[ Publications ]

Export 6 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M [N] O P Q R S T U V W X Y Z   [Show ALL]
N
Folgosa, F., C. M. Cordas, J. A. Santos, AS Pereira, JJG Moura, P. Tavares, and I. Moura. "New spectroscopic and electrochemical insights on a class I superoxide reductase: evidence for an intramolecular electron-transfer pathway." Biochemical Journal. 438 (2011): 485-494. AbstractWebsite

SORs (superoxide reductases) are enzymes involved in bacterial resistance to reactive oxygen species, catalysing the reduction of superoxide anions to hydrogen peroxide. So far three structural classes have been identified. Class I enzymes have two ironcentre-containing domains. Most studies have focused on the catalytic iron site (centre II), yet the role of centre I is poorly understood. The possible roles of this iron site were approached by an integrated study using both classical and fast kinetic measurements, as well as direct electrochemistry. A new heterometallic form of the protein with a zinc-substituted centre I, maintaining the iron active-site centre II, was obtained, resulting in a stable derivative useful for comparison with the native all-iron from. Second-order rate constants for the electron transfer between reduced rubredoxin and the different SOR forms were determined to be 2.8 x 10(7) M(-1) . s(-1) and 1.3 x 10(6) M(-1) . s(-1) for SOR(Fe(IIII)-Fe(II)) and for SOR(Fe(IIII)-Fe(III)) forms respectively, and 3.2 x 10(6) M(-1) s(-1) for the SOR(Zn(II)-Fe(III)) form. The results obtained seem to indicate that centre I transfers electrons from the putative physiological donor rubredoxin to the catalytic active iron site (intramolecular process). In addition, electrochemical results show that conformational changes are associated with the redox state of centre I, which may enable a faster catalytic response towards superoxide anion. The apparent rate constants calculated for the SOR-mediated electron transfer also support this observation.

Gavel, OY, SA Bursakov, G. Di Rocco, J. Trincao, I. J. Pickering, GN George, JJ Calvete, VL Shnyrov, CD Brondino, AS Pereira, J. Lampreia, P. Tavares, JJG Moura, and I. Moura. "A new type of metal-binding site in cobalt- and zinc-containing adenylate kinases isolated from sulfate-reducers Desulfovibrio gigas and Desulfovibrio desulfuricans ATCC 27774." Journal of Inorganic Biochemistry. 102 (2008): 1380-1395. AbstractWebsite

Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterised in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the "LID" domain. The sequence (129)Cys-X(5)-His-X(15)-Cys-X(2)-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain. (C) 2008 Elsevier Inc. All rights reserved.

Cordas, C. M., AS Pereira, C. E. Martins, C. G. Timoteo, I. Moura, JJG Moura, and P. Tavares. "Nitric oxide reductase: Direct electrochemistry and electrocatalytic activity." Chembiochem. 7 (2006): 1878-1881. AbstractWebsite
n/a
Cabrito, I., AS Pereira, P. Tavares, S. Besson, C. Brondino, B. Hoffman, K. Brown, M. Tegoni, C. Cambillau, JJG Moura, and I. Moura. "Nitrous oxide reductase (N2OR) from Pseudomonas nautica 617." Journal of Inorganic Biochemistry. 86 (2001): 165. AbstractWebsite
n/a
Pauleta, S. R., A. G. Duarte, M. S. Carepo, AS Pereira, P. Tavares, I. Moura, and JJG Moura. "NMR assignment of the apo-form of a Desulfovibrio gigas protein containing a novel Mo-Cu cluster." Biomolecular Nmr Assignments. 1 (2007): 81-83. AbstractWebsite

We report the 98% assignment of the apo-form of an orange protein, containing a novel Mo-Cu cluster isolated from Desulfovibrio gigas. This protein presents a region where backbone amide protons exchange fast with bulk solvent becoming undetectable. These residues were assigned using C-13-detection experiments.

Brown, K., M. Tegoni, M. Prudencio, AS Pereira, S. Besson, J. J. Moura, I. Moura, and C. Cambillau. "A novel type of catalytic copper cluster in nitrous oxide reductase." Nature Structural Biology. 7 (2000): 191-195. AbstractWebsite

Nitrous oxide (N(2)O) is a greenhouse gas, the third most significant contributor to global warming. As a key process for N(2)O elimination from the biosphere, N(2)O reductases catalyze the two-electron reduction of N(2)O to N(2). These 2 x 65 kDa copper enzymes are thought to contain a CuA electron entry site, similar to that of cytochrome c oxidase, and a CuZ catalytic center. The copper anomalous signal was used to solve the crystal structure of N(2)O reductase from Pseudomonas nautica by multiwavelength anomalous dispersion, to a resolution of 2.4 Angstrom. The structure reveals that the CuZ center belongs to a new type of metal cluster, in which four copper ions are liganded by seven histidine residues. N(2)O binds to this center via a single copper ion. The remaining copper ions might act as an electron reservoir, assuring a fast electron transfer and avoiding the formation of dead-end products.