
A Systematic Comparison of i* Modelling Tools
Based on Syntactic and Well-formedness Rules

Catarina Almeida, Miguel Goulão, and João Araújo

CITI, FCT, Universidade Nova de Lisboa, Portugal
acg.almeida@campus.fct.unl.pt

{mgoul,joao.araujo}@fct.unl.pt

Abstract. There are several tools currently available in the i* com-
munity. These tools have different features and purposes. Choosing the
most adequate tool for a specific modelling situation can be a challenge.
To overcome this difficulty, we present a systematic comparison of the
i* tools listed in the i* wiki page, according to their features, syntax
coverage and semantic analysis support. Our comparison highlights the
different strengths of those tools, to help identifying situations for which
each tool might be particularly useful. We contribute with an aggregated
vision of current i* tool support to the body of knowledge of the i* com-
munity. In addition, this comparison also helps identifying opportunities
for further evolution of the surveyed tools.

Keywords: i* modelling framework, systematic comparison, tool sup-
port

1 Introduction

The i* framework is a modelling language that covers both agent-oriented and
goal-oriented modelling. There are several variations of the i* framework, such
as Yu’95, TROPOS, Secure Tropos, Iterative Tropos, and GRL. There are also
several tools currently available to create i* models. Those tools have different
features, purposes, and various levels of conformity with the i* syntax (usually
alligned with one of the above-mentioned i* frameworks).

Choosing the best tool for a specific purpose can be a challenge, not only
because one has to select the most suitable i* framework for the task, but also
because different tools targeted to the same i* framework provide different kinds
of support for the specification of an i* model, not only on the syntactic, but
also on the semantic level. This support includes different levels of correctness
checking of the created models. The i* wiki page [1] includes a comparison of the
i* tools to address this challenge, covering information such as the purpose of
each tool, the i* framework it supports, practical details concerning availability,
base platform, maturity, etc., as well as details on the tool modelling suitability,
usability, extensibility and interoperability.

In this paper we present a systematic comparison of syntactic and semantic
features supported by the different i* tools. We use the language description

Proceedings of the 6th International i* Workshop (iStar 2013), CEUR Vol-978

43



available from the i* wiki to guide our comparison. This provides a language-
oriented comparison of the i* tools, which bridges an important gap in the scope
of the comparison currently available in the i* wiki.

This paper is organized as follows: in section 2, we summarize the objectives
of this i* tools comparison; in section 3 we provide a detailed comparison of the
i* tools, focusing on the syntactic coverage and semantics checking of the i*
models; finally, in section 4, we present conclusions and further work.

2 Objectives of the Research

Our goal is to analyze i* modelling tools, for the purpose of their comparison,
with respect to their syntax coverage, and semantic checking support from the
point of view of a requirements engineer, in the context of a survey of the existing
tool support available to the i* community.

More specifically, we aim to answer the following two research questions:

– RQ1: Which of the syntactic constructs described in the i* wiki are sup-
ported by the i* tool?

– RQ2: To what extent does each i* tool support semantic checking of the i*
models built using it?

3 Scientific Contributions

In order to answer our research questions, we tested available i* tools. The
criteria used for the inclusion of the tools in this analysis was their presence in
the i* wiki page [1] and the availability of a functional URL. Some of the tools
refered in the i* wiki are no longer available in the advertised URL, and were
therefore excluded from this analysis. Table 1 shows the different tools surveyed
in this paper.

Table 1. Analysed Tools

i* Tool Institution i* Variant
Platform

Technology
Windows Linux MacOS

OpenOME Univ. Toronto Yu’95 Yes Yes Yes Java (JRE)

TAOM4E Univ. Trento Tropos Yes Yes Yes Eclipse plug-in

GR-Tool Univ. Trento Tropos Yes Yes Yes Java (JRE)

STS-Tool Univ. Trento Tropos Yes Yes Yes Java (JRE)

jUCMNav Univ. Ottawa GRL Yes Yes Yes Eclipse plug-in

DesCARTES U.C. Louvain
Yu’95 /

Yes Yes Yes Eclipse plug-in
Tropos

Proceedings of the 6th International i* Workshop (iStar 2013), CEUR Vol-978

44



OpenOME [2] is an Eclipse-based tool designed to support goal-oriented,
agent-oriented and aspects-oriented modelling and analysis. It is an open source
tool and researchers can propose further branches and extensions to the tool.
TAOM4E [3] is an Eclipse plug-in that supports a model-driven, agent oriented
software development. GR-Tool [4] is a graphical tool for forward and backward
goal reasoning in Tropos. STS-Tool [5] is a socio-technical security modelling
tool to draw Tropos and Secure Tropos models and to perform the effective for-
mal analysis of functional and security requirements. jUCMNav [6] is an Eclipse
plug-in for modelling, analysis and transformation in both GRL and UCM (Use
Case Map) notation. It is intended for the elicitation, analysis, specification and
validation of requirements. DesCARTES [7] is an Eclipse plug-in that supports
various models, such as i*, NFR, UML and AUML models in the context of Tro-
pos and I-Tropos development. The tool allows the development of the method-
ology analysis and design models as well as forward engineering capabilities and
an integrated software project management module.

All the tools were tested in Arch Linux x86 64 and Windows Vista 32 bits,
both with Java Runtime Environment 1.6.0. For the tools that are an Eclipse
plug-in, the version of the Eclipse was Indigo (3.7) for TAOM4E and Juno (4.2)
for jUCMNav and DesCARTES, with Eclipse Modelling Tools.

The syntax coverage analysis aims to check if the tool has a) the basic i*
syntax; and b) the graphical notation of the i* syntax (according to the i* wiki
page). Table 2 shows this analysis. The cells with “Yes” denote that the tool
complies with both criteria presented earlier. The cells with the symbol “*”
after “Yes” mean that the tool complies with a) but not with b); i.e., it has a
different notation for the given element. The cells with “No” show that the tool
does not comply with any of the criteria.

The GR-Tool is the only not supporting any type of actor, as it is mostly
targeted to goal reasoning. OpenOME is the only tool that supports all types of
actors with the i* graphical notation. Actors links are often not provided and are
only fully supported in OpenOME and jUCMNav. The STS-Tool also supports
a type of actor association, namely the association “plays”.

Concerning elements, all the tools support goals. Only jUCMNav has all kinds
of elements of the i* graphical syntax. DesCARTES also supports all element
types, but two of them use a non-standard notation.

With respect to the support for dependency links, the tools which support
them only have commited elements, but not open or critical elements. The GR-
Tool and STS-Tool do not support any kind of dependency links.

All the tools have at least two types of contribution links and all of them
have the “and” link. It is in the contribution links that the variation of the
notation according to the graphical notation of i* syntax is higher. OpenOME
and jUCMNav are the only tools that have all types of contribution links.

As can be observed, OpenOME is the tool with the widest syntax coverage
according to the two criteria described above and if it complies with the first
one, it always complies with the second. jUCMNav complies with the first criteria
except for dependency strengths but not always complies with the second one.

Proceedings of the 6th International i* Workshop (iStar 2013), CEUR Vol-978

45



Table 2. i* Syntax Coverage

OpenOME TAOM4E GR-Tool STS-Tool jUCMNav DesCARTES

Actors

Actor Yes Yes No No Yes No

Actor Boundary Yes Yes No No Yes No

Role Yes No No Yes Yes* No

Agent Yes No No Yes Yes* Yes

Position Yes No No No Yes* No

Actors Links

ISA Yes No No No Yes* No

Is-part-of Yes No No No Yes* No

Plays Yes No No Yes Yes* No

Covers Yes No No No Yes* No

Occupies Yes No No No Yes* No

INS Yes No No No Yes* No

Elements

Goal Yes Yes Yes Yes Yes Yes

Softgoal Yes Yes No No Yes Yes*

Task Yes Yes* No No Yes Yes

Resource Yes Yes No No Yes Yes

Belief No No No No Yes Yes*

Links

Dependency Links Yes Yes No No Yes Yes

Means-ends Links Yes Yes No No Yes* Yes

Decomposition Links Yes Yes No No Yes Yes

Contribution Links

Make Yes No No No Yes Yes

Break Yes No No No Yes Yes

Unknown Yes No No No Yes Yes

Some+ Yes No Yes* No Yes Yes*

Some- Yes No Yes* No Yes Yes*

Help Yes No Yes* Yes* Yes Yes*

Hurt Yes No Yes* Yes* Yes Yes*

And Yes Yes Yes Yes Yes Yes

Or Yes Yes Yes Yes Yes* No

Dependency Strengths

Open Element No No No No No No

Commited Element Yes Yes No No Yes Yes

Critical Element No No No No No No

The semantic analysis aims to determine the level of corretness checking of
the created models. Using the descriptions and guidelines available in the i*
wiki, we analysed if the tool verifies when a modelling error is made. Table 3
shows a set of errors and if the tool verifies those errors or not. The N/A means
that the tool does not have one or more elements needed to do the evaluation.

Proceedings of the 6th International i* Workshop (iStar 2013), CEUR Vol-978

46



Table 3. Semantic Analysis

OpenOME TAOM4E GR-Tool STS-Tool jUCMNav DesCARTES

Actors and relations

Actors without links Yes* No N/A No No No

Actor inside another actor boundary Yes Yes N/A Yes No Yes

Dependencies

Dependency link without a dependum Yes* Yes N/A N/A Yes Yes

Dependency links with different directions No Yes N/A N/A No Yes

Dependency link inside an actor boundary Yes* Yes N/A N/A Yes N/A

Other link rather than dependency link
between an element and an actor

Yes Yes N/A Yes No Yes

Associations

ISA between actors of different types No N/A N/A N/A Yes N/A

Is-part-of between actors of different types No N/A N/A N/A Yes N/A

Other association rather than Plays be-
tween Agent and Role

No N/A N/A Yes Yes N/A

Other association rather than Covers be-
tween Position and Role

No N/A N/A N/A Yes N/A

Other association rather than Occupies
between Agent and Position

No N/A N/A N/A Yes N/A

INS between others than agents No N/A N/A N/A Yes N/A

Associations between elements that are
not actors

Yes N/A N/A Yes Yes N/A

Internal Elements

SR elements outside actor boundary No Yes N/A Yes No N/A

Softgoal decomposition in sub-softgoals or
sub-tasks

No No N/A N/A No Yes

Goal decomposition in sub-goals or sub-
taks

Yes* No N/A N/A No Yes

Goal decomposition without means-end No No N/A N/A No Yes

Means-end where a goal is the mean No No N/A N/A Yes No

Means-end different from “task–>goal” No No N/A N/A No No

Decomposition beyond the actor bound-
ary

No Yes N/A N/A No N/A

Means-end beyond the actor boundary No Yes N/A N/A No N/A

Means-end decomposition to refine a soft-
goal

No No N/A N/A No Yes

Softgoal decomposition without contribu-
tion links

No No N/A N/A No No

Any kind of direct relation between goals Yes* No N/A N/A No Yes

Link between an element inside the actor
boundary and that actor

Yes Yes N/A Yes Yes N/A

Contribution Links

Contribution links between any element
to any element rather than softgoal

No No N/A N/A Yes No

Contribution link between actors Yes Yes N/A Yes Yes Yes

Contribution link between goals and sub-
goals or sub-tasks

No No No Yes Yes No

Proceedings of the 6th International i* Workshop (iStar 2013), CEUR Vol-978

47



Some of the OpenOME categories are labeled with “Yes*”. This means that
the tool itself does not perform the corresponding analysis by default, but can
do it with the add-on “Syntax check”. However, syntax checking does not work
for Linux and may not work for Mac as the executable version of prolog is
not available for these platforms. In jUCMNav, it is necessary that the static
semantics checking properties are selected.

i* tools support error prevention in two different ways. One is by not allowing
the user to do what he intends, if it is not correct. The other one is by allowing
the user to do so, but inform him that the resulting model is incorrect. In general,
the level of correctness checking of the created models is not too deep. Note that
the set of modelling errors that can be made depends on the available modelling
elements, which vary from one tool to the next. On average, about 39% of the
considered modelling errors are not applicable, due to the lack of support of the
corresponding modelling elements by the tools.

There are some errors that all the tools (except those that do not support
the used model elements) verify. This is the case of a dependency link without
a dependum, associations between elements that are not actors, a link between
an element inside the actor boundary and that actor, and a contribution link
between actors. The opposite can also be noticed, i.e., there are some errors
that none of the tools verify. This is the case of means-ends relations differ-
ent from “task–>goal”, softgoals decomposition without contribution links and
contribution links between any element to any element rather than a softgoal.

jUCMNav is the tool with the highest number of verified errors, with a veri-
fication percentage of 50%, followed by OpenOME and TAOM4E. They are also
the tools with the lowest number of errors that were not possible to analyse.

4 Conclusions and Future Work

This paper provides a systematic comparison of some i* tools, listed in the i*
wiki. The goal here is to complement existing comparison work by providing a
comparison on syntatic and semantic properties of the i* modelling tools.

The contribution of this work is to provide relevant information to practi-
tioners when selecting an i* tool, to tool developers when improving existing
tools, and to researchers when studying the shortcomings of existing tools.

We plan to extend this analysis to other tools and include non-functional
aspects in the evaluation.

References

1. i* wiki: http://istarwiki.org/
2. OpenOME: https://se.cs.toronto.edu/trac/ome/
3. TAOM4E: http://selab.fbk.eu/taom/
4. GR-Tool: http://troposproject.org/tools/grtool/
5. STS-Tool: http://www.sts-tool.eu/
6. jUCMNav: http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/
7. DesCARTES: http://www.isys.ucl.ac.be/descartes/

Proceedings of the 6th International i* Workshop (iStar 2013), CEUR Vol-978

48

http://istarwiki.org/
https://se.cs.toronto.edu/trac/ome/
http://selab.fbk.eu/taom/
http://troposproject.org/tools/grtool/
http://www.sts-tool.eu/
http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/
http://www.isys.ucl.ac.be/descartes/



