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Abstract: Nitric oxide radical (NO) is a signalling
molecule involved in virtually all forms of life. Its
relevance has been leading to the development of differ-
ent analytical methodologies to assess the temporal and
spatial fluxes of NO under the complex biological milieu.
Third-generation electrochemical biosensors are promis-
ing tools for in loco and in vivo NO quantification and,
over the past years, heme proteins and porphyrins have
been used in their design. Since there are some limitations
with the biorecognition element directly adsorbed onto

the electrode surface, nanomaterials (carbon nanotubes,
gold nanoparticles, etc.) and polymers (cellulose, chitosan,
nafion®, polyacrylamide, among others) have been ex-
plored to achieve high kinetics and better biosensor
performance. In this review, a broad overview of the field
of electrochemical third-generation biosensors for NO
electroanalysis is presented, discussing their main charac-
teristics and aiming new outlooks and advances in this
field.
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1 Introduction

Nitric oxide radical (*°NO, herein abbreviated as NO) is an
ubiquitous molecule, involved in numerous biological
processes in virtually all forms of life, from bacteria to
humans. NO is known for long as key player of the
biogeochemical cycle of nitrogen (Figure 1), participating
in different prokaryotic pathways crucial to the planet
“recycling” of nitrogen and, consequently, to life on Earth
[1]. In fact, NO may have been the first deep electron sink
on Earth, before the emergence of dioxygen [2,3]. Even
today, the formation of the N—-N bond, essential to
ultimately produce dinitrogen and, thus, accomplish the
complete biological “recycling” of nitrogen, is only
possible with the oxidizing power of NO (as far as is
known) [1].

NO participates in two “classic” prokaryotic “respira-
tory” pathways, where nitrogen compounds are used as
electron acceptors to derive energy: denitrification and
anaerobic ammonium oxidation (AnAmmOx). In denitri-
fication [4] (Figure 1, blue arrows), nitrate is anaerobically
reduced to dinitrogen, through four sequential reactions,
catalysed by specific metalloenzymes. In this pathway, NO
is formed from nitrite, in a reaction catalysed by nitrite
reductases, and is converted into nitrous oxide by a nitric
oxide reductase. In AnAmmOx [5] (Figurel, grey
arrows), ammonium is anaerobically oxidised to dinitro-
gen in a two steps pathway, where ammonium is first
oxidised by NO to yield hydrazine, in a reaction catalysed
by the hydrazine synthase; the necessary NO is formed via
nitrite reduction by nitrite reductases. In addition to these
well-known “classic” pathways, several new processes are
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being identified, revealing the great biological versatility
of NO [1]. Particularly interesting is the novel “denitrifi-
cation/intra-aerobic methane oxidation” pathway that
links the nitrogen and carbon cycles (Figure 1, violet
arrows) [6]. In this puzzling pathway, strictly anaerobic
organisms use NO to produce their own (endogenous)
dioxygen supply to oxidise methane and other alkanes,
while simultaneously produce dinitrogen.

More recently, it became clear that NO is not just a
“prokaryotic molecule” or an environmental issue (asso-
ciated with the depletion of the ozone layer). In 1987, NO
was identified as the elusive endothelium-derived relaxing
factor that regulates blood vessel vasodilation in mammals
cardiovascular system [7-10], a discovery that was latter
(1998) distinguished with the Nobel Prize in Physiology or
Medicine, awarded to Furchgott, Ignarro and Murad.
Presently, it is clear that the signaling functions of NO are
not restricted to mammals, but are ubiquitous in virtually
all forms of life, from bacteria to humans.
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In humans, NO controls a plethora of functions, not
only the well-known vasodilation (through the activation
of guanylate cyclase), but also neurotransmission, immune
response, platelet aggregation, apoptosis and gene expres-
sion, and mediates a wide range of both anti-tumor and
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anti-microbial activities [11]. Consequently, NO is in-
volved in several pathological conditions, either when it is
not produced in sufficient concentrations, as is the case of
hypertension [12,13], impotence [14,15], arteriosclerosis
[16,17] or susceptibility to infection [18], or when it is
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Fig. 1. Overview of the biochemical cycle of nitrogen. Denitrifica-
tion, blue arrows; AnAmmOX, grey arrows; “denitrification/intra-
aerobic methane oxidation”, violet arrows; dinitrogen fixation,
yellow arrow; assimilatory ammonification, orange arrows; “or-
ganic nitrogen pool”, pink arrows; dissimilatory nitrate reduction
to ammonium, green arrows; nitrification and ComAmmOXx,
black arrows. The pathways where NO participates are high-
lighted with thicker lines (denitrification, AnAmmOx and “de-
nitrification/intra-aerobic methane oxidation”). Adapted from
reference [1] with permission.

produced in excess, as during chronic inflammation
[20,21], septic shock syndrome [22], diabetes [23], multi-
ple sclerosis [24] or Parkinson’s and Alzheimer’s diseases
[25]. In humans, three tissue-specific isoforms of NO
synthases (NOS), neuronal, endothelial and inducible
NOQOS, catalyze the formation of NO from L-Arginine and
dioxygen [26-28]. In addition, under hypoxic or anoxic
conditions, when the dioxygen-dependent NOS activity is
hampered, also nitrite is an important source of signalling
NO [29-33]. The nitrite-dependent formation of NO is
catalyzed by “non-dedicated” nitrite reductases, such as
hemoglobin, myoglobin, xanthine oxidase and other
metalloproteins present in the cells to carry out other
functions.

This array of biological functions makes the metabo-
lism of NO extremely important for the scientific
community that pursuits new and old pathways of the
nitrogen biogeochemical cycle, some of them linked with
worrying environmental issues, as well as, new and old
pathways of signaling NO and the associated physiological
and pathological roles of NO. Yet, the advancement of
our knowledge of the NO biology depends on methods
capable of unequivocally identify it and precisely quantify
it.

Measuring NO under biological conditions is not an
easy task. The NO fast diffusion (k~10""-10" mol'Ls™)
and high reactivity with dioxygen (k~10°-10" mol'Ls™"),
superoxide anion (k~10°-10"mol™"Ls") and other radi-
cals, as well as, with metalloproteins (mostly hemes and
labile [4Fe—4S] centres) cysteine residues and other thiols,
determine that NO has a very short half-life (typically
within the seconds range), which greatly hinders the
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precise and accurate NO quantification [11,27,34]. To
further complicate the subject, the range of NO concen-
trations is very wide; for example, in humans, the NO
physiological concentration can range from 107 to
107"M and reach micromolar levels under pathological
conditions and immune responses [11,27,34]. Moreover,
the NO studies often require its detection in very complex
systems, containing other potentially interfering species
present in much higher concentrations than NO itself,
such as nitrite, nitrate, dopamine or ascorbate. NO
research has been increasing in the last years and this
boost demands the development of analytical techniques
capable of precisely and accurately quantify NO levels
and rates of production. Moreover, several methodologies
have been developed to measure NO: (i) indirect
detection, quantifying cyclic guanosine monophosphate
(cGMP), a biologically active second messenger [35,36],
or by the NO oxidation products, using fluorescent probes
[37-42] or the Griess reaction [43-48]; (ii) direct detec-
tion, exploring different properties of NO, such as its
radical nature, using electron paramagnetic resonance
spectroscopy [41,49-51], its reactivity towards some
metalloproteins (e.g., reaction with reduced hemoglobin
and methemoglobin formation) or its ability to react with
ozone to produce light, using chemiluminescence detec-
tion [52-54]. While most of these approaches display high
sensitivity and selectivity for NO, all present specific
limitations, with one main issue being the spatial reso-
lution in vivo, which cannot be obtained with a “bulk”
method.

2 Electrochemical Detection of NO

Electrochemistry has high potential to measure NO in
biological fluids because it can detect NO in real time and
in situ [55]. In addition, NO biosensors can be in the
perfect size (small enough) to be used in many in vivo
applications. According to the International Union of
Pure and Applied Chemistry (IUPAC), sensors contain
two basic functional units: a receptor and a transducer
part. Sensors are normally designed to operate under
well-defined conditions for specified analytes in specific
samples [56]. Biosensors may be differentiated from
sensors due to the biorecognition elements used in the
receptor, which may be enzymes, antibodies, tissues, cells,
organelles, membranes, among others [57,58]. Depending
on the type of signal transduced, the classification of
biosensors can be electrochemical, optical, piezoelectric,
thermal/calorimetric [59]. Electrochemical biosensors of-
fer several advantages, such as excellent detection limits,
high specificity, easy miniaturization, portability, and
ability to be used in turbid biofluids and in extremely low
analyte volumes [60,61]. However, there may be some
drawbacks to perform reliable electrochemical measure-
ments in complex biological systems, such as lack of
robustness, biofouling with surface electrode blockage,
lack of stability, and/or deactivation of enzymatic activity
[62,63]. Still, the evolution of first- to third-generation
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electrochemical biosensors has helped to simplify and
enhance the transduction pathway [64]. In third-genera-
tion biosensors, the electrons involved in the redox
processes are transferred directly between the enzyme or
redox protein and the electrode surface to generate the
response signal; no redox mediators are used oppositely to
the second-generation electrochemical biosensors [65].
Moreover, the use of third-generation biosensors can
allow to understand the mechanisms regarding several
electron transfer processes [66]. Electrochemical reduc-
tion (on bare or modified electrodes) may be employed
for NO detection studies but it is often difficult due to
interference from oxygen, whose reduction happens faster
than that of NO. As a result, the majority of electro-
chemical NO biosensors are based on the oxidation of NO
to nitrite instead of NO reduction [67-69], with the
exception of those based on heme proteins and porphyr-
ins.

Biosensors of third-generation for NO detection were
architected with hemoglobin (Hb), myoglobin (Mb) and
cytochrome ¢ (cyt ¢) proteins, peroxidase, as well as with
porphyrins. This study is dedicated to review, discuss and
compare the main characteristics of these biosensors,
aiming new outlooks and advances in this field. The
scientific literature available on NO reduction using
electrochemical biosensors was reviewed from 1997 till
2017 and the following keywords were crossed in
Thomson Reuters — Web of Science: direct electron
transfer; third-generation biosensors; hemoglobin; myo-
globin; cytochrome c; peroxidase; porphyrins; nitric oxide
detection.

3 Direct Electron Transfer Behavior of Heme
Proteins and Porphyrins in Third-generation
Biosensors

The main advantages of these direct electron transfer
(DET) systems are their simpler design and the potential
to provide interference free detection [70]. However, one
of the main problem in DET biosensors development may
be the inaccessibility of the redox center of most redox
enzymes and proteins, covered by several peptides, which
may hamper the electron flow between the enzyme or
protein and the electrode [71]. To promote DET, nano-
materials and polymers have been extensively used for
electrode surface modification (Table 1). Hb, Mb and cyt ¢
proteins, peroxidase, and porphyrins have been all immo-
bilized onto suitable physical transducers. The available
immobilization techniques are adsorption on thin films
(physical; electrostatic — layer-by-layer, electrochemical
doping, pre-immobilization on ion-exchange beads; reten-
tion in a lipidic microenvironment), entrapment (electro-
polymerization; amphiphilic network; photopolimeriza-
tion; sol-gel process; polysaccharide-based gel; carbon
paste; clay-modified electrodes), cross-linking with natural
or synthetic molecules (glutaraldehyde or carbodiimide),
direct attachment by ionic or covalent bonding (activation
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of carboxylic or amino groups) and affinity (biotin-
(strept)avidin; metal-ion chelator; lectin-carbohydrate)
[72]. The selected strategy has a major impact on
biosensor performance (sensitivity, reproducibility and
response time) and stability. The biorecognition element
structure and activity should remain unchanged after
immobilization (to maximize sensitivity), and it should
intimately and strongly link to the transducer surface (to
maximize stability). In addition, the substrate diffusion
should take place easily. The employed approaches for
preparation of third-generation biosensors for NO detec-
tion (Table 1) are mainly based on adsorption (physical
[73,74] and layer-by-layer [75-81]), entrapment [82-98] or
covalent bonding [99-102]. Each method possesses its
particular benefits and disadvantages. Adsorption have
been mostly used due to its simplicity and because loss of
activity is not significant [73-81]. However, leaching of
the biocomponent has been reported as a problem due to
the weak Van der Waal's forces and electrostatic or
hydrophobic interactions established [103,104]. Entrap-
ment maintains the bioactivity and has been contributing
to reduce heme proteins and porphyrins leakage [82-98],
but diffusional limitations may happen while high bioele-
ment concentrations are required for electropolymeriza-
tion [82-98]. Regarding covalent attachment, its predom-
inant advantages are the reached high stability (leaching
of the bioelement is not significant) and the absence of
mass transfer limitations, although activity loss may be
significant due to conformational changes of even denatu-
ration of the enzyme or protein [72]. Also, toxic reagents
(such as glutaraldehyde) have been commonly used for
covalent coupling.

The choice of the working electrode is also crucial and
several aspects, such as appropriate potential window,
easy surface renewal, fast redox processes, reproducibility,
easy miniaturization, low cost, the immobilized molecule
and the substrate, should be considered. The privileged
working electrodes have been glassy carbon (41%)
(GCE) and graphite pyrolytic (PGE) (31%) electrodes,
although gold electrodes (AuE) (9%), powder micro-
electrode (PME) [86], carbon paste electrodes (CPE) [74],
SnO, and TiO, electrodes [73], platinum (Pt) micro-
electrode [100] and carbon fiber microelectrodes (CFM)
[78,101] have been also explored but in a much lesser
extend (Table 1).

3.1 Hemoglobin

Hb is a hemic protein (containing four electroactive iron
hemes — heme b groups) with a high molecular weight
(64500 g/mol) being a molecular vehicle of carbon dioxide
and oxygen in red blood cells and also regulating the
blood pH [105]. Hb is a molecule standard in bioelec-
trochemical studies due to its well-documented structure,
known redox behavior in the vascular system of animals
and because it is commercially available at moderated
cost. Moreover, its heme b center catalyzes the NO
reduction in biological systems. Therefore, there has been
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a huge interest to use Hb in NO biosensors development
(around 59% of the total number of studies; Table 1).

The working electrode material and the type of surface
modification used in each biosensor contributed to
changes in the Hb formal potential (E“’- formal potential,
attained as the midpoint of reduction and oxidation
potentials). According to the Table 1, a large E* window
has been reported for modified GCE, ranging from
—0.409 [88] and —0.190 [98] V vs. SCE. A pair of well-
defined redox peaks at —0.384 V (anodic peak) and
—0.434 V (cathodic peak), corresponding to the lowest
reported E*, were observed for a GCE modified by drop
cast of a mixture of Hb with two polymers, the poly(o-
nitro-benzyl-methacrylate-co-methyl-methacrylate-co-
poly(ethylene-glycol)methacrylate) (PNMP) and the pol-
y(glycidyl methacrylate) (PGMA) [88]. Based on the
attained results, the direct electrochemistry of Hb when
entrapped in the prepared polymeric matrix film was
considered a quasi-reversible process with Hb exchanging
electrons directly (electron transfer rate constant (k)=
1.03+£0.05s") with the electrode. Authors concluded that
the used of an amphiphilic linear block copolymer can
form an ordered biomembrane-like film, which provided
an environment similar to that of redox proteins in native
systems [88]. A highly sensitive NO biosensor based on
GCE modification with a Hb-chitosan (CS)-graphene
(GR)-hexadecyltrimethylammonium bromide (CTAB)
nanomatrix with the highest formal potential of —0.190 V
vs. SCE was presented by Wen et al. [98]. CS, a natural
biopolymer, showed good biocompatibility, nontoxicity,
excellent film forming ability and high mechanical
strength to immobilize proteins and also to act as
dispersant for nanomaterials [98,106]. The interesting
inherent properties of the CTAB surfactant were used to
obtain a good dispersion of GR without particles
aggregation. The composite film was deposited in a GCE
and a combination of electrostatically and adsorptive
interactions occurred, which improved the stability, selec-
tivity and detectability making the developed approach
suitable to use in amperometric devices. The reached very
favorable electron transfer constant (k,=60.3s7') was
attributed to the fast electricity conduction and high
effective surface area of GR offering electron-conducting
tunnels that helped in electron transfer of the electro-
active species [98]. In contrast to the considerable
utilization of GCE, only one study reported the usage of
Au electrodes due to their limited application for reduc-
tion processes detection [107]. Gu et al. [107] reported an
E® of —0.051V vs. SCE for an Au working electrode
modified with gold particles (AuPs) and cysteamine (Cys)
in a Hb-AuPs-Cys system. A pair of quasi-reversible redox
peaks was also observed, with a significantly different
cathodic (E,.=—0.130V vs. SCE) and anodic (E, =
0.029V vs. SCE) peak potentials due to the different
transducer used, when compared with those reported for
modified GCE [107]. In addition, for modified PGE, a
similar E” range (—0.358 to —0.183 V vs. SCE) as the one
indicated for modified GCE may be observed corroborat-
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ing the analogous characteristics of these two types of
electrodes. PME and CPE were used only in one study.
Xu et al. [74] developed a novel biosensor based on Hb
adsorbed on gold colloids modified carbon paste electrode
(Hb/Au-CPE) with a E” of —0.224 V vs. SCE [74]. Guo
et al. [86] reported -0.351 V vs. SCE for a modified PME
(Hb/didodecyldimethylammonium bromide (DDAB)/
PME i.e. a similar E as some GCE and PGE based
transducers [74,82,83,89,95,96]. PME can be a promising
electrode because it can contribute to decrease interfer-
ences from capacitive currents and uncompensated iR
[108].

3.2 Myoglobin

Mb is a small water-soluble cytoplasmatic hemoprotein
(consisting of a single polypeptide chain of 154 amino
acids) with a similar structure of Hb, which has been also
used in third-generation biosensors for NO analysis
(Table 1). Mb has an available sixth coordination position
at the heme iron, which makes it attractive for the
detection of small coordinating species such NO mole-
cules [109]. However, its heme site is much more blocked
when compared to other heme groups of other proteins,
such as in cytc, being the main disadvantage of this
protein for electrochemical studies [110]. Thus, only three
studies were found concerning the use of Mb for NO
electroanalysis (Table 1); comparison between Hb and Mb
electrochemical behavior was made in two of the reported
works [86,96]. In the work of Zhang etal. [111],
MWCNTs were used to enhance DET between Mb and
the electrode conferring excellent electrical conductivity
and chemical stability. The reported E* was the highest,
—0.128 V vs. SCE, while for the other reported trans-
ducers based on PGE [96] and PME [86], values ranged
from —0.350 and —0.212V vs. SCE, respectively. The
formal potential and the structural conformation of Hb
and Mb are similar and it was efficiently proved that both
can be used for DET and for the design of NO biosensors.

3.3 Cytochrome ¢

Cytc is a stable protein containing covalently bonded
heme ¢ groups with short-lived and transient response on
a metal surface [80]. This protein plays an important role
as electron transport in respiratory mitochondria chain,
where cytc reductase functions as electron donor that
delivers the electrons to cytc oxidase — the electron
acceptor. Cyt ¢ shows peroxidase activity and can also
catalyze several redox reactions such as hydroxylation and
aromatic oxidation [112]. The E*" obtained in cyt c-based
biosensors for NO detection were in the large range of
—0.226 to 0.244V vs. SCE. This huge window can be
explained by microenvironment changes, namely due to
the protein immobilization in different matrices and
transducers. Cytc works in several regions of the
mitochondria and the cell, and changes in its environment
may affect its redox characteristics. It is recognized that if
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a protein is not at the right potential in an electron
transport chain, the consecutive steps may be disturbed
affecting the whole process and promoting several reac-
tions that could be undesirable [113]. Takahashi and de
Torresi [102] reported the lowest value for the cytc E®,
—0.226 V vs. SCE, using GCE modified with poly(5-NH,-
1-NAP) (PAN) and cytc covalently immobilized by
cyanuric chloride (CC). The bridge component, CC,
reacted with —OH groups of PAN and with the amino
groups of the protein, attaching both by covalent bonds,
revealing that the mechanism was not completely rever-
sible and that the process at the surface electrode was not
diffusional controlled, as expected for this type of
immobilization system. The peak separation was larger
than the value obtained from the theoretical electron
transfer (Fe(III)/Fe(II) couple), probably because of the
distance from heme of cyt ¢ to the electrode surface [102].
On the other hand, a completely different E*" of 0.068 V
vs. SCE was attained by Chen etal. [76] for the cytc
immobilized with polyacrylamide (PAM) and sodium
dodecyl sulfate (SDS) forming a cyt ¢c-SDS-PAM system
used in the same working electrode (GCE). A quasi-
reversible redox process was observed while no signals
were detected at the other electrodes without the
immobilized protein. Also, the attained Nyquist plots and
Randles circuit that fitted the impedance data showed
that PAM, SDS and cyt ¢ were efficiently deposited on the
bare GCE surface forming different kinetic barriers
(electron transfer resistance (Rct) of 240 Q, 600 Q and
1200 Q for GCE, SDS/PAM/GCE and cyt c/SDS/PAM/
GCE, respectively) [76]. So, the selected combination of
polymer-surfactant, i.e. PAM-SDS, used as GCE surface
modifiers allowed to form stable films with ordered
multibilayer structure in aqueous solutions, indicating that
DET between the cyt ¢ heme protein and the SDS-PAM/
GCE was improved [76]. The highest value of all
previously reported E”', i.e. 0.244 V vs. SCE, was detected
for Pt microelectrodes modified with two different poly-
mers (poly(terthiophene-3-carboxylic acid) (PTTCA) and
nafion®) [100]. The potential improvement was achieved
by the use of microelectrodes due to the possibility to
improve the signal-to-noise ratio and the ability to
perform electrochemical measurements in highly resistive
solutions. Less common working electrodes, namely AuE
and SnO,/TiO,, were used to immobilized cyt ¢ originating
near zero E* of —0.088 to —0.021 V [77,79] and 0.050 V
[73] vs. SCE, respectively.

3.4 Peroxidase

Peroxidase enzymes are redox glycoproteins presenting a
Fe(III) protoporphyrin IX prosthetic group as the active
site in enzyme catalyzed reactions [114]. Horseradish
peroxidase (HRP) is the most studied of all peroxidase
enzymes in amperometric biosensors using mostly media-
tors bound to the GCE surface to enhance the rate of
electron transfer [106,115]. Still, Abdelwahab et al. [99]
tested another class of peroxidase enzymes, the micro-
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peroxidase (MP), in unmediated biosensors for NO
detection and quantification. This simple and small
enzyme was obtained by tryptic digestion of horse heart
cytc [99]. Abdelwahab etal. [99] tried to reduce the
interferences of H,0, and O,  during electroanalysis by
co-immobilizing a multi-enzymes system with catalase
(CAS) and superoxide dismutase (SOD), besides MP;
—0.300 V vs. SCE was reported for E* of MP. Authors
used carbon nanomaterials (MWCNTSs), gold nanopar-
ticles (AuNPs) and poly-5,2':5",2"-terthiophene-3'-carbox-
ylic acid (PTTCA) forming a MWCNTs-PTTCA-AuNPs
nanocomposite to modify the GCE surface to offer a huge
surface area for immobilizing the selected enzymes (CAS,
SOD and MP) through covalent bond formation [99].

3.5 Hemin and other Porphyrins

Porphyrins are heterocyclic organic compounds that
contain extensive m-system and form stable complexes
with several metal ions [116]. Porphyrins can mimic the
enzymatic or prosthetic centers and can also be used for
NO detection and quantification. However, the electro-
catalytic reduction of NO by adsorbed inorganic com-
plexes such as porphyrins has been less considered than
with heme proteins, but it is an interesting alternative
approach considering the good affinity of NO to transition
metals [117].

Hemin groups (a specific class of porphyrin) are
known to adsorb rapidly on PGE surfaces forming an
ordered structure. They are relatively inexpensive and
have good stability in solution [118]. Other chemical
groups, such as metalloporphyrins have been also tested in
NO biosensors; formal potentials in the range of —0.338
[101] to —0.130 [119,120] V vs. SCE have been reported.
A cathodic and an anodic peak were attributed to the
Fe(III)/Fe(I) couple of hemin at —0.370+£0.012 V and
—0.305+0.019 V vs. SCE, respectively, corresponding to
the lowest E” of —0.338V vs. SCE at an hemin-
MWCNTs-chitosan using carbon fiber microelectrodes
(CFM) [101]. The iron(IIT) meso-tetrakis(N-methylpyridi-
nium-4-yl)porphyrin (Fe(4-TMPyP) was used to prepare a
novel Fe(4-TMPyP) biosensor with Fe(4-TMPyP) immo-
bilized with DNA and poly(acrylamide-co-diallyldimeth-
ylammonium chloride (PADDA), forming a DNA-bound-
porphyrin complex more stable and biocompatible. The
developed complex showed the highest transfer rate (k,=
3.12s7") and consequently the highest E* of —0.130 V vs.
SCE [119,120]. The peak potentials of the Fe(III)/Fe(1I)
couple are in agreement with the other related studies
(Table 1) supporting the DET of porphyrins [78,117].

4 Nitric Oxide Catalytic Reduction on Heme
Proteins and Porphyrins Based Third-generation
Biosensors

The evaluation of the reported biosensors characteristics
has been made using different electrochemical techniques.
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Cyclic voltammetry (CV), square wave voltammetry
(SWV), differential pulse voltammetry (DPV), amperom-
etry and electrochemical impedance spectroscopy (EIS)
are the most usual methods for NO reduction studies
(Table 1).

4.1 Proposed Mechanisms and Catalytic Potential of
Nitric Oxide

The different catalytic potentials (E,. defined as the mid-
point potential of the electrocatalytic wave [121]; Fig-
ure 2) obtained for NO reduction are presented in
Table 2. A few works reported and discussed the possible
mechanism of NO with heme-proteins, porphyrins and
enzymes.

Catahyst

ST

MO weith cabalyst

E (V)

Fig. 2. Illustration of the determination of the catalytic potential
(Eca) of NO.

A NO E_, between —0.880V [97] and —0.580 V vs.
SCE [85] was observed for Hb based-biosensors. Fan et al.
[82] obtained a value of E, of —0.684 V vs. SCE for Hb-
DNA/PGE and proposed as possible mechanism (Eq. (1)
and (2)):

Hb heme Fe (II) + NO — Hb heme Fe (II)-NO (1)

Hb heme Fe (II)-NO + NO +2H" +2¢~ —

Hb heme Fe (III) + N,O0 + H,O @

Although He and Zhu [87] suggested the same
mechanism, a different E_, of —0.834V vs. SCE was
reported due to the different platform used for Hb
immobilization (Hb-PAM-CPB/GCE). The use of water-
absorbent polymers and surfactants such as PAM and
cetylpyridinium bromide (CPB), respectively, could have
contributed to the diminution of NO peak potential. It
should be also mentioned that the lowest value of
—0.880 V vs. SCE was also detected using a GCE
modified with Hb entrapped in a cationic gemini surfac-
tant film (Hb-C,,-C;(OH)-C,,/GCE) [97]. The incorpora-
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tion of MWCNTs in the immobilization strategy did not
affect the NO mechanism but helped to increase the
electron transfer rate and consequently the reported NO
potential are more positive [91].

An analogous catalytic mechanism for NO reduction
(Eq. (3) to Eq. (7)) was suggested for Mb entrapped in
pluronic films [triblock copolymer poly(ethylene oxide)100-
poly(propylene oxide)65-poly(ethylene oxide)100)] (E., of
—0.800 V vs. SCE) [96]. Due to the interesting characteristics
of pluronic films, such as the possibility to be used for
controlled drug delivery, dispersion, and stabilization
(among others), the selected polymers were used as a new
type of materials that form films to successfully stabilize
heme proteins at the PGE surface [96]. In the proposed
mechanism, HNO, is firstly formed (Eq. (3)), being sub-
sequently disproportionated to NO and NO;~ (Eq. (4)).
Then, the reaction showed in Eq. (5) was reported to occur
at a formal potential of —0.350 V vs. SCE while —0.800 V vs.
SCE was determined for the NO catalytic potential
(Eq. (6)). In this reaction, hemer,y, from Mb is combined
with NO, forming the ferrous nitrosyl intermediate complex
of hemep,q;-INO. This complex is then reduced at the
transducer surface (Eq. (7)) and releases hemer., again,
forming a catalytic cycle. While the ultimate product of
Eq. (7) is not yet clearly established, it is probably N,O, as
the literature suggested for other protein and enzymatic
systems [96].

NO, +H' — HNO, 3)
3HNO, — 2NO + NO,™ + H* + H,0 (4)
hemerqmy + H" + e~ — hemeg. (5)
hemer, ;) + NO — hemer g — NO (6)

hemer,q;—NO + H" + e~ — hemeg,y, + product + H,O
(7)

De Groot et al. [117] described a different mechanism
for porphyrins, namely the hemin-NO reaction, which led
to the formation of NH,OH with an observed electro-
chemical followed by chemical reaction (EC) mechanism
combined with proton transfer (Tafel slope of 62 mV/dec
and pH dependence of —42 mV/pH). Some factors could
have influenced these two different pathways including
the mode of the electron transfer to the heme group, the
residues surrounding the heme groups and the pH of the
solution and more important the way in which a second
NO bind to the active site [117]. In porphyrin based-
biosensors, a E_, from —0.776 to —0.566 V vs. SCE was
reported for metalloporphyrins (Mn and Co)-PP-
TBABF,/CFM [78] and Fe(4-TMPyP)-DNA-PADDA/
PGE [119,120], respectively. Fe(4-TMPyP) influenced
positively the electron transfer rate and the detected value
was, in this way, more positive.

Cyt ¢ based biosensors using modification with poly-
merized poly (1-vinyl-3-ethyl imidazolium)bromide (PIL)-
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GR, PTTCA-nafion®, DNA, SDS-PAM on PGE, Pt
microelectrode or GCE showed similar E, values of
—0.686, —0.656, —0.606, and —0.606 V vs. SCE for cyt c-
PIL-GR/PGE [75], cytc-PTTCA-nafion®/Pt microelec-
trode [100], cyt c-DNA/GCE [80] and cyt ¢-SDS-PAM/
GCE [76], respectively, maybe due to the similar devel-
oped microenvironment. No NO potential was indicated
for different working electrodes, such as AuE and SnO, or
TiO, [73,77,79]. Still, a mechanism that consisted on NO
binding on the ferrous derivative of Hb [Hb Fe(Il) or
deoxy Hb], forming a stable nitrosyl Hb species was
proposed [73]. Deoxy Hb reacted with NO with a
stoichiometry of one molecule of NO per heme (Hb
Fe(IT) + NO—Hb Fe(II)-NO) as it was observed for Hb
and Mb-based biosensors. The reaction requires anaerobic
conditions because NO is quickly oxidized by O,. Hb is
normally in its oxidized state (Hb Fe(IIl)), thus NO
binding demands the previous reduction of Hb to Hb
Fe(1I) [73].

In biosensors constructed with MP, a comparable NO
reduction peak to those perceived using Hb, Mb, cyt ¢ and
porphyrin modified electrodes was observed at —0.706 V
vs. SCE [99]. However, the mechanism of the reaction is
not clear.

4.2 Kinetic Parameters

Information on the kinetics of the reaction at the
electrode surface is of great importance to understand the
electron transfer processes and assess the success of
protein or enzyme immobilization on the different surface
electrodes. Therefore, the effect of scan rates on the redox
peak currents of the characterized heme proteins and
porphyrins has been examined in detail [73,76,93,97,122];
linear relationships have been reported suggesting that
the involved reactions corresponded to surface-controlled
processes.

Based on equation (8), it is possible to calculate the
surface concentration of the electroactive species (7%)
[60]:

Q = nFAT* (8)

Where Q is the charge involved in the reaction; A is
the geometric area of the working electrode; n is the
number of the electron transferred; F is the Faraday
constant. The majority of studies presented t* of Hb, Mb,
cyt ¢, peroxidase and porphyrins in the range of 10—
107> mol/cm? (Table 1). However, there are some excep-
tions [80,86]. The t* values reported by Guo et al. [86] of
2.83x10* mol/cm® for Hb and 9.94 x 10~® mol/cm® for Mb
are much higher (100-10000) than those reached in the
other studies possibly due to the large reported “real
surface area/apparent electrode area” ratio of the DDAB-
PME. Also, Liu et al. [80] reported the biggest value of
surface concentration of 2.46x10°°mol/cm* (10000
1000000 times higher when compared with most of the
data; Table 1) for cyt c-DNA/GCE biosensor that can

www.electroanalysis.wiley-vch.de

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ELECTROANALYSIS

possibly be explained by the formation of multilayers of
cyt ¢ together with DNA chain at the electrode surface.
Despite these high results, the usual coverage of electro-
active species may still be considered low (107-
107" mol/cm?), if very elevated sensitivity is desired,
because all the active sites of the heme-proteins and
porphyrins must be close to the electrode surface and with
the proper orientation to promote an efficient electron
transfer [123].

The k,, corresponding to the easiness that the elec-
tronic transfer occurs between the biorecognition element
and the electrode surface, was also reported for NO
biosensors (Table 1). This constant was estimated based
on Laviron method according to the equation (9) if AE, is
greater than 200/n mV and equation (10) if the AE, is
lower than 200/nmV (where AE,=E,-E,; n is the
number of the electrons transferred; o is the charge
transfer coefficient; R is the ideal gas constant; T is
temperature; F is Faraday constant; v is the scan rate and
m is a parameter related to peak-to-peak separation)
[124,125].

logk, = alog (1—a) + (1—a)log a—log (RT/nFv)—

9)
(1—a) oFAE,/(2.3RT)

k, = mnFv/RT (10)

The large k, range for Hb protein was verified to be
0.10 [93] to 60.3 s7' [98] (Table 1). Wen at al. [98] obtained
the highest value of the electron transfer rate of 60.3 s™' in
a Hb-CS-GR-CTAB/GCE biosensor. These authors de-
scribed that the promotion of Hb electron transfer might
be mainly due to the three-dimensional architecture of
CTAB-GR film and the synergetic behavior of CS with
GR. CS also helped to maintain the desirable conforma-
tion and activity of Hb preventing the protein leakage
during the electrochemical assay [98].

The most common values reported for kg for cyt ¢ and
MP are in the range of 0.530+0.03 [73] to 2.93s" [75]
and 1.31s7!' [99], respectively (Table 1), being overall in
the same order of magnitude. The highest value of 837+
40 s~ was described for hemin-MWCNTs-CS-carbon fiber
microelectrode corresponding to multilayers deposited at
the microelectrode surface [101].

The Michaelis-Menten constant (K,,) is a measure of
the affinity of the enzyme or protein for its substrate and
it defines the substrate concentration (in this case NO) at
which the reaction rate is half its maximal value [126]. K,
can be determined by the Lineweaver-Burk equation (11)
[124]:

1/l = Koy /Tax X 1/C 4+ 1/ (11)

Where I is the steady-state current after addition of
the substrate; C is the concentration of the substrate; 1,
is the maximum current measured under saturated
substrate conditions.
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K., was only reported for 25% of the studies (Table 1).
Gu et al. [107] obtained for Hb the highest K, value of
190 uM demonstrating that the system Hb-AuPs-Cys/AuE
presents the lowest affinity to NO substrate (Table 1). On
the other hand, the maximum affinity was assigned to Hb
immobilized with gold nanoparticles (AuNPs), cellulose
and poly(ethylene glycol diglycidylether) (PEDGE) form-
ing the Hb-AuNPs-Cellulose-PEDGE/GCE biosensor
(K, of 0.0026 uM) [90], followed by Hb-CS-GR-CTAB/
GCE (K, of 0.315 uM) [98]. It is evident that the use of
biopolymers, such as cellulose and chitosan, create
adequate and compatible microenvironment benefiting
the stabilization and the maintenance of the protein
activity.

Greater K,, data were noted for cytc based bio-
sensors when compared to Hb but information needs to
be analyzed with caution since only two studies pro-
posed K, values [75,76]. The highest value of K of
320 uM was achieved by a Cyt c-SDS-PAM/GCE bio-
sensor [76], while Chen and Zhao [75] described a
tenfold lower value of 25.6 uM for Cyt c-PIL-GR/PGE,
which can be explained by the use of a polymerized
ionic liquid (PIL). PIL exhibit the properties of ionic
liquids but also the merits of polymers contributing
favorably for the immobilization of charged proteins. In
addition, recent research studies with IL as alternative
solvents for enzymatic catalysis exhibited higher enzy-
matic stability and activity, which make IL promising
substitutes for organic solvents in biocatalysis at both
laboratory and industrial scale [127]. No reported values
of K, were ascribed for Mb, enzymes and porphyrins
used in NO third generation biosensors.

4.3 Electroanalytical Performance

NO biosensing requires characterization of numerous
parameters such as the linear range, limit of detection and
quantification, sensitivity, selectivity, stability and re-
sponse time (Table 2). These analytical figures of merit
are markedly influenced by the selected biorecognition
element, the adopted immobilization strategy, the applied
detection technique and the optimized electrochemical
operational parameters (scan rate, frequency, step poten-
tial, amplitude, pH, buffer, etc.). According to the real
NO levels in biological systems, high accuracy and
sensitivity coupled with low linear range and detection
limit are desirable.

Sensitivity data were reported in most of the studies
(Table 2). The highest values were presented as being
6330, 1100 and 1068 pA/mM for Hb-PTFE [94], MP-CAS-
SOD-MWCNTSs-PTTCA-AuNPs [99] and Mb-MWCNTs
[111] modifications in GCE, respectively, while the lowest
values were 0.031 and 1.7+0.67 pA/mM for Hb-C,,-C;
(OH)-C,,/GCE [97] and hemin-MWCNTs-CS/CFM [101],
respectively. The utilization of nafion® and of some other
polymers (PAM, PAN, PEDGDE, polyethyleneimine
(PEI), among others) has shown to promote an increase
in the biosensor resistance and consequently in sensitivity
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[91,100], which can be counterbalanced by the use of
highly conducting nanomaterials (AuNPs, MWCNTs and
GR).

Linear ranges varying from 0.00004-5.0 uM [84] to
0.1-300 uM [85] were reported for Hb based-biosensors
(Table 2). The highest linear range [85] was obtained with
Hb entrapped in a biological membrane component,
phosphatidylcholine (PC), forming a Hb-PC/PGE biosen-
sor. On the other hand, the use of montmorillonite
(MMT) showed to help decreasing the NO linear range
(0.00004-5.0 uM) and consequently its limit of detection
(20x 107 pM for Hb-MMT/PGE) [84]. Moreover, other
authors also described low linear ranges for Hb-based
biosensors, namely 0.012-5 uM for Hb-AuPs-Cys/AuE
[107] and 0.0225-2.64 pM for Hb-CS-GR-CTAB/GCE
[98]. For a different protein, i.e. cytc, the linear ranges
varied from 0.5-4.0 uM for cyt-c-4-mercaptopyridine/ AuE
[77] to 100-600 uM for cyt c-MSA/AuE [79]. It is interest-
ing to see that these two different linear ranges were
obtained using different modification of the same bare
electrode (AuE) indicating that the material of the bare
electrode may not be the main influencing factor concern-
ing NO catalysis. A similar linear range was presented for
MP (with values of 1.0-40uM for MP-CAS-SOD-
MWCNTs-PTTCA-AuNPs/GCE) [99]. For hemin biosen-
sors, large linear ranges (0.1-90 uM [119,120]; 0.5-50 uM
[78]) were described with the exception for the hemin-
MWCNTSs-Chitosan/CFM biosensor (0.25-1.0 uM) [101]
showing the advantages of the utilization of microelec-
trodes (in this case carbon fiber microelectrode) to reach
low NO determination levels.

In terms of limits of detection (LOD), the achieved
values were quite different ranging from 20 x 10~° uM to
2.85 uM mainly due to the dissimilar reached sensitivity
(Table 2). Fan et al. [84] reached the lowest LOD (at
the picomolar level) with a specific modification of Hb-
MMT onto a PGE. It was demonstrated that this type of
matrix provided an appropriate immobilization micro-
environment, which significantly facilitated the electron
communication between Hb and the PGE [84]. This
biosensor exhibited also an acceptable stability retain-
ing 80% of its initial response during one month. On
the contrary, the largest LODs (1-2.85 uM) with no
indication of the biosensor stability time [102] or only
2 weeks [73] were achieved with the cyt c-PAN-CC/
GCE and cyt ¢ or Hb/SnO, or cyt ¢ or Hb/TiO, electro-
des, but overall, the assessed LODs are in the order of
1x107 uM.

The biosensors cross-reactivity needs also to be
carefully assessed. The most common tested com-
pounds were nitrite, ascorbate, uric acid, cysteine,
epinephrine, dopamine, ascorbic acid and glucose
(Table 2); overall they did not significantly interfere
with NO detection. Furthermore, H,O, and O, are two
interfering species that can react with NO and form
other electroactive species, therefore they were also
tested in about 27% of the studies. Gu etal. [107]
suggested that H,O, and O, interferences can be
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reduced by covering a nafion® film onto the modified
electrode surface.

A few studies are described in the literature concern-
ing the application of the previously referred biosensors
to NO quantification in real samples, namely in oilseed
rape (but no value of concentration was presented; [98]),
raw blood [107], rat liver [89,97,99] and rat brain
[100,101]. According to the literature [89,97], the NO
levels in rat liver are in the range of 0.6-2.5 uM; still a
higher concentration of 3.8240.83 uM using microperox-
idase as biological recognition element was reported by
Abdelwahab et al. [99]. These last authors also analyzed
the NO concentration in gastric adenocarcinoma (AGS)
and colon adenocarcinoma (HT-29) cells with high NO
values of 3.91+0.27 and 4.42 £0.67 uM, respectively [99].
Other successful applications were carried out at NO
levels of 0.204+0.009 uM in raw blood using the Hb-
AuPs-Cys/AuE biosensor [107]. In rat brain in vivo, NO
was also detected at levels varying from 1 uM for hemin-
MWCNTs-CS/CFM biosensor [101] to 1.13+0.03 uM for
cyt-c-PTTCA-nafion®/Pt microelectrode [100]. This last
NO modified microelectrode, with cyt ¢ immobilized onto
a functionalized-conducting polymer (PTTCA) layer, was
successfully tested to monitor in vivo NO fluctuation
provoked by the abuse drug cocaine in intact brain [100];
repeated injections of cocaine originated up to 2.13+
0.05 M of NO [100]. Also, the hemin-MWCNTs-CS/
CFM biosensor developed by Santos et al. [101] proved to
respond adequately to the detection of exogenously
applied NO in the rat hippocampus; a small potential
window (—0.5 to —1.0 V vs Ag/AgCl) was used since high
temporal resolution is necessary to monitor in vivo NO
variations. In all reported studies, the response time of
NO biosensors was quite fast with a maximum reported of
<20 seconds [89].

5 Final Remarks and Future Perspectives

Third-generation biosensors show great potential for
detection and quantification of NO in complex biological
milieu, which is extremely important considering its key
role in several physiological processes. They exhibit a
plethora of advantages being the main ones, the simplicity
(no redox mediator is used), sensitivity and selectivity
(direct interaction between the redox protein or enzyme
with its substrate), easy miniaturization and possibility of
in loco measurements. Literature analysis revealed that
hemoglobin is the most studied protein for NO detection
and glassy carbon and pyrolytic graphite electrodes the
most interesting working electrodes to perform biorecog-
nition element immobilization. The use of carbon nano-
materials (carbon nanotubes and graphene) and gold
nanoparticles promoted usually an increase in the effec-
tive surface area offering electron-conducting tunnels that
enhanced the electron transfer rate of the redox protein
and porphyrin with the electrode surface and also yielding
lower K, values. The employment of polymers, in many
reported works, provided a milieu similar to that of redox
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proteins and enzymes in native systems. Additionally, the
combination of polymer-surfactant allowed forming stable
films with ordered multibilayer structure increasing the
direct electron transfer and stabilization of these biomole-
cules. Regardless of these great achievements, there are
some limitations to solve. More fundamental research is
clearly needed for full understanding the NO catalysis’
mechanisms. Long-term stability, particularly in complex
matrices and harsh conditions, and the need for lower
detection limits are still major problems. Further advances
in nanomaterials and proteins’ immobilization strategies
will allow to overcome these issues and to extend the in
vivo applicability of these biosensors. In addition, special
addition should be given to try to enlarge the scope of this
type of biosensors. Only a limited number of biomolecules
have been test to electrocatalyse NO via DET in
biosensors. Nitric oxide reductase (NOR) enzyme, that
can be isolated from different denitrifying organisms
(Pseudomonas aeruginosa, Marinobacter hydrocarbono-
clasticus, Pseudonomas stutzeri or Paraccocus denitrifi-
cans) and catalyzes the NO reduction to N,O in a two
electron/proton reaction [128] was not yet explored in the
design of third-generation biosensors; it is a membrane
enzyme with high potential for in vivo applications. Also,
biotechnology, genetic and protein engineering may
contribute with the development of new NO bioelectroca-
talysts. Additionally, different biomolecules with DET
capacity may be combined in order to obtain synergies
and design novel biosensing platforms with enhanced
kinetics and electroanalytical characteristics. It is pre-
dicted that third-generation biosensors for NO detection
will have an increasingly important role in diagnostics of
pathologic situations such as cancer, neurodegenerative
diseases, amyotrophic lateral sclerosis, diabetes, among
others.
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