[ Publications ]

Export 48 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
W
Wengenack, N., H. Lopes, M. Kennedy, P. Tavares, AS Pereira, I. Moura, JJG Moura, and F. Rusnak. "Redox potential of the heme protein KatG from Mycobacterium tuberculosis." Journal of Inorganic Biochemistry. 74 (1999): 336. AbstractWebsite
n/a
Wengenack, NL, H. Lopes, MJ Kennedy, P. Tavares, AS Pereira, I. Moura, JJG Moura, and F. Rusnak. "Redox potential measurements of the Mycobacterium tuberculosis heme protein KatG and the isoniazid-resistant enzyme KatG(S315T): Insights into isoniazid activation." Biochemistry. 39 (2000): 11508-11513. AbstractWebsite

Mycobacterium tuberculosis KatG is a multifunctional heme enzyme responsible for activation of the antibiotic isoniazid. A KatG(S315T) point mutation is found in >50% of isoniazid-resistant clinical isolates. Since isoniazid activation is thought to involve an oxidation reaction, the redox potential of KatG was determined using cyclic voltammetry, square wave voltammetry, and spectroelectrochemical titrations. Isoniazid activation may proceed via a cytochrome P450-like mechanism. Therefore, the possibility that substrate binding by KatG leads to an increase in the heme redox potential and the possibility that KatG(S315T) confers isoniazid resistance by altering the redox potential were examined. Effects of the heme spin state on the reduction potentials of KatG and KatG(S315T) were also determined. Assessment of the Fe3+/Fe2+ couple gave a midpoint potential of ca. -50 mV for both KatG and KatG(S315T). In contrast to cytochrome P450s, addition of substrate had no significant effect on either the KatG or KatG(S315T) redox potential. Conversion of the heme to a low-spin configuration resulted in a -150 to -200 mV shift of the KatG and KatG(S315T) redox potentials. These results suggest that isoniazid resistance conferred by KatG(S315T) is not mediated through changes in the heme redox potential. The redox potentials of isoniazid were also determined using cyclic and square wave voltammetry, and the results provide evidence that the ferric KatG and KatG(S315T) midpoint potentials are too low to promote isoniazid oxidation without formation of a high-valent enzyme intermediate such as compounds I and IT or oxyferrous KatG.

V
Valentine, AM, P. Tavares, AS Pereira, R. Davydov, C. Krebs, BM Koffman, DE Edmondson, BH HUYNH, and SJ Lippard. "Generation of a mixed-valent Fe(III)Fe(IV) form of intermediate Q in the reaction cycle of soluble methane monooxygenase, an analog of intermediate X in ribonucleotide reductase R2 assembly." Journal of the American Chemical Society. 120 (1998): 2190-2191. AbstractWebsite
n/a
T
Timoteo, C. G., AS Pereira, C. E. Martins, S. G. Naik, A. G. Duarte, JJG Moura, P. Tavares, BH HUYNH, and I. Moura. "Low-Spin Heme b(3) in the Catalytic Center of Nitric Oxide Reductase from Pseudomonas nautica." Biochemistry. 50 (2011): 4251-4262. AbstractWebsite

Respiratory nitric oxide reductase (NOR) was purified from membrane extract of Pseudomonas (Ps.) nautica cells to homogeneity as judged by polyacrylamide gel electrophoresis. The purified protein is a heterodimer with subunits of molecular masses of 54 and 18 kDa. The gene encoding both subunits was cloned and sequenced. The amino acid sequence shows strong homology with enzymes of the cNOR class. Iron/heme determinations show that one heme c is present in the small subunit (NORC) and that approximately two heme b and one non-heme iron are associated with the large subunit (NORB), in agreement with the available data for enzymes of the cNOR class. Mossbauer characterization of the as-purified, ascorbate-reduced, and dithionite-reduced enzyme confirms the presence of three heme groups (the catalytic heme b(3) and the electron transfer heme b and heme c) and one redox-active non-heme Fe (Fe-B). Consistent with results obtained for other cNORs, heme c and heme b in Ps. nautica cNOR were found to be low-spin while FeB was found to be high-spin. Unexpectedly, as opposed to the presumed high-spin state for heme b(3), the Mossbauer data demonstrate unambiguously that heme b(3) is, in fact, low-spin in both ferric and ferrous states, suggesting that heme b(3) is six-coordinated regardless of its oxidation state. EPR spectroscopic measurements of the as-purified enzyme show resonances at the g similar to 6 and g similar to 2-3 regions very similar to those reported previously for other cNORs. The signals at g = 3.60, 2.99, 2.26, and 1.43 are attributed to the two charge-transfer low-spin ferric heme c and heme b. Previously, resonances at the g similar to 6 region were assigned to a small quantity of uncoupled high-spin Fe-III heme b(3). This assignment is now questionable because heme b(3) is low-spin. On the basis of our spectroscopic data, we argue that the g = 6.34 signal is likely arising from a spin spin coupled binuclear center comprising the low-spin Fe-III heme b(3) and the high-spin Fe-B(III). Activity assays performed under various reducing conditions indicate that heme b(3) has to be reduced for the enzyme to be active. But, from an energetic point of view, the formation of a ferrous heme-NO as an initial reaction intermediate for NO reduction is disfavored because heme [FeNO](7) is a stable product. We suspect that the presence of a sixth ligand in the Fe-II-heme b(3) may weaken its affinity for NO and thus promotes, in the first catalytic step, binding of NO at the Fe-B(II) site. The function of heme b(3) would then be to orient the Fe-B-bound NO molecules for the formation of the N-N bond and to provide reducing equivalents for NO reduction.

Timoteo, C. G., M. Guilherme, D. Penas, F. Folgosa, P. Tavares, and AS Pereira. "Desulfovibrio vulgaris bacterioferritin uses H2O2 as a co-substrate for iron oxidation and reveals DPS-like DNA protection and binding activities." Biochemical Journal. 446 (2012): 125-133. AbstractWebsite

A gene encoding Bfr (bacterioferritin) was identified and isolated from the genome of Desulfovibrio vulgaris cells, and overexpressed in Escherichia coli. In vitro, H2O2 oxidizes Fe2+ ions at much higher reaction rates than O-2. The H2O2 oxidation of two Fe2+ ions was proven by Mossbauer spectroscopy of rapid freeze-quenched samples. On the basis of the Mossbauer parameters of the intermediate species we propose that D. vulgaris Bfr follows a mineralization mechanism similar to the one reported for vertebrate H-type ferritins subunits, in which a diferrous centre at the ferroxidase site is oxidized to diferric intermediate species, that are subsequently translocated into the inner nanocavity. D. vulgaris recombinant Bfr oxidizes and stores up to 600 iron atoms per protein. This Bfr is able to bind DNA and protect it against hydroxyl radical and DNase deleterious effects. The use of H2O2 as an oxidant, combined with the DNA binding and protection activities, seems to indicate a DPS (DNA-binding protein from starved cells)-like role for D. vulgaris Bfr.

Tavares, P., AS Pereira, C. Krebs, N. Ravi, JJG Moura, I. Moura, and BH HUYNH. "Spectroscopic characterization of a novel tetranuclear Fe cluster in an iron-sulfur protein isolated from Desulfovibrio desulfuricans." Biochemistry. 37 (1998): 2830-2842. AbstractWebsite

Mossbauer and EPR spectroscopies were used to characterize the Fe clusters in an Fe-S protein isolated from Desulfovibrio desulfuricans (ATCC 27774). This protein was previously thought to contain hexanuclear Fe clusters, but a recent X-ray crystallographic measurement on a similar protein isolated from Desulfovibrio vulgaris showed that the protein contains two tetranuclear clusters, a cubane-type [4Fe-4S] cluster and a mixed-ligand cluster of novel structure [Lindley et al. (1997) Abstract, Chemistry of Metals in Biological Systems, European Research Conference, Tomar, Portugal]. Three protein samples poised at different redox potentials (as-purified, 40 and 320 mV) were investigated. In all three samples, the [4Fe-4S] cluster was found to be present in the diamagnetic 2+ oxidation state and exhibited typical Mossbauer spectra. The novel-structure cluster was found to be redox active. In the 320-mV and as-purified samples, the cluster is at a redox equilibrium between its fully oxidized and one-electron reduced states. In the 40-mV sample, the cluster is in a two-electron reduced state. Distinct spectral components associated with the four Fe sites of cluster 2 in the three oxidation states were identified. The spectroscopic parameters obtained for the Fe sites reflect different ligand environments, making it possible to assign the spectral components to individual Fe sites. In the fully oxidized state, all four iron ions are high-spin ferric and antiferromagnetically coupled to form a diamagnetic S = 0 state. In the one-electron and two-electron reduced states, the reducing electrons were found to localize, consecutively, onto two Fe sites that are rich in oxygen/nitrogen ligands. Based on the X-ray structure and the Mossbauer parameters, attempts could be made to identify the reduced Fe sites. For the two-electron reduced cluster, EPR and Mossbauer data indicate that the cluster is paramagnetic with a nonzero interger spin. For the one-electron reduced cluster, the data suggest a half-integer spin of 9/2 Characteristic fine and hyperfine parameters for all four Fe sites were obtained. Structural implications and the nature of the spin-coupling interactions are discussed.

Tavares, P., AS Pereira, S. G. Lloyd, D. Danger, DE Edmondson, E. C. Theil, and BH HUYNH. "Mossbauer spectroscopic and kinetic characterization of ferric clusters formed in h-chain ferritin mineralization." Abstracts of Papers of the American Chemical Society. 213 (1997): 503-INOR. AbstractWebsite
n/a
Tavares, P., AS Pereira, JJG Moura, and I. Moura. "Metalloenzymes of the denitrification pathway." Journal of Inorganic Biochemistry. 100 (2006): 2087-2100. AbstractWebsite

Denitrification, or dissimilative nitrate reduction, is an anaerobic process used by some bacteria for energy generation. This process is important in many aspects, but its environmental implications have been given particular relevance. Nitrate accumulation and release of nitrous oxide in the atmosphere due to excess use of fertilizers in agriculture are examples of two environmental problems where denitrification plays a central role. The reduction of nitrate to nitrogen gas is accomplished by four different types of metalloenzymes in four simple steps: nitrate is reduced to nitrite, then to nitric oxide, followed by the reduction to nitrous oxide and by a final reduction to dinitrogen. In this manuscript we present a concise updated review of the bioinorganic aspects of denitrification. (c) 2006 Elsevier Inc. All rights reserved.

S
Siopa, F., AS Pereira, LM Ferreira, M. M. Marques, and P. S. Branco. "Synthesis of catecholamine conjugates with nitrogen-centered bionucleophiles." Bioorganic Chemistry. 44 (2012): 19-24. AbstractWebsite

The enzymatic (tyrosinase) and chemical (NaIO4, Ag2O or Fremys's salt) oxidation of biologically relevant catecholamines, such as dopamine (DA), N-acetyldopamine (NADA) and the Ecstasy metabolites (alpha-MeDA and N-Me-alpha-MeDA) generates the corresponding o-quinone which can be trapped with nitrogen bionucleophiles such as N-acetyl-histidine and imidazole in a regioselective reaction that takes place predominantly at the 6-position of the catecholamine. (C) 2012 Elsevier Inc. All rights reserved.

R
Rivas, M. G., M. S. P. Carepo, C. S. Mota, M. Korbas, M. C. Durand, A. T. Lopes, CD Brondino, AS Pereira, GN George, A. Dolla, JJG Moura, and I. Moura. "Molybdenum Induces the Expression of a Protein Containing a New Heterometallic Mo-Fe Cluster in Desulfovibrio alaskensis." Biochemistry. 48 (2009): 873-882. AbstractWebsite

The characterization of a novel Mo-Fe protein (MorP) associated with a system that responds to Mo in Desulfovibrio alaskensis is reported. Biochemical characterization shows that MorP is a periplasmic homomultimer of high molecular weight (260 +/- 13 kDa) consisting of 16-18 monomers of 15321.1 +/- 0.5 Da. The UV/visible absorption spectrum of the as-isolated protein shows absorption peaks around 280, 320, and 570 nm with extinction coefficients of 18700, 12800, and 5000 M(-1) cm(-1), respectively. Metal content, EXAFS data and DFT calculations support the presence of a Mo-2S-[2Fe-2S]-2S-Mo cluster never reported before. Analysis of the available genomes from Desulfovibrio species shows that the MorP encoding gene is located downstream of a sensor and a regulator gene. This type of gene arrangement, called two component system, is used by the cell to regulate diverse physiological processes in response to changes in environmemtal conditions. Increase of both gene expression and protein production was observed when cells were cultured in the presence of 45 mu M molybdenum. Involvement of this system in Mo tolerance of sulfate reducing bacteria is proposed.

Rivas, M. G., C. S. Mota, S. R. Pauleta, M. S. P. Carepo, F. Folgosa, S. L. A. Andrade, G. Fauque, AS Pereira, P. Tavares, JJ Calvete, I. Moura, and JJG Moura. "Isolation and characterization of a new Cu-Fe protein from Desulfovibrio aminophilus DSM12254." Journal of Inorganic Biochemistry. 103 (2009): 1314-1322. AbstractWebsite

The isolation and characterization of a new metalloprotein containing Cu and Fe atoms is reported. The as-isolated Cu-Fe protein shows an UV-visible spectrum with absorption bands at 320 nm, 409 nm and 615 nm. Molecular mass of the native protein along with denaturating electrophoresis and mass spectrometry data show that this protein is a multimer consisting of 14 +/- 1 subunits of 15254.3 +/- 7.6 Da. Mossbauer spectroscopy data of the as-isolated Cu-Fe protein is consistent with the presence of [2Fe-2S](2+) centers. Data interpretation of the dithionite reduced protein suggest that the metallic cluster could be constituted by two ferromagnetically coupled [2Fe-2S](+) spin delocalized pairs. The biochemical properties of the Cu-Fe protein are similar to the recently reported molybdenum resistance associated protein from Desulfovibrio, D. alaskensis. Further-more, a BLAST search from the DNA deduced amino acid sequence shows that the Cu-Fe protein has homology with proteins annotated as zinc resistance associated proteins from Desulfovibrio, D. alaskensis, D. vulgaris Hildenborough, D. piger ATCC 29098. These facts suggest a possible role of the Cu-Fe protein in metal tolerance. (C) 2009 Published by Elsevier Inc.

P
Prudencio, M., AS Pereira, P. Tavares, S. Besson, I. Cabrito, K. Brown, B. Samyn, B. Devreese, J. VanBeeumen, F. Rusnak, G. Fauque, JJG Moura, M. Tegoni, C. Cambillau, and I. Moura. "Purification, characterization, and preliminary crystallographic study of copper-containing nitrous oxide reductase from Pseudomonas nautica 617." Biochemistry. 39 (2000): 3899-3907. AbstractWebsite

The aerobic purification of Pseudomonas nautica 617 nitrous oxide reductase yielded two forms of the enzyme exhibiting different chromatographic behaviors. The protein contains six copper atoms per monomer, arranged in two centers named CUA and Cut. Cut could be neither oxidized nor further reduced under our experimental conditions, and exhibits a 4-line EPR spectrum (g(x)= 2.015, A(x) = 1.5 mT, g(y) = 2.071, A(y) = 2 mT, g(z) = 2.138, A(z) = 7 mT) and a strong absorption at similar to 640 nm. Cu-A can be stabilized in a reduced EPR-silent state and in an oxidized state with a typical 7-line EPR spectrum (g(x) g(y) = 2.021, A(x) = A(y) = 0 T, g(z) =0.178, A(z) = 4 mT) and absorption bands at 480, 540, and similar to 800 nm. The difference between the two purified forms of nitrous oxide reductase is interpreted as a difference in the oxidation state of the CuA center. In form A, CUA is predominantly oxidized (S = 1/2, Cu1.5+-Cu1.5+), while in form B it is mostly in the one-electron reduced state (S = 0, Cu1+-Cu1+). In both forms, Cu-Z remains reduced (S = 1/2). Complete crystallographic data at 2.4 Angstrom indicate that Cu-A is a binuclear site (similar to the site found in cytochrome c oxidase) and Cu-Z is a novel tetracopper cluster [Brown, K., et ai. (2000) Nat. Struct. Biol. (in press)]. The complete amino acid sequence of the enzyme was determined and comparisons made with sequences of other nitrous oxide reductases, emphasizing the coordination of the centers. A 10.3 kDa peptide copurified with both forms of nitrous oxide reductase shows strong homology with proteins of the heat-shock GroES chaperonin family.

Prudencio, M., AS Pereira, P. Tavares, S. Besson, and I. Moura. "Copper-containing nitrous oxide reductase from Pseudomonas nautica: spectroscopic and redox properties." Journal of Inorganic Biochemistry. 74 (1999): 267. AbstractWebsite
n/a
Pereira, AS, C. G. Timoteo, M. Guilherme, F. Folgosa, S. G. Naik, A. G. Duarte, BH HUYNH, and P. Tavares. "Spectroscopic Evidence for and Characterization of a Trinuclear Ferroxidase Center in Bacterial Ferritin from Desulfovibrio vulgaris Hildenborough." Journal of the American Chemical Society. 134 (2012): 10822-10832. AbstractWebsite

Ferritins are ubiquitous and can be found in practically all organisms that utilize Fe. They are composed of 24 subunits forming a hollow sphere with an inner cavity of similar to 80 angstrom in diameter. The main function of ferritin is to oxidize the cytotoxic Fe2+ ions and store the oxidized Fe in the inner cavity. It has been established that the initial step of rapid oxidation of Fe2+ (ferroxidation) by H-type ferritins, found in vertebrates, occurs at a diiron binding center, termed the ferroxidase center. In bacterial ferritins, however, X-ray crystallographic evidence and amino acid sequence analysis revealed a trinuclear Fe binding center comprising a binuclear Fe binding center (sites A and B), homologous to the ferroxidase center of H-type ferritin, and an adjacent mononuclear Fe binding site (site C). In an effort to obtain further evidence supporting the presence of a trinuclear Fe binding center in bacterial ferritins and to gain information on the states of the iron bound to the trinuclear center, bacterial ferritin from Desulfovibrio vulgaris (DvFtn) and its E130A variant was loaded with substoichiometric amounts of Fe2+, and the products were characterized by Mossbauer and EPR spectroscopy. Four distinct Fe species were identified: a paramagnetic diferrous species, a diamagnetic diferrous species, a mixed valence Fe2+Fe3+ species, and a mononuclear Fe2+ species. The latter three species were detected in the wild-type DvFtn, while the paramagnetic diferrous species was detected in the E130A variant. These observations can be rationally explained by the presence of a trinuclear Fe binding center, and the four Fe species can be properly assigned to the three Fe binding sites. Further, our spectroscopic data suggest that (1) the fully occupied trinuclear center supports an all ferrous state, (2) sites B and C are bridged by a mu-OH group forming a diiron subcenter within the trinuclear center, and (3) this subcenter can afford both a mixed valence Fe2+Fe3+ state and a diferrous state. Mechanistic insights provided by these new findings are discussed and a minimal mechanistic scheme involving O-O bond cleavage is proposed.

Pereira, AS, P. Tavares, C. Krebs, BH HUYNH, F. Rusnak, I. Moura, and JJG Moura. "Biochemical and spectroscopic characterization of overexpressed fuscoredoxin from Escherichia coli." Biochemical and Biophysical Research Communications. 260 (1999): 209-215. AbstractWebsite

Fuscoredoxin is a unique iron containing protein of yet unknown function originally discovered in the sulfate reducers of the genus Desulfovibrio. It contains two iron-sulfur clusters: a cubane [4Fe-4S] and a mixed oxo- and sulfide-bridged 4Fe cluster of unprecedented structure. The recent determination of the genomic sequence of Escherichia coli (E. coli) has revealed a homologue of fuscoredoxin in this facultative microbe. The presence of this gene in E. coli raises interesting questions regarding the function of fuscoredoxin and whether this gene represents a structural homologue of the better-characterized Desulfovibrio proteins. In order to explore the latter, an overexpression system for the E. coli fuscoredoxin gene was devised. The gene was cloned from genomic DNA by use of the polymerase chain reaction into the expression vector pT7-7 and overexpressed in E. coli BL21(DE3) cells. After two chromatographic steps a good yield of recombinant protein was obtained (approximately 4 mg of pure protein per liter of culture). The purified protein exhibits an optical spectrum characteristic of the homologue from D. desulfuricans, indicating that cofactor assembly was accomplished. Iron analysis indicated that the protein contains circa 8 iron atoms/molecule which were shown by EPR and Mossbauer spectroscopies to be present as two multinuclear clusters, albeit with slightly altered spectroscopic features. A comparison of the primary sequences of fuscoredoxins is presented and differences on cluster coordination modes are discussed on the light of the spectroscopic data. (C) 1999 Academic Press.

Pereira, AS, R. Franco, MJ Feio, C. Pinto, J. Lampreia, MA Reis, J. Calvete, I. Moura, I. Beech, AR Lino, and JJG Moura. "Characterization of representative enzymes from a sulfate reducing bacterium implicated in the corrosion of steel." Biochemical and Biophysical Research Communications. 221 (1996): 414-421. AbstractWebsite

This communication reports the isolation, purification and characterization of key enzymes involved in dissimilatory sulfate reduction of a sulfate reducing bacterium classified as Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) (Ddd NJ). The chosen strain, originally recovered from a corroding cast iron heat exchanger, was grown in large scale batch cultures. Physico-chemical and spectroscopic studies of the purified enzymes were carried out. These analyses revealed a high degree of similarity between proteins isolated from the DddNJ strain and the homologous proteins obtained from Desulfomicrobium baculatus Norway 4. In view of the results obtained, taxonomic reclassification of Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) into Desulfomicrobium baculatus (New Jersey) is proposed. (C) 1996 Academic Press, Inc.

Pereira, AS, P. Tavares, S. G. Lloyd, D. Danger, DE Edmondson, E. C. Theil, and BH HUYNH. "Rapid and parallel formation of Fe3+ multimers, including a trimer, during H-type subunit ferritin mineralization." Biochemistry. 36 (1997): 7917-7927. AbstractWebsite

Conversion of Fe ions in solution to the solid phase in ferritin concentrates iron required for cell function. The rate of the Fe phase transition in ferritin is tissue specific and reflects the differential expression of two classes of ferritin subunits (H and L). Early stages of mineralization were probed by rapid freeze-quench Mossbauer, at strong fields (up to 8 T), and EPR spectroscopy in an H-type subunit, recombinant frog ferritin; small numbers of Fe (36 moles/mol of protein) were used to increase Fe3+ in mineral precursor forms, At 25 ms, four Fe3+-oxy species (three Fe dimers and one Fe trimer) were identified, These Fe3+-oxy species were found to form at similar rates and decay subsequently to a distinctive superparamagentic species designated the ''young core.'' The rate of oxidation of Fe2+ (1026 s(-1)) corresponded well to the formation constant for the Fe3+- tyrosinate complex (920 s(-1)) observed previously [Waldo, G. S., & Theil, E. C. (1993) Biochemistry 32, 13261] and, coupled with EPR data, indicates that several or possibly all of the Fe3+-oxy species involve tyrosine. The results, combined with previous Mossbauer studies of Y30F human H-type ferritin which showed decreases in several Fe3+ intermediates and stabilization of Fe2+ [Bauminger, E. R., et al. (1993) Biochem, J. 296, 709], emphasize the involvement of tyrosyl residues in the mineralization of H-type ferritins. The subsequent decay of these multiple Fe3+-oxy species to the superparamagnetic mineral suggests that Fe3+ species in different environments may be translocated as intact units from the protein shell into the ferritin cavity where the conversion to a solid mineral occurs.

Pereira, AS, W. Small, C. Krebs, P. Tavares, DE Edmondson, E. C. Theil, and BH HUYNH. "Direct spectroscopic and kinetic evidence for the involvement of a peroxodiferric intermediate during the ferroxidase reaction in fast ferritin mineralization." Biochemistry. 37 (1998): 9871-9876. AbstractWebsite

Rapid freeze-quench (RFQ) Mossbauer and stopped-flow absorption spectroscopy were used to monitor the ferritin ferroxidase reaction using recombinant (apo) frog M ferritin; the initial transient ferric species could be trapped by the RFQ method using low iron loading (36 Fe2+/ferritin molecule). Biphasic kinetics of ferroxidation were observed and measured directly by the Mossbauer method; a majority (85%) of the ferrous ions was oxidized at a fast rate of similar to 80 s(-1) and the remainder at a much slower rate of similar to 1.7 s(-1). In parallel with the fast phase oxidation of the Fe2+ ions, a single transient iron species is formed which exhibits magnetic properties (diamagnetic ground state) and Mossbauer parameters (Delta E-Q = 1.08 +/- 0.03 mm/s and delta = 0.62 +/- 0.02 mm/s) indicative of an antiferromagnetically coupled peroxodiferric complex. The formation and decay rates of this transient diiron species measured by the RFQ Mossbauer method match those of a transient blue species (lambda(max) = 650 nm) determined by the stopped-flow absorbance measurement. Thus, the transient colored species is assigned to the same peroxodiferric intermediate. Similar transient colored species have been detected by other investigators in several other fast ferritins (H and M subunit types), such as the human H ferritin and the Escherichia coli ferritin, suggesting a similar mechanism for the ferritin ferroxidase step in all fast ferritins. Peroxodiferric complexes are also formed as early intermediates in the reaction of O-2 With the catalytic diiron centers in the hydroxylase component of soluble methane monooxygenase (MMOH) and in the D84E mutant of the R2 subunit of E. coli ribonucleotide reductase. The proposal that a single protein site, with a structure homologous to the diiron centers in MMOH and R2, is involved in the ferritin ferroxidation step is confirmed by the observed kinetics, spectroscopic properties, and purity of the initial peroxodiferric species formed in the frog M ferritin.

Pereira, AS, P. Tavares, I. Moura, JJG Moura, and BH HUYNH. "Mossbauer characterization of the iron-sulfur clusters in Desulfovibrio vulgaris hydrogenase." Journal of the American Chemical Society. 123 (2001): 2771-2782. AbstractWebsite

The periplasmic hydrogenase of Desulfovibrio vulgaris (Hildenbourough) is an all Fe-containing hydrogenase. It contains two ferredoxin type [4Fe-4S] clusters, termed the F clusters, and a catalytic H cluster. Recent X-ray crystallographic studies on two Fe hydrogenases revealed that the H cluster is composed of two sub-clusters, a [4Fe-4S] cluster ([4Fe-4S]H) and-a binuclear Fe cluster ([2Fe]H), bridged by a cysteine sulfur. The aerobically purified D. vulgaris hydrogenase is stable in air. It is inactive and requires reductive activation. Upon reduction, the enzyme becomes sensitive to O(2) indicating that the reductive activation process is irreversible. Previous EPR investigations showed that upon reoxidation (under argon) the H cluster exhibits a rhombic EPR signal that is not seen in the as-purified enzyme, suggesting a conformational change in association with the reductive activation. For the purpose of gaining more information on the electronic properties of this unique H cluster and to understand further the reductive activation process, variable-temperature and variable-field Mossbauer spectroscopy has been used to characterize the Fe-S clusters in D. vulgaris hydrogenase poised at different redox states generated during a reductive titration, and in the GO-reacted enzyme. The data were successfully decomposed into spectral components corresponding to the F and H clusters,and characteristic parameters describing the electronic and magnetic properties of the F and H clusters were obtained. Consistent with the X-ray crystallographic results, the spectra of the H cluster can be understood as originating from an exchange coupled [4Fe-4S] - [2Fe] system. In particular, detailed analysis of the data reveals that the reductive activation begins with reduction of the [4Fe-4S]H cluster from the 2+ to the If state, followed by transfer of the reducing equivalent from the [4Fe-4S]H subcluster to the binuclear [2Fe]H subcluster. The results also reveal that binding of exogenous CO to the H cluster affects significantly the exchange coupling between the [4Fe-4S]H and the [2Fe]H subclusters. Implication of such a CO binding effect is discussed.

Pereira, AS, P. Tavares, F. Folgosa, R. M. Almeida, I. Moura, and JJG Moura. "Superoxide reductases." European Journal of Inorganic Chemistry (2007): 2569-2581. AbstractWebsite

Reactive oxygen species (ROS), when in excess, are among the most deleterious species an organism can deal with. The physiological effects of ROS include amino acid chain cleavage, DNA degradation and lipid oxidation, among others. They can be formed in the cytoplasm in a variety of ways, including autooxidation reactions (FMN- and FAD-containing enzymes) and Fenton reactions as a result of the cytoplasmatic pool of iron ions. The superoxide anion (021, despite its short half-life in solution, is particularly pernicious as it can form other reactive ROS (such as the strong oxidant peroxynitrite) or oxidize and/or reduce cellular components. For strict anaerobic or microaerophilic bacteria it is of particular importance to be able to dispose of ROS in a controlled manner, especially if these organisms are temporarily exposed to air. This review aims to describe the structural characteristics of superoxide reductases (SORs) and mechanistic aspects of biological superoxide anion reduction. SORs can be considered the main class of enzymes behind the oxygen detoxification pathway of anaerobic and microaerophilic bacteria. The geometry of the active site (three classes have been described), the possible electron donors in vivo and the current hypothesis for the catalytic mechanism will be discussed. Some phylogenetic considerations are presented, regarding the primary structure of SORs currently available in genome databases. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007).

Pauleta, Sr., F. Guerlesquin, C. F. Goodhew, B. Devreese, J. VanBeeumen, AS Pereira, I. Moura, and G. W. Pettigrew. "Paracoccus pantotrophus pseudoazurin is an electron donor to cytochrome c peroxidase." Biochemistry. 43 (2004): 11214-11225. AbstractWebsite

The gene for pseudoazurin was isolated from Paracoccus pantotrophus LMD 52.44 and expressed in a heterologous system with a yield of 54.3 mg of pure protein per liter of culture. The gene and protein were shown to be identical to those from P. pantotrophus LMD 82.5. The extinction coefficient of the protein was re-evaluated and was found to be 3.00 mM(-1) cm(-1) at 590 nm. It was confirmed that the oxidized protein is in a weak monomer/dimer equilibrium that is ionic- strength-dependent. The pseudoazurin was shown to be a highly active electron donor to cytochrome c peroxidase, and activity showed an ionic strength dependence consistent with an electrostatic interaction. The pseudoazurin has a very large dipole moment, the vector of which is positioned at the putative electron-transfer site, His81, and is conserved in this position across a wide range of blue copper proteins. Binding of the peroxidase to pseudoazurin causes perturbation of a set of NMR resonances associated with residues on the His81 face, including a ring of lysine residues. These lysines are associated with acidic residues just back from the rim, the resonances of which are also affected by binding to the peroxidase. We propose that these acidic residues moderate the electrostatic influence of the lysines and so ensure that specific charge interactions do not form across the interface with the peroxidase.

Pauleta, S. R., A. G. Duarte, M. S. Carepo, AS Pereira, P. Tavares, I. Moura, and JJG Moura. "NMR assignment of the apo-form of a Desulfovibrio gigas protein containing a novel Mo-Cu cluster." Biomolecular Nmr Assignments. 1 (2007): 81-83. AbstractWebsite

We report the 98% assignment of the apo-form of an orange protein, containing a novel Mo-Cu cluster isolated from Desulfovibrio gigas. This protein presents a region where backbone amide protons exchange fast with bulk solvent becoming undetectable. These residues were assigned using C-13-detection experiments.

Pamplona, A., AS Pereira, P. Tavares, I. Moura, F. Rusnak, and JJG Moura. "Cloning and overexpression of E.Coli fuscoredoxin." Journal of Inorganic Biochemistry. 74 (1999): 260. AbstractWebsite
n/a
M
Moura, I., AS Pereira, P. Tavares, and JJG Moura. "Simple and complex iron-sulfur proteins in sulfate reducing bacteria." Advances in Inorganic Chemistry, Vol 47. 47 (1999): 361-419. AbstractWebsite
n/a
L
Lampreia, J., AS Pereira, and JJG Moura. "ADENYLYLSULFATE REDUCTASES FROM SULFATE-REDUCING BACTERIA." Inorganic Microbial Sulfur Metabolism. 243 (1994): 241-260. AbstractWebsite
n/a