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Abbreviations
AO	� Aldehyde oxidase
AOR	� Aldehyde oxidoreductases
CuNiR	� Copper-containing nitrite reductase (one of the 

enzymes responsible for the respiratory nitrite 
reduction to NO)

DMSOR	� Dimethylsulphoxide reductase
DPI	� Diphenyleneiodonium chloride
EPR	� Electron paramagnetic resonance spectroscopy
Fe/S	� Iron–sulphur centre
mARC	� Mammalian mitochondrial  

amidoxime-reducing component
MOSC	� From molybdenum cofactor sulphurase 

C-terminal domain (proteins involved in  
pyranopterin cofactor biosynthesis)

NaR	� Nitrate reductase (all types of nitrate reductase 
enzymes)

NiR	� Nitrite reductases (“dedicated” and  
“non-dedicated” enzymes)

NO	� Nitric oxide radical
NOS	� NO synthases
ROS	� Reactive oxygen species
SO	� Sulphite oxidase
SOD	� Superoxide dismutase
XD	� Xanthine dehydrogenase
XO	� Xanthine oxidase

Introduction: an outlook on molybdoenzymes 
and nitrite reduction

Molybdenum is essential to most of the living organisms 
[1, 2], from archaea and bacteria to higher plants and 
mammals, being part of the active site of enzymes that 
catalyse important redox reactions of the metabolism of 

Abstract  Nitric oxide (NO) is a signalling molecule 
involved in several physiological processes, in both prokar-
yotes and eukaryotes, and nitrite is being recognised as an 
NO source particularly relevant to cell signalling and sur-
vival under challenging conditions. The “non-respiratory” 
nitrite reduction to NO is carried out by “non-dedicated” 
nitrite reductases, making use of metalloproteins present in 
cells to carry out other functions, such as several molyb-
doenzymes (a new class of nitric oxide-forming nitrite 
reductases). This minireview will highlight the physiologi-
cal relevance of molybdenum-dependent nitrite-derived 
NO formation in mammalian, plant and bacterial signalling 
(and other) pathways. The mammalian xanthine oxidase/
xanthine dehydrogenase, aldehyde oxidase, mitochondrial 
amidoxime-reducing component, plant nitrate reductase 
and bacterial aldehyde oxidoreductase and nitrate reduc-
tases will be considered. The nitrite reductase activity of 
each molybdoenzyme will be described and the review will 
be oriented to discuss the feasibility of the reactions from 
a (bio)chemical point of view. In addition, the molecu-
lar mechanism proposed for the molybdenum-dependent 
nitrite reduction will be discussed in detail.
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carbon, nitrogen, and sulphur [3–10]. Presently, more than 
50 molybdenum-containing enzymes are known, many of 
which have been biochemically and structurally charac-
terised, and several other are foreseen to be “discovered” 
in the near future based on genomic analyses [2, 11, 12]. 
Noteworthy, the great majority of the molybdoenzymes are 
prokaryotic, whereas only a restricted number of molybdo-
enzymes are found in eukaryotes [3–10].

Apart from nitrogenase, with its unique heteronuclear 
[MoFe7S9] cofactor1 [12–16], all molybdoenzymes harbour 
one molybdenum atom coordinated by the cis-dithiolene 
group of one or two pyranopterin cofactor molecules 
(Fig.  1a) and by oxygen, sulphur or selenium atoms in a 
diversity of arrangements that determines the classification 
of the molybdoenzymes into three large families (Fig.  1b) 
[3–10]: xanthine oxidase (XO), sulphite oxidase (SO) and 
dimethylsulphoxide reductase (DMSOR) families. The 
active site of XO family enzymes holds the molybdenum 
atom coordinated, in a square-pyramidal geometry, by one 
apical oxo group and, in the equatorial plane, by the two sul-
phur atoms of one pyranopterin cofactor molecule, one labile 
–OH/OH2 group and one terminal oxo, sulpho or seleno 
group. The CO dehydrogenase from Oligotropha carboxido‑
vorans, with its unique binuclear Mo–S–Cu cofactor (with 
an –S–Cu–S(cysteine) instead of an equatorial terminal 
group), is also included in the XO family.2 This family com-
prises enzymes such as mammalian XO and aldehyde 

1  See the contributions of both Hu and Ribbe and Bjornsson, Neese, 
Schrock, Einsle and DeBeer in this JBIC issue.
2  See Hille et al.’s contribution in this J Biol Inorg Chem issue.

oxidase (AO), Desulfovibrio aldehyde oxidoreductases 
(AOR), and prokaryotic nicotinate dehydrogenase, quinoline 
2-oxidoreductase or 4-hydroxybenzoyl-CoA reductase. The 
active site of the SO family enzymes is closely related to the 
one of XO family, but with the distinctive feature of having 
the protein, through a cysteine residue, directly coordinated 
to the molybdenum. In these enzymes, the molybdenum cen-
tre displays the same square-pyramidal geometry, with the 
apical oxo group, but with the equatorial plane formed by 
two sulphur atoms of the pyranopterin, one oxo group and 
the cysteine sulphur atom. SO family enzymes include 
diverse prokaryotic sulphite dehydrogenases, plant, chicken 
and human SO3 and eukaryotic assimilatory nitrate reduc-
tases (NaR; enzymes involved in nitrate assimilation in 
plants, algae and fungi) [17], as well as Escherichia coli 
YedY [18–22] or mammalian mitochondrial amidoxime-
reducing component (mARC; enzymes involved in the 
reduction (dehydroxylation) of S- and N-hydroxylated com-
pounds)4 and the MOSC proteins homologues (involved in 
molybdenum centre sulphuration). The DMSOR family is 
the larger and more diverse family, structurally and function-
ally. The enzymes from this family are characterised by har-
bouring the molybdenum atom coordinated by two pyranop-
terin cofactor molecules (through four sulphur atoms), in a 
trigonal prismatic geometry completed by terminal oxo, sul-
pho groups and/or oxygen, sulphur and selenium atoms from 

3  See Kappler and Enemark’s contribution in this J Biol Inorg Chem 
issue.
4  See Ott et al.’s contribution in this J Biol Inorg Chem issue.
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Fig. 1   Active site structures of the molybdoenzymes. a Structure of 
the pyranopterin cofactor. The cofactor is a pyranopterin-dithiolate 
moiety, which forms a five-membered ene-1,2-dithiolate chelate ring 
with the molybdenum atom; in eukaryotes, the cofactor is found in 
the simplest monophosphate form (R is a hydrogen atom), while in 
prokaryotes it is found esterified with several nucleotides (R can be 

one cytidine monophosphate, guanosine monophosphate or adenosine 
monophosphate). b Structures of the molybdenum centres of the three 
families of molybdoenzymes; for simplicity, only the dithiolate moi-
ety of the pyranopterin cofactor is represented. The images were pro-
duced with Accelrys Draw 4.0 (Accelrys Software Inc.)
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aspartate, serine, cysteine or selenocysteine residue side 
chains. This family is constituted by only prokaryotic 
enzymes of different functions, including DMSOR, formate 
dehydrogenase, arsenite oxidase and arsenate reductase, as 
well as dissimilatory NaR (membrane-bound and periplas-
matic enzymes associated with the generation of a proton 
motive force or acting as an electron sink to eliminate excess 
of reducing equivalents) and assimilatory NaR (prokaryotic 
cytoplasmatic enzymes involved in nitrogen assimilation), 
among many others.

In general, the molybdoenzymes catalyse the transfer of an 
oxygen atom from water to the product (oxygen atom inser-
tion) or from substrate to water (oxygen atom abstraction), 
in reactions that imply a net exchange of two electrons and 
in which the molybdenum cycles between Mo6+ and Mo4+ 
[3–10]. It is based on this catalytic feature that the molyb-
doenzymes are commonly, but inaccurately, referred to as 
oxotransferases (as will become evident from the excep-
tions described below). The XO family enzymes catalyse the 
hydrolysis of a C–H bond with formation of a novel C–O 
bond, in reactions of oxidative hydroxylation, as the prototype 
XO does during xanthine hydroxylation to urate (Eq. 1) [3, 
23–28]. Although this is also the case of AO and AOR (Eq. 2), 
nicotinate dehydrogenase (Eq.  3) and quinoline 2-oxidore-
ductase (Eq. 4), there are at least two important exceptions: 
the CO dehydrogenase-catalysed carbon monoxide oxidation 
to carbon dioxide that does not involve hydrolysis of a C–H 
bond (Eq. 5) (see footenote 2), and the hydroxybenzoyl-CoA 
reductase that catalyses the irreversible dehydroxylation (a 
reduction) of the phenol ring (Eq.  6) [29, 30]. The mem-
bers of the SO family, in contrast, are thought to be proper 
oxotransferases, as SO and NaR enzymes catalyse the simple 
transfer of an oxygen atom to, or from, a lone electron pair 
of the substrate (SO-catalysed sulphite oxidation to sulphate 
(Eq. 7) and NaR-catalysed nitrate reduction to nitrite (Eq. 8), 
respectively) (see footnote 3, [17). However, the recent iden-
tification of mammalian mARC (Eq. 9) and bacterial YedY, 
YcbX or YiiM, as well as several other MOSC proteins 
homologues (most of these are not yet characterised), demon-
strated that SO family enzymes are also involved in the reduc-
tion of S- and N-hydroxylated compounds and in sulphuration 
reactions ([18–22], see footenote 4). Nevertheless, the cata-
lytically more versatile family is undoubtedly the DMSOR 
family. These enzymes are able to catalyse diverse reactions 
types: (1) proper transfer of oxygen atom [e.g. DMSOR-cata-
lysed DMSO reduction (Eq. 10) or NaR reaction (Eq. 8)], (2) 
cleavage of C–H bond [e.g. formate dehydrogenase-catalysed 
formate oxidation to carbon dioxide (Eq.  11)], (3) transfer 
of sulphur atom [e.g. polysulphide reductase-catalysed inor-
ganic sulphur reduction to sulphide (Eq.  12)], (4) simulta-
neous oxidation and reduction [e.g. reductive dehydroxyla-
tion and concomitant oxidative hydroxylation catalysed by 
pyrogallol:phloroglucinol hydroxyltransferase (Eq.  13)] and 

(5) even hydration reactions [e.g. acetylene hydratase-cat-
alysed hydration of acetylene to acetaldehyde, a non-redox 
reaction (Eq. 14)] [5, 31–33].

(1)

(2)

(3)

(4)

(5)CO + H2O → OCO + 2e−
+ 2H+

(6)

(7)SO2−

3 + H2O → OSO−

3 + 2e−
+ 2H+

(8)ONO−

2 + 2e−
+ 2H+

→ NO−

2 + H2O

(9)

(10)

(11)HCOO−
→ CO2 + 2e−

+ H+

(12)(Sn)
2−

+ 2e−
→ S2−

+ (Sn−1)
2−

(13)

(14)H − C ≡ C − H + H2O → H3C − COH

Author's personal copy



406	 J Biol Inorg Chem (2015) 20:403–433

1 3

In addition to that array of reactions, several molybdo-
enzymes, from the three families, are also being recognised 
for their ability to catalyse nitrite reduction to nitric oxide 
radical (NO) (Eq.  15), a signalling molecule involved in 
several physiological processes in both prokaryotes and 
eukaryotes. This is a novel catalytic capability and an unu-
sual oxygen atom abstraction reaction assigned to a molyb-
denum site. 

Nitrite is long known as one of the players of the bio-
geochemical cycle of nitrogen, participating in several res-
piratory and assimilatory pathways crucial to life on Earth 
and to the planetary nitrogen “recycling” [34–42]. More 
recently, however, nitrite has been also recognised as an 
important source of signalling NO, particularly relevant 
to cell signalling and survival under challenging condi-
tions [42]. The nitrite-dependent signalling pathways have 
been described in mammals, plants and also bacteria, and 
are carried out by “non-dedicated” nitrite reductases (NiR), 
making use of metalloproteins present in cells to carry out 
other functions, such as numerous haemic proteins, and, of 
course, several molybdoenzymes from the three families. 
The nitrite-derived NO formation is, however, a complex 
subject, overshadowed by several biochemical constraints, 
of which the main ones are as follows: (1) In the case of 
haemic proteins, how can the formed NO avoid being rap-
idly trapped by the haem itself? (2) In the case of enzymes, 
how can nitrite compete with the “classic” oxidising sub-
strates? (3) How can we reconcile the in vivo observed 
nitrite effects with the in vitro knowledge of nitrite reduc-
tion through those diverse pathways?

The nitrite-mediated signalling pathways are a recent, 
not yet generally recognised, and controversial subject. In 
this minireview, we will highlight the physiological rel-
evance of molybdenum-dependent nitrite-derived NO for-
mation in mammalian, plant and bacterial signalling (and 
other) pathways. In each case, the molybdoenzymes able to 
catalyse nitrite reduction will be described and the review 
will be oriented to discuss the feasibility of the reactions 
mainly from a chemical point of view. Finally, the molecu-
lar mechanism proposed for the molybdenum-dependent 
nitrite reduction will be discussed in detail.

Molybdenum‑dependent nitrite‑derived nitric oxide

Mammals

Nitric oxide in mammals

In mammals, NO is involved in several physiological pro-
cesses, including vasodilation (through the well-known 

(15)NO−

2 + 1e−
+ 2H+

→
· NO + H2O

activation of guanylate cyclase), neurotransmission, 
immune response, platelet aggregation, apoptosis and gene 
expression, and mediates a wide range of both anti-tumour 
and anti-microbial activities [43]. To generate NO, mam-
mals have NO synthases (NOS), complex enzymes con-
stituted by one flavinic reductase domain and one haemic 
oxygenase domain, where the NO formation occurs [44–
47]. These enzymes catalyse the NO formation from the 
guanidinium nitrogen atom of l-arginine, in a reaction that 
is dioxygen- and NADPH dependent (Eq. 16–17). Because 
of this dioxygen dependency, the onset of hypoxia/anoxia 
would hamper the NOS activity and the NO formation 
would be compromised.

The NO biological effects are accomplished mainly by 
posttranslational modification of transition metal centres 
(mostly haems and labile [4Fe–4S] centres) and of cysteine 
residues and other thiols, to yield nitrosyl (–metal–N=O) 
and S-nitrosothiol (–S–N=O) derivates [48–57]. To control 
the specificity of NO signalling and to limit the NO reac-
tivity and associated unwanted effects, the NOS activity is 
tightly regulated and the NO lifetime is controlled through 
its rapid oxidation to nitrite by dioxygen [57–60] or ceru-
loplasmin [61], and to nitrate through its reaction with, e.g. 
oxy-haemoglobin and oxy-myoglobin [43, 62–72].

With our growing knowledge of the NO physiologi-
cal roles, nitrate and nitrite have been mainly overlooked 
and thought as “useless” end products of NO metabo-
lism. From the end of the twentieth century/beginning of 
the twenty-first century, it has became clear that nitrite 
can be reduced back to NO under hypoxic/anoxic con-
ditions (Eq.  15). Simultaneously, it was re-discovered 
[73] that nitrite can exert a significant protective action in 
vivo, during ischaemia and other pathological conditions 
[74–120]. Those findings triggered a novel concept and, 
presently, nitrite is considered as an NO “storage form” 
that can be made available to maintain the NO formation 
and ensure cell functioning under conditions of hypoxia/
anoxia, precisely when the dioxygen-dependent NOS 

(16)

(17)
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activity is impaired. The physiological roles of nitrite-
derived NO include vasodilation [121–125], regulation 
of gene expression [126], smooth muscle proliferation 
[104], angiogenesis [124], and, most important, regula-
tion of mitochondrial respiration and energy production 
[127–132]. Thus, through the nitrite/NO “recycling” 
pathway, an organ under ischaemia can maintain (or even 
increase) the blood flow, modulate the dioxygen distribu-
tion and the reactive oxygen species formation and, at the 
same time, maintain an anti-inflammatory and anti-apop-
totic environment.

All the experimental evidence pointing towards a 
cytoprotective role for nitrite imposes the question of 
“who” reduces nitrite to NO in mammals. To date, no 
“dedicated” mammalian NiR has been identified. On 
the contrary, nitrite reduction to NO has been ascribed 
only to prokaryotic organisms that use d1 haem-contain-
ing NiR and copper-containing NiR enzymes to derive 
energy, via denitrification, anaerobic ammonium oxi-
dation and other related respiratory pathways [34–42]. 
However, in recent years, several mammalian metal-
loproteins, present in cells to carry out other functions, 
were shown to be able to reduce nitrite to NO (“non-ded-
icated” NiR): the molybdenum-containing enzymes, XO, 
AO, SO and mARC (here reviewed), a growing number 
of haem-containing proteins [127, 133–141], where hae-
moglobin and myoglobin stand out in a number of pub-
lications [122, 129, 142–150] and several other metallo-
proteins (e.g. [152–154] ).

Molybdenum‑dependent nitrite reduction in mammals

Xanthine oxidase/dehydrogenase and  aldehyde oxi‑
dase  Mammalian XO is a key enzyme in the catabolism 
of purines, where it catalyses the hydroxylation of both 
hypoxanthine and xanthine to urate, the terminal metabo-
lite in humans and other mammals [3, 23–28]. The physi-
ological function of mammalian AO remains a matter of 
debate, being a probable partner in the metabolism of 
neurotransmitters and retinoic acid [155–158]. In addi-
tion, the XO and AO ability to catalyse also the oxidation 
of a wide variety of aldehydes and substituted pyridines, 
purines, pteridines and related compounds, including 
NADH [159–169], has suggested their involvement in the 
xenobiotic metabolism. Furthermore, the enzymes’ abil-
ity to catalyse the reduction of dioxygen has proposed 
their involvement in hydrogen peroxide-mediated signal-
ling cascades [170–172] and, most pertinent, in several 
reactive oxygen species (ROS)-mediated diseases (when 
the cellular antioxidant defences cannot cope with the 
overproduction of ROS), accounting, in this way, for the 
extensively documented XO pathological role [166, 167, 
173–197]. The proposed roles in a range of physiological 

and pathological conditions have resulted in a consider-
able and increasing medical interest in these enzymes. 
More recently, the demonstration that both enzymes can 
also catalyse nitrite reduction with NO formation con-
tributed to further stimulate the interest in the catalytic 
properties of these versatile enzymes. Interestingly, it 
also changed the way theses enzymes are being thought: 
from deleterious ROS sources to beneficial NO genera-
tors.

Both enzymes are found in the cytoplasm of vari-
ous tissues [198–206]. Noteworthy, besides the cyto-
plasm [199, 202], XO was described to be also present 
on the outer surface of the cell membrane of epithelial 
and endothelial cells [207–214] and of erythrocytes 
[95, 117]. In vivo, AO exists exclusively as an oxidase 
(reduces dioxygen, not NAD+; Eq.  18) [157, 215], 
whereas XO exists predominantly as an NAD+-depend-
ent dehydrogenase, named xanthine dehydrogenase 
(XD; Eq.  19) [3, 23–28]. Yet, XD can be rapidly con-
verted into a “strict” oxidase form that reduces dioxy-
gen instead of NAD+, the very well studied XO (Eq. 20). 
This conversion can be either reversible, through oxida-
tion of Cys535 and Cys992, or irreversible, by limited pro-
teolysis after Lys551 or Lys569 (bovine enzyme number-
ing) [26, 216–223]. Accordingly, it has been suggested 
that, while XD is the predominant intracellular form, 
XO predominates extracellularly, due to the action of 
plasma proteases [210, 224].

XO/XD and AO are structurally very similar. Both are 
complex homodimeric molybdoenzymes of the XO family 
(Fig. 1) that harbour (per monomer) one identical molybde-
num centre, where the hydroxylation reactions occur, two 
[2Fe–2S] centres and one FAD, responsible for the reduc-
tion of dioxygen (XO, AO) or NAD+ (XD) [3, 23–28, 220, 
225–227]. Both molybdenum centres hold the molybde-
num atom coordinated in the characteristic distorted 
square-pyramidal geometry, with an apical oxo group and 
with the four equatorial positions occupied by one essential 
sulfo group, one labile hydroxyl group and two sulfur 
atoms of the pyranopterin cofactor molecule (the cofactor 

(18)
Aldehyde + H2O + O2 → carboxylate + nO· -

2 + mH2O2

(19)

(20)

Author's personal copy



408	 J Biol Inorg Chem (2015) 20:403–433

1 3

is found in the simplest monophosphate form characteristic 
of eukaryotes) (Fig. 2a). The molecular mechanism of XO5 
and AO-catalysed hydroxylation reactions is presently well 
established [3, 23–28, 225, 229]: (1) the hydroxylation 
catalysis is initiated with the activation of the molybdenum 
labile hydroxyl group (Mo–OH) by a neighbouring con-
served deprotonated glutamate residue, to form an Mo6+–
O−(=S) core (base-assisted catalysis); (2) it follows the 
nucleophilic attack of Mo–O− on the carbon atom to be 
hydroxylated, with the simultaneous hydride transfer from 
the substrate to the essential sulfo group (Mo=S → Mo–
SH), resulting in the formation of a covalent intermediate, 
Mo4+–O–C–R(–SH) (where R represents the remainder of 
the substrate molecule); (3) the subsequent hydrolysis of 
the Mo–O bond releases the hydroxylated product and 
yields a Mo4+–OH(2)(–SH) core (oxidation half-reaction); 
(4) finally, the two electrons transferred from the substrate 
to the molybdenum are rapidly transferred, via the Fe/S 
centres, to the FAD, where the dioxygen or NAD+ reduc-
tion takes place (reduction half-reaction); (5) in the now 
oxidised molybdenum centre, the sulfo group is deproto-
nated and the initial Mo6+–OH(=S) core is regenerated.

Besides the dioxygen and NAD+ reduction, XO/XD and 
AO catalyse also nitrite reduction, at their molybdenum 
centres, thus being able to contribute to the NO generation 
in mammals.

In vitro, under anaerobic conditions, XO [230–237] and 
AO [235, 237, 238] catalyse nitrite reduction to NO (Table 1). 
That NO is the product of nitrite reduction was independently 
confirmed by several methodologies (NO-selective electrode, 
EPR spectroscopy using different spin-trap types, chemilumi-
nescence assays) [230, 231, 233, 236]. The nitrite reductase/
NO synthase activity that has been demonstrated for enzymes 

5  Mammalian XO and XD are two forms of the same protein (same 
gene product). Mammalian XO enzymes are synthesised as an 
NAD+-dependent dehydrogenase form, the XD, and are believed to 
exist mostly as XD under normal physiological conditions [3, 27–32]. 
However, the XD form can be readily converted into a strict oxidase 
form, the XO. The only "functional" distinction between XD and XO 
lies in the electron acceptor used by each form: while XD transfers 
the electrons preferentially to NAD+, XO fails to react with NAD+ 
and uses exclusively dioxygen. During the XD into XO conversion 
process (through oxidation of cysteine residues or limited proteoly-
sis), the protein conformation at the FAD centre is modified and this 
conformational alteration is responsible for the differentiated oxidis-
ing substrate specificity displayed by XO and XD [30, 230–237, 239, 
242] (note that both dioxygen and NAD+ react at the FAD centre). 
On the other hand, the protein structure at the Fe/S and molybdenum 
centres is not changed during the conversion and, in accordance, the 
two enzyme forms, XO and XD, are virtually identical with respect 
to the binding and catalysis of substrates at the molybdenum centre 
[3, 27–30]. This is also the case of the nitrite reduction reaction that, 
as will be described, occurs at the molybdenum centre. For these rea-
sons, XO and XD can be considered as one unique enzyme for the 
discussion of the overall structural organisation and molybdenum 
reactivity (reaction mechanism).

purified from bovine milk, rat liver and also human liver is 
dependent on the simultaneous presence of enzyme, nitrite 
and a reducing substrate [230–238].

The nature and site of reaction of the reducing sub-
strate do not alter the outcome of the reaction. NO gen-
eration can be triggered by aldehydes and heterocyclic 
compounds [such as xanthine (XO) and N′-methyl-
nicotinamide (AO)], which react at the enzymes’ molyb-
denum centre, and also by NADH that reacts at the FAD 
centre (Table  1). The XD-catalysed nitrite reduction 
was also recently demonstrated for the first time and it 
was confirmed that XD displays kinetic parameters sim-
ilar to those of XO (Table 1) as expected (see footnote 
1) [237].

Nitrite reduction occurs at the enzymes’ molybdenum 
centre, as definitively demonstrated with a combination of 
spectroscopic and electrochemical methods (EPR to follow 
molybdenum oxidation and the environment and redox sta-
tus of the other redox centres; a selective NO electrode to 
measure NO formation). Those studies were carried out 
using the XO/XD molybdenum-specific inhibitor allopuri-
nol [236]. XO/XD hydroxylates allopurinol to oxypurinol 
(1H-pyrazolo [3,4-d]pyrimidine-4-ol to the corresponding 
4,6-diol compound), which binds tightly to the reduced 
molybdenum, thus blocking it and inhibiting all reactions 
that occur at the molybdenum centre of XO/XD [239–241]. 
The formation of the oxypurinol–XO/XD complex, how-
ever, does not interfere with any reaction taking place at the 
Fe/S or FAD, as shown by (1) the NADH oxidation by 
molecular oxygen (that occurs at the flavin site) in the pres-
ence of the inhibitor [168] and (2) the EPR spectra of oxy-
purinol-inhibited NADH-reduced enzyme that display the 
characteristic Fe/S and FAD EPR signals (showing that 
those centres are not affected by inhibitor treatment) [236]. 
In view of this, if nitrite reduction occurs at the Fe/S or fla-
vin sites, then the NADH-reduced XO/XD would be able to 
reduce nitrite in the presence of allopurinol. However, no 
NO formation is observed in the presence of the inhibitor 
[236]. Additional assays with deflavo-XO and deflavo-AO6 
and with native DPI-inhibited enzymes (a FAD-specific 
inhibitor), all of which displayed the same nitrite reductase 
activity as the native enzymes, further confirmed the exclu-
sive participation of the molybdenum centre in nitrite 
reduction [237]. Also, the use of native enzymes with dif-
ferent AFR values7 corroborated this conclusion [236, 237]. 
Simultaneously, using NADH-reduced desulfo-XO,8 it was 
demonstrated that the molybdenum sulfo group is 

6  Enzyme forms whose FAD centre was chemically removed.
7  AFR, activity-to-flavin ratio, is a measure of the number of enzyme 
molecules with an intact molybdenum centre [3, 27–32, 230, 256].
8  Enzyme form whose molybdenum sulpho group was chemically 
removed.
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necessary for nitrite reductase activity (further discussed 
under “Mechanistic strategies for molybdenum-dependent 
nitrite reduction“), thus, providing another confirmation of 
the involvement of the molybdenum centre [236, 237]. Fur-
thermore, it was also demonstrated that the NO formed 
during the catalytic cycle is not able to significantly react 
with the molybdenum sulfo group and inhibit the enzymes 
[236, 237].

The XO-, XD- and AO-catalysed NO formation is 
dependent on the pH, with the highest pseudo-first-order 
constants (kcat/Km) being observed at pH ≈6.3 (2.2 and 

1.6  ×  103  M−1s−1, for XO and AO), which corresponds 
to an increase of ≈8 times, relatively at pH 7.4 (Table 1) 
[237]. In addition, while the kcat curves followed the same 
pH profile, indicating that also the highest rates of NO for-
mation occur at pH values between 5.8 and 6.8, the Km val-
ues for nitrite displayed an inverted bell-shaped pH curve, 
decreasing significantly, ≈5–6 times, for pH values lower 
than 6.8 (relatively to pH 7.4), with minima values of 600 
and 1.8  mM, for XO and AO, respectively [237]. Hence, 
under pH 5.8–6.8, not only the pseudo-first-order rate con-
stants reach their maxima values, but also the Km values for 

a b

Glu1261

d

Cys139

e f

g h

Asp222 Asp222

Cys143

Cys140

c
Cys185

Fig. 2   Three-dimensional structure view of the molybdenum centre 
and neighbouring protein of a bovine XO, b D. gigas AOR, c chicken 
SO, d P. angusta NaR, e and f E. coli respiratory NaR, g D. desulfuri‑
cans periplasmatic NaR and h E. coli periplasmatic NaR. In the case 
of XO, it also explicitly represented the conserved glutamate residue. 

The structures shown are based on the PDB files 1FO4 (a), 1VLB 
(b), 1SOX (c), 2BIH (d), 1Q16 (e), 1R27 (f), 2NAP (g) and 2NYA 
(h); the pyranopterin cofactor is represented in dark red. The images 
were produced with Accelrys DS Visualizer, Accelrys Software Inc.
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nitrite are minimised. These results are of major importance 
for the potential in vivo role of XO-/XD-/AO-dependent 
NO generation under ischaemia, when the pH can decrease 
to values as low as 6.0–5.5 (acidosis) [243–249] for two 
reasons. (1) The pseudo-first-order rate constant refers to 
the reaction rate when nitrite is present at a concentration 
much lower than its Km. Because the in vivo nitrite concen-
tration (<20 μM [53, 250–252] ) is much lower than its Km, 
the in vivo nitrite reduction would occur under conditions 
controlled by the pseudo-first-order rate constant (and not 
by the kcat). In this scenario, it is significant that the highest 
pseudo-first-order rate constants are attained at the acidic 
pH values characteristics of ischaemia, precisely when a 
nitrite-dependent, NOS-independent, NO source would be 
needed. This pseudo-first-order rate constants’ pH depend-
ence would allow the enzymes to overcome the constraint 
imposed by the high Km values/low nitrite availability. (2) 
Concomitantly, due to the pH-dependent decrease in the Km 
for nitrite, lower nitrite concentrations would be needed to 
drive a similar rate of NO generation.

Nonetheless, and as can be foreseen, dioxygen and 
NAD+, the “classic” oxidising substrates, act as strong 
competitive inhibitors of nitrite reduction, “stealing” the 
electrons needed to reduce nitrite [233, 234, 236, 237, 
253]. Although the NAD+ inhibition of the XD-dependent 
NO formation had not been yet studied, the dioxygen inhi-
bition of XO/XD and AO reactions was characterised at pH 
6.3 (Fig.  3a) [237]. The determined Ki values for dioxy-
gen, ≈24 and ≈49 μM (for reducing substrate present at 
a concentration equal to its Km and to 10  ×  Km, respec-
tively), are within the in vivo tissue dioxygen concentra-
tions (≤50 μM, going from normoxia to hypoxia [254]). 
This suggests that the in vivo NO formation would not be 
completely abolished by dioxygen. Instead, the NO gen-
eration would be fine-tuned by the dioxygen availability, 
being amplified as the dioxygen concentration decreases 
towards the hypoxic and anoxic conditions. Furthermore, 
because the Ki values are modulated by the reducing sub-
strate concentration (higher concentrations give higher Ki), 
the in vivo NO formation would also be controlled by the 
reducing substrates’ availability. Hence, the ischaemia-
induced reducing substrates accumulation could create 
enzyme “saturating” conditions, which would favour nitrite 
reduction and, at the same time, lead to lower dioxygen 
inhibitions.

The dioxygen inhibition was also studied in the presence 
of NADH. It has been argued that because NADH reacts 
at the enzymes FAD centre, the dioxygen inhibition would 
be inferior [234]. However, the Ki values for dioxygen 
obtained in the presence of NADH were within a similar 
range, ≈34 μM (for either 1 or 10 mM NADH), showing 
that the NO formation would not be favoured in the pres-
ence of NADH, compared to other reducing substrates as 

aldehyde or xanthine [237]. From a physiological point of 
view, during an ischaemic event, the NO source would be 
dictated by the enzyme specificity for the different reducing 
substrates available, their concentrations and by the respec-
tive rate of NO formation. Although the NADH concentra-
tion would increase under ischaemia, the slow rates of NO 
generation in the presence of (patho)physiological NADH 
concentrations (<<3 mM [255–259] ≈Km

NADH [233, 237] ) 
suggest that the NADH-dependent NO formation would be 
smaller comparatively to hypoxanthine/xanthine that would 
also be accumulated (≤100  μM [260–263] > ≈Km

xanthine 
[233, 237] ) and for which the NO generation rates are con-
siderably higher (>20 times) [237].

Besides decreasing the amount of NO formed, dioxy-
gen also decreases the amount of NO available to carry 
out the physiological functions (or to be detected in vitro), 
either through its direct reaction with NO (Fig. 3c) or indi-
rectly through the reaction with superoxide radical anion 
(Fig.  3b). While the direct dioxygen reaction with NO is 
rather small, the NO consumption by superoxide radical in 
the absence of superoxide dismutase (SOD) is substantial, 
regardless of the dioxygen concentration present [237]. 

enzyme
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enzyme
reduced

reducing subst.
reduced

●NO2
●NO

NO2

O2

H2O2

O2
●

ONOO

SOD
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c

b

reducing subst.
oxidised

Fig. 3   Dioxygen effects on the NO status in XO/XD and AO sys-
tems. Dioxygen interferes with NO at different levels. a Dioxygen is 
efficiently reduced by the enzymes, consuming the electrons derived 
from the reducing substrates and, thus, reducing (inhibiting) NO for-
mation. b Simultaneously, the superoxide anion radical formed reacts 
with NO to yield peroxynitrite. This dioxygen effect can be counter-
acted by the presence of SOD. c In addition, dioxygen can also react 
directly with NO to yield nitrogen dioxide radical and other products
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This “NO sink” is particularly relevant when the nitrite 
concentration is limiting, because the competition between 
nitrite and dioxygen is unfavourable to nitrite and more 
superoxide radical is formed. Most important, from the 
NO reaction with superoxide radical, the formation of the 
strong oxidising peroxynitrite results [48, 50, 264]. Those 
results highlight the critical role of SOD in achieving a net 
NO production in vivo and avoiding the formation of the 
deleterious peroxynitrite.

In summary, the in vitro studies suggest that the extent 
of XO/XD and AO-catalysed NO formation in vivo would 
be dependent on several factors. (1) Availability of reducing 
substrates—they provide the enzymes with the electrons 
needed to reduce nitrite and also modulate the extension 
of dioxygen inhibition. (2) Dioxygen availability—with Ki 
values within the physiological dioxygen concentrations, 
from normoxia to hypoxia, dioxygen would fine-tune the 
nitrite-dependent NO formation, being the probable factor 
that regulates and links the two NO sources, nitrite-depend-
ent and NOS-dependent. (3) Presence of SOD—crucial to 
achieve a net NO production under non-anoxic conditions. 
(4) NAD+—NAD+ inhibition has not yet been studied, but 

it could have a marked impact on the XD-dependent NO 
formation. (5) Acidic conditions (pH ≤6.8)—greatly favour 
nitrite reduction (6) and, of course, nitrite availability.

In light of what is known from in vitro studies, dur-
ing an ischaemic event, several phenomena occur that, in 
concert, can favour nitrite reduction by XO/XD and AO 
(Fig. 4): first, and obviously, the decrease in dioxygen con-
centration (hypoxia or even anoxia) results in acidosis (pH 
values as low as 6.0–5.5 [243–249]); second, in the course 
of ischaemia, as the mitochondrial electron transfer chain 
begins to be affected, ATP synthesis would be hindered and 
the subsequent ATP catabolism leads to an accumulation 
of hypoxanthine and NADH in tissues [255–263]. These 
reducing substrates’ increase can “fuel” the enzymes with 
reducing equivalents to reduce nitrite; third, as the ATP 
concentration decreases, the transmembrane ion gradients 
are dissipated, causing elevated cytoplasmatic calcium con-
centrations, which, in turn, activate calcium-dependent pro-
teases that would convert the XD into the XO form [214, 
265–271]. Hence, the formerly prevailing XD form (that 
reacts with NAD+) would be converted into the “dioxygen-
user” XO, by proteolysis; NAD+ (regardless of its high 

Fig. 4   Mechanism proposed 
for XO-/XD- and AO-dependent 
NO formation under ischaemia. 
See text for details. Modified 
from Ref. [46] O2
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concentration) would be no longer a competitive substrate 
of nitrite reduction, because XO and AO do not react with 
it. Therefore, all the conditions seem to be gathered for 
XO- and AO-catalysed NO formation to be feasible and 
reasonable during in vivo ischaemia.

In accordance with the above reasoning, numerous in 
situ and in vivo studies suggested that XO/XD and AO-
dependent NO formation can, in fact, occur in vivo, namely 
several studies with tissue homogenates (heart, aorta 
and liver) [234, 235] and with animal models of myocar-
dial infarction [85], renal [86], cardiac [77] and liver [80] 
ischaemia/reperfusion injury, among many others [79, 89, 
95, 97, 104, 113, 116, 117, 141, 231, 238, 272–276]. Those 
results were validated with employment of the XO- and 
AO-specific inhibitors allopurinol/oxypurinol and ralox-
ifene, respectively, and also the general molybdoenzymes 
inhibitor tungstate. Particularly relevant is the demonstra-
tion of the XO/nitrite protective role within the context of 
cardiac ischaemia in an isolated heart model [77].

In spite of those in situ and in vitro studies, some authors 
argue that the high Km values for nitrite [≈250 μM [236, 
237]—2 mM [233], for XO, and ≈430 μM [237]—3 mM 
[238], for AO (Table 1)], 1–2 orders of magnitude higher 
than the nitrite concentration in tissues (<20  μM [53, 
250–252]), are a major drawback for the relevance of 
these molybdenum-dependent pathways on the in vivo 
NO formation. However, the kinetic parameters indi-
cate that these enzymes can produce NO, with reasonable 
rates [kcat/Km ≈ 2 × 103 M−1s−1, for rat liver enzymes at 
pH ≈6.3 [237] (Table 1)] that would be modulated by the 
availability of nitrite [233, 236, 237], i.e. by functioning in 
a concentration range well below the Km value, the reaction 
rate is pseudo-first order on nitrite, thus allowing the NO 
generation to be directly controlled by the nitrite availabil-
ity. In addition, in this way, the competitive inhibition car-
ried out by dioxygen that displays Ki values in the range of 
its own physiological concentrations is more effective (the 
competition between nitrite and dioxygen, in vivo, is unfa-
vourable to nitrite, because the reaction runs under nitrite-
limiting conditions, but dioxygen-”sufficient” conditions). 
This means that the NO formation would be also fine-tuned 
by the dioxygen concentration and confers another level of 
regulation to the XO/AO-dependent NO generation.

It should be emphasised that the concentration of NO 
must be kept within the characteristics of a local signalling 
molecule and highly regulated. It is not conceivable to pro-
duce NO at micromolar or millimolar concentrations (the 
enzymes Km order), when NO carries out its physiological 
functions at nanomolar concentrations. At micromolar con-
centrations, it would not be achievable to control the NO 
specificity and toxicity. In fact, it is in situations of NO 
overproduction that its deleterious effects began (e.g. in 
chronic inflammation, where 2–4 μM of NO was described 

as being formed [48, 50]). Thus, if these molybdoenzymes 
are to be physiologically relevant NO sources, they should 
not catalyse the formation of NO at the nitrite Km concen-
tration values [236, 237].

Another argument against the occurrence of these path-
ways in vivo is related with the conversion of the in vivo-pre-
dominant XD into XO. The extent and rate of this conversion 
are a matter of great controversy: from no conversion at all 
(with XO being considered as an experimental artefact), to a 
small (20 %) and slow conversion [193, 198, 265–267, 269–
271] and a conversion that is enhanced by hypoxic condi-
tions and in vivo ischaemia [214, 268]. The issue here is the 
competition between nitrite and NAD+ to react with reduced 
XD. The NAD+ concentration (≈0.5–1  mM [255, 256, 
277–280]), two to three orders of magnitude higher than the 
one of NADH, is not significantly decreased by the NADH 
accumulation during ischaemia [255–259]. As a result, if the 
conversion of XD into XO is not efficient (or does not occur 
at all), the NAD+ reaction (with a kcat/Km 2–3 orders of mag-
nitude higher [281]) would prevail over nitrite reduction, and 
NO formation by this protein would be seriously compro-
mised. Nonetheless, this would not hinder the NO generation 
by AO or by the XO present on the outer surface of the cell 
membrane of epithelial and endothelial cells [207–214] and 
of erythrocytes [95, 117], where plasma proteases were sug-
gested to convert XD into XO [210, 224].

Finally, and as already extensively discussed, the com-
petition between nitrite and dioxygen is certainly the criti-
cal limitation for the effective XD-/XO-and AO-dependent 
NO generation in vivo. On top of all those chemical and 
kinetic constraints, the proposed role of XO/XD as an NO 
source faces another obstacle: for long, countless studies 
have pointed towards a beneficial clinical outcome upon 
an ischaemic or related event through the inhibition of XO/
XD (reduction of symptoms by treatment with allopurinol) 
[173, 174, 194, 282]. How can those numerous experi-
mental evidences be reconciled with a beneficial XO-/XD-
mediated role [283]?

Overall, in vitro, under anaerobic conditions, mammalian 
XO, XD and AO are able to reduce nitrite to NO. The NO 
formation can also be achieved in the presence of dioxygen, 
as long as SOD is also present. In vivo, however, the XO-/
XD-/AO-catalysed NO formation would be dependent on 
the extent of ischaemia (extent of hypoxia), the co-presence 
of SOD and other antioxidants and by the availability of 
reducing and oxidising substrates, in particular dioxygen.

Mitochondrial amidoxime‑reducing component  mARC 
was first isolated in 2006 and identified as the fourth mam-
malian molybdoenzyme (after XO/XD, AO and SO) [284]. 
This SO family member, present in virtually all mammals 
as two isoforms, harbours only the molybdenum centre 
(with no additional redox centres) and is found anchored 
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to the outer mitochondrial membrane, facing the cytoplasm 
[285–288]. mARC is the catalytic partner of a three-protein 
amidoxime-reducing chain that comprises also cytochrome 
b5 and NADH-dependent cytochrome b5 reductase, which 
are involved in electron transfer from NADH to the termi-
nal oxidoreductase mARC (Fig. 5) [285, 291]. The mARC-
containing enzymatic system is responsible for the aerobic 
reductive activation of several N-hydroxylated prodrugs such 
as amidoximes, N-hydroxy-guanidines or sulphohydroxamic 
acids [285, 289, 292]. However, its physiological function 
is not known, being probably involved in detoxification of 
mutagenic and toxic aromatic hydroxyl-amines, such as 
N-hydroxylated DNA base derivates [293, 294]. In addition, 
mARC has also been associated with lipid synthesis in adi-
pocyte [295] and regulation of NOS-dependent NO synthe-
sis, as Nω-hydroxyl-l-arginine (Eq. 16, 17) can be reduced 
by mARC [287]. Very recently, the mARC-containing enzy-
matic system was also shown to catalyse the reduction of 
nitrite to NO, at the molybdenum centre, using NADH as 
reducing substrate, thus constituting an additional mamma-
lian nitrite-dependent NO source [296].

The mARC-catalysed nitrite reduction/NO formation 
is remarkably similar to the XO/XD and AO ones, 
although it displays a considerably higher Km value for 
nitrite (9.5  mM), associated with a lower pseudo-first-
order rate constant (kcat/Km  =  11  M−1s−1) (Table  1) 
[296]. Yet, also mARC-dependent NO generation is dra-
matically decreased in the presence of dioxygen, proba-
bly due to (1) molybdenum oxidation by dioxygen (par-
allel to the competitive inhibition of XO/XD/AO, where 
dioxygen consumes the electrons needed to reduce 
nitrite9) and (2) to NO consumption by the superoxide 
radical formed at the FAD centre of cytochrome b5 reduc-
tase (also parallel to what occurs in the XO/XD/AO sys-
tems). In addition, also nitrite reduction by mARC is 
favoured under acidic conditions, with the NO formation 
being increased (≈3-fold) when the pH is lowered from 
7.5 to 6.5.

9  Although in XD/XO/AO, the electrons consumption by dioxygen is 
made via the FAD centre.

Nitrite reduction to NO takes place at the mARC molyb-
denum centre, as demonstrated by mutation of the putative 
cysteine residue that coordinates to the molybdenum cen-
tre (characteristic of SO family enzymes (Fig.  1); Cys273 
of human mARC1) [296]. Mutation of cysteine to an ala-
nine residue would create an inactive tri-oxo molybdenum 
centre, as occurs in SO [297], and, in agreement, mutation 
abolished the NO formation, as well as the amidoxime 
reductase activity. Further confirmation was obtained with 
tungsten-substituted enzyme that displays no nitrite reduc-
tase activity [296].

The mARC-catalysed nitrite reduction pathway can con-
tribute to the in vivo NO formation, under hypoxic condi-
tions, when the dioxygen and pH are diminished and the 
increase in the NADH concentration “fuels” the enzyme 
with reducing equivalents—in a parallel situation to what 
was described above for XD/XO and AO. Hence, mARC 
can represent an additional pathway for the synthesis of 
signalling NO in the cytoplasm (note that mARC is located 
on the outer mitochondrial membrane, but facing the cyto-
plasm). However, because nitrite transport across mem-
branes is limited, it is possible that mitochondria uses the 
cytoplasm-faced enzyme to synthesise NO that would be, 
subsequently, “internalised”. More studies are needed to 
determine how mARC-dependent NO affects the mito-
chondrial function [296]. Yet, it is tempting for us to specu-
late that mARC is in an adequate location to be part of a 
signal transduction system, “transmitting” a mitochondrial 
signal to the cytoplasm.

Sulfite oxidase  Mammalian SO10 is a key enzyme in the 
catabolism of sulfur-containing amino acids and in the 
metabolism of xenobiotic sulfur-containing compounds, 
catalysing the oxidation of toxic sulfite to sulfate with the 
simultaneous reduction of cytochrome c (Eq.  21) [298].11 
Confirming its vital role in the detoxification of sulfite, 
human SO deficiency12 causes severe neonatal neurological 
problems and early death [299–302]:

Mammalian SO is found in the intermembrane space of 
mitochondria of virtually all mammalian tissues, being pre-
sent in high concentrations in liver [303]. This is a homodi-
meric molybdoenzyme of the SO family (Fig.  1) that 

10  Because the enzyme does not catalyse the sulphite oxidation by 
molecular oxygen, a more appropriate name (Enzyme Nomenclature 
Commitee, IUBMB) would be sulphite oxidoreductase (SOR).
11  See Kappler and Enemark’s contribution in this JBIC issue.
12  Caused by the inability to synthesise the pyranopterin cofactor or 
certain point mutations.
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harbours (per monomer) one molybdenum centre, where 
sulfite oxidation reaction takes place, and one b haem 
responsible for cytochrome c binding and reduction [304]. 
The molybdenum centre13 holds the molybdenum atom 
coordinated in the characteristic distorted square-pyramidal 
geometry, with an apical oxo group and with the equatorial 
positions occupied by one labile oxo group, one cysteine 
sulfur atom and two sulfur atoms from one pyranopterin 
cofactor molecule (the cofactor is found in the simplest 
monophosphate form, as is characteristic of eukaryotes) 
(Fig.  2b) [304]. Remarkably, the crystal structure of SO 
showed that the molybdenum and haem centres are more 
than 30Å apart [304]. Hence, it has been proposed that dur-
ing catalysis a conformational alteration takes place 
(through a flexible polypeptide that links the two domains) 
that brings the two centres into greater proximity, to allow 
the rapid intramolecular electron transfer kinetics [305–
307]. Furthermore, the haem domain can be hydrolysed 
from the protein by limited proteolysis, yielding a modified 
SO enzyme (harbouring only the molybdenum domain) 
that cannot transfer electrons to cytochrome c, but that is 
still able to catalyse the oxidation of sulfite in the presence 
of an artificial electron acceptor [308, 309].

SO-catalysed sulfite oxidation is believed to be a simple 
oxotransfer reaction, with the molybdenum centre acting as 
an oxygen atom donor [310–315]: (1) catalysis is initiated 
at the oxidised molybdenum centre (Mo6+), with sulfite 
binding to the molybdenum equatorial labile oxo/hydroxyl 
group (Mo=O/Mo–OH), resulting in the two-electron 
reduction of the molybdenum atom (Mo6+ → Mo4+) and 
formation of a covalent intermediate, Mo4+–O–SO3; (2) 
the subsequent hydrolysis of the Mo–O bond releases the 
product (sulfate) and yields an Mo4+–OH(2) core (oxida-
tion half-reaction); (3) finally, the two electrons transferred 
from the substrate to the molybdenum are intramolecularly 
transferred, one at a time, to the haem, where cytochrome c 
will be reduced and the initial Mo6+=O core is regenerated 
(reduction half-reaction).

Besides cytochrome c reduction, SO was recently 
described to catalyse also nitrite reduction [316], thus 
showing that all the four mammalian molybdoenzymes can 
contribute to NO generation. The SO-catalysed NO forma-
tion occurs at the enzyme molybdenum centre, using sulfite 
as the reducing substrate [316]. The NO generation by SO 
is also pH dependent, but the pseudo-first-order rate con-
stants (kcat/Km) are noticeably small, 1.3 and 2.6 M−1s−1, at 

13  Presently, the structure of human SO is not known. However, 
because the sequence identity among the eukaryotic SO is very high, 
with 68 % identity (85 % similarity) between the chicken and human 
enzymes, the structure of chicken liver SO (Fig. 2b) is a good tem-
plate for the human counterpart [321].

pH 7.4 and 6.5, respectively, as a consequence of very low 
kcat values (0.002 and 0.004  s−1, respectively) (Table  1). 
The issue is that in SO, contrary to the other mammalian 
molybdoenzymes, only the fully reduced molybdenum cen-
tre (Mo4+) is able to reduce nitrite (SO Mo5+ does not 
reduce nitrite to NO). Hence, after a first nitrite reduction 
cycle, the SO molybdenum centre ends up in a “non-pro-
ductive” state (Mo4+ → Mo5+) that cannot be further oxi-
dised by a new nitrite molecule, or be reduced by sulfite 
(that is a strict two-electron donor).14 If, instead of the 
physiological reducing substrate (sulfite), an artificial one-
electron donor (phenosafranine) is used, higher NO forma-
tion rates are observed, resulting in a kcat value of 1.9 s−1 
(Table  1) [316]. Nevertheless, due to the very high Km 
value for nitrite (80  mM), the pseudo-first-order constant 
(24 M−1s−1) is still considerably lower than the ones of XO 
and AO [2.2 and 1.6 × 103 M−1s−1, respectively (Table 1)]. 
Accordingly, for SO to efficiently catalyse nitrite reduction 
(either in vitro and in vivo), an appropriate one-electron 
donor (to reduce Mo5+ to Mo4+) or acceptor (to oxidise 
Mo5+ to Mo6+) must be available to regenerate the enzyme 
(and allow it to re-react with nitrite or sulfite, respectively) 
[316].

In addition, it was also argued that hypoxic and/or 
reductive conditions could favour the SO-catalysed NO for-
mation [316]. Under hypoxic and/or reductive conditions, 
the concentration of reduced cytochrome c (the SO physi-
ological oxidant substrate) would be high and the re-oxida-
tion of the SO b haem would be slower. This would inhibit 
the SO intramolecular electron transfer from the molybde-
num to the b haem and, eventually, favour nitrite reduction 
[316]. In fact, nitrite reduction to NO by a modified SO, 
harbouring only the molybdenum domain, displays pseudo-
first-order rate constants six to ten times higher than the 
native SO [kcat/Km of 8.2 and 28 M−1s−1, at pH 7.4 and 6.5, 
respectively, with kcat of 0.008 and 0.014  s−1 (Table  1)], 
even though greatly lower than the ones of XO and AO 
[316].

In spite of those in vitro results, SO was shown to play 
a dominant role in nitrite reduction and guanylate cyclase 
activation in human fibroblasts (by comparison of cells 
from normal and SO-deficient patients) [316]. Clearly, the 
SO-dependent NO formation is more complex than the 
XO-/XD-, AO- and mARC-mediated generation and future 
studies will shed light on how SO can contribute to the 
mammalian NO formation.

14  Because SO is not regenerated during the nitrite reduction reaction 
(SO catalyses a single turnover reaction), the values above indicated 
as kcat and Km are better described as kelectron transfer and Kd values 
[333].
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Higher plants

Nitric oxide in plants

Plants must perceive and respond to numerous external abi-
otic and biotic challenges, as well as internal signals, and 
NO has been shown to be involved in the response to tem-
perature, salt and drought stresses and herbicide treatment; 
disease resistance pathways; germination, flowering, root 
development, leaf senescence and stomatal closure, among 
other processes [317–357]. Yet, the plant NO formation and 
signalling pathways are, by far, less well characterised than 
the mammalian counterparts.

As in mammals, plants can also synthesise NO through 
oxidative and reductive pathways. The oxidative pathways 
are believed to produce NO through the oxidation of organic 
compounds such as polyamines [358, 359], hydroxylamine 
[360] and arginine [361–365]. Nevertheless, no NOS homol-
ogous, gene or protein, has yet been found in higher plants 
[317, 345, 364, 366–368]. In the reductive pathways, appar-
ently the predominant ones, NO is formed at the expense of 
nitrite reduction [341, 360, 369, 370]. However, as opposed 
to mammals, nitrite reduction to NO in plants occurs in a dif-
ferent “scenario”: nitrate and nitrite, both precursors and end 
products of signalling NO, are also normal substrates of the 
plant nitrogen assimilation pathway (Eq.  22), when nitrate 
is the main nitrogen source available. This has two conse-
quences. First, when plants use nitrite to synthesise signal-
ling NO, they must do it in a controlled and parallel way to 
the assimilatory nitrite reduction to ammonium. Second, in 
plants nitrite can accumulate to very high (millimolar) con-
centrations, in particular under hypoxia/anoxia [371–375], a 
situation clearly different from the modest (nano- to micro-
molar) nitrite concentrations found in mammalian tissues. 
These circumstances should make the “signalling” nitrite/
NO metabolism more complex in plants.

Like mammals, plants do not have a “dedicated” NO-
forming NiR and nitrite reduction/NO formation has been 
ascribed to metalloproteins present in cells to carry out 
other functions, including several haemic proteins and the 
molybdenum-containing cytoplasmatic NaR. Noteworthy, 
the sirohaem-containing NiR, responsible for the assimila-
tory nitrite reduction to ammonium (Eq. 22), is not able to 
reduce nitrite to NO [42].

Molybdenum‑dependent nitrite reduction in higher plants

Nitrate reductase  Nitrite-dependent NO formation in 
plants has been ascribed mainly to NaR, which has been 

(22)

hypothesised to play a role similar to the one of mammalian 
constitutive NOS. NaR is responsible for the first and rate-
limiting step of plant nitrate assimilation pathway (Eq. 22), 
where it catalyses the nitrate reduction to nitrite, with the 
simultaneous oxidation of NAD(P)H (Eq. 23) [376–379]. In 
accordance with its key role in nitrogen metabolism, NaR 
is highly regulated by complex transcriptional, translational 
and posttranslational mechanisms that respond to nitrogen, 
carbon dioxide and dioxygen availabilities, pH, temperature 
and light [379–384]. Remarkable, NaR is rapidly degraded 
in darkness (half-life of 6 h [384]).

Plant NaR is a homodimeric molybdoenzyme, belong-
ing to the sulfite oxidase family (Fig. 1) that holds the dis-
tinctive square-pyramidal molybdenum centre, with an api-
cal oxo group and with the equatorial positions occupied 
by one labile oxo group, one cysteine sulfur atom and two 
sulfur atoms from one pyranopterin cofactor molecule (the 
cofactor is found in the simplest monophosphate form, as is 
characteristic of eukaryotes) (Fig. 2d) [356–379, 385–389]. 
Besides the molybdenum centre, where the nitrate reduc-
tion takes place, plant NaR holds (per monomer) one b 
haem and one FAD centre that is involved in the NAD(P)
H binding and oxidation. NaR-catalysed nitrate reduc-
tion is believed to be a simple oxotransfer reaction, with 
the molybdenum centre acting as an oxygen atom accep-
tor [377–379, 389]: (1) the electrons provided by NAD(P)
H are introduced at the FAD and transferred intramolecu-
larly to the molybdenum centre (oxidation half-reaction); 
(2) in the reduced molybdenum centre, the now protonated 
labile oxo group (Mo6+=O → Mo4+–OH) is displaced by 
nitrate; (3) nitrate binds through one of its oxygen atoms to 
the reduced molybdenum, which promotes the O–N bond 
cleavage and release of nitrite, with regeneration of the ini-
tial Mo6+=O group (reduction half-reaction):

Besides this well-established role on the reduction of 
nitrate, NaR from different plant species were shown to 
also catalyse the subsequent nitrite reduction to NO 
(Eq.  24) in vitro [341, 390–392]. Furthermore, and most 
pertinent in the context of eukaryotic enzymes, also the 
NaR from the fungus Aspergillus was shown to be able to 
reduce nitrite to NO [393]. Based on the suggested nitrate 
reduction mechanism, it is not difficult to envisage the oxy-
gen atom abstraction from nitrite to yield NO, with the 
NaR molybdenum atom accepting the nitrite oxygen 
atom—precisely the same mechanism that was proposed 
for the XO family members’ reaction [236, 237] (discussed 
under “Mechanistic strategies for molybdenum-dependent 
nitrite reduction”). This suggestion is further supported by 
a recent theoretical study that showed that both nitrate and 
nitrite are easily reduced by plant NaR (to nitrite and NO, 
respectively), although, as expected, nitrate is the 

(23)NO−

3 + NADH + H+
→ NO−

2 + NAD+
+ H2O.
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thermodynamically preferred substrate [394]. Furthermore, 
and most important, the evidences of in vivo NaR-depend-
ent NO generation are numerous, including studies with: 
(1) transgenic plants expressing a permanently active 
NaR15 that accumulate nitrite and show a high NO emis-
sion rate [341, 402–404]; (2) NaR knockout (nia1 and nia2 
genes) plants that fail to emit NO or display NO effects 
upon elicitation [336, 406–413]; (3) inactive NaR (e.g. 
plants with tungstate supply instead of molybdate) [407, 
408, 414–419]; (4) and others [334, 356, 358, 393, 420–
429]. NaR-dependent NO formation has been suggested to 
be involved in processes such as stomatal closure [336, 
346, 408, 430, 431], onset of germination [369], phenylpro-
panoid metabolism [432] or immune defence mechanisms 
(because pathogen signals induce NaR and increase NO 
formation—strikingly similar to the mammalian-inducible 
NOS) [409, 411, 413, 418, 419, 433]:

With NaR displaying two apparently divergent activities: 
(1) formation of nitrite to be subsequently assimilated in 
the form of ammonium and (2) consumption of nitrite to 
form NO (Fig. 6), the plant cell needs an additional mecha-
nism to regulate this enzyme. Remarkably, as discussed for 
mammals, the dioxygen concentration is one of the factors 
that seems to control the two NaR activities. Under nor-
moxic conditions, the cytoplasmatic nitrate availability (in 
millimolar range [434]) “auto-controls” the nitrite reduc-
tase activity of NaR, because nitrate competitively inhibits 
nitrite reduction (Ki of 50 μM [341, 435]). Simultaneously, 
the available nitrite concentration,16 one to two orders of 
magnitude lower than the respective Km value (≈100 μM 
[341]), does not favour its reduction [341]. On the other 
hand, under hypoxic and acidic conditions, the NaR con-
centration and activity are increased [341, 371, 374, 375, 
392, 436–442]. Simultaneously, nitrite reduction by assimi-
latory NiR is decreased, especially in hypoxic roots, due to 
decreased NAD(P)H generation through the pentose 

15  NaR is highly regulated by complex transcriptional, translational 
and posttranslational mechanisms. The posttranslational regulation 
involves the phosphorylation of a serine residue in the linker region 
between the molybdenum and haem domains [413, 414]. The phos-
phorylation is catalysed by protein kinases, including AMP-activated 
[415] and calcium-dependent kinases [416]. This phosphorylation 
creates a recognition site that recruits a specific regulatory protein 
(one member of the 14-3-3 family), whose binding effectively inhib-
its the enzyme [417–419]. Thus, mutation of the key serine resi-
due to an aspartate results in a plant that has the NaR always active 
[420–422]. In vivo, the NaR inactivation occurs rapidly in darkness or 
when carbon dioxide is removed. This posttranslational regulation is 
essential to lower the NaR activity at night, when photosynthetically 
generated reducing equivalents are not available to reduce nitrite to 
ammonia. In this way, the nocturnal nitrite levels would not increase 
to dangerous concentrations [423].

(24)

NO−

2 + 1/2NADH + 3/2H+
→

· NO + 1/2NAD+
+ H2O.

16  Nitrite is promptly transported to the leaves’ chloroplasts or roots’ 
plastids, where it is rapidly reduced by SNIR, so that it does not accu-
mulate.

phosphate pathway [341, 371, 374, 375, 435, 437, 441, 
443]. As a consequence, when nitrate is the main nitrogen 
source, nitrite accumulates in hypoxic tissues [371–375] 
and its reduction by NaR is progressively increased, lead-
ing to NO formation [341, 370, 371]. The same NaR “activ-
ity switch”, from nitrate reductase to nitrite reductase, is 
observed upon nitrite accumulation triggered by inhibition 
of photosynthetic activity17 [415, 446–448] or by the 
expression of an anti-sense assimilatory NiR with very low 
activity [406, 407, 449].

In summary, when NaR activity is increased to an 
extent that nitrite formation exceeds its rate of consump-
tion by assimilatory NiR and/or nitrite accumulates to an 
extent that NiR could not cope with it, the nitrite reductase 
activity of NaR would become significant and the forma-
tion of NO would be amplified (Fig.  6) [341]. This NaR 

17  The inhibition of the photosynthetic electron flow causes nitrite 
accumulation, because its transport to the chloroplasts depends on the 
pH gradient across the chloroplast envelope (buildup by the photo-
synthetic activity). In addition, its reduction to ammonium is hindered 
in the absence of photosynthetically reduced ferredoxin [470, 471].

NaR
reduced

NaR
oxidised

NADH

●NO
NO2

NAD+

NO3

signalling

assimilation

Fig. 6   Dual activity of plant NaR, nitrate reductase activity and 
nitrite reductase activity
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“activity switch” can be exploited by plant cells to rapidly 
and dynamically signalise and respond to different cellular 
challenges. For example, the NO-forming activity makes 
NaR an ideal cytoplasmatic nitrite sensor to “signalise” the 
presence of dangerous nitrite concentrations: NaR could 
“translate” the nitrite accumulation into an increased NO 
flux, which would be, subsequently, “translated” into a bio-
logical response through an NO-mediated reaction [405].

Clearly, the concentration of NaR-formed NO would 
be very low, predicted to be less than 1 % of the nitrate-
reducing activity, due, mainly, to competitive inhibition by 
nitrate [341, 407]. However, as discussed for mammals, 
the NO concentration should be kept very low, within the 
characteristics of a local signalling molecule. Obviously, 
the plant NaR-dependent NO formation should be tightly 
controlled and it can be argued that the well-known com-
plex NaR regulation serves not only to control the nitrogen 
assimilation, but also to regulate the formation of signalling 
NO.

Other molybdoenzymes  The fact that the four mammalian 
molybdoenzymes, XD/XO, AO, SO and mARC, are able to 
reduce nitrite to NO anticipates similar roles for the homol-
ogous plant enzymes [42]. In fact, in vivo inhibition studies 
with allopurinol have revealed a probable role for XD in the 
NO formation in white lupin roots experiencing phosphate 
deficiency [450]. Moreover, the studies planned to assess 
the in vivo NaR-dependent NO formation through inhibiting 
with tungstate can also be interpreted as pointing to the 
involvement of the other molybdoenzymes, as in all of them 
tungsten can replace the molybdenum atom, producing 
inactive enzymes [451]. The same is true for the cyanide 
inhibition studies, since cyanide should remove the catalyti-
cally essential sulfo group of XD/XO and AO. Therefore, in 
addition to the in vivo studies, the definitive establishment 
of plant XD and/or XO,18 AO, SO and potentially mARC, as 
NO sources, must wait for the kinetic characterisation of the 
nitrite reductase activity of the purified enzymes, which was 
not yet done [456].

Prokaryotes

Nitric oxide in prokaryotes

In prokaryotes, NO formation had for long been thought 
to occur only in denitrification, anaerobic ammonium 

18  The conversion of XD into an XO form is not common to all 
plants: while the enzyme from Arabidopsis thaliana does not have 
the two corresponding cysteine residues [479] involved in the conver-
sion mechanism of the mammalian enzyme, the pea leaf peroxisomal 
enzyme was described to exist mainly (70 %) as an XO form [480–
482].

oxidation and other related respiratory pathways [34–42, 
457]. On those pathways, NO is a regular reaction prod-
uct and substrate, being also a signalling molecule that 
regulates the genes required for its own anabolism/catabo-
lism (a common regulatory strategy in biology). However, 
presently, it is clear that NO is also involved in “non-res-
piratory” pathways, including (1) cytoprotection against 
oxidative stress (in Escherichia coli, Bacillus subtilis, 
Bacillus anthracis, Staphyloccuos aureus) [458–464], (2) 
recovery from radiation-induced damage (Deinococcus 
radiodurans) [465] or (3) the biosynthesis of secondary 
metabolites, namely nitration of tryptophan (Deinococ‑
cus radiodurans) [466] and of the tryptophanyl moiety of 
thaxtomins (Streptomyces turgidiscabies) [369–371, 374, 
375, 404–467].

The “non-respiratory” NO formation can be achieved 
through oxidative and reductive pathways. Several prokary-
otes (such as, Staphylococcus, Geobacillus, Bacillus, Rho‑
dococcus, Streptomyces, Deinococcusus and Natronomonas 
[463, 465, 469–476] ) hold NOS enzymes, homologous to 
the oxygenase domain of the mammalian NOS, which cata-
lyse the aerobic NO formation from arginine, using cellular 
redox equivalents that are not normally committed to NO 
production [467, 470–474, 477–485]. Yet, prokaryotes are 
also able to synthesise NO in an NOS-independent manner, 
through nitrite reduction. Escherichia coli and Salmonella 
enterica are two (long known) examples of bacteria that, 
not having an NOS enzyme, are able to form NO when 
growing under nitrate (anaerobic) conditions [486–491]. 
Also, the cyanobacterium Microcystis aeruginosa [492] 
and Bacillus vireti (whose genome indicates that it car-
ries out dissimilatory nitrite reduction to ammonium) are 
able to generate nitrite-dependent NO. In addition, also the 
organisms that have NOS may rely on nitrite reduction to 
produce NO, as is the case of Streptomyces that can still 
produce a small amount of thaxtomin when the NOS gene 
is deleted [467–469].

Until recently, nitrite-dependent NO formation was 
assumed to arise from the “side” activity of the assimila-
tory sirohaem-containing NiR and dissimilatory c-haem-
containing NiR (enzymes that catalyse nitrite reduction 
to ammonium), because studies with E. coli mutants 
suggested that both enzymes would be largely respon-
sible for NO production [491, 493]. However, no NO 
generation could be observed with purified enzymes; on 
the contrary, both enzymes were proposed to catalyse 
instead NO consumption, as part of detoxification path-
ways [494–496]. Presently, the major source of nitrite-
dependent non-respiratory NO is believed to be the 
molybdenum-containing respiratory NaR. Among other 
sources that remain to be identified, also haemic globins 
[497–502], AOR and other NaR probably contribute to 
this NO formation.
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Molybdenum‑dependent nitrite reduction in prokaryotes

Nitrate reductases  Prokaryotes use nitrate for dissimila-
tory and assimilatory processes and, for those purposes, 
these organisms hold three distinct types of NaR enzymes, 
present in different subcellular locations [503–516]: (1) res-
piratory membrane-bound NaR, associated with the genera-
tion of a proton motive force across the cytoplasmatic mem-
brane; (2) periplasmatic NaR, involved in the generation of 
a proton motive force or acting as an electron sink to elimi-
nate excess of reducing equivalents; and (3) cytoplasmatic 
assimilatory NaR, involved in nitrogen assimilation.19

All the prokaryotic NaR are molybdoenzymes, belong-
ing to the DMSOR family (Fig. 1), which catalyse the two-
electron reduction of nitrate to nitrite (Eq. 8) at their molyb-
denum centres. In spite of catalysing the same reaction 
and having the active site molybdenum atom coordinated 
by four sulfur atoms from two pyranopterin cofactor mol-
ecules (both present as a guanine dinucleotide, as is charac-
teristic of the DMSOR family), the three NaR types display 
significant differences at the remainder of the molybdenum 
coordination sphere. In respiratory membrane-bound NaR, 
the molybdenum atom is further coordinated by the two 
oxygen atoms of one aspartate residue that is coordinated 
in a bidentate fashion (Fig.  2e) [506, 517] or by one ter-
minal oxo group plus one oxygen atom from the aspartate 
residue coordinated in a monodentate mode (Fig. 2f) [507]; 
possibly, the monodentate and bidentate aspartate binding 
modes correspond to oxidised and reduced (by the synchro-
tron beam) proteins, respectively. However, in the periplas-
matic NaR from Desulfovibrio desulfuricans or Cupriavi‑
dus necator, the molybdenum atom is coordinated instead 
by a cysteine sulfur atom plus one terminal sulfo group, 
forming a partial disulfide bond within each other (Fig. 2g) 
[518–521]. The E. coli [522] and Rhodobacter sphaeroides 
periplasmatic NaR, in turn, complete the molybdenum 
coordination with a terminal hydroxyl group plus the 
cysteine sulfur atom (Fig.  2h) [523]. The cytoplasmatic 
assimilatory NaR is the less studied one and, although clear 
structural insight awaits further investigation, it is prob-
able that a cysteine residue coordinates the molybdenum 
atom [524]. Besides the diversity of their active sites, and 
in response to their different biological roles/subcellular 
locations, prokaryotic NaR also display different subunit 
compositions and quaternary structures. The respiratory 
enzyme from E. coli NaRGHI (product of the narG, H 
and I genes) is a dimer of heterotrimers, (αβγ)2, compris-
ing [506, 507, 517]: (1) a cytoplasmatic nitrate-reducing 
NaRG subunit that holds the molybdenum centre and one 

19  It should be noted that the eukaryotic assimilatory cytoplasmatic 
NaR (discussed above), belonging to the SO family, is distinct from 
any type of prokaryotic NaR.

[4Fe–4S] centre; (2) an electron transfer NaRH subunit that 
holds one [3Fe–4S] and three [4Fe–4S] centres; (3) and a 
membrane-bound quinol-oxidising NaRI subunit that holds 
two b-type haems. On the other hand, the D. desulfuricans 
periplasmatic NaR (product of the napA gene) is a mono-
meric enzyme, holding only one [4Fe–4S] centre, besides 
the molybdenum centre [518, 520], while the enzyme from 
C. necator (napA and napB genes) is a dimer harbouring in 
addition two more haems [521].

Several studies have suggested that the non-respiratory 
NO generation is due to the NaR-catalysed nitrite reduction 
[486–490, 492, 525–530], with the majority of NO being 
formed by the respiratory membrane-bound NaR [530–532] 
and a small contribution (less than 3 %) from the periplas-
matic NaR [531, 532]; the potential contribution of the assim-
ilatory cytoplasmatic NaR has not yet been investigated. The 
feasibility of respiratory NaR to catalyse nitrite reduction to 
NO was also demonstrated in a recent theoretical study [384].

NO formation by respiratory NaR would depend on a 
combination of anaerobic, nitrate-sufficiency and nitrite-
accumulating conditions, which would not only promote 
the reaction, but also induce enzyme expression [530, 532, 
533]. Noteworthy, these conditions are similar to the ones 
described above for NO generation by plant NaR. Again in 
a similar way to the plant enzyme, nitrate also competitively 
inhibits the prokaryotic respiratory NaR-catalysed nitrite 
reduction (e.g. S. enterica specificity constant (kcat/Km) 
for nitrite is ≈150 times lower than the nitrate one [532]). 
Nitrite reduction is promoted only when the nitrate concen-
tration decreases and nitrite builds up (Km value for nitrite 
in the millimolar range [532]). In accordance, under nitrate-
limited growth conditions, when both nitrate and nitrite are 
present at low micromolar concentrations and the expres-
sion of respiratory NaR is repressed, NO formation is very 
low [532]. Nevertheless, the extension of the prokaryotic 
NO synthesis seems to be dependent on the organism and, 
probably, on the role of NO in that organism. For example, 
while E. coli NO generation is estimated to be less than 1 % 
of the reduced [487, 531], the S. enterica NO formation can 
account for up to 20 % of the nitrate reduced [532].

The similarities in the nitrite-dependent NO formation 
by plant NaR (probably also fungus [393]) and bacterial 
respiratory NaR are noteworthy. This similar activity sug-
gests that nitrite reduction/NO formation could be a general 
feature of all types of NaR enzymes. In this respect, it is 
intriguing why prokaryotic periplasmatic and assimilatory 
NaR would not be able to catalyse nitrite reduction to NO. 
Although with no theoretical support, it can be argued that 
nitrite reduction would be hampered by the sulfur-rich coor-
dination of the molybdenum centre of periplasmatic NaR 
(Fig. 2g, h versus Fig. 2d, e, f). Undoubtedly, definitive con-
clusions must wait for kinetic and spectroscopic characteri-
sation of the purified enzymes from different sources.
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Aldehyde oxidoreductase  The molybdoenzyme AOR can 
also contribute to the bacterial NO formation. AOR was first 
described by Moura et  al. [534] and is believed to be an 
aldehyde scavenger (Eq. 25), acting in a complex chain of 
electron transfer proteins that links the oxidation of alde-
hydes to the reduction of protons in Desulfovibrio species 
[535]. AOR is an XO family member (Fig. 1), structurally 
similar to the mammalian XO and AO, but harbouring only 
two [2Fe–2S] centres (no FAD) and holding a slightly dif-
ferent molybdenum centre, apparently with an equatorial 
terminal oxo group instead of the sulfo group found in XO 
and AO, and with the pyranopterin cofactor esterified with 
cytidine monophosphate (Fig. 2b) [536–538],

As the mammalian XO and AO enzymes, AOR was 
recently shown to catalyse nitrite reduction to NO [236]. 
The reaction was demonstrated to occur at the molybdenum 
centre employing a similar approach to the one described 
above for mammalian XO/XD and AO, but using ethylene 
glycol to specifically inhibit the AOR molybdenum centre 
[236]. In the presence of ethylene glycol, even though Fe/S 
is not affected (as shown by the presence of their charac-
teristic EPR signals), no NO formation was observed, thus 
demonstrating that nitrite reduction occurs, as anticipated, 
at the molybdenum centre [236].

Once more, the amount of NO produced would be 
dependent on the accumulation of nitrite (Km value in 
the millimolar range [236]) and is estimated to be low 
(kcat/Km ≈ 60 M−1s−1 [236]). In addition, the physiological 
relevance of this bacterial NO formation pathway would 
depend on the competition between nitrite and the expected 
oxidising substrate, which in the AOR case is flavodoxin 
[539]. Overall, the AOR-dependent NO formation would be 
controlled (1) by the availability of nitrite and (2) by the 
cellular redox status that determines the flavodoxin redox 
status, as well as the redox status of other proteins involved 
in the respiratory pathways. This suggests that the AOR-
catalysed NO generation could be involved in cytoprotec-
tion against oxidative stress. It could be hypothesised that 
under normal conditions, the electron transporters involved 
in the respiratory pathways would be reduced and the alde-
hyde-oxidising activity of AOR would be coupled with the 
reduction of protons. But, in a situation of oxidative stress, 
as the proteins began to be oxidised and the respiratory 
pathways affected, nitrite would accumulate (absence of 
“respiratory” reducing equivalents to reduce it) and AOR 
would link aldehyde oxidation to nitrite reduction. The 
NO thus formed could, subsequently, participate in signal-
ling cascades that would eventually protect the organism 
from oxidative damage. Although this hypothesis could 
be debatable, it illustrates how the bacterium could use 

(25)

aldehyde + flavodoxinoxidised → carboxylate + flavodoxinreduced.

the AOR-derived NO to “translate” a situation of oxidative 
stress (a change in the cellular redox status) into a differ-
entiated NO flux that would be, subsequently, “translated” 
into a biological protective (antioxidant) response.

Other molybdoenzymes  The diversity of molybdoen-
zymes described to be able to reduce nitrite suggests that 
other prokaryotic molybdoenzymes could be involved in 
the generation of non-respiratory NO. Contrary to eukary-
otes that possess only a restricted number of molybdoen-
zymes, prokaryotic organisms display a great diversity of 
these metalloenzymes [3–10] and it is worth investigating 
the possible role of other molybdoenzymes in nitrite reduc-
tion, namely those known for their ability to catalyse oxy-
gen atom abstraction reactions and for which the reaction is 
thermodynamically favourable.

Mechanistic strategies for molybdenum‑dependent 
nitrite reduction

Presently, it is clear that several molybdoenzymes, from the 
three families (Fig. 1), can catalyse nitrite reduction to NO. 
This suggests that the chemistry behind the reaction should 
not be much affected by the structural differences between 
the molybdenum centre characteristics of each family and, 
probably, a unifying mechanism can be envisaged. The dif-
ferent amino acid residues present at the substrate-binding 
pocket of each specific enzyme would necessarily modulate 
the nitrite-binding affinity to that active site and stabilise, 
more or less efficiently, the catalytic intermediates, thus, 
affecting the reaction kinetics. Yet, the reactivity or cata-
lytic driving force to abstract one oxygen atom from nitrite 
seems to be conferred by a molybdenum centre with a min-
imum conserved structure being required.

The molecular mechanism of nitrite reduction catalysed 
by XO and related enzymes (XD, AO, AOR) was the first 
to be proposed based on kinetic and EPR spectroscopic 
data [236, 237] and it will be here used to illustrate how 
a molybdenum centre can carry out this reaction (Fig.  7, 
shadowed “inner” mechanism). A unifying mechanism is 
shown in Fig. 7 (“outer” mechanism) considering what we 
propose to be the minimum structure required for a molyb-
denum centre to carry out nitrite reduction, that is, a molyb-
denum with an oxo/hydroxyl/aqua ligand (Mo–OH(n), with 
n = 0,1,2) that is presumed to be exchanged by nitrite.

To catalyse nitrite reduction to NO, the molybdoenzyme 
has to bind nitrite, transfer one electron to it, cleave one of 
the nitrite N–O bonds and, ultimately, release the NO 
formed. To catalyse this reduction, the molybdenum must 
be reduced by a reducing substrate, during a first part of the 
catalytic cycle (oxidation half-reaction), e.g. XO reduction 
by xanthine or plant NaR reduction by NADH 
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[Fig. 7a → b → c; shadowed in grey, it is represented as 
the XO/AO reduction by an aldehyde (a → i → ii → c)]. 
Although nitrite binding could, in principle, occur before 
metal reduction, this is not likely and spectroscopic and 
kinetic data gave no evidence for nitrite interaction with 
oxidised molybdenum20 [236, 237]. Furthermore, nitrite 
binding can take place before or after the release of the oxi-
dised reducing substrate: nitrite can bind to molybdenum 
(1) displacing the bounded oxidised reducing substrate, 
through the formation of a ternary complex, as suggested 
for bovine milk XO and bacterial AOR [236]; or after prod-
uct release, displacing a water molecule, via a “ping-pong” 
kinetic mechanism observed in rat liver XO and AO [237].

Nitrite is suggested to be bound to the molybdenum 
atom through one of its oxygen atoms (a “nitrito” binding 
mode) (Fig.  7c). The Mo6+,5+,4+ chemistry is dominated 
by the formation of oxides and sulfides, but the strong ten-
dency of molybdenum to bind oxo groups is balanced by 
its ability to easily lose a single oxygen atom [540]; this 
chemistry makes the molybdenum cores excellent “oxy-
gen atom exchangers”, as long as the thermodynamics of 

20  If nitrite was to bind to the oxidised molybdenum of XO, then its 
preliminary incubation in the enzyme reaction mixture, before the 
addition of xanthine or aldehyde, would modify the Km value of the 
reducing substrate relatively to add nitrite after the reducing substrate 
addition, which was not observed (parallel to competitive inhibition).

the reactions is favourable [541]. In accordance, substrates 
or products of the XO family enzymes interact with the 
molybdenum atom through an oxygen atom and also nitrate 
interacts with the NaR molybdenum via one oxygen atom 
[3, 23–28]. Therefore, nitrite is proposed to bind only 
to reduced molybdenum and through one of its oxygen 
atoms—this is proposed to be the common and key com-
plex, from which nitrite reduction is initiated in all molyb-
doenzymes (Fig. 7c).

Subsequently, the reduced molybdenum transfers one 
electron to nitrite, NO is formed and the molybdenum is 
oxidised to Mo5+ (yielding a paramagnetic centre that gives 
rise to the characteristic rapid type 1 EPR signal of XO) 
(Fig.  7c  →  e). Spectroscopic EPR assays demonstrated 
unequivocally that the reduced molybdenum centre of XO 
and AOR (enzymes reduced with compounds that interact 
at the molybdenum, Fe/S or the FAD centres) are oxidised 
in the presence of nitrite; assays with an NO-selective elec-
trode showed the simultaneous NO formation, demonstrat-
ing that nitrite is concomitantly oxidised in the process 
[236].

To accomplish NO formation, the molybdenum centre 
has to promote N–O bond cleavage (O–N–O  →  N=O). 
This step (Fig.  7d  →  e) is suggested to be triggered by 
a protonation event. Nitrite reduction by mARC [296], 
plant NaR [341] and bacterial AOR [236] and NaR [489] 
is greatly accelerated under acid conditions and, for 

Fig. 7   Mechanism of nitrite 
reduction to NO catalysed 
by molybdoenzymes. Inside, 
shadowed in grey, the mecha-
nism proposed for XO- and 
AO-catalysed nitrite reduction 
to NO is represented [236, 237]. 
Here, it is emphasised how the 
molybdenum centre is reduced 
by an aldehyde molecule 
(a → i → ii → c). For simplic-
ity, only the dithiolate moiety 
of the pyranopterin cofactor 
is represented. The “outer” 
mechanism aims to illustrate 
how a molybdoenzyme, from 
any of the three families, would 
carry out the reaction. In this 
“outer” mechanism, none of 
the molybdenum ligands were 
represented, except a “labile” 
oxo/hydroxyl/aqua ligand that 
is presumed to be exchanged by 
the nitrite molecule
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mammalian XO and AO, it was shown to involve two pro-
tonation equilibriums with pKa values of 5.9 and 6.8 (XO) 
and 6.0 and 7.0 (AO) [237]. The residues responsible for 
those protonation equilibria have not yet been identified. 
However, a kinetic pH effect study [237] put forward the 
hypothesis that the conserved glutamate residue (Glu1261 of 
bovine milk XO) is essential not only for the hydroxyla-
tion half-reaction (see description under Sect. 2 “Xanthine 
oxidase/dehydrogenase and aldehyde oxidase”), but also 
for nitrite reduction. Accordingly, it was proposed that 
[237]: (1) in the first part of the XO or AO catalytic cycle 
(oxidation half-reaction), the deprotonated glutamate func-
tions as a base and assists the Mo–O− nucleophilic attack 
to the carbon centre to be hydroxylated; (2) during the 
nitrite reduction part (reduction half-reaction), the same 
glutamate residue, but at this point protonated, functions as 
the proton donor required to reduce nitrite. In support of 
this hypothesis, it has to be noted that this glutamate resi-
due has the adequate and best position inside the active site 
pocket to act as the proton donor. Nevertheless, this gluta-
mate “dual” role must wait for experimental and theoretical 
confirmation.

Therefore, it is suggested that once the Mo4+–O–N–O 
complex is formed (Fig. 7c), the reaction proceeds with the 
protonation of the nitrite oxygen atom bound to the molyb-
denum, at the expense of a neighbouring protonated resi-
due, Glu1261 in bovine milk XO (Fig. 7d). This protonation 
step would trigger the electron transfer from the reduced 
molybdenum to the now protonated nitrite, causing the N–
OH bond homolysis and subsequent NO release (Fig. 7e). 
Noteworthy, the previous protonation of nitrite would lead 
to the formation of a more stable “future” metal com-
plex, that is, it would lead to the formation of Mo5+–OH 
(Fig. 7e) instead of a Mo5+–O− complex. The pKa values of 
the molybdenum coordinated ligands change dramatically 
with the oxidation state and the lower oxidation states hold 
highly protonated ligands [542, 543]. For this reason, in the 
XO Mo5+ complex, both terminal oxygen and sulfur atoms 
should end up protonated, and either the protonation event 
occurs before (as suggested) or after the NO release (this 
Mo5+–OH(–SH) complex would produce the characteris-
tic rapid type of EPR signal, with two interacting protons). 
So, if nitrite is protonated before it is converted to NO, the 
“future” metal complex would be in a more stable form 
(Mo5+–OH).

A similar mechanism was proposed for nitrite reduction 
to NO by bacterial copper-containing nitrite reductase 
(CuNiR). This enzyme displays a similar pH dependence, 
with pKa values of 5 and 7, and theoretical calculations 
have suggested that it is the proton transfer from a key 
neighbouring aspartate residue (pKa of 5) that triggers the 
electron transfer from copper to nitrite (proton transfer trig-
gering electron transfer) [544]. Moreover, also in CuNiR, 

the previous nitrite protonation results in the formation of a 
more stable metal complex, Cu–OH instead of Cu–O−. 
Also the choice of the proton donor—if confirmed—seems 
to be similar: one aspartate in CuNiR and the glutamate 
residue in XO. The mechanism by which XO and AO pro-
mote the N–OH bond cleavage is presently not known. 
However, it is tempting to speculate that the strategy fol-
lowed would be analogous to the CuNiR one,21 because 
both metals share the same square-pyramidal geometry and 
have a redox active HOMO on the xy plane (dxy and dx2−y2, 
for molybdenum and copper, respectively [545–547]) [42].

At this stage (Fig.  7e), one molecule of NO is already 
formed and released. However, because the molybdenum 
centre reduction is a two-electron process, another nitrite 
molecule could be reduced. It should be here emphasised 
that, although this is certainly the case forf the XO-/XD- and 
AO-catalysed nitrite reduction [230–238], it is probable that 
in other enzymes, such as SO [316], the reaction stops at this 
step, at Mo5+. The reaction is, then, suggested to proceed with 
the binding of a second nitrite molecule [236, 237]. To gener-
ate a good leaving group, water (Mo5+–OH2), the consump-
tion of one proton is proposed (Fig. 7e → f). Subsequently, 
nitrite displaces the water molecule (Fig. 7f → g) and, after 
a second cycle of nitrite reduction/molybdenum oxidation, 
a second NO molecule is released (Fig. 7g → h → a). The 
molybdenum is now in a 6 + oxidation state, which would 
favour the deprotonation of its ligand(s) [542, 543] and readi-
ness to start another catalytic cycle.

In summary, molybdenum-dependent nitrite reduction 
is suggested to be initiated with the nitrite binding to the 
reduced molybdenum centre, in a “nitrito” binding mode. 
After a protonation event, suggested to be mediated by a 
neighbouring protonated residue, the electron transfer 
from molybdenum to nitrite is triggered, the N–OH bond 
is homolytically cleaved and the NO is promptly released 
(Fig. 7).

The outlined mechanism can be applied to a molybdo-
enzyme of any of the three families, as long as the reduced 
molybdenum centre has an available coordination position 
to bind nitrite (Fig. 7, “outer” mechanism). This requisite 
is fulfilled by all the molybdoenzymes described herein: in 
XO/XD, AO and AOR, nitrite can bind displacing a water 
molecule or the bounded hydroxylated product; in mARC, 
SO and plant NaR, nitrite would displace the molybdenum 
labile hydroxyl group; in bacterial NaR, nitrite would bind 
as the “classic” substrate, nitrate, does, that is, probably via 
a carboxylate shift or sulfur shift [548]. Moreover, the pres-
ence of one or two pyranopterin molecules coordinating the 

21  In spite of the nitrite-binding mode in CuNiR being a "bidentate 
nitrito" mode, it is tempting not to follow all the similarities between 
the molybdenum- and copper-containing enzymes.
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molybdenum atom (XO/SO or DMSOR families) does not 
seem to affect the ability to reduce nitrite.

Particularly interesting is the potential role of the molyb-
denum terminal sulfo group of XO family members. The 
mechanism proposed does not dictate any obvious catalytic 
role for this group in nitrite reduction. However, its pres-
ence was shown to be crucial for the XO-catalysed nitrite 
reduction, as desulfo-XO is not able to form NO [236]. A 
parallel phenomenon can be observed in XO inhibition by 
oxypurinol, where only the reduced sulfo-XO molecules 
are inhibited, in a process where the participation of the 
sulfhydryl group in the formation of the Mo––oxypurinol 
complex is not clearly understood [241]. The understand-
ing of the role of the sulfo group in nitrite reduction is 
further complicated by the fact that AOR, which does not 
seem to have a sulfo group, is able to catalyse NO forma-
tion [236]. Furthermore, mammalian mARC, SO and plant 
NaR, with a cysteine sulfur in place of the terminal sulfo 
group, are able to reduce nitrite. Noteworthy, the cysteine 
sulfur coordination to molybdenum is essential for nitrite 
reduction, at least in mARC, where mutation of cysteine to 
an alanine residue abolishes nitrite reduction/NO forma-
tion [296]. Understanding the role of sulfo, oxo and amino 
acid ligands during molybdenum reduction and oxidation 
is of major importance to have a deeper knowledge of the 
molybdenum mechanistic strategies.

The suggested mechanism also highlights the ability of 
molybdoenzymes to catalyse both the oxygen atom abstrac-
tion and insertion, during the same catalytic cycle—at least in 
some of the enzymes. Several works performed with molyb-
denum model compounds [549–560] and with XO [561, 
562] and DMSOR [563] led Holm and others, in the 1980s 
and 1990s, to propose the “oxotransfer hypothesis” (Fig. 8, 
blue arrows). Accordingly, the molybdoenzymes are com-
monly classified as oxotransferases to emphasise that these 
enzymes catalyse reactions involving substrates and prod-
ucts whose oxygen content differs by one atom (although this 
denomination cannot be generalised to all molybdoenzymes, 
as described in “Introduction: an outlook on molybdoen-
zymes and nitrite reduction”). The nitrite reductase activity 
of XO/XD, AO, AOR [236, 237] and SO [316] pushed that 
hypothesis into a “double oxotransfer hypothesis” (Fig. 8, red 
arrows), where: (1) one first substrate (xanthine, aldehyde or 
sulfite; ‘R’ in Fig. 8), acting as a reducing substrate and oxo 
group acceptor, is “oxygenated” (to yield urate, carboxylate 
or sulfate; ‘RO’), (2) followed by a second substrate (nitrite; 
‘PO’ in Fig.  8) that is “deoxygenated” (to NO; ‘P’) while 
functioning as the oxidising substrate and oxo group donor. 
This description does not intend to mean that it is compulso-
rily the oxygen atom of the second substrate that is inserted 
into the first substrate (because the molybdenum-labile 
hydroxyl group can be easily exchanged with solvent water), 
although it is possible that this is the case.

The schematic representation in Fig. 8 also aims to high-
light that Mo6+ cores can be thought as competent oxo 
group donors, with the Mo4+ cores acting as oxo group 
acceptors, in accordance with the known chemistry of 
Mo6+,5+,4+ [540, 541]. This allow us to suggest that, in the 
presence of two substrates, one oxo donor and the other an 
oxo acceptor, the molybdenum cores can catalyse the oxo 
group transfer between the two, provided that the thermo-
dynamics of the reaction is favourable [541]. That is, the 
“double oxotransfer” reaction should be possible for sub-
strates other than nitrite.

Conclusions

NO is a remarkable multi-task biomolecule. Its formation 
from nitrite constitutes the first committed step in denitri-
fication and is an essential step in anaerobic ammonium 
oxidation and other primitive respiratory pathways, where 
nitrogen compounds are used to derive energy. For those 
respiratory functions, prokaryotes developed “dedicated” 
haem- and copper-containing NiR enzymes.

Mo6+O Mo4+OR

Mo4+OP

PO

RO

R

P

2e-+2H+

Mo4+OH2

RO

H2O2e-+2H+

QO

H2O

Q

Fig. 8   Mono oxotransfer (blue) and double oxotransfer (red) hypoth-
esis. The mono oxotransfer path (blue arrows) is represented with 
reversible reactions to account for “isolated” oxygen atom insertion 
and abstraction (e.g. sulphite oxidation and nitrate reduction reac-
tions). The double oxotransfer path (red arrows) aims to illustrate 
the simultaneous oxygen atom insertion and abstraction that occurs 
during nitrite reduction to NO in the presence of, e.g. xanthine and 
XO, aldehyde and AO or AOR, and sulphite and SO. For simplicity, 
only the oxygen atom directly involved in the oxo transfer reactions 
is depicted
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In mammals, NO is a crucial signalling molecule, 
involved in numerous physiological processes and also in 
some pathological conditions. For its synthesis, mammals 
use two distinct pathways that operate under opposite con-
ditions: (1) an oxidative pathway that is mediated by spe-
cific haemic NOS enzymes and depends on dioxygen, (2) 
and a reductive pathway that is mediated by (apparently) 
several “non-dedicated” NiR, depends on nitrite and is 
favoured under low dioxygen concentrations and acidic 
conditions. With these two pathways, mammalian cells can 
maintain the vital NO formation under the entire dioxygen 
gradient, from normoxia to anoxia. Noteworthy, also plants 
and bacteria use similar nitrite-dependent pathways, medi-
ated by “non-dedicated” NiR, to produce NO. Hence, bio-
logical nitrite reduction to NO can be seen as an ubiqui-
tous universal reaction that was “invented” in a pre-aerobic 
past and has been “reinvented” and employed ever since to 
accomplish different biological functions in virtually all 
forms of life [564].

The “non-dedicated” NiR are metalloproteins, con-
taining not only molybdenum, as the ones here reviewed, 
but also haem and copper [42] that are present in cells 
to accomplish other functions and whose activity is 
“switched” to a nitrite reductase/NO synthase when the cell 
needs to synthesise “non-respiratory” NO. From a chemi-
cal point of view, the cell just takes advantage of the redox 
chemistry of an already available redox system to generate 
NO. From a biological point of view, the activity “switch” 
allows the cell to create regulatory/signalling points from 
which the metabolism can be modulated/adapted to allow 
the cell to properly respond to the event that triggered the 
activity “switch”. The biological use of a single protein to 
accomplish more than one function is not a new concept 
introduced with the nitrite/NO metabolism. This is a well-
recognised and common phenomenon—moonlighting—
with important implications for systems biology and, in 
particular, for human physiology and pathology [565]. In 
the nitrite reduction/NO formation scenario, this phenom-
enon is carried out by several metalloproteins, of different 
physiological functions and cellular localisations, and is 
triggered (at least) by the dioxygen availability and/or cel-
lular redox status.

The use of molybdoenzymes to catalyse nitrite reduction 
to NO is (to us) an obvious choice. The unique chemistry 
of molybdenum makes the molybdenum centres excel-
lent ‘“oxygen atom exchangers” [540, 541], precisely that 
needed to convert nitrite into NO. In fact, molybdoenzymes 
are widely used for oxotransfer reactions, both abstractions 
and insertions, in carbon, sulfur and nitrogen metabolism 
(as described in “Introduction”). Of note, molybdenum is 
the only metal used in the nitrogen biochemical cycle to 
reduce nitrate and oxidise nitrite, being found in the active 
site of four NaR and two nitrite oxidoreductase enzymes 

[42]. In this context, it is surprising that no “dedicated” 
molybdenum-containing nitrite reductase is known to exist.

However, several molybdoenzymes that are associated 
with other cellular functions, with different molybdenum 
centre structures and substrate-binding pockets, are able to 
reduce nitrite to NO. The molecular mechanism to achieve 
nitrite reduction is not expected to be much different within 
molybdoenzymes of the three families: the reduced Mo4+ 
cores are proposed to function as oxo group acceptors, 
binding nitrite and abstracting one oxygen atom.

All this reasoning suggests that virtually all forms of 
life can use a molybdoenzyme, when necessary to produce 
NO for other purposes than respiration. Mammalian XO/
XD, AO, SO, mARC, plant and fungus NaR and bacterial 
NaR and AOR may become the first—already numerous—
examples of such utilisation to be described.
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