[ Publications ]

Export 3 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C [D] E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
D
Dell'acqua, S., S. R. Pauleta, E. Monzani, AS Pereira, L. Casella, JJG Moura, and I. Moura. "Electron transfer complex between nitrous oxide reductase and cytochrome c(552) from Pseudomonas nautica: Kinetic, nuclear magnetic resonance, and docking studies." Biochemistry. 47 (2008): 10852-10862. AbstractWebsite

The multicopper enzyme nitrous oxide reductase (N2OR) catalyzes the final step of denitrification, the two-electron reduction of N2O to N-2. This enzyme is a functional homodimer containing two different multicopper sites: CuA and CuZ. CuA is a binuclear copper site that transfers electrons to the tetranuclear copper sulfide CuZ, the catalytic site. In this study, Pseudomonas nautica cytochrome C-552 was identified as the physiological electron donor. The kinetic data show differences when physiological and artificial electron donors are compared [cytochrome vs methylviologen (MV)]. In the presence of cytochrome c(552), the reaction rate is dependent on the ET reaction and independent of the N2O concentration. With MV, electron donation is faster than substrate reduction. From the study of cytochrome c(552) concentration dependence, we estimate the following kinetic parameters: K-mc512 = 50.2 +/- 9.0 mu M and V-maxc551 1.8 +/- 10.6 units/mg. The N2O concentration dependence indicates a K-mN2O of 14.0 +/- 2.9 mu M using MV as the electron donor. The pH effect on the kinetic parameters is different when MV or cytochrome c(552) is used as the electron donor (pK(a) = 6.6 or 8.3, respectively). The kinetic study also revealed the hydrophobic nature of the interaction, and direct electron transfer studies showed that CuA is the center that receives electrons from the physiological electron donor. The formation of the electron transfer complex was observed by H-1 NMR protein-protein titrations and was modeled with a molecular docking program (BiGGER). The proposed docked complexes corroborated the ET studies giving a large number of solutions in which cytochrome c(552) is placed near a hydrophobic patch located around the CuA center.

Di Rocco, G., AS Pereira, SA Bursakov, OY Gavel, F. Rusnak, J. Lampreia, JJG Moura, and I. Moura. "Cloning of a novel Mo-Cu containing protein from Desulfovibrio.gigas." Journal of Inorganic Biochemistry. 86 (2001): 202. AbstractWebsite
n/a
Dias, JM, T. Alves, C. Bonifacio, AS Pereira, J. Trincao, D. Bourgeois, I. Moura, and MJ Romao. "Structural basis for the mechanism of Ca2+ activation of the di-heme cytochrome c peroxidase from Pseudomonas nautica 617." Structure. 12 (2004): 961-973. AbstractWebsite

Cytochrome c peroxidase (CCP) catalyses the reduction of H2O2 to H2O, an important step in the cellular detoxification process. The crystal structure of the di-heme CCP from Pseudomonas nautica 617 was obtained in two different conformations in a redox state with the electron transfer heme reduced. Form IN, obtained at pH 4.0, does not contain Ca2+ and was refined at 2.2 Angstrom resolution. This inactive form presents a closed conformation where the peroxidatic heme adopts a six-ligand coordination, hindering the peroxidatic reaction from taking place. Form OUT is Ca2+ dependent and was crystallized at pH 5.3 and refined at 2.4 Angstrom resolution. This active form shows an open conformation, with release of the distal histidine (His71) ligand, providing peroxide access to the active site. This is the first time that the active and inactive states are reported for a di-heme peroxidase.