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A B S T R A C T

Nitric oxide (NO) has a crucial role in signaling and cellular physiology in humans. Herein, a novel third-
generation biosensor based on the Marinobacter hydrocarbonoclasticus metalloenzyme (nitric oxide reductase
(NOR)), responsible for the NO reduction in the denitrifying processes, was developed through the direct ad-
sorption of a new nanocomposite (multiwalled carbon nanotubes (MWCNTs)/1-n-butyl-3-methylimidazolium
tetrafluoroborate (BMIMBF4)/NOR) onto a pyrolytic graphite electrode (PGE) surface. The NOR direct electron
transfer behavior (formal potential of -0.255 ± 0.003 V vs. Ag/AgCl) and electrocatalysis towards NO reduction
(−0.68 ± 0.03 V vs. Ag/AgCl) of the PGE/[MWCNTs/BMIMBF4/NOR] biosensor were investigated in phos-
phate buffer at pH 6.0. Large enzyme loading (2.04× 10−10 mol/cm2), acceptable electron transfer rate be-
tween NOR and the PGE surface (ks= 0.35 s-1), and high affinity for NO (Km=2.17 μmol L-1) were observed
with this biosensor composition. A linear response to NO concentration (0.23–4.76 μmol L-1) was perceived with
high sensitivity (0.429 μA/μmolL-1), a detection limit of 0.07 μmol L-1, appropriate repeatability (9.1% relative
standard deviations (RSD)), reproducibility (6.0–11% RSD) and 80–102% recoveries. The biosensor was stable
during 1 month retaining 79–116% of its initial response. These data confirmed that NOR incorporated in the
MWCNTs/BMIMBF4 nanocomposite can efficiently maintain its bioactivity paving a new and effective way for
NO biosensing.

1. Introduction

Nitric oxide radical (•NO, herein abbreviated as NO), produced in
humans from L-arginine by the action of NO synthases, is one of three
fundamental gasotransmitters (together with hydrogen sulfide and
carbon monoxide) [1,2]. NO sensing is needed in a variety of applica-
tions, including medical and pharmaceutical industry [3], asthma
monitoring [4], human breath [5], rat kidney monitoring [6], among
others. Excessive amounts of NO can damage cells and cause many
pathological conditions including neurodegenerative diseases, en-
dothelial dysfunction and cancer [7]. Therefore, the development of
efficient, fast and selective methods capable of NO detection in the
cellular milieu has been in the last years a hot research topic [8].

In bacteria, NO is an intermediate in denitrification, a "respiratory"

pathway, where nitrate is reduced to dinitrogen [9]. In this pathway,
NO is reduced into nitrous oxide (N2O), in a reaction catalyzed by the
specific nitric oxide reductase (NOR) enzyme [10,11]. The specificity
and efficiency of this enzyme towards NO make them a very interesting
target to develop a new biosensor for the NO detection. Until now, NOR
has not been used in electrochemical biosensors but, concerning its
electrochemical characteristics reported by few authors [12–15], its
application in third-generation biosensors development could be con-
sidered. Third generation biosensors are based on the direct electron
transfer (DET) of proteins, where the absence of mediator is the main
advantage providing high selectivity [16]. Because they operate in a
closer potential window to the redox potential of the protein, these
biosensors are less prone to interfering reactions [16]. However, the
stabilization of the enzyme within the biosensor can be a major problem
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[17,18]. Multiwalled carbon nanotubes (MWCNTs) have been widely
used as solid platforms to immobilize enzymes in electrochemical bio-
sensors due to their unique physical and chemical properties, namely
easy functionalization, high electric conductivity and large surface
area, enhancing the electrocatalysis [19–22]. Additionally, room tem-
perature ionic liquids (ILs) may act as electrolytes and solvents in
biosensor design [23] being good dispersants for MWCTNs [24]. ILs are
a broad class of salts that are liquid below 100 °C [25] and have been
recognized as green solvents (as alternative to volatile organic solvents)
due to their negligible vapor pressure, good thermal stability and bio-
compatibility [26]. These sustainable characteristics offer benefits,
namely simplicity of containment, recovery and recycling facility [27].
In electrochemistry, ILs also exhibit a wide potential window and ap-
propriate intrinsic conductivity and viscosity [23,28]. Recently, they
have been successfully explored in the preparation of IL-carbon nano-
material hybrids since synergistic effects have been noticed, offering
unique advantages for electrodeposition, electrosynthesis and electro-
catalysis [29]. Furthermore, these composite materials can also be used
as immobilization matrix to entrap proteins and enzymes [29,30].

BMIMBF4 is composed by a small anion tetrafluoroborate and a
large organic cation 1-n-butyl-3-methylimidazolium. The high potential
applicability of this IL for electrochemical biosensors development can
be assessed by the reported studies regarding enzymatic and heme-
protein third generation biosensors (Table 1S and 2S, Supplementary
Material). The main applied enzymes (presented by decreasing order of
number of studies) were glucose oxidase, horseradish peroxidase, but
others, such as choline oxidase, laccase, catalase, superoxide dismutase
and chloroperoxidase have been also tested but in a more limited way;
the involved substrates were methomyl, superoxide anion, glucose,
cholesterol, choline, trichloroacetic acid and hydrogen peroxide
(Table 1S, Supplementary Material). Furthermore, and because NOR is
a hemic enzyme, the heme-protein biosensors that have been described
using BMIMBF4 were also reviewed (Table 2S, Supplementary
Material). Hemoglobin, myoglobin and cytochrome c were exploited for
H2O2, trichloroacetic acid and nitrite biosensing [31–33]. As far as we
know, BMIMBF4 or NOR enzyme were not yet explored for the devel-
opment of biosensors for NO.

Thus, the main aim of this study was to develop a novel third-
generation enzymatic biosensor for NO determination taking advantage
of the inherent features of Marinobacter hydrocarbonoclasticus NOR,
MWCNTs and BMIMBF4. With this goal in mind, the selected me-
talloenzyme (which is not commercially available) was purified, char-
acterized, and subsequently incorporated in an optimized MWCNTs/
BMIMBF4 nanocomposite, which was used to modify a pyrolytic gra-
phite electrode (PGE). The DET behavior and electrocatalysis towards
NO reduction of the PGE/[MWCNTs/BMIMBF4/NOR] biosensor were
investigated. The optimized approach provided high biosensor sensi-
tivity and stability.

2. Materials and methods

2.1. Reagents

MWCNTs-COOH (thin, extent of labeling:> 8% carboxylic acid
functionalized, avg. diam. × L 9.5 nm×1.5 μm), BMIMBF4 (≥97.0%),
2-phenylethanol (PE; ≥ 99.0%), potassium hexa-cyanoferrate (II) tri-
hydrate (C6FeK4N6.3H2O; ≥ 99%), N,N-dimethylformamide (DMF;
99%), potassium hexa-cyanoferrate (III) (C6FeK3N6; ≥ 99%) were
purchased from Sigma-Aldrich (Steinhein, Germany). Ethanol (EtOH;
99.5%), sulfuric acid (H2SO4; 96%) and n-dodecyl-β-D-maltoside (DM)
were obtained from Panreac (Barcelona, Spain). Potassium dihydrogen
phosphate (KH2PO4, p.a.) and di-potassium hydrogen phosphate
(K2HPO4, p.a.) were used to prepare phosphate buffer (100 mmolL−1,
pH 6.0); they were bought from Riedel-de-Haën (Germany) as well as
potassium hydroxide (p.a.). NO solutions of different concentrations
were prepared by dilution from a buffer standard stock solution of

100 μmol L−1, prepared by bubbling a 5% NO/95% He gas mixture (Air
Liquid, Portugal) into buffer 100 mmolL−1 phosphate buffer pH 6.0
[34]. All solutions and stock were prepared immediately before being
used. Ultrapure water obtained from a Millipore water purification
system (18MΩ, Milli-Q, Millipore, Molsheim, France) was used in all
assays.

2.2. NOR purification and characterization

NOR was purified from membrane extracts of Marinobacter hydro-
carbonoclasticus grown anaerobically as described by Prudêncio et al.
[35]; the NOR preparation used in these studies was evaluated by so-
dium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
(Bio-Rad, Mini-PROTEAN® Tetra Handcast Systems, Portugal) based on
the protocol of Laemmli [36] and UV–vis spectrum (UV 1800-Shi-
madzu, 250–800 nm, Germany). An ISO-NO Mark II amperometric
sensor (2 mm, World Precision Instruments, Inc., UK: one unit corre-
sponds to 1 μmol of NO/min) was used to achieve the specific activity
of 760 U/mg (14mg/mL) (determined as described previously by Ti-
móteo et al. [34].

2.3. Biosensor fabrication

Preparation of the modified electrode included the pretreatment of a
pyrolytic graphite electrode (PGE; A=7.07 mm2; ALS Co., Ltd; Tokyo,
Japan) and subsequent immobilization of the prepared nanocomposite
on it. The PGE was successively polished with alumina powder (1.0 and
0.3 μm, Gravimeta Lda, Portugal), ultrasonicated with ethanol and
washed with ultra-pure water for 10min. PGE surface activation was
performed by cyclic voltammetry (CV) in H2SO4 0.5mol L−1 at
100mV/s in the range of 0 V to 1.6 V vs. Ag/AgCl/Cl- sat. For the
preparation of MWCNTs/BMIMBF4/NOR nanocomposite, the optimum
amount of 6 μL of 1.0 mg/mL MWCNTs (dispersed in DMF) was mixed
with 4 μL of BMIMBF4 and 4 μL of NOR (760 U/mg; 14mg/mL). The as
prepared nanocomposite was immobilized on the PGE surface by the
solvent casting technique and the solvent was evaporated with a very
gentle nitrogen flow.

2.4. Electrochemical measurements

A three-electrode cell consisting in the modified PGE (PGE/
MWCNTs; PGE/[MWCNTs/BMIMBF4], PGE/[MWCNTs/BMIMBF4/
NOR] or PGE/NOR) as the working electrode, and a platinum wire and
silver/silver chloride saturated with KCl 3mol L−1 as the secondary and
reference electrodes, respectively. Electrochemical experiments were
performed with an Autolab PGSTAT 204 potentiostat-galvanostat con-
trolled by GPES 4.9.7 and Nova 1.10 software (Metrohm Autolab). The
assays were conducted in one conventional compartment cell using as
electrolyte 100 mmolL−1 of phosphate buffer with 0.02% DM and
0.01% PE at pH 6.0 for NOR redox behavior and NO bioelectrocatalysis
or the same buffer with 5.0 mmolL−1 [Fe(CN)6]3−/4− for character-
ization of the biosensor construction. The redox behavior of NOR was
evaluated by CV applying a step potential of 3 mV and a potential range
of 0.4 to -1.0 V, with a previous deoxygenation of the electrolyte using
high purity nitrogen gas (99.999%) during 20min. NO bioelec-
trocatalysis was performed in the same potential window and with the
same deoxygenation step using square wave voltammetry (SWV) (be-
cause of its fast electroanalytical response and high sensitivity) at a
frequency of 10 Hz, amplitude of 20mV and step potential of 3 mV. For
each NO tested concentration, a new solution was prepared by adding
an aliquot of the freshly prepared 100 μmol L−1 NO stock standard
solution [34] to the deoxygenated electrolyte solution with the help of a
microsyringe. NO has a very short half-life in biological milieu (typi-
cally within the seconds range [37]), therefore, in this work, electro-
analytical data were based on the maximum peak current, which was
attained in the first scan.
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Electrochemical impedance spectroscopy (EIS) assays were per-
formed in the buffer solution with 5.0 mmolL−1 [Fe(CN)6]3−/4− (pH
6.0) applying a frequency range from 10−1 to 105 Hz with an amplitude
perturbation of 5mV and 0.2 V as conditioning potential.

2.5. Morphological characterization

The morphological biosensor characterization was realized by a
High resolution Environmental Scanning Electron Microscope with X-
Ray Microanalysis and Electron Backscattered Diffraction analysis:
Quanta 400 FEG ESEM / EDAX Genesis X4M (Schottky).

2.6. Statistical analysis

Statistical analysis was performed using SPSS software (IBM SPSS
Statistics 20). The non-parametric Wilcoxon Mann-Whitney U test was
used due to non-normal distribution of the data. Statistical significance
was defined at p≤ 0.05.

3. Results and discussion

3.1. Biosensor construction

3.1.1. Electrochemical characterization
CV and EIS were used to characterize the impact of each mod-

ification on the electrochemical behavior and interface properties of the
biosensor and thus to optimize its construction. Assays were performed
with 5.0 mmolL−1 [Fe(CN)6]3−/4− as redox probe in phosphate buffer
(pH 6.0).

Firstly, the optimum MWCNTs:BMIMBF4 ratio in the nanocomposite
was established by testing six different proportions (0:10, 2:8, 4:6, 6:4,
8:2 and 10:0 (v/v)) and maintaining constant the total drop cast volume
(10 μL) (Fig. 1(A)). Synergetic effects were attained since higher sen-
sitivity was reached when both composite constituents were present,
when compared with the electrode modification with only one of the
individual component (MWCNTs or BMIMBF4) ((Fig. 1(A) and (B)). The
decrease of the MWCNTs volume from 10 till 6 μL and simultaneous
increase of BMIMBF4 in the nanocomposite from 0 till 4 μL originated
the best significant (p<0.05) enhancement of the signal (72.5% higher
current for PGE/[MWCNTs/BMIMBF4] than PGE) ((Fig. 1(B)), thus the
6:4 (v/v) MWCNTs:BMIMBF4 ratio was considered the optimum one.
Moreover, it can be observed that MWCNTs contributed more sig-
nificantly than BMIMBF4 to the marked positive impact on the PGE
current intensity and on the process reversibility. These data are in
accordance with the MWCNTs properties, i.e. high electric con-
ductivity, electrocatalytic activity and electroactive surface area
[22,38]. BMIMBF4 has high viscosity (99.9 cP at 20 °C [39]; which may
increase the resistance), but may support charge transport by behaving
as a fortifying source of ion carriers (conductivity of 0.35 S/m at 25 °C
[39,40]. This electrochemical behavior is in agreement with those ob-
served by Zhang et al. [41] and Shangguan et al. [42].

Fig. 2 displays the representative cyclic voltammograms (Fig. 2(A))
and the impedance spectra represented as Nyquist plots (Fig. 2(B)) of
the PGE, PGE/NOR, PGE/[MWCNTs/BMIMBF4], PGE/[MWCNTs/
NOR] and PGE/[MWCNTs/BMIMBF4/NOR]. The impedance spectra
were fitted to the Randles equivalent electric circuit with a constant
phase element with charge transfer resistance indicated by the diameter
of the semicircle [43], while the linear part locating at lower frequency
gave information on the diffusion process [42]. The observed changes
in the cyclic voltammograms (Fig. 2(A)), caused by enzyme in-
corporation, are in general agreement with those exhibited by the EIS
profiles (Fig. 2(B)) of the different modified electrodes suggesting the
successful immobilization of MWCNTs/BMIMBF4/NOR or simply NOR
at the PGE surface. The charge transfer resistance (Rct) increased from
81.7 to 147 Ω (1.8 times higher) and to 255 Ω (three fold change) after
NOR adsorption onto the PGE surface and PGE/MWCNTs, respectively,

while a tenfold increment was noticed between the Rct values of PGE/
[MWCNTs/BMIMBF4 (33.8 Ω) and PGE/[MWCNTs/BMIMBF4/NOR]
(360 Ω). In agreement with previous studies, the inclusion of the en-
zyme on the proposed nanocomposite promoted a significant increase
of the semi-circle in the impedimetric plots [44]. A similar Rct of 300 Ω
was reported by Karimi et al. [45] for another biosensor based on
cholesterol oxidase incorporated in NH2-MWCNTs/BMIMBF4 nano-
composite and adsorbed onto a glassy carbon electrode [45]. NOR at pH
6.0 is positively charged [46] and hence can bind to BMIMBF4 and the
MWCNTs through ionic interactions. Additionally, BMIMBF4 may in-
teract with the carbon nanotubes by π-π, π–cationic and/or hydro-
phobic–hydrophobic interactions [47,48]. For that reason, the selected
IL combined with the MWCNTs had an essential role in NOR entrap-
ment.

3.1.2. Morphological characterization
Since the electrochemical responses are also dependent of the sur-

face morphology, SEM characterization of each modified electrode
(PGE/MWCNTs, PGE/[MWCNTs/BMIMBF4] and PGE/[MWCNTs/

Fig. 1. Optimization of the MWCNTs:BMIMBF4 ratio: (A) Effect of the
MWCNTs:BMIMBF4 ratio (10:0, 8:2, 6:4, 4:6, 2:8 and 0:10, v/v) on the peak
current of the modified pyrolytic graphite electrode (PGE). Different letters
indicate that the given medians are significantly different (Wilcoxon Mann-
Whitney at p < 0.05). (B) Cyclic voltammograms of the bare and modified
PGE with the MWCNTs:BMIMBF4 ratio (v/v) of 10:0 (PGE/MWCNTs), 6:4
(PGE/[MWCNTs/BMIMBF4]) and 0:10 (v/v) (PGE/BMIMBF4). Experimental
conditions: 5.0 mmolL−1 [Fe(CN)6]3−/4− in phosphate buffer (pH 6.0) at
100mV/s.
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BMIMBF4/NOR]) was performed to complement the electrochemical
data. Representative SEM images spectra are exhibited in Fig. 3. Fig. 3
–(A) shows the typical morphology of well-dispersed functionalized
MWCNTs onto the electrode surface, which displays a spaghetti-like
porous reticular structure with MWCNTs entangled in one another [47].
After mixing BMIMBF4 with MWCNTs (Fig. 3(B)), the pores of the
MWCNTs network were fully eliminated and filled with the viscous IL
increasing the uniformity and smoothness of the film, being in ac-
cordance with previous studies [47]. This layer (MWCNTs/BMIMBF4),
as it can be noticed in Fig. 3(C), provided an adequate microenviron-
ment for NOR entrapment by combining the solvation ability (and high
ionic conductivity) of the selected IL with the high tensile strength (and
electric conductivity) of MWCNTs [42,45,47].

3.2. Direct electron transfer behavior of NOR on the PGE/[MWCNTs/
BMIMBF4/NOR] biosensor

The DET behavior of NOR on the proposed biosensor immersed in
100 mmolL−1 phosphate buffer, 0.02% DM and 0.01% PE at pH 6.0 is
presented in Fig. 4. Since enzymatic activity is markedly influenced by
the pH, all assays were executed at the optimum pH for NOR, i.e. 6.0
[14]. The electrochemical response of NOR corresponded to a pair of

well-defined cathodic and anodic peaks (Fig. 4 at−0.261 ± 0.003 and
−0.249 ± 0.002 V (formal potential of -0.255 ± 0.003 V), respec-
tively, at scan rate of 0.25 V/s, which is ascribed to the heme b3 center

Fig. 2. Effect of enzyme immobilization on (A) cyclic voltammetric behavior
and (B) Nyquist plots of the PGE, PGE/MWCNTs and PGE/[MWCNTs/
BMIMBF4] in 5.0 mmolL−1 [Fe(CN)6]3−/4− in phosphate buffer (pH 6.0).
Cyclic voltammetry parameters: scan rate of 100mV/s and step potential of
3 mV. Electrochemical impedance spectroscopy conditions: frequency range
from 10−1 to 105 Hz with an amplitude perturbation of 5mV and 0.2 V as
conditioning potential.

Fig. 3. Scanning electron microscopy images of (A) PGE/MWCNTs, (B) PGE/
[MWCNTs/BMIMBF4] and (C) PGE/[MWCNTs/BMIMBF4/NOR].
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in the bi-nuclear site of NOR [14]. Good linearity was obtained between
the peak current and the scan rate (0.150 – 0.750 V/s) for both anodic
and cathodic signals (Fig. 4) (Ipa (A)= 1.44× 10-5± 6.14× 10-7ν (V/
s) - 1.73× 10-6± 2.58×10-7; r2= 0.991; n= 6 and Ipc (A)
=-1.82×10-5± 4.53× 10-7ν (V/s)+1.92×10-6± 1.90×10-7;
r2= 0.997; n= 6) indicative of a characteristic surface-controlled
electrochemical process as anticipated for immobilized structures [49].
Moreover, the formal potential was not dependent of the scan rate
pointing to a facile charge transfer kinetic in the tested range of scan
rates (150–750mV/s) [47].

The NOR surface coverage (τ*, mol/cm2) of the biosensor was es-
timated based on Eq. (1):

Q=nFAτ* (1)

where Q (A.s) is the charge involved in the reaction, A (cm2) is the
geometric area of the working electrode, n is the number of the electron
transferred, and F (s.A/mol) is the Faraday constant [50]. The obtained
τ* value (2.04× 10−10 mol/cm2) indicated a high quantity of adsorbed
NOR due to the large specific surface area of the nanocomposite-mod-
ified PGE. This is the first time that NOR was used to prepare a bio-
sensor, but some previous catalytic studies, with NOR directly adsorbed
onto the PGE, reported a one order of magnitude lower value of surface
coverage (1.52×10-11 - 2.37×10−11 mol/cm2) [12–14] evidencing
the advantages of the proposed immobilization approach. Moreover,
the previously reported τ* for enzymatic and heme-based-biosensors
that included BMIMBF4 ranged from 4.18×10−12 to 9.07× 10−9

mol/cm2 and 1.39×10−11 to 6.81×10−8 mol/cm2, respectively
(Tables 1S-2S, Supplementary Material). Both lowest values of surface
coverage were obtained for biosensors that did not include nanoma-
terials in their construction [51,52]. On the other hand, the higher
loadings were reported when enzyme immobilization involved carbon
nanomaterials [31,53]. Recently, Kang et al. [31] reported very high τ*
(6.81×10−8 to mol/cm2) for a carbon ionic liquid electrode modified
with a biocomposite composed by myoglobin, BMIMBF4, graphene and
cobalt oxide nanoflower, possibly due to the porous and three-dimen-
sional structure of the nanoflowers combined with the use of other
nanomaterials. Comparable values as the one reached in this study were
reported for biosensors based on catalase [47], horseradish peroxidase
[54] and hemoglobin [55] developed for hydrogen peroxide detection.

According to Laviron theory [56], and since the potential separation
of the peaks was less than 200mV, the electron transfer rate constant
(ks, s−1) was calculated using Eq. (2):

ks=mnFν∕RT (2)

where m is the parameter related to peak potential separation (V), n the
number of electrons involved in the reaction, ν is the scan rate (V/s) and
all other symbols have their usual meanings. A ks value of 0.35 s−1 was
obtained being in the same range as those described for some enzymatic
biosensors (0.51 s−1 for glucose oxidase [42]; 0.55 [57] and 0.655 s−1

[58] for horseradish peroxidase; 0.7 s−1 for chloroperoxidase [59]; and
0.78 s-1 for choline oxidase based-biosensor [53]) and heme-based
biosensors (0.406 s−1 [60], 0.5525 s−1 [61], 0.63-0.70 s−1 [55] and
0.725 s−1 [62] for hemoglobin based-biosensors; 0.610 s−1 [63] and
0.675 s−1 [31] for myoglobin based devices) with BMIMBF4 (Table 1S-
2S, Supplementary Material). This information demonstrated that the
electron transfer between NOR and the modified electrode is efficiently
mediated by the developed nanocomposite.

3.3. Nitric oxide reduction on the PGE/[MWCNTs/BMIMBF4/NOR]
biosensor

To investigate the electrocatalytic activity of NOR towards NO re-
duction, SWV voltammograms (at the optimal conditions of 10 Hz fre-
quency, 20mV amplitude and 3mV step potential) were executed in
100 mmolL−1 phosphate buffer, 0.02%DM and 0.01% PE (pH 6.0). The
obtained results are illustrated in Fig. 5. NOR entrapped on MWCNTs/
BMIMBF4 acts as an effective catalyst towards reduction of NO, with an
irreversible peak at −0.68 ± 0.03 V (Fig. 5). Moreover, the biosensor
response to 0.50–6.98 μmol L-1 of NO was evaluated. Linearity with low
dispersion of data (Ipc (A)=-4.29× 10-7± 2.48×10-8 [NO] (μmolL-1)-
1.24×10-7± 6.84× 10-8; n= 6) and appropriate correlation coeffi-
cient (0.991) was perceived till 4.76 μmol L-1, which was followed by
saturation of the signal tending to a plateau after 5.88 μmol L-1 (char-
acteristic of enzymatic kinetics of second order [63]) (Fig. 5). The limit
of detection (LOD) and limit of quantification (LOQ) were assessed as
being 0.07 and 0.23 μmolL-1, respectively, based on 3*Sy-intercept/
slope (for LOD) and 10*Sy-intercept/slope (for LOQ), where Sy-inter-
cept is the standard deviation of the y-intercept [65]. Satisfactory
sensitivity of 0.429 μA/μmolL-1 was also established. These data com-
pare favorably with those described by Xu et al. [66] for hemoglobin
and myoglobin-based biosensors using HIMIMPF6 and didodecyldi-
methylammonium bromide (linear ranges from 1.8 to 21.6 and
1.8–23 μmolL-1 with no reported LOD and LOQ) and by Zhang et al.
[41] for a basal plane graphite electrode modified by successive layers
of nafion/ethanol, EMIMBF4/ethanol and myoglobin (linearity between
0.7–7.0 μmol L-1 and a LOD of 0.2 μmol L-1). Only these two studies

Fig. 4. Cyclic voltammograms of direct electrochemical behavior of NOR on
PGE/[MWCNTs/BMIMBF4/NOR] biosensor in 100 mmolL−1 of phosphate
buffer with 0.02% n-dodecyl-β-D-maltoside and 0.01% 2-phenylethanol (pH
6.0) at several scan rates (150, 200, 250, 350, 500 and 750mV/s). Inset: Anodic
(Ipa) and cathodic (Ipc) peak current vs the scan rate.

Fig. 5. Square wave voltammograms obtained with PGE/[MWCNTs/BMIMBF4/
NOR] biosensor in the absence of NO and in the presence of standard NO
concentrations of 0.50, 1.23, 1.48, 2.44, 3.61 and 4.76 μmol L−1 in 100
mmolL−1 of phosphate buffer with 0.02% n-dodecyl-β-D-maltoside and 0.01%
2-phenylethanol (pH 6.0). Inset: Peak current vs NO concentration and re-
spective linearity zone. Experimental conditions: frequency of 10 Hz, amplitude
of 20mV and step potential of 3mV.
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were found concerning NO biosensors that include an IL and heme-
proteins in their construction. The immunological function and the
pathological effects of NO are associated with high nanomolar to low
micromolar concentrations [67,68]. Thus, the attained figures of merit
are appropriate to allow application of the developed biosensor to de-
tect NO levels in real biological samples, namely those related with
modulation of blood flow, cardiovascular pathologies, neurodegenera-
tive diseases, among others [6,7,68]. Few heme-based biosensors were
tested in rat liver, brain and raw blood describing concentrations ran-
ging from 0.6 to 2.5 μmolL-1 [69–73]. Higher concentrations, in the
range of 3.91–4.92 μmol L-1 NO, were reported by Abdelwahab et al.
[70], demonstrating that the proposed biosensor could also be used in
gastric adenocarcinoma and colon adenocarcinoma diagnosis.

The affinity of a substrate for the enzymatic centre can be assessed
by the Michaelis-Menten constant (Km, molL−1), which decreases as the
enzyme affinity increases [64]. Biochemically, it indicates a higher
probability of formation of the NOR-NO intermediate, which originates
an increased NO concentration to be electrochemically reduced. Km was
estimated by the Lineweaver–Burk Eq. (3):

1/Ip=Km/Imax×1/[NO]+1/Imax (3)

where Ip (A) is the current after addition of the substrate; [NO]
(molL−1) is the concentration of the substrate and Imax (A) is the
maximum current measured [56]. The value obtained for the PGE/
[MWCNTs/BMIMBF4/NOR] biosensor of 2.17 μmol L-1 indicated high
bioactivity performance, which could be ascribed to the ionic micro-
environment generated by the prepared MWCNTs/BMIMBF4 nano-
composite, allowing NOR to retain its native structure and high affinity
towards its natural substrate, and at the same time promoting efficient
NOR–substrate interaction. To the best of our knowledge, no Michaelis
Menten constant was yet established for NO biosensors that include the
selected IL (BMIMBF4) or other IL [41,66]. In general, the achieved Km

is significantly lower than those reported for heme-based
(0.16–17870 μmol L-1) and enzymatic (0.118–9800 μmol L-1) biosensors
using BMIMBF4 (Table 1S-2S, Supplementary Material) with some ex-
ceptions [45,47,51,61,74–79]. The best reported affinity was reached
for laccase immobilized in a BMIMBF4/NH2-MWCNTs nanocomposite
(Km of 0.118 μmol L-1) tested for hydrogen peroxide quantification [47];
for heme-protein biosensors 0.16 μmol L-1 was attained for hemoglobin
incorporated in a chitosan/graphene/BMIMBF4 matrix proposed for
nitromethane biosensing [79].

The repeatability and reproducibility of the PGE/[MWCNTs/
BMIMBF4/NOR] biosensor were examined by the relative standard
deviation (RSD) of several experiments. The reduction current of
2.44 μmol L−1 NO was measured during six independent assays and a
RSD of 9.1% was displayed showing that the proposed approach had
high repeatability. Concerning reproducibility, it was tested with eight
biosensors, independently prepared under equivalent experimental
circumstances, and the RSD varied from 6.0% (at 4.76 μmol L-1) to 11%
(at 0.50 μmol L-1), indicating good reproducibility. Recovery values
ranged from 80 to 102% for concentrations in the 0.50–4.76 μmol L-1

range. Further assays proved the high selectivity of NOR towards NO
even in the presence of physiologically important species that may be
simultaneously present with NO (or can be sponsors of NO production)
in biological milieus, namely, ascorbic acid (20 μmol L−1), sodium ni-
trite (200 μmol L−1) and nitrate (200 μmol L−1), as well as glucose
(800 μmol L−1). Recovery values varied from 91.4 ± 3.0% (sodium
nitrite) to 98.4 ± 8.9% (glucose) confirming the non-significant in-
terference of these compounds. In addition, the long-term stability and
electroanalytical performance of the developed biosensor was inter-
mittently (once or twice per week) characterized during one month.
The results showed that the developed biosensor was active and re-
tained 79–116% of its initial response during all the tested period.
Although the hydrophobic yet hygroscopic properties of the selected IL
[80], these data indicated that no significant leaching of any of the

three nanocomposite components (MWCNTs, BMIMBF4 and NOR) oc-
curred from the biosensing surface during one month. These results can
be explained by the fact that BMIMBF4 is not simply and directly ad-
sorbed at the PGE surface; it is mixed with MWCNTs and NOR (28.6%
(v/v/v) of BMIMBF4 in the nanocomposite) forming a stable nano-
composite, where interactions (ionic interactions, π-π, π–cationic and/
or hydrophobic–hydrophobic interactions [47,48]) between the three
components occur. Moreover, the stability results attained in this study
are in clear agreement with those previously reported for enzymatic
and heme-based biosensors (Tables 1S and 2S; Supplementary Mate-
rial). These data confirmed that NOR incorporated in the MWCNTs/
BMIMBF4 nanocomposite can efficiently maintain its bioactivity for a
significant period of time.

4. Conclusions

The importance of NO in signaling and cellular physiology in hu-
mans has been increasingly recognized in biomedical sciences over the
last decade, what has led to an exponential growth in the development
of new methods and tools. In this work, a MWCNTs/BMIMBF4 nano-
composite was successfully developed to entrap NOR, for the first time,
and prepare a novel third-generation enzymatic biosensor for NO de-
tection. The excellent electric conductivity, together with the large
surface area of MWCNTs, combined with the suitable biocompatibility,
viscosity and ionic conductivity of the selected IL provided a suitable
microenvironment for the immobilization of NOR and for preservation
of its activity. Synergetic effects were perceived between MWCNTs and
BMIMBF4, which facilitated the direct electron transfer between NOR
and the transducer and the unmediated NOR-NO interaction. Therefore,
these results suggest that this novel PGE/[MWCNTs/BMIMBF4/NOR]
biosensor can be a simple, sensitive and excellent strategy for bioelec-
trochemical NO biomonitoring applications.
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