Publications

Export 114 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
T
Teixeira, S. S., M. P. F. Graça, J. Lucas, M. A. Valente, P. I. P. Soares, M. C. Lança, T. Vieira, J. C. Silva, J. P. Borges, L. - I. Jinga, G. Socol, C. Mello Salgueiro, J. Nunes, and L. C. Costa, "Nanostructured LiFe5O8 by a Biogenic Method for Applications from Electronics to Medicine", Nanomaterials, vol. 11, no. 1: MDPI AG, pp. 193, jan, 2021. AbstractWebsite

The physical properties of the cubic and ferrimagnetic spinel ferrite LiFe5O8 has made it an attractive material for electronic and medical applications. In this work, LiFe5O8 nanosized crystallites were synthesized by a novel and eco-friendly sol-gel process, by using powder coconut water as a mediated reaction medium. The dried powders were heat-treated (HT) at temperatures between 400 and 1000 °C, and their structure, morphology, electrical and magnetic characteristics, cytotoxicity, and magnetic hyperthermia assays were performed. The heat treatment of the LiFe5O8 powder tunes the crystallite sizes between 50 nm and 200 nm. When increasing the temperature of the HT, secondary phases start to form. The dielectric analysis revealed, at 300 K and 10 kHz, an increase of $ε$′ (≈10 up to ≈14) with a tan$δ$ almost constant (≈0.3) with the increase of the HT temperature. The cytotoxicity results reveal, for concentrations below 2.5 mg/mL, that all samples have a non-cytotoxicity property. The sample heat-treated at 1000 °C, which revealed hysteresis and magnetic saturation of 73 emu g−1 at 300 K, showed a heating profile adequate for magnetic hyperthermia applications, showing the potential for biomedical applications.

Tavares, C., T. Vieira, J. C. Silva, J. P. M. R. Borges, and C. M. Lança, "Bioactive Hydroxyapatite Aerogels with Piezoelectric Particles", Biomimetics 2024, Vol. 9, Page 143, vol. 9, no. 3: Multidisciplinary Digital Publishing Institute, pp. 143, feb, 2024. AbstractWebsite

Open-cell foams based on hydroxyapatite (HAp) can mimic the extracellular matrix (ECM) to better replace damaged hard tissues and assist in their regeneration processes. Aerogels of HAp nanowires (NW) with barium titanate (BT) particles were produced and characterized regarding their physical and chemical properties, bioactivity, and in vitro cytotoxicity. Considering the role of piezoelectricity (mainly due to collagen) and surface charges in bone remodeling, all BT particles, of size 280 nm and 2 and 3 µm, contained BaTiO3 in their piezoelectric tetragonal phase. The synthesized nanowires were verified to be AB-type carbonated hydroxyapatite. The aerogels showed high porosity and relatively homogeneous distribution of the BT particles. Barium titanate proved to be non-cytotoxic while all the aerogels produced were cytotoxic for an extract concentration of 1 mg/mL but became non-cytotoxic at concentrations of 0.5 mg/mL and below. It is possible that these results were affected by the higher surface area and quicker dissolution rate of the aerogels. In the bioactivity assays, SEM/EDS, it was not easy to differentiate between the apatite deposition and the surface of the HAp wires. However, a quantitative EDS analysis shows a possible CaP deposition/dissolution cycle taking place.

R
RM, N., N. ER, L. MC, and M. - M. JN, "New Experimental Facts Concerning the Thermally Stimulated Discharge Current in Dielectric Materials", Advanced Materials Forum Iv, vol. 587-588, no. 587-588, pp. 328-332, Jan, 2008. Abstract
n/a
R., N. E., C. Dias, L. M. Carmo, I. R., I. P., and M. - M. J. N., Discrimination between Space Charge and Dipolar Contributions in Ferroelectric Polymers, , pp. 145-146, Jan, 2011. Abstract
n/a
R., N. E., C. Dias, L. M. Carmo, I. R., I. P., and M. - M. J. N., "Discrimination between Space Charge and Dipolar Contributions in Ferroelectric Polymers", 14th International Symposium on Electrets, 2011. Abstract

The final thermally stimulated discharge current method allows a better selection of the experimental conditions for sample polarization. By decreasing the ratio between the charging time and the discharging time, the apparent peak is of the same order of magnitude as the genuine peaks and there is only a partial overlap between then. Two peaks have been identified for polyamide 11, one associated with the glass transition around 60 °C and the second associated with the Curie transition around 96 °C.

P
Prezas, P. R., B. M. G. Melo, L. C. Costa, M. A. Valente, M. C. Lança, J. M. G. Ventura, L. F. V. Pinto, and M. P. F. Graça, "TSDC and impedance spectroscopy measurements on hydroxyapatite, β-tricalcium phosphate and hydroxyapatite/β-tricalcium phosphate biphasic bioceramics", Applied Surface Science, vol. 424, issue 1, pp. 28-38, 2017. Abstract

Bone grafting and surgical interventions related with orthopaedic disorders consist in a big business, generating large revenues worldwide every year. There is a need to replace the biomaterials that currently still dominate this market, i.e., autografts and allografts, due to their disadvantages, such as limited availability, need for additional surgeries and diseases transmission possibilities. The most promising replacement materials are biomaterials with bioactive properties, such as the calcium phosphate-based bioceramics group. The bioactivity of these materials, i.e., the rate at which they promote the growth and directly bond with the new host biological bone, can be enhanced through their electrical polarization.In the present work, the electrical polarization features of pure hydroxyapatite (Hap), pure β-tricalcium phosphate (β-TCP) and biphasic hydroxyapatite/β-tricalcium phosphate composites (HTCP) were analyzed by measuring thermally stimulated depolarization currents (TSDC). The samples were thermoelectrically polarized at 500. °C under a DC electric field with a magnitude of 5. kV/cm. The biphasic samples were also polarized under electric fields with different magnitudes: 2, 3, 4 and 5. kV/cm. Additionally, the depolarization processes detected in the TSDC measurements were correlated with dielectric relaxation processes observed in impedance spectroscopy (IS) measurements.The results indicate that the β-TCP crystalline phase has a considerable higher ability to store electrical charge compared with the Hap phase. This indicates that it has a suitable composition and structure for ionic conduction and establishment of a large electric charge density, providing great potential for orthopaedic applications.

Pedrosa, A., M. C. Lanca, J. P. Borges, E. R. Neagu, C. J. Dias, J. N. Marat-Mendes, and Ieee, "Influence of Polarization on the Bioactivity of Nanopowders of Hydroxyapatite", 2011 14th International Symposium on Electrets (Ise), pp. 55-56, 2011. Abstract
n/a
Pedrosa, A., M. C. Lanca, J. P. Borges, E. R. Neagu, C. J. Dias, J. N. Marat-Mendes, and Ieee, Influence of Polarization on the Bioactivity of Nanopowders of Hydroxyapatite, , pp. 55-56, 2011. AbstractWebsite
n/a
P, J., L. MC, M. - M. S. J, and R. J, "Pore dimension of water trees in PE: NMR studies", POLYMER, vol. 41: Univ Paris 11, Univ Nova Lisboa, Univ Paris 11, Univ Paris 11, pp. 8151-8154, Jan, 2000. Abstract
n/a
O
Oliveira, I. R., A. M. Barbosa, K. W. Santos, M. C. Lança, M. M. R. A. Lima, T. Vieira, J. C. Silva, and J. P. Borges, "Properties of strontium-containing BG 58S produced by alkali-mediated sol-gel process", Ceramics International: Elsevier, jan, 2022. AbstractWebsite

n/a

de Oliveira, I. R., I. dos Santos Gonçalves, K. Wallace dos Santos, M. C. Lança, T. Vieira, J. C. Silva, I. F. Cengiz, R. L. Reis, J. M. Oliveira, and J. P. Miranda Ribeiro Borges, "Biocomposite Macrospheres Based on Strontium-Bioactive Glass for Application as Bone Fillers", ACS Materials Au, vol. 3, no. 6: American Chemical Society, pp. 646–658, 2023. AbstractWebsite

Traditional bioactive glass powders are typically composed of irregular particles that can be packed into dense configurations presenting low interconnectivity, which can limit bone ingrowth. The use of novel biocomposite sphere formulations comprising bioactive factors as bone fillers are most advantageous, as it simultaneously allows for packing the particles in a 3-dimensional manner to achieve an adequate interconnected porosity, enhanced biological performance, and ultimately a superior new bone formation. In this work, we develop and characterize novel biocomposite macrospheres of Sr-bioactive glass using sodium alginate, polylactic acid (PLA), and chitosan (CH) as encapsulating materials for finding applications as bone fillers. The biocomposite macrospheres that were obtained using PLA have a larger size distribution and higher porosity and an interconnectivity of 99.7%. Loose apatite particles were observed on the surface of macrospheres prepared with alginate and CH by means of soaking into a simulated body fluid (SBF) for 7 days. A dense apatite layer was formed on the biocomposite macrospheres' surface produced with PLA, which served to protect PLA from degradation. In vitro investigations demonstrated that biocomposite macrospheres had minimal cytotoxic effects on a human osteosarcoma cell line (SaOS-2 cells). However, the accelerated degradation of PLA due to the degradation of bioactive glass may account for the observed decrease in SaOS-2 cells viability. Among the biocomposite macrospheres, those composed of PLA exhibited the most promising characteristics for their potential use as fillers in bone tissue repair applications.

N
Neagu, E. R., R. M. Neagu, M. C. Lanca, A. Vassilikou-Dova, and J. N. Marat-Mendes, Identification of an apparent peak by use of the final thermally stimulated discharge current technique, , pp. 296-299, 2005. AbstractWebsite

The final thermally stimulated discharge current (FTSDC) technique can be used to analyze charge trapping and transport in insulating materials. The experimental conditions can be selected so that the FTSDC is mainly determined by the space charge detrapping. Measurements of the FTSDC in a wide temperature range including the local (secondary) beta relaxation and the non-local (primary) cc relaxation, for different polymers, demonstrate the existence of an apparent peak. The shift of peak temperature T-m with respect to the charging temperature T-p is analyzed. The interval T-m - T-p decreases from about 25 K to zero, as T-p approaches the glass transition T-g. T-m - T-p is lower for materials of lower conductivity. The peak width at the half maximum intensity decreases as Tp increases and the thermal apparent activation energy increases. The variations are not monotonous revealing the temperature range where the molecular motion is stronger and consequently the charge trapping and detrapping processes are affected by the strong thermal motion.

Neagu, E. R., R. M. Neagu, C. J. Dias, C. M. Lanca, and J. N. Marat-Mendes, "The determination of the metal-dielectric interface barrier height from the open-circuit isothermal charging current", Journal of Applied Physics, vol. 104, no. 3, 2008. Abstract
n/a
Neagu, E. R., C. J. Dias, M. C. Lança, and J. N. Marat-Mendes, The study of molecular movements in dielectrics using isothermal and non- isotehermal current measurements, , vol. 183, pp. –-, Jan, 2009. Abstract
n/a
Neagu, E. R., R. M. Neagu, C. J. Dias, M. C. Lanca, P. Inacio, and J. N. Marat-Mendes, "Electrical Method to Study the Weak Molecular Movements at Nanometric Scale in Low Mobility Materials", Advanced Materials Forum V, Pt 1 and 2, vol. 636-637, pp. 430-436, 2010. Abstract

For the characterization of the new materials and for a better understanding of the connection between structure and properties it is necessary to use more and more sensible methods to study molecular movement at nanometric scale. This paper presents the experimental basis for a new electrical method to study the fine molecular movements at nanometric scale in dielectric materials. The method will be applied for polar and non-polar materials characterization. Traditionally, the electrical methods used to study the molecular movements are based on the movements of the dipoles that are parts of the molecules. We have proposed recently a combined protocol to analyze charge injection/extraction, transport, trapping and detrapping in low mobility materials. The experimental results demonstrate that the method can be used to obtain a complex thermogram which contains information about all molecular movements, even at nanoscopic level. Actually during the charging process we are decorating the structure with space charge and during the subsequent heating we are observing an apparent peak and the genuine peaks that are related to charge de-trapping determined by the molecular movement. The method is very sensitive, very selective and allows to determinate the parameters for local and collective molecular movements, including the temperature dependence of the activation energy and the relaxation time.

Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, P. Inacio, J. N. Marat-Mendes, and Ieee, Discrimination between Space Charge and Dipolar Contributions in Ferroelectric Polymers, , pp. 145-146, 2011. AbstractWebsite

The final thermally stimulated discharge current method allows a better selection of the experimental conditions for sample polarization. By decreasing the ratio between the charging time and the discharging time, the apparent peak is of the same order of magnitude as the genuine peaks and there is only a partial overlap between then. Two peaks have been identified for polyamide 11, one associated with the glass transition around 60 degrees C and the second associated with the Curie transition around 96 degrees C.

Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, P. Inacio, J. N. Marat-Mendes, and Ieee, "On the Width of the Thermally Stimulated Discharge Current Peak", Proceedings of the 2010 Ieee International Conference on Solid Dielectrics, 2010. Abstract

The Thermally Stimulated Discharge Current (TSDC) method is a very sensitive technique to analyze the movement of dipoles and of space charge (SC). To increase the selectivity of the method we have proposed a variant of the TSDC method, namely the final thermally stimulated discharge current (FTSDC) technique. The experimental conditions can be selected so that the FTSDC is mainly determined by SC de-trapping. The aim of this paper is to analyze if the elementary peaks obtained by using the two methods can be assumed as elementary Debye peaks and to determine the best experimental conditions to obtain a narrow experimental peak which means to increase the selectivity of the method.

Neagu, E. R.;Neagu, R. M.;Lanca, M. C.;Vassilikou-Dova, A.;Marat-Mendes, and J. N., Identification of an apparent peak by use of the final thermally stimulated discharge current technique, , pp. 296-299, Jan, 2005. Abstract
n/a
Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, P. Inacio, and J. N. Marat-Mendes, "Charge Carriers Injection/Extraction at the Metal-Polymer Interface and Its Influence in the Capacitive Microelectromechanical Systems-Switches Actuation Voltage", Journal of Nanoscience and Nanotechnology, vol. 10, no. 4, pp. 2503-2511, 2010. AbstractWebsite

Opposite results concerning the sign of the parasitic charge accumulated at the metal dielectric contact in RF microelectromechanical systems (MEMS) capacitive switches are found in the literature. The mechanism concerning charge injection/extraction at the metal-dielectric contact and its influence on the pull-in voltage needs to be further clarified. A model-switch, for which only one dimension is in the microns range, is used to study the behaviour of a capacitive RF MEMS switch. The aim is to analyze how the electric charge is injected/extracted into or from the dielectric material under the applied field and to obtain realistic data to understand how this parasitic charge influences the pull-in voltage V-pi and the pull-off voltage V-po. A triangle voltage is employed to measure V-pi and V-po by measuring the isothermal charging/discharging currents. Our results demonstrate that V-pi is strongly dependent on the injected/extracted charge on the free surface of the dielectric. The charge injected/extracted at the bottom side of the dielectric has no influence on the actuation voltage. The charge injected/extracted on the free surface of the dielectric determines an increase of the modulus of V-pi and, eventually, the switch can fail to actuate. An estimation of the charge stored into the material was obtained (i) by measuring the charging current and the discharging current and (ii) from the value of the V-pi. The parasitic charge necessary to keep the bridge stick to the insulator is 5.3 x 10(-4) cm(-2) for our experimental conditions. The modification of the V-pi determined by the stored charge in the dielectric is analyzed. An increase of the relative dielectric permittivity by a factor of 2 produces a decrease of the actuation voltage of 10%. A variation of 30% in the elastic constant determines a variation of about 20% in the V-pi. A voltage threshold for charge injection/extraction was not observed.

Neagu, R. M., E. R. Neagu, M. C. Lanca, and J. N. Marat-Mendes, "New Experimental Facts Concerning the Thermally Stimulated Discharge Current in Dielectric Materials", Advanced Materials Forum Iv, vol. 587-588, pp. 328-332, 2008. Abstract

The thermally stimulated discharge current (TSDC.) method is a very sensitive and a very selective technique to analyze dipole disorientation and the movement of de-trapped space charge (SC). We have proposed a variant of the TSDC method, namely the final thermally stimulated discharge current (FTSDC) technique. flee experimental conditions can be selected so that the FTSDC is mainly determined by the SC de-trapping. The temperatures of the maximum intensity of the fractional polarization peaks obtained at low temperature, in the range of the local (secondary) relaxation, are in general about 10 to 20 K above the poling temperature. Measurements of the FTSDC in a wide temperature range demonstrate the existence of an apparent peak at a temperature T-ma shifted with about 10 to 30 K above the charging temperature T-c. The shift of T-ma with respect to T-c depends on the experimental conditions. The peak width at the half maximum intensity decreases as T-c increases and the thermal apparent activation energy increases. The variations are not monotonous revealing the temperature range where the molecular motion is stronger and consequently the charge trapping and de-trapping processes are affected. Our results demonstrate that there is a strong similarity between the elementary peaks obtained by the two methods, and the current is mainly determined by SC de-trapping. Even the best elementary peaks are not fitted very well by the analytical equation, indicating that the hypothesis behind this equation have to be reconsidered.

Neagu, E. R., R. M. Neagu, M. C. Lanca, and J. N. Marat-Mendes, The time as a parameter to investigate the landscape of the apparent activation energies in the final thermally stimulated discharge current measurements, , pp. 292-295, 2005. AbstractWebsite

The experimental results obtained in a wide range of temperatures, for polyethylene terephthalate, demonstrate that the apparent activation energy changes when the charging (polarization) time or the isothermal discharging time, prior to the final thermally stimulated discharge current measurement, are used as variable parameters. Consequently, the charging and/or discharging time can be used as a variable parameter to investigate the landscape of the apparent thermal activation energies. A continuous distribution of the traps in the range from 0.4 to 3 eV was observed. The experimental results demonstrate that there is a range of experimental conditions for which the thermal activation energy is independent of the experimental parameter values. This is the activation energy value which should be used to characterize a certain mechanism.

Neagu, E. R., R. M. Neagu, C. J. Dias, C. M. Lança, and J. N. Marat-Mendes, The determination of the pull-in voltage from the condition of bridge stability, , vol. 5, pp. 139-151, Jan, 2010. Abstract
n/a
Neagu, E. R., R. M. Neagu, C. J. Dias, M. C. Lanca, and J. N. Marat-Mendes, "The determination of the metal-dielectric interface barrier height from the open-circuit isothermal charging current", Journal of Applied Physics, vol. 104, no. 3, 2008. AbstractWebsite

There is a sustained interest both from theoretical and from practical points of view to understand the isothermal charging and the isothermal discharging currents in dielectrics. The measured currents are analyzed either in terms of polarization mechanisms or in terms of charge injection/extraction at the metal-dielectric interface and the conduction current through the dielectric material. As long as we do not know the nature of the origin of the current, it is not clear what information we can get by analyzing the experimental data. We propose to measure the open-circuit isothermal charging and discharging currents just to overpass the difficulties related to the analysis of the conduction mechanisms in dielectric materials. We demonstrate that besides a polarization current, there is a current related with charge injection or extraction at the metal-dielectric contact and a reverse current related to the charge trapped into the superficial trap states of the dielectric and that can jump at the interface in a reverse way. An analytical expression for the current is proposed. By fitting the experimental data to this analytical equation, two important parameters can be determined: (i) the highest value of the relaxation time for the polarization mechanisms still involved into the transient current and (ii) the height of the potential barrier W-0 at the metal-dielectric interface at the initial time when the step voltage is applied. The value obtained for Al-polyethylene terephthalate interface is (0.43 +/- 0.02) eV. For a charging voltage of 220 V there are 6x10(14) trapped electrons/m(2). (c) 2008 American Institute of Physics.

Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, and J. N. Marat-Mendes, "Medium Electric Field Electron Injection/Extraction at Metal-Dielectric Interface", Advanced Materials Forum V, Pt 1 and 2, vol. 636-637, pp. 437-443, 2010. Abstract

The isothermal charging current and the isothermal discharging current in low mobility materials are analyzed either in terms of polarization mechanisms or in terms of charge injection/extraction at the metal-dielectric interface and the conduction current through the dielectric material. We propose to measure the open-circuit isothermal charging and discharging currents just to overpass the difficulties related to the analysis of the conduction mechanisms in dielectric materials. We demonstrate that besides a polarization current there is a current related to charge injection or extraction at the metal-dielectric interface and a reverse current related to the charge trapped into the shallow superficial or near superficial states of the dielectric and which can move at the interface in the opposite way that occurring during injection. Two important parameters can be determined (i) the highest value of the relaxation time for the polarization mechanisms which are involved into the transient current and (ii) the height of the potential barrier W-0 at the metal-dielectric interface. The experimental data demonstrate that there is no threshold field for electron injection/extraction at a metal-dielectric interface.

Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, P. Inacio, J. N. Marat-Mendes, and Ieee, "The Study of the Molecular Movements in the Range of Glass Transition by the Final Thermally Stimulated Discharge Current Technique", Proceedings of the 2010 Ieee International Conference on Solid Dielectrics (Icsd 2010), 2010. Abstract
n/a