCLUSIONS
In this paper we adapted an aspect-oriented requirements
approach (Theme/Doc) to represent variability in domain
engineering of software product lines. To achieve that, we
enriched the Theme/Doc approach to capture variability by
defining a set of heuristics and stereotypes. The advantages of
these heuristics include: (i) the proposed Theme model is
adequate to SPL development while preserving the semantics of
themes relationships; (ii) the approach provides traceability from
requirements to the features; (iii) the aspectual themes
identification and mapping into separate features promote an
improved modularity of the feature model.

The combination of Theme/SPL DSL and the transformation rules
produce feature models more quickly without sacrificing quality.
Our approach offers a rigorous, reliable (since everything is
modeled explicitly), auditable and efficient way to produce feature
models.

As future work we will apply the approach to other real case
studies. The next step is to extend the whole framework for
Theme/UML.

10. ACKNOWLEDGMENTS
The authors would like to thank the AMPLE project and CITI –
PEst-OE/EEI/UI0527/2011, Centro de Informática e Tecnologias
da Informação (CITI/FCT/UNL) - 2011-2012) – for the financial
support for this work.

11. REFERENCES
[1] AMPLE Project. http://www.ample-project.net/. Last Access:

August 2012

[2] Apel, S., Kästner, C., Lengauer, C. 2009. FeatureHouse:
Language-Independent, Automated Software Composition,
ICSE 2009, IEEE Computer Society.

[3] Atlas Transformation Language (ATL), User Guide.
http://wiki.eclipse.org/ATL/.

[4] Batory, D. 2005. A Tutorial on Feature Oriented
Programming and the AHEAD Tool Suite, GTTSE’05,
LNCS 4143, Springer (2006) 3–35.31.

[5] Carton, A., Driver, C., Jackson A., Clarke, S.: Model-Driven
Theme/UML, Transactions on AOSD, Special issue on
MDE, vol. VI, LNCS 5560 (2009).

[6] Clarke, S., Baniassad, E. 2005. Aspect Oriented Analysis and
Design, Addison-Wesley Professional.

[7] Czarnecki, K., Helsen, S., Eisenecker, U. 2004. Staged
Configuration Using Feature Models, Software Product
Lines. SPLC 2004, Boston MA, USA.

[8] Groher, I., Voelter, M. 2009. Aspect-Oriented Model-Driven
Software Product Line Engineering. T. Aspect-Oriented
Software Development VI 6: 111-152.

[9] Heidenreich, F., Kopcsek, J., Wende, C. 2008.
FeatureMapper: Mapping Features to Models. ICSE’08, New
York, NY, USA, ACM 943–944.

[10] Kelly, S., Tolvanen, J. 2008. Domain-Specific Modeling:
Enabling Full Code Generation, Wiley-IEEE Computer
Society ().

[11] Jayaraman, P., Whittle, A.M., Elkhodary, Gomaa, H. 2007.
Model Composition and Feature Interaction Detection in
Product Lines Using Critical Pair Analysis, MoDELS’07,
Springer.

[12] Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S. 1990.
Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report: CMU/SEI-90-TR-021, USA.

[13] Nielsen, J. 1993. Usability Engineering, Morgan Kaufman.

[14] Pohl, K., Böckle, G., van der Linder, F. 2005. Software
Product Line Engineering Foundations, Principles, and
Techniques, Springer.

[15] Rashid, A., Moreira, A., Araújo, J. 2003 Modularisation and
Composition of Aspectual Requirements, AOSD’03, ACM
press.

[16] Runeson, P. 2003. Using Students as Experiment Subjects -
An Analysis on Graduate and Freshmen Student Data,
EASE’03, Staffordshire, UK.

[17] Trujillo, S., Batory, D., Díaz, O. 2007. Feature Oriented
Model Driven Development: A Case Study for Portlets.
ICSE’07: 44-53

[18] Voelter, M., Stahl, T.: “Model-Driven Software
Development - Technology, Engineering, Management”,
Wiley (2006).

[19] Weston, N., Chitchyan, R., Rashid, A.: A Framework For
Constructing Semantically Composable Feature Models from
Natural Language Requirements, SPLC’09, USA (2009).

[20] Witte, R., Witte, J. 2010. Statistics, 9th edition, Wiley.

[21] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell,
B., Wesslén, A. 1999. Experimentation in Software
Engineering, Vol. 6, Kluwer, USA.

