INTRODUCTION

Nitrite is one of the players in the broad nitrogen biogeochemical cycle. This nitrogen oxo-anion is involved in key pathways crucial to life on Earth and to the planetary "recycling" of nitrogen. From a human perspective, nitrite (and nitrate) is an important food preservative that has been used for the last five millennia. This successful nitrite utilization was, however, overshadowed in the 1970s, when it was suggested that nitrite might increase the incidence of cancer, through the formation of N-nitrosoamines. Recently, another twist took place, and nitrite is now being rediscovered as a beneficial molecule, endogenously formed or therapeutically added, involved in cell survival during hypoxic events, as will be here discussed.

In this Review, we will review the physiological role of nitrite in the biochemical cycle of nitrogen (section 2.1) and in mammalian and plant signaling pathways (sections 2.2.1 and 2.2.2). A very brief description of potential bacterial signaling (section 2.2.3) will also be included. In the "Nitrite in the Nitrogen Cycle" section, the main, well-established, pathways will be briefly described, with emphasis on the nitrite-mediated reactions. In the "Nitrite in Signaling Pathways" section, the nitrite-mediated reactions will be discussed with a deeper detail: the nitrite-mediated signaling and damaging pathways are a (comparatively) recent and controversial area, and the Review will be oriented to discuss the feasibility of these novel pathways mainly from the chemical point of view. As will be described in section 2, the living organisms use nitrite for remarkably different purposes, oxidizing and reducing it.

Subsequently (section 3), several key reaction mechanisms will be analyzed at a molecular level of detail, and structure/activity relationships will be, as much as possible, systematically explored to discuss the mechanistic strategies that biology developed to reduce and oxidize nitrite.

The global aim is to review the present functional, structural, and mechanistic knowledge of nitrite reduction/oxidation, to assess in what extent we understand how nitrite is handled by living organisms. Nitrite formation is outside the scope of this Review. This knowledge is essential for the comprehension of the global nitrogen biochemical cycle and, consequently, for the comprehension of the impressive changes the human activities
are introducing in the cycle. Furthermore, the wealth of information gathered and discussed enables one to further evaluate the feasibility and physiological significance of the presently accepted “avenues” of NO formation in humans and plants and to foresee new potential pathways.

2. BIOLOGICAL FATE OF NITRITE

2.1. Biological Fate of Nitrite – Nitrite in the Nitrogen Cycle

Nitrogen is absolutely essential for life, being the fourth most abundant element in living organisms (behind hydrogen, oxygen, and carbon). Nitrogen is used by all organisms for the biosynthesis of amino acids, nucleosides, and other fundamental compounds, and two nitrogen assimilatory pathways were developed to provide the necessary reduced nitrogen. This is then “recycled” in a universal “organic nitrogen pool”. In addition, some organisms also use nitrogen compounds as substrates for “respiration”, and for that purpose several nitrogen dissimilatory pathways have also evolved. The nitrogen biochemical cycle (Figure 1, Table 1) keeps this element in forms available to support live on Earth, “starting” with fixation from the atmosphere (the largest nitrogen source) and “recycling” it through the dissimilatory pathways.10−17

2.1.1. Classic and New Pathways. Two nitrogen assimilatory pathways provide the reduced nitrogen (ammonium) essential for biosynthetic purposes (Figure 1, yellow and orange arrows, Table 1). The organisms capable of dinitrogen fixation (some free-living archea and bacteria, e.g., Azotobacter, and symbiotic bacteria, e.g., Rhizobium) possess a unique pathway, where the atmospheric dinitrogen is directly reduced to ammonium, in a reaction catalyzed by molybdenum/iron-dependent nitrogenases18 (Figure 1, yellow arrow).22−33 All of the other organisms, prokaryotic and eukaryotic, depend on environmentally (soils, oceans, and crust) available ammonium and nitrate/nitrite. The nitrate assimilation is dependent on two sequential reactions (assimilatory ammonification, Figure 1, orange arrows): first, the reduction of nitrate to nitrite, catalyzed by molybdenum-dependent nitrate reductases (NaR; described in refs 1667,1679), and then the reduction of nitrite to ammonium, catalyzed by sirohaem-containing nitrite reductases (CSNiR, described in section 3.1.2).34−41 The electron source to carry out the nitrite reduction to ammonium is (i) the photosynthetically reduced ferredoxin, in photo-synthetic organisms (e.g., cyanobacteria and chloroplasts of photosynthetic eukaryotes36,39,42), or (ii) the reduced pyridine nucleotide pool, in most heterotrophs, but also in some phototrophs (e.g., nonphotosynthetic tissues of higher plants42 and Rhodobacter capsulatus,43,44 respectively). For that reason, there are two types of assimilatory CSNiR: ferredoxin-dependent and NAD(P)H-dependent enzymes. Within each type, the enzymes share sequence and structural similarity, regardless of their prokaryotic or eukaryotic origin. Both types hold a sirohaem, where the nitrite reduction takes place, and an iron−sulfur center (Fe/S). Yet NAD(P)H-dependent enzymes contain an additional FAD domain that is involved in the NAD(P)H binding and oxidation.44−46

Ammonium then enters the “organic nitrogen pool” (Figure 1, pink arrows) in the form of two amino acids, glutamine and glutamate, through the concerted action of glutamine synthase (eq 1) and glutamate synthase (eq 2) of bacteria, fungi, and plants. Ammonium can also be directly incorporated into glutamate through the glutamate dehydrogenase enzyme present in all forms of life (eq 3). However, under most physiological conditions, glutamate dehydrogenase catalyzes instead the reverse reaction, yielding ammonium in amino acid catabolism. Hence, the key enzyme that controls the entrance of the “organic nitrogen pool” is the glutamine synthase, not surprisingly one of the most complex regulatory enzymes. Besides this crucial role, glutamine synthase is also of main importance in animals, where it is responsible for the removal of toxic ammonium.

![Figure 1. Biochemical cycle of nitrogen. Dinitrogen fixation, yellow arrow; assimilatory ammonification, orange arrows; “organic nitrogen pool”, pink arrows; denitrification, blue arrows; dissimilatory nitrate reduction to ammonium (DNRA), green arrows; nitrification, black arrows; anaerobic ammonium oxidation (AnAmmOx), gray arrows; “denitrification/intra-aerobic methane oxidation”, violet arrows.](image-url)
The biochemical cycle of nitrogen continues with four main “classic” nitrogen dissimilatory pathways, where nitrogen compounds are used as electron donors/acceptors to derive energy (Figure 1, Table 1): (i) nitrate is anaerobically reduced to dinitrogen (denitrification — Figure 1, blue arrows), or (ii) to ammonium (dissimilatory nitrate reduction to ammonium (DNRA) — Figure 1, green arrows), (iii) while ammonium is aerobically oxidized to nitrate (nitrification — Figure 1, black arrows), or (iv) anaerobically oxidized to dinitrogen (anaerobic ammonium oxidation (AnAmmOx) — Figure 1, gray arrows).

Denitrification is found in a wide range of organisms, from archaea to eubacteria and even in some eukaryotes (e.g., fungi, protozoa, and benthic Foraminifera and

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Step</th>
<th>Enzyme Responsible for the Step (Organism Where It Is Found; Examples)</th>
<th>Figure</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen fixation</td>
<td>$N_2 \rightarrow NH_4^+$</td>
<td>molybdenum-iron-containing nitrogenase (free-living archaea and bacteria and symbiotic bacteria; Azotobacter, Rhizobium)</td>
<td>1, yellow arrow</td>
<td>2.1.1.</td>
</tr>
<tr>
<td>Assimilatory ammonification</td>
<td>$NO_3^- \rightarrow NO_2^-$</td>
<td>molybdenum-containing nitrate reductase (NaR) (prokaryotes and eukaryotes, photosynthetic and heterotrophic; cyanobacteria, Rhizobacter capsulatus, chloroplasts, non-photosynthetic tissues of higher plants)</td>
<td>1, orange arrows</td>
<td>2.1.1., 2.2.2, note 1667 of 3.1.1.</td>
</tr>
<tr>
<td></td>
<td>$NO_2^- \rightarrow NH_4^+$</td>
<td>sirohaem-containing nitrite reductase (CSNIR) (see first step of assimilatory ammonification)</td>
<td>1, orange arrows, 23</td>
<td>2.1.1., 3.1.2.</td>
</tr>
<tr>
<td>Denitrification</td>
<td>$NO_2^- \rightarrow NO$</td>
<td>d_1 haem-containing nitrite reductase (CdNiR) (see first step of denitrification)</td>
<td>1, blue arrows, 2, 24</td>
<td>2.1.1., 2.2.2.</td>
</tr>
<tr>
<td></td>
<td>$N_2O \rightarrow N_2$</td>
<td>haem iron/non-haem iron-containing nitric oxide reductase (see first step of denitrification)</td>
<td>1, blue arrows, 2, 26, 27</td>
<td>2.1.1., 3.2.2.</td>
</tr>
<tr>
<td>Dissimilatory nitrate reduction to ammonium (DNRA)</td>
<td>$NO_3^- \rightarrow NO_2^-$</td>
<td>molybdenum-containing nitrate reductase (NaR) (prokaryotes; Wolinella succinogena)</td>
<td>1, green arrows</td>
<td>2.1.1., 2.2.3. note 1667 of 3.3.1.</td>
</tr>
<tr>
<td></td>
<td>$NO_2^- \rightarrow NH_4^+$</td>
<td>c haem-containing nitrite reductase (CdNiR) (see first step of DNRA)</td>
<td>1, green arrows</td>
<td>2.1.1.</td>
</tr>
<tr>
<td></td>
<td>$NH_4^+ \rightarrow NH_2OH$</td>
<td>iron/copper-containing ammonium monooxygenase (archaea and bacteria; Allothrix moraxellae)</td>
<td>1, black arrows</td>
<td>2.1.1.</td>
</tr>
<tr>
<td>Nitrification</td>
<td>$NH_2OH \rightarrow NO_2^-$</td>
<td>P_{AM} haem-containing hydroxylamine oxidoreductase (HAOR) (bacteria; Nitrosomonas europaea)</td>
<td>1, black arrows</td>
<td>2.1.1., 3.1.3.</td>
</tr>
<tr>
<td></td>
<td>$NO_2^- \rightarrow NO$</td>
<td>molybdenum-containing nitrite oxidoreductase (MoNiOR) (bacteria; Nitrobacter, Nitrosospira)</td>
<td>1, black arrows</td>
<td>2.1.1., 3.2.1.</td>
</tr>
<tr>
<td>Anaerobic ammonium oxidation (AnAmmOx)</td>
<td>$NO_2^- \rightarrow NO$</td>
<td>d_1 haem-containing nitrite reductase (CdNiR) (prokaryotes; Candidatus Kuenenia stuttgartiensis, Candidatus Scalindua profundus)</td>
<td>1, blue arrows, 24, 25</td>
<td>2.1.1., 3.2.1.</td>
</tr>
<tr>
<td></td>
<td>$NH_4^+ \rightarrow N_2H_4$</td>
<td>c haem-containing hydroxylamine synthase (see first step of AnAmmOx)</td>
<td>1, gray arrows</td>
<td>2.1.1., 3.2.1.</td>
</tr>
<tr>
<td></td>
<td>$N_2H_4 \rightarrow N_2$</td>
<td>c haem-containing hydroxylamine oxidoreductase (see first step of AnAmmOx)</td>
<td>1, gray arrows</td>
<td>2.1.1.</td>
</tr>
<tr>
<td>"Denitrification / intra-aerobic methanogenesis"</td>
<td>$NO_2^- \rightarrow NO$</td>
<td>d_1 haem-containing nitrite reductase (CdNiR) (prokaryotes; Candidatus Methylomarinis oxyfera)</td>
<td>1, blue arrows, 2, 24, 25</td>
<td>2.1.1., 3.2.1.</td>
</tr>
<tr>
<td></td>
<td>$N_2O \rightarrow N_2 + O_2$</td>
<td>hypothetical NO dismutase (see first step of "denitrification/intra-aerobic methane oxidation")</td>
<td>1, violet arrows, 2</td>
<td>2.1.1., 3.2.1.</td>
</tr>
</tbody>
</table>

*Figures where the reaction and/or enzyme is represented. Sections where the reaction and/or enzyme is discussed.
discussed in section 3.2.1).46,47,62 This enzyme obtains the necessary electrons from a range of structurally different "soluble" electron carriers (pseudospecificity65), such as c-type cytochromes (c_{550}, c_{558}) and copper proteins (azurins and pseudoazurins). The copper-containing nitrite reductases (CuNiR, discussed in section 3.2.2) are classified into two subgroups depending on their color being blue (e.g., from *Alcaligenes xylosoxidans*46) or green (e.g., from *Alcaligenes faecalis* or *Achromobacter cycloclastes*). The CuNiR are more widespread, although less abundant; they are less promiscuous in their interaction with azurin and cytochrome c_{558} (blue CuNiR) and pseudoazurin (green CuNiR).66–68

$$\text{NO}_3^- \rightarrow \text{NO}_2^- \rightarrow \text{NO} \rightarrow \text{N}_2 \text{O} \rightarrow \text{N}_2 \quad (4)$$

DNRA (Figure 1, green arrows) is a different strategy to reduce nitrate, employed to grow anaerobically. In this pathway, nitrite is directly reduced to ammonium (dissimilatory ammonification) with a multi-c-haem-containing enzyme (c haem-containing nitrite reductase (CcNiR), discussed in section 3.1.1). The necessary electrons are derived from the anaerobic oxidation of organic carbon through the membrane quinone pool.69

Conversely, nitrifiers use the aerobic oxidation of ammonium to nitrate, for the chemooautotrophic fixation of inorganic carbon (nitrification – Figure 1, black arrows).70,71 Hence, DNRA and nitrification can be regarded as short-circuits that bypass the last dinitrogen reservoir. Aerobic ammoniumoxidizing bacteria (e.g., *Nitrosomonas europaea*) use ammonium almost exclusively as the electron donor in "respiration" and oxidize it to hydroxylamine (catalyzed by ammonium monoxygenase), and then to nitrite (catalyzed by hydroxylamine oxidoreductase (HAOR)).72 In addition, also archaea (from marine and soil environments) seem to be able to oxidize ammonium for chemolithoautotrophic growth.92–96

Subsequently, nitrite-oxidizing bacteria (e.g., *Nitrobacter* or *Nitrospira* species) are responsible for the final oxidation of nitrite to nitrate, through a reaction catalyzed by a molybdenum-containing nitrite oxidoreductase (MoNiOR, described in section 3.3.1). These bacteria are chemolithoautotrophs, phylogenetically heterogeneous, that derive energy from the nitrite oxidation to nitrate, in a strictly aerobic process, where all of the carbon needs can be satisfied with carbon dioxide assimilation (via Calvin cycle).97–103 Nitrite oxidation "closes" the nitrification process and is believed to be the principal source of nitrate under aerobic conditions.

Ammonium can also be anaerobically oxidized in an exergonic pathway (AnAmmOx - Figure 1, gray arrows) used for the anaerobic chemooautotrophic growth of planctomycetes (e.g., "Candidatus Kuenenia stuttgartiensis" or "Candidatus Scalindua profundula").104–113 In this pathway, ammonium is first oxidized by NO to yield hydrazine, in a reaction catalyzed by the dihaem-containing hydrazine synthase. Hydrazine is then oxidized to dinitrogen by the octa-haem-containing hydrazine oxidoreductase.106,107,114,115 The necessary NO is formed via nitrite reduction by Cd$_2$NiR, an enzyme associated with the "classical" denitrification. In this way, the anaerobic ammonium oxidation is coupled to the nitrite reduction. In this context, it is worth mentioning that an AnAmmOx bacterium (strain KSU-1) was hypothesized to have a CuNiR enzyme, suggesting that the enzymatic "machinery" of the AnAmmOx organisms might be more "flexible" than initially thought.116 According, AnAmmOx likely provided the first complete "recycling" of fixed nitrogen to dinitrogen and fulfilled this role until the emergence of the copper-containing nitrous oxide reductase, on the oxic era.106,117 Operating in marine, freshwater, and terrestrial ecosystems, AnAmmOx is presently one of the major enigma of the nitrogen biochemical cycle.

In addition to those well-recognized four nitrogen dissimilatory processes, several new processes are being identified (see, e.g., refs 118–121). The anaerobic phototrophic nitrite oxidation and the "denitrification/intra-aerobic methane oxidation" pathway represent two interesting examples, further described below.

Besides the well-known aerobic nitrite oxidation (part of nitrification), it was recently reported the occurrence of an anaerobic photosynthetically driven nitrite oxidation.122 In this not yet characterized process, anoxygenic phototrophic bacteria (*Thiopca* and *Rhodopseudomonas*) use nitrite as electron donor for photosynthesis. This anaerobic nitrite oxidation pathway was found to be strictly light-dependent and, as foreseen, also molybdenum-dependent (metal obligatory for the MoNiOR activity of aerobic organisms; see section 3.3.1).123 Although the utilization of inorganic nitrogen compounds as electron sources for anoxygenic photosynthesis had been predicted long ago,124,125 only recently could it be demonstrated,122 and this is the only known case of a photosynthetically driven oxidation in the nitrogen cycle.

Also remarkable is the novel "denitrification/intra-aerobic methane oxidation" pathway that links the nitrogen and carbon cycles (Figure 1, violet arrows). Recently, a new anaerobic bacterial was described, "Candidatus Methyolirubilis oxyfera", that couples the reduction of nitrite to dinitrogen (denitrification) with the oxidation of methane.126–133 Methane is one of the least reactive organic molecules, and, so far, no known biochemical mechanism has been able to explain its activation in the absence of oxygen or reverse the last step of methanogenesis, which poses a problem for an anaerobic organism. Despite that, the anaerobic "M. oxyfera" encoded, transcribed, and expressed the well-established aerobic pathway for methane oxidation to carbon dioxide, the particulate methane monoxygenase complex.132 On the other hand, "M. oxyfera" lacked the known gene cluster necessary to produce the enzyme that reduces nitrous oxide to dinitrogen, questioning how the organism produces the dinitrogen. Yet, "M. oxyfera" expresses a Cd$_2$NiR enzyme.132 To solve this conflict, a new pathway was proposed in which Cd$_2$NiR-catalyzed NO is converted into dinitrogen and dioxoygen by a NO dismutase enzyme (eq 5).128 In this pathway, the last two steps of "classical" denitrification, NO and nitrous oxide reduction, would be replaced by NO dismutation, to yield, not only dinitrogen, but also dioxygen (Figure 2). The dioxygen formed intracellularly through this "version" of denitrification would be responsible for the intra-aerobic oxidation of methane, with the remaining dioxoygen being used in "respiration" by terminal "respiratory" oxidases.128,134 It was suggested that the "denitrification/intra-aerobic methane oxidation" pathway could have enabled the organisms to thrive on the abundant methane in the archaean atmosphere,135 without direct dependence on oxygencn photosynthesis. However, it is debatable that the aerobic methane oxidation pathway would have evolved before a significant increase of the dioxygen in the atmosphere was attained.

$$2\text{NO} \rightarrow \text{N}_2 + \text{O}_2 \quad (5)$$
It should be noted that the suggested NO dismutase was not yet identified, but two of the “M. oxyfera” most abundant proteins are potential candidates. Genetic analysis revealed that those two proteins are the gene product of two quinol-dependent NO reductases paralogues with unusual features: (i) a different catalytic center, holding a glutamine instead of a glutamate residue and an asparagine instead of one of the conserved coordinating histidines residues of the “classic” NO reductases, (ii) probable absence of a proton channel, and (iii) probable absence of a quinol-binding site. Accordingly, these proteins would be unable to accept electrons or uptake protons from an external donor, two features that would compromise their function as NO reductases (eq 6), but would not hamper a NO dismutase activity (eq 5). Furthermore, despite the high expression of these two unusual NO reductase-like proteins, no appreciable nitrous oxide production is detected during nitride-dependent methane oxidation. Therefore, it is tempting to speculate that these two highly expressed proteins could be responsible for the dismutation of NO.

According to this hypothesis, the NO dismutation would be achieved with a NO reductase-like active center, that is, with a haem/nonhaem iron center. To be confirmed, it would not be a novelty: chloride dismutases (eq 7) are haem enzymes, and iron-dependent superoxide dismutases (eq 8) hold nonhaem iron. In addition, a binuclear active center would be helpful to hold the reaction intermediates in place to cleave the N–O bond and rearrange the new N and O bonds. Nevertheless, the reaction mechanism of NO dismutation is presently difficult to envisage, either with haem/nonhaem or with other metal centers. In conclusion, the nature of the suggested NO dismutase must wait for the purification and rigorous characterization of the “M. oxyfera” proteins.

\[
\begin{align*}
2\text{NO} + 2\text{H}^+ + 2\text{e}^- & \rightarrow \text{N}_2\text{O} + \text{H}_2\text{O} \\
\text{OClO}^- & \rightarrow \text{Cl}^- + \text{O}_2 \\
2\text{O}_2^- + 2\text{H}^+ & \rightarrow \text{H}_2\text{O}_2 + \text{O}_2
\end{align*}
\]

Remarkably, it was also suggested that a similar pathway is possible by the unrelated γ-proteobacterial strain HdhN1 to synthesize oxygen, from nitrite or nitrate, for “intra-aerobic” hexadecane oxidation. If confirmed, the “oxygenic denitrification” could be more widespread than initially thought and nitrite could became a relevant dioxygen precursor, further highlighting the biological relevance of nitrite.

The old and new dissipatory pathways “close” the nitrogen biochemical cycle (Figure 1, Table 1), with the fixed nitrogen being lost to the atmosphere, soils, crust, and oceans.

Over the last years, the discovery and addition of new organisms involved in the “classic” processes and the scrutiny of new ways to transform nitrite add more complexity to the system, revealing an intricate network of pathways. The regulation and control of these complex pathways is still a challenging problem, and future research will certainly change some of the presently established dogmas.

2.1.2. Nitrite and Nitrogen “Recycling”. This section cannot be concluded without emphasizing the NO relevance to the biological nitrogen “recycling”: the complete biological ‘recycling’ of nitrogen requires the formation of a N–N bond, to ultimately produce dinitrogen, which is accomplished, as far as is presently known, only with the oxidizing power of NO.

The only recognized enzymes capable of bonding two nitrogen atoms are the NO reductase (eq 9; denitrification — Figure 1, blue arrows) and the hydrazine synthase (eq 10; AnAmnOx — Figure 1, gray arrows), and both use the oxidizing power of NO. In addition, also CcNiR (DNRA — Figure 1, green arrows) was described to catalyze the nitrous oxide formation from NO (eq 11; see section 3.1.1.2 for details). Moreover, the suggested NO dismutase (eq 12), crucial for the “denitrification/intra-aerobic methane oxidation” (Figure 1, violet arrows), is thought to use NO to form dinitrogen directly. This consensus supports the hypothesis that NO may have been the first deep electron sink on Earth, before the emergence of dioxygen.

Because NO is formed from the nitrite reduction, these NO roles, general oxidant and “maker” of N–N bonds, further emphasize the biological importance of nitrite. Additionally, as will be discussed in the following sections (sections 2.2.1.1 and 2.2.2.1), the nitrite reduction to NO is also employed by mammals and plants to sustain the NO-dependent signaling pathways under hypoxic/anoxic conditions.
overproduction of NO and other reactive nitrogen species (RNS), in particular peroxynitrite153,154 (eq 13), has been implicated in several pathological conditions, such as chronic inflammation and infection conditions, septic shock syndrome,

Table 2. Proteins Involved in Nitrite Reduction to NO in Mammals

<table>
<thead>
<tr>
<th>Protein</th>
<th>Reaction Functions</th>
<th>Site of Nitrite Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>haemoglobin (Hb) (blood)</td>
<td>dioxygen transport</td>
<td>(NO_2^- + 2H^+ \rightarrow NO + H_2O)</td>
</tr>
<tr>
<td>myoglobin (Mb) (cardiac, skeletal and smooth muscle)</td>
<td>dioxygen transport; recently, several novel functions were suggested: cardiac NO homeostasis, O2 sensing, ROS scavenging, intracellular fatty acid transport</td>
<td>(NO_2^- + 2H^+ \rightarrow (Mb)Fe2+)</td>
</tr>
<tr>
<td>neuroglobin (Nb) (nerve tissues)</td>
<td>no "classic" functions; it is a new protein, whose functions are still controversial: cellular redox state sensing, scavenging/sensing of ROS/RNS, O2, CO, NO, inhibition of Cc-induced apoptosis</td>
<td>(NO_2^- + 2H^+ \rightarrow (Nb)Fe2+)</td>
</tr>
<tr>
<td>cytochrome c (Cc) (all tissue types)</td>
<td>no "classic" functions; it is a new protein, whose functions are still controversial: NADH oxidase, O2 sensor, NO scavenger/formation</td>
<td>(NO_2^- + 2H^+ \rightarrow (Cc)Fe2+)</td>
</tr>
<tr>
<td>xanthine oxidase (XO) / xanthine dehydrogenase (XD) (liver, intestine, heart, mammal gland, small vessels endothelial and epithelial cells)</td>
<td>xanthine (\rightarrow) urate catabolism of purines; "non-classic" functions include apoptotic signalling molecule, O22+ scavenger, lipid peroxidation catalyst, peroxidase-like enzyme, nitrating agent</td>
<td>molybdenum centre of XO family type (Fig. 19(c))</td>
</tr>
<tr>
<td>aldehyde oxidase (AO) (liver, heart, lung, kidney, brain and eye)</td>
<td>aldehyde (\rightarrow) carboxylic acid metabolism of xenobiotics, neurotransmitters and retinoic acid, ROS-mediated signalling cascades</td>
<td>molybdenum centre of AO family type (Fig. 19(c))</td>
</tr>
<tr>
<td>carbonic anhydrase d</td>
<td>acid-base homeostasis and electrolyte balance</td>
<td>zinc (Zn2+)</td>
</tr>
<tr>
<td>protein-independent nitrite reduction e</td>
<td></td>
<td>(2NO_2^- + 2H^+ \rightarrow 2HNO_2 \rightarrow H_2O + N_2O_3)</td>
</tr>
</tbody>
</table>

aMajor drawback concerning the feasibility of nitrite reduction to release bioactive NO. bFigures where the protein is represented. cSections where the protein is discussed. dCarbonic anhydrase is suggested to catalyze nitrous acid hydration and not nitrite reduction. It was here included to systematize all of the information provided under section 2.2.1.1. eProtein-independent nitrite reduction was here included to systematize all of the information provided under section 2.2.1.1.
homodimeric enzymes, constituted by one flavin reductase C-terminal domain and one haem oxygenase N-terminal domain. During catalysis, the electrons from NADPH are transferred through the reductase domain to the haem iron of the oxygenase domain. On the haem, the dioxygen is activated to the hydroxylate \(\text{L-arginine} \) (eq 14); the \(\text{N}^\circ \)-hydroxy-L-arginine formed is then oxidized to yield \(\text{L-citrulline} \) and NO (eq 15). The NO biological effects are accomplished, mainly, by posttranslational modification of transition metal centers (mostly haems and labile [4Fe-4S] centers) and of cysteine residues and other thiols, to yield nitrosyl (\(\text{N}=\text{N}+=\text{O} \)) and S-nitrosothiol (\(\text{S}–\text{N}=\text{O}, \text{RSNO} \)) derivatives. To control the specificity of NO signaling and to limit the NO toxicity, the NOS activity is tightly regulated. In addition, the NO lifetime is controlled through its rapid oxidation to nitrite, by dioxygen or ceruloplasmin, and to nitrate, by the well-known reaction with oxy-haemoglobin and oxy-myoglobin (see section 2.2.1.1 for details).

In fact, nitrate and nitrite were long regarded as “useless” end-products of the NO metabolism. As a result of this dogma, the human physiological role of nitrite was neglected until the end of the 20th century, when (i) it was realized that nitrite can be reduced back to NO under acidic and anaerobic conditions (eq 16) and (ii) it was rediscovered that nitrite can be cytotoxic during in vivo ischaemia and other pathological conditions (see references throughout the following subsections and, e.g., refs 182–204). Since then, a new concept began, and, presently, blood and tissue nitrite are thought as a storage form that can be made available to ensure cell functioning under conditions of hypoxia/anoxia, precisely when the oxygen-dependent NOS activity is impaired.

\[
\text{NO}_2^− + \text{H}^+ + \text{e}^− \rightarrow \text{NO} + \text{H}_2\text{O} \tag{16}
\]

The relevance of this nitrite-derived NO during hypoxia goes well beyond the obvious vasodilatation. It extends to other roles of the NOS-generated NO, such as the regulation of gene expression (e.g., haem oxygenase-1 or heat shock proteins expression), smooth muscle proliferation, angiogenesis, or, most important, regulation of mitochondrial “respiration” and energy production. Through this nitrite “recycling” pathway, an organ under ischaemia can maintain (or even increase) the blood flow, modulate the oxygen distribution and the reactive oxygen species (ROS) formation, and, at the same time, maintain an anti-inflammatory and antiapoptotic environment.

In this scenario, the question of “who” is reducing nitrite in mammals imposes itself. To date, no “dedicated” mammalian nitrite reductase was identified. On the contrary, the nitrite reduction to NO has been ascribed only to prokaryotic organisms, through \(\text{Cd}_{2}\text{NiR} \) and \(\text{CuNiR} \) enzymes (as described in section 2.1.1). Yet, while the absence of a “dedicated” nitrite reductase enzyme was interpreted as “mammals do not need to metabolize nitrite”, the correct question was (long) disregarded: are other mammalian proteins reducing nitrite?

In recent years, several mammalian metalloproteins were shown to be able to reduce nitrite to NO (Figure 3, Table 2): the molybdenum-containing enzymes xanthine oxidase (XO) and aldehyde oxidase (AO) and a growing number of haem-containing proteins, where haemoglobin (Hb) and myoglobin (Mb) stand out by the number of publications, but including also neuroglobin (Nb), cytoglobin (Cb), cytochrome \(\text{C} \) (Cc), cytochrome \(\text{P}_450 \) cytochrome \(\text{c} \) oxidase \(\text{CcO} \), among several other proteins. Although outside the scope of this Review, it is very interesting that also nitrophorin 7, a salivary haem protein from a blood-feeding insect, is able to reduce nitrite to NO. Together with the haem proteins of mammals and plants (discussed in the following section), this example strongly emphasizes the physiological relevance of haem proteins on the nitrite reduction in higher organisms.

To restrict the scope of information presented to a manageable size, only some “nondedicated” nitrite reductases will be here discussed (Figure 3, Table 2): (i) Mb and XO, because they are the only ones that have been (so far) identified as crucial for the cytotoxic action of nitrite in vivo or ex vivo. They will be discussed in sections 2.2.1.1.1 and 2.2.1.1.3, along with Hb and AO, respectively; and (ii) Nb, Cb, and Cc (section 2.2.1.1.2), because they constitute promising examples of how the nitrite reduction could be allosterically regulated to create a “tunable” NO source. Moreover, only the reaction...
mechanism of XO-catalyzed nitrite reduction will be discussed (section 3.2.3). In addition, the protein-independent nitrite reduction and carbonic anhydrase-dependent NO formation will also be discussed (sections 2.2.1.1.4 and 2.2.1.1.5). As will be described, these pathways reduce nitrite to NO under acidic, hypoxic/anoxic conditions, precisely the conditions under which a “salvage” pathway is needed to accomplish the NOS role.

2.2.1.1. Haem-Dependent Nitrite Reduction – Haemoglobin and Myoglobin. A large number of studies have suggested that the mammalian nitrite reduction can be achieved by haemic proteins, with Hb (erythrocyte) and Mb (cardiac, skeletal, and smooth muscle) being two of the most studied proteins (Figure 4a,b, respectively). To reduce nitrite to NO, the haem must be reduced and penta-coordinated to, in this way, provide the necessary electrons and have an “open site” to bind nitrite and carry...

Figure 4. Haemic globins involved in nitrite reduction. Haemic globins are a large family of proteins that hold a haem and display the globin fold, typically, eight α-helices, named “A” to “H”. These helices are shown in different colors (red/white/blue) and indicated in (a). The haem coordinating amino acid residues are shown in light gray. All images were produced with Accelrys DS Visualizer, Accelrys Software Inc. (a) Three-dimensional structure view of one monomer of human Hb. The proximal coordinating histidine F8, His92, is shown. The image is based on PDB file 2DN1.1695 (b) Three-dimensional structure view of horse heart Mb. The proximal coordinating histidine F8, His93, is shown. The image is based on PDB file 1YMB.1696 (c) Three-dimensional structure view of hexa-coordinated human Nb (protein mutated Cys46Gly Cys55Ser). The coordinating histidines F8, His94, and E7, His64, are shown. The positions of cysteine residues CD7, Cys66, and D5, Cys54, are indicated by white dots/arrow. The image is based on PDB file 1O6L.1697 (d) Three-dimensional structure view of CO-bounded murine Nb. Histidine F8, His94, and a CO molecule are shown coordinated to the haem iron. Histidine E7, His64, is also represented. The positions of cysteine residues CD7, Cys66, and D5, Cys54, are indicated by white dots/arrow. The image is based on PDB file 1W92.242 (e) Three-dimensional structure view of hexa-coordinated human Cb. The coordinating histidines F8, His113, and E7, His81, are shown. The positions of cysteine residues B2, Cys38, and E9, Cys83, are indicated by white dots/arrow. The image is based on PDB file 2DC3.1698 (f) Three-dimensional structure view of CO-bounded human Cb. Histidine F8, His113, and a CO molecule are shown coordinated to the haem iron. Histidine E7, His81, is also represented. The positions of cysteine residues B2, Cys38, and E9, Cys83, are indicated by white dots/arrow. The image is based on PDB file 3AG0.1699 (g) Three-dimensional structure view of one monomer of hexa-coordinated rice NS-HG. The coordinating histidines F8, His108, and E7, His73, are shown. The position of cysteine E16, Cys82, is indicated by white dots/arrow. The image is based on PDB file 1D8U.1700 (h) Three-dimensional structure view of barley CN-bounded NS-HG. Histidine F8, His105, and a CN− ion are shown coordinated to the haem iron. Histidine E7, His70, is also represented. The position of cysteine E16, Cys83, is indicated by white dots/arrow. The image is based on PDB file 2OIF.1701
out the oxygen atom abstraction and reduction (see section 3). In accordance, the ferrous deoxy-haemoglobin and deoxy-myoglobin (deoxy-Hb/Mb; (Hb/Mb)Fe^{2+}) do reduce nitrite to NO, under anaerobic conditions, in a reaction that is pH-dependent (eq 17; \(k_{\text{Hb}} \), pH 6.5) \(\approx 10^{-7} \text{ M}^{-1} \text{s}^{-1}, k_{\text{Mb}} \), pH 7.4) \(\approx 10^{-2.2} \text{ M}^{-1} \text{s}^{-1} \), \(k_{\text{Mb}} \), pH 7.4) \(\approx 6-12 \text{ M}^{-1} \text{s}^{-1} \) \(k_{\text{Hb}}, k_{\text{Mb}} \) \(\approx 1206,222,237,238 \) s^{-1}).

\[
\text{NO}_2^- + 2\text{H}^+ + (\text{Hb/Mb})\text{Fe}^{2+} \\
\rightarrow (\text{Hb/Mb})\text{Fe}^{3+} + \text{NO} + \text{H}_2\text{O} \\
\quad (17)
\]

It is this in vitro anaerobic reaction that establishes the starting point for the proposed hypoxic Hb/Mb-dependent NO formation in vivo. Moreover, this reaction could contribute to the NO formation in all situations/localizations where significant Hb deoxygenation occurs: it should be noted that, even under normoxic conditions, the oxygen concentration at the precapillary arterioles and capillary is sufficiently low (<50 \(\mu \text{M} \)) to promote significant Hb deoxygenation; \(k_{\text{Hb}} \approx 10^{-7} \text{ M}^{-1} \text{s}^{-1} \) \(k_{\text{Mb}} \approx 10^{-2.2} \text{ M}^{-1} \text{s}^{-1} \) and/or (ii) be rapidly oxidized (eq 18) to nitrate by the oxy-Hb/Mb molecules still present under nonanoxic conditions to nitrate (see section 2.2.1.2.1 for details). This oxidation reaction prevents the nitrite accumulation in vivo under normoxic conditions and is coresponsible for the NO lifetime control.152,253

\[
\text{NO}_2^- + \text{H}^+ + (\text{Hb/Mb})\text{Fe}^{2+} + \text{O}_2 \\
\rightarrow (\text{Hb/Mb})\text{Fe}^{3+} + \text{NO}_3^- + 1/2\text{H}_2\text{O} \\
\quad (18)
\]

Regardless of the “beauty” of this mechanism, the ability of the Hb/Mb/nitrite-dependent NO to perform its action in vivo is controversial, because the NO should (i) be rapidly (eq 19) \(k_{\text{Hb}}, k_{\text{Mb}} \approx 10^{-11} \text{ M}^{-1} \text{s}^{-1} \) trapped in a stable complex with the deoxy-Hb/Mb \((\text{eq 19}; K_d \approx 10^{-11} \text{ M}^{-1} \text{s}^{-1}) \) and/or (ii) be rapidly oxidized (eq 20) to nitrate by the oxy-Hb/Mb molecules still present under nonanoxic conditions to nitrate (see eq 20).

\[
\text{NO} + (\text{Hb/Mb})\text{Fe}^{2+} = (\text{Hb/Mb})\text{Fe}^{3+} + \text{NO}_3^- \\
\quad (19)
\]

\[
\text{NO} + (\text{Hb/Mb})\text{Fe}^{2+} + \text{O}_2 = (\text{Hb/Mb})\text{Fe}^{3+} + \text{NO}_3^- \\
\quad (20)
\]

Despite these “chemical constrains”, several in vivo, in situ, and in vitro experimental results indicate that red blood cells, isolated hearts, purified Hb, and Mb do generate NO and can stimulate the NO signaling, in the presence of nitrite, under hypoxia.184–186,193–195,197,206,246–251

Particularly relevant are the studies showing that in vivo administration of nitrite generates NO, nitrosylates cardiomyocyte iron-containing proteins, and reduces (by 60%) myocardial infarction in mice; on the contrary, in Mb knockout mice, nitrite has no protective effects, and there is a decrease in NO formation.222,253,296,304 These studies suggest that nitrite cytotoxicity is exerted through its reduction to NO and implies a cytoprotective role for the pair Mb/nitrite in myocardial ischaemia-reperfusion injury.105

In light of all of the in vivo, in situ, and in vitro evidence, and to circumvent the NO scavenging by Hb/Mb, some authors argue that, even if the majority of NO is scavenged, enough NO would still be available to exert its role, because very low concentrations are needed to accomplish the physiological effects.152,316

Concurrently, other authors focused on identify new mechanisms to explain how nitrite reduction can yield bioactive NO. The most relevant mechanisms so far suggested are summarized in Table 3 (Figures 5–8) and will be thoroughly discussed below.

Table 3. Possible Mechanisms To Explain Hb-Dependent Bioactive NO Formation

<table>
<thead>
<tr>
<th>how</th>
<th>reaction</th>
<th>major drawback</th>
<th>figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>formation of an intermediate (possibly (\text{NO}_3^-)) that oxidizes ((\text{Hb/Mb})\text{Fe}^{2+})</td>
<td>simultaneous reaction of nitrite with deoxy-Hb and oxy-Hb</td>
<td>low nitrite concentration to feed both reactions</td>
<td>5</td>
</tr>
<tr>
<td>formation of (\text{N}_2\text{O}_3)</td>
<td>catalytic cycle with deoxy-Hb and met-Hb</td>
<td>kinetic and thermodynamic constrains for (\text{N}_2\text{O}_3) formation</td>
<td>6</td>
</tr>
<tr>
<td>formation of NO under allosteric control, at cell membrane within a metabolon</td>
<td>differentiated reactivity of nitrite/NO with R- and T-state Hb</td>
<td>NO trapping by membrane-bound deoxy-T-state Hb</td>
<td>7</td>
</tr>
<tr>
<td>formation of NO under allosteric control, at cell membrane within a metabolon</td>
<td>NO "protected" by a high proportion of membrane-bound met-Hb</td>
<td>kinetic and thermodynamic constrains for (\text{N}_2\text{O}_3) formation</td>
<td>8</td>
</tr>
</tbody>
</table>
Before introducing those mechanisms that are expected to be essentially similar in both Hb and Mb, it is worth mentioning that Mb has important features that distinguish it from Hb: (i) Mb has a lower P_{50} value (1.5–3 μM for Mb versus ~ 35 μM for Hb) that determines that Mb only becomes significantly deoxygenated at lower dioxygen concentrations; (ii) Mb has a lower reduction potential; (iii) it is a monomer without allosteric behavior; and (iv) it reduces nitrite faster than T-state Hb, at rates similar to those of R-state Hb. These properties must be kept in mind during the following mechanistic discussions that will be particularized for Hb for the sake of simplicity.

A possible mechanism to release NO involves the reactivity of nitrite with oxy-Hb itself (Figure 5). Several in vivo285,317,325 and in vitro320–324 observations suggest that, in the presence of oxy-Hb, the (Hb)Fe$^{3+}$–NO complex (eq 19) is not an irreversible trap of NO. On the contrary, it was suggested that an intermediate formed during nitrite oxidation by oxy-Hb, possibly nitrogen dioxide radical ($^\cdot$NO$_2$; see section 2.2.1.2.1), is able to oxidize (Hb)Fe$^{2+}$–NO and promote the NO dissociation262,324 through an oxidative denitrosylation (eq 21)324

\[
\text{NO}_2^- + 2H^+ + (\text{Hb}/\text{Mb})\text{Fe}^{2+} \rightarrow (\text{Hb}/\text{Mb})\text{Fe}^{3+} + ^*\text{NO} + \text{H}_2\text{O} \quad (17) \\
^*\text{NO} + (\text{Hb})\text{Fe}^{2+} \rightleftharpoons (\text{Hb})\text{Fe}^{2+} - \text{NO} \quad (19) \\
(\text{Hb})\text{Fe}^{2+} - \text{NO} + ^*\text{NO}_2^- \rightarrow ? \rightarrow (\text{Hb})\text{Fe}^{2+} - \text{NO} \rightarrow ? \\
(\text{Hb})\text{Fe}^{2+} + ^*\text{NO} \quad (21)
\]

In accordance with this proposal, the nitrite reduction and NO release would be accomplished by the simultaneous reaction of nitrite with deoxy-Hb and oxy-Hb.324 Overall, nitrite is reduced much faster than it is oxidized, because reaction 21 consumes intermediate(s) of the propagation phase of the oxy-Hb-dependent oxidation (section 2.2.1.2.1, eqs 18,44–47). So, the simultaneous nitrite oxidation by oxy-Hb would be self-limited, and, at the same time, it would facilitate the NO release from the haem. The major conundrum of this mechanism is the in vivo small nitrite concentration (in the submicromolar range in the erythrocytes and plasma71,325–328) to feed all of the reactions; the experimental setup324 used to build up the model employed a large nitrite/Hb ratio. Hence, to be feasible, this mechanism would require special spatial localization conditions (at the cell membrane, as will be discussed below) to control the local concentrations of reactants.324 Moreover, in vivo, the formation of the key nitrogen dioxide (or other oxidative intermediate) should be inhibited by several antioxidants (as will be discussed in section 2.2.1.2.1). Therefore, while these reactions (eqs 17–19, 21) demonstrate that Hb has the intrinsic ability to, in vitro, form and release NO, the physiological relevance of these observations remains unclear and controversial.

Another possible mechanism for NO not to be scavenged by Hb is through the nitrite conversion to dinitrogen trioxide (N_2O_3), through eqs 17\rightarrow22\rightarrow23 or eqs 17\rightarrow24\rightarrow25, in a reaction model where Hb acts as a true catalyst (eq 26; Figure 6).287,323,329–338 Both pathways (eqs 17\rightarrow22\rightarrow23 or eqs 17\rightarrow24\rightarrow25) are energetically feasible,329,339 but, for the 22\rightarrow23 branch, the "nitrito" binding mode of nitrite (Figure 20a) is essential for the successful production of dinitrogen trioxide.339 Theoretical calculations showed that the complex (Hb)Fe$^{3+}$–NO_2^- has to have a "free" (unbound) nitrogen atom to react with NO and form the N–N bond of dinitrogen trioxide.339 Interestingly, the "nitrito" binding mode is precisely the nitrite binding mode observed in crystals of the nitrite complex with ferric horse heart Mb340 and human Hb,341 which further supports the biologically feasibility of this pathway.

The dinitrogen trioxide is less reactive with the haem than the NO and is believed to be capable of crossing the cell membrane; thus, it would be, in principle, able to diffuse out of the red blood cell and reach the endothelium.287,333,334 The bioactive NO is, subsequently, formed directly (eq 27) or indirectly (eq 28) from the dinitrogen trioxide.

\[
\text{NO}_2^- + 2H^+ + (\text{Hb})\text{Fe}^{3+} \rightarrow (\text{Hb})\text{Fe}^{3+} + ^*\text{NO} + \text{H}_2\text{O} \quad (17) \\
\text{NO}_2^- + (\text{Hb})\text{Fe}^{3+} \rightleftharpoons (\text{Hb})\text{Fe}^{3+} - \text{NO}_2^- \quad (22) \\
^*\text{NO} + (\text{Hb})\text{Fe}^{3+} - \text{NO}_2^- \rightarrow (\text{Hb})\text{Fe}^{3+} + \text{N}_2\text{O}_3 \quad (23) \\
\text{NO}_2^- + (\text{Hb})\text{Fe}^{3+} - \text{NO}_2^- \rightarrow (\text{Hb})\text{Fe}^{3+} - \text{NO} \quad (24) \\
\text{N}_2\text{O}_3 = ^*\text{NO} + ^*\text{NO}_2^- \quad (27)
\]
\[\text{N}_2\text{O}_3 + \text{RSH} \rightarrow \text{RSNO} + \text{NO}_2^- + \text{H}^+ \quad (28) \]

However, this model presents several drawbacks. First, the formation of the \((\text{Hb})\text{Fe}^{3+}\text{−NO}_2^-\) complex (eq 22) in the presence of excess deoxy-Hb should not be favored, because the nitrite affinity for ferric haem is ca. 100 times lower than that for ferrous haem \((K_d \approx (1 \pm 5) \times 10^{-3} \text{ M}^{342-344} \text{ versus } (1 \pm 7) \times 10^{-5} \text{ M}^{343})\). Even if the recently reassessed value of \(5 \times 10^{-5} \text{ M}^{345}\) is considered, \(334,344,346\) the presence of excess ferrous Hb dictates that the actual concentration of the \((\text{Hb})\text{Fe}^{3+}\text{−NO}_2^-\) complex would be in the nanomolar order. Second, this \((\text{Hb})\text{Fe}^{3+}\text{−NO}_2^-\) complex (present at a very low concentration) has to compete with readily available \((\text{Hb})\text{Fe}^{3+}\) and \((\text{Hb})\text{Fe}^{2+}\text{−O}_2\) for the reaction with NO (eq 23 versus eqs 19/20). Even if the \((\text{Hb})\text{Fe}^{3+}\text{−NO}_2^-\) is considered to react as a \((\text{Hb})\text{Fe}^{3+}\text{−NO}_2^-\) radical species, at very rapid radical−radical reaction rates, the competition with the predominant \((\text{Hb})\text{Fe}^{3+}\) and \((\text{Hb})\text{Fe}^{2+}\text{−O}_2\) may not be favorable. Third, a similar reasoning applies to the alternative pathway (eqs 24−25), because the formation of the \((\text{Hb})\text{Fe}^{3+}\text{−NO}_3^-\) complex, in the presence of excess deoxy-Hb, is even more unfavorable \((K_d\text{Fe}^{3+}\text{−NO}_3^-\text{ complex, eq 24} \approx 10^{-5} \text{ M versus } K_d\text{Fe}^{3+}\text{−NO}_2^-\text{ complex, eq 19} \approx 10^{-10}−10^{-12} \text{ M}^{336,362})\). Regarding the competition for \((\text{Hb})\text{Fe}^{3+}\) (eq 22 versus eq 24), it should be noted that, although the NO affinity is ca. 100 times higher than the nitrite one, both pathways are energetically feasible.329 Fourth, the equilibrium 27 \((K \approx (2 \pm 7) \times 10^{-5} \text{ M}^{247,348})\) is expected to be rapidly \((k \approx 10^9 \text{ M}^{-1} \text{ s}^{-1}347)\) dislocated toward the dinitrogen trioxide formation, with subsequent hydrolysis to yield nitrite (reverse of eq 26).155,348−350 These constrains suggest that, in vivo, the dinitrogen trioxide formation should not be favored or might require special spatial localization conditions (at the cell membrane; see next paragraph).344 If formed, its reaction to yield RSNO (eq 28)528,351−353 could constitute a probable way for NO to avoid being trapped by the haemic proteins, as will be described below.

It has also been suggested that NO escapes the red blood cell by being formed locally in the cell membrane, under allosteric control. It was shown that the kinetics of the nitrite reaction rates, the competition with the predominant \((\text{Hb})\text{Fe}^{3+}\) and/or having a more accessible haem pocket than the T-state, a conformation (i) populated under low oxygen concentration, (ii) favored at low pH, (iii) with a higher affinity for the cell membrane, within the context of a metabolon,365 and (iv) with the highest NO release rates.

Accordingly, as the Hb begins to be deoxygenated, but still retains the R-conformation, the increased rate of the intermediate formation (eqs 17a→17b) contributes to the formation of a pool of potentially bioactive NO. When Hb becomes further deoxygenated, the T-state is stabilized, its membrane-binding is enhanced, and the NO release out of the red blood cell is feasible.

Nevertheless, the localized NO release does not avoid the “problem” of NO being trapped by the membrane-bound deoxy-T-state Hb itself. In addition, because the NO diffusion is directed by its concentration gradient,378,387,368 a significant fraction of this “membranar” NO should still diffuse toward the interior of the erythrocyte.

\[
\begin{align*}
\text{NO}_2^- + 2\text{H}^+ + (\text{Hb})\text{Fe}^{3+} & \rightarrow (\text{Hb})\text{Fe}^{3+} - \text{NO}^+ + \text{H}_2\text{O} \\
(17a) \\
(\text{Hb})\text{Fe}^{3+} - \text{NO}^+ & \Rightarrow (\text{Hb})\text{Fe}^{3+} - \text{NO} \\
(17b) \\
(\text{Hb})\text{Fe}^{3+} - \text{NO} & \Rightarrow (\text{Hb})\text{Fe}^{3+} + ^*\text{NO} \\
(17c)
\end{align*}
\]

The nitrite reduction rate as a function of oxygen fractional saturation results in a bell-shaped curve (Figure 7).207,348,301,356

![Figure 7. Mechanism for allosteric-regulated Hb-dependent NO formation. See text for details. Reproduced with permission from ref 207. Copyright 2006 American Society of Hematology.](image-url)
Regarding the NO diffusion toward the interior of the red blood cell, it was suggested that a high proportion of membrane-bound met-haemoglobin369 (met-Hb; (Hb)Fe$^{3+}$) would provide a diffusional barrier that would “shield” the NO (Figure 8).370 If (Hb)Fe$^{3+}$−NO complex is formed to some extent371 (eq 24), it would provide a way for NO to avoid scavenging:322,338,359,372 the reaction of NO with met-Hb results in the formation of the nitrosylating complex (Hb)Fe$^{2+}$−NO$^+$ (eqs 24 → 29), which either can be hydrolyzed to deoxy-Hb and nitrite (eq 30) or can transfer its nitrosyl group to nitrosylate nucleophilic compound such as thiols (RS$^-$) (eq 31).260,330,373,374 In addition, as described above, the (Hb)-Fe$^{3+}$−NO complex can react with nitrite to eventually form RSNO as well (eqs 25 → 28). Furthermore, met-Hb could also promote the formation of RSNO via reactions 22 → 23 → 28. Moreover, the initial reductive nitrosylation375 was shown to be faster (rate constant at least 5 times higher) in a subpopulation of β-subunit ferric haems, whose proportion is increased by T-state formation,322,338 precisely the conformation with higher affinity for the cell membrane. So, in the presence of a high proportion of membrane-bound met-Hb, the NO formed by the low proportion of deoxy-Hb seems to have a chance to escape scavenging: formation of RSNO by locally concentrated met-Hb.

Noteworthy, Mb does not seem to contribute to the formation of RSNO, under hypoxic acidic conditions, through this mechanism. The met-myoglobin (met-Mb) is nitrosylated only at pH values higher than 7.374,377−379 At acidic conditions, met-Mb forms reversible complexes with NO (K ≈ 104 M$^{-1}$ for eq 24) and does not undergo intramolecular haem reduction (i.e., does not undergo reaction 29). This is in marked contrast to met-Hb that reacts readily and irreversibly with NO at pH lower than 6 to give the nitrosylating complex (Hb)Fe$^{2+}$−NO$^+$.373,374

Concerning the formation of RSNO, note that their formation through reaction 31 could be initiated directly from ferrous Hb, via reaction 17a, without NO release. This mechanism was proposed for the self-S-nitrosylation of Hb, as a strategy for the release of NO:206,321−323,333,380−384 the delocalized intermedi-
ate (eqs 17a–17b) was suggested to be in equilibrium with a thyl radical (eq 32)385 to which the NO is transferred, yielding the well-known β-Cys93 S-nitrosylated Hb (eq 33). Subsequently, the Hb/membrane-bound NO would be transferred to the endothelial cells through transnitrosation of membrane thiol groups.

\[
\text{NO}_2^- + 2\text{H}^+ + (\text{Hb})\text{Fe}^{2+} \rightarrow (\text{Hb})\text{Fe}^{2+}-\text{NO}^+ + \text{H}_2\text{O} \\
(17a)
\]

\[
(\text{Hb})\text{Fe}^{2+}-\text{NO}^+ + \text{RS}^- \rightarrow (\text{Hb})\text{Fe}^{2+} + \text{RSNO} \\
(31)
\]

\[
(\text{Hb})\text{Fe}^{2+}-\text{NO}^+ \rightleftharpoons (\text{Hb})\text{Fe}^{3+}-\text{NO} \\
(17b)
\]

\[
\text{S(Hb)Fe}^{2+}-\text{NO}^- \rightleftharpoons \text{S(Hb)Fe}^{3+}-\text{NO}^- \\
\rightleftharpoons \text{S(Hb)Fe}^{3+}-\text{NO} \\
(32)
\]

\[
\text{S(Hb)Fe}^{3+}-\text{NO} \rightleftharpoons \text{ONS(Hb)Fe}^{2+} \\
(33)
\]

In this scenario of locally RSNO formation as a mechanism to explain the release of bioactive NO, it is noteworthy that nitrite administration leads to RSNO formation in vivo, not only in red blood cells, but also in other tissues.171, 186, 206, 210, 293, 322, 323, 333, 334, 386–388

RSNO are more stable than NO and less susceptible to be trapped by haem, two features that make them potential good NO reservoirs. Moreover, S-nitrosation is well recognized as a relevant cell signaling mechanism.155, 167, 170–175, 325, 334, 386 To elicit the NO-dependent effects, the RSNO would have to be, later, activated through homolytic or heterolytic decomposition or transnitrosation reactions (i.e., transfer of the NO+ group). Yet, the mechanisms for their formation and NO release in vivo are still controversial.154, 166, 389–391

In summary, several in vivo, in situ, and in vitro studies indicate that hearts, red blood cells, Hb, and Mb do generate NO and stimulate NO signaling in the presence of nitrite, under hypoxia. However, in the in vitro reactivity of haems with nitrite and NO involves a very intricate network of reactions (Figure 9), making it very difficult to foresee how the suggested in vivo outcome could be achieved. As a result, none of the mechanisms here discussed entirely explain how NO avoids the dogmatic scavenging by ferrous haems. In this respect, the formation of NO at the erythrocyte membrane, in the presence of a high proportion of membrane-bound met-Hb, represents the stronger mechanism.

In vivo, it is likely that a delicate balance between NO scavenging and NO formation takes place: while the scavenging occurs throughout the entire oxygen gradient (from normoxia to anoxia), the progressive deoxygenation promotes the nitrite reduction, eventually shifting the “scale” toward the NO generation. Taking the heart as an example to make this reasoning more clear: (i) Under normoxia, Mb would scaveng the NO2+ (through reaction 20). In this way, Mb could avoid the NO-dependent inhibition of CcO280, 281, 308, 392, 393 or the inducible NOS-mediated nitrosative stress.594, 595 Hence, under normoxia, Mb would protect the mitochondrial “respiration” or the cell from the deleterious effects all NO. (ii) As the oxygen concentration decreases, a mismatch between the oxygen supply and consumption is “translated” into an increase of the deoxy-Mb fraction. The nitrite reductase activity of Mb could then become significant, even though concurrently with the omnipresent NO scavenging activity (eq 19). The NO formed would be responsible for a decrease in oxygen consumption, ROS formation, and down-regulation of the cardiac energy status,222, 293 thus protecting the heart during intense muscle exercise, acute myocardial hibernation, or infarcted heart.293, 396

This “activity switch” of Hb/Mb, from NO scavenger to NO generator, depending on the available oxygen concentration, reintroduces nitrite as a oxygen sensor molecule, but through a more sophisticated mechanism than the plain “deoxy-Hb/Mb nitrite reduction versus oxy-Hb/Mb/nitrite oxidation” mentioned in the beginning of this section. It also emphasizes how mammals, which do not have a “dedicated” nitrite reductase, can reduce nitrite to NO: “reusing” proteins that we attribute to other functions and “switching” their activity when necessary. From a chemical point of view, mammals are just doing a “substrate adaptation” to an available redox system to fulfill their needs. In this case, taking advantage of the potential haem redox chemistry of proteins involved in oxygen transport. A haem is a perfect choice to reduce nitrite, as will become evident after comparing the mechanisms of reduction of several haemic proteins (sections 3.1 and 3.2.1).

One of the present major challenges is to discover how to connect the in vitro knowledge of nitrite reduction mechanisms to the in vivo observed nitrite effects: How can NO escape from the red blood cell? If RSNO are key NO reservoirs, which pathways can mediate nitrite-dependent S-nitrosation? Understanding the in vivo mechanisms by which Hb and Mb reduce nitrite to trigger the NO signaling remains, thus, an important goal for future research efforts. Moreover, the knowledge gathered from the Hb/Mb-mediated nitrite reduction would certainly be relevant to the understanding of other “non-dedicated” haem-containing nitrite reductases. It would be also relevant to the understanding of NO release from haemic receptors (e.g., guanylate cyclase) and transporters.

2.2.1.1.2. Haem-Dependent Nitrite Reduction – Neuroglobin, Cytooglobin, and Cytochrome c. Among the several haemic proteins proposed to act as nitrite reductases, the hexa-coordinated Nb, Cb, and Cc deserve to be here considered in more detail. To carry out catalysis, or simply react with a molecule, the haem has to have a free coordinating position to which the substrate or molecule should bind (see section 3 for more details). In this context, the nitrite reductase activity of penta-coordinated enzymes or metabolite transporters (as Hb and Mb in the absence of dioxygen) is not so surprising: that activity could arise from a “substrate adaptation” to the well-known redox chemistry of penta-coordinated haems. Yet the nitrite reductase activity of alleged hexa-coordinated haemic proteins raises two unavoidable questions: (i) Where does nitrite bind to be converted into NO? (ii) Why choose an hexa-coordinated protein?

2.2.1.1.2.a. Neuroglobin and Cytooglobin. Human Nb (Figure 4c,d) is a cytoplasmatic monomeric (∼17 kDa) haemoglobin (HG; see ref 108S) present in nerve tissues, as its name indicates, mainly in brain and retina.397–402 Its amino acid sequence displays less than 25% of homology with other vertebrate Hb and Mb and reveals a very ancient origin: it was present long before the divergence of the genes encoding Mb and Hb and remained highly conserved throughout mammalian evolution, suggesting a strongly selected vital role.397, 403–408 Nb possesses a bis-histidyl (HisF8 and HisE7) haem, in both iron oxidation states,397, 404, 412–420 as expected from its classification as a hexa-coordinated HG (Figure 4c). However, the distal histidyl coordination is reversible (eq 34), and the penta-coordinated Nb is able to reversibly bind
The CysB2 and CysE9 (kDa) hexa-coordinated HG.484 Cb is present in the cytoplasm. Nevertheless, in vivo, other mechanisms could control the signaling molecule453 sensing or scavenging of ROS and RNS,443 involved in redox reactions, including (i) cellular redox status reduction potential,413,435,442 and (iv) redox-controlled trigger level.

Physiologically, Nb was initially suggested to play a role similar to that of Mb: facilitate the dioxygen diffusion to mitochondria, to increase the oxygen availability to neurons.437 However, given its high dioxygen affinity and low dioxygen dissociation rate,437 Nb does not meet the equilibrium and kinetic requirements for functioning in oxygen transport by facilitated diffusion400 under (the presently known) physiological conditions.404 Nb displays koff ≈ 130–250 μM−1 s−1 and koff ≈ 0.3–0.8 s−1,404,413 values that compare with koff ≈ 15 μM−1 s−1 and koff ≈ 13 s−1 for sperm whale Mb. Furthermore, its (i) low tissue concentration (micromolar range, except in retina,400,441 (ii) high auto-oxidation rate, (iii) low haem reduction potential,415,435,442 and (iv) redox-controlled “internal” hexa-coordination support that Nb did not evolve to transport oxygen.435,441 Instead, it is probable that Nb is involved in redox reactions, including (i) cellular redox status sensing or scavenging of ROS and RNS,443–452 (ii) scavenging and/or sensing of dioxygen, carbon monoxide, NO, or, as recently described, nitrite (Figure 4d). Remarkably, the hexa- to penta-coordination conversion is controlled through a redox mechanism that involves the formation (or cleavage, for reverse conversion) of an intramolecular disulfide bond, which decreases the distal histidine affinity.421 (K ≈ 3300 versus 280422,423,433). Hence, the Nb affinity for “internal” (histidine) versus “external” ligands is expected to be directly controlled by the redox status of the cell.

\[
(\text{protein})\text{Fe}^{2+} \text{-His}_\text{distal}(\text{protein}) = (\text{protein})\text{Fe}^{2+} + \text{His}(\text{protein})
\]

Noteworthy, although the distal histidine affinity of Cb is lower, the Cb dioxygen dissociation rate is equally low as in Nb (koff ≈ 0.35–0.9 s−1439,488). Accordingly, and as has been suggested for Nb, Cb is believed to be involved in cytoprotection under hypoxia, when it is up-regulated,407,439,441,445,447,471,480,485,492 and under oxidative stress212 conditions,433,490,493–499 among other roles.407,485,495,500,501 Cb has been proposed to act as a NADH oxidase,483 a dioxygen sensor,499 NO scavenger,487,491 and as a nitrite reductase/NO synthase.

As expected from the previous discussion on Hb and Mb, the human ferrous deoxy-neuroglobin and deoxy-cytoglobin (deoxy-Nb and deoxy-Cb) do reduce nitrite to NO, under anaerobic conditions, in a reaction that is pH-dependent (equivalent to eq 17; k(Nb, pH 6.5) ≈ 1.2 M−1 s−1, k(Nb, pH 7.4) ≈ 0.12–0.26 M−1 s−1502 k(Cb, pH 6.0) ≈ 1.5 M−1 s−1, k(Cb, pH 7.0) ≈ 0.14 M−1 s−1.503). However, contrary to the “open” (penta-coordinated) Hb and Mb, the Nb and Cb reactions are also dependent on the competition of nitrite with the distal histidine for binding to the haem. In the case of Nb, the nitrite reduction is further dependent on the redox state of the CYSCD and CYSD5 whose binding controls the fraction of penta-coordinated haem-containing molecules. In accordance, the reduction of the distal bond or the mutation of the CYSCD and CYSD5 to alanine residues decreases the Nb reaction rate constant by a factor of 2 (k ≈ 0.06 M−1 s−1 (pH 7.4)).

Noteworthy, the replacement of the distal HisE7 by a leucine or glutamine residue, which “locks” Nb in a penta-coordination, state, leads to rates ~2000-fold higher than that of wild-type Nb (259 and 267 M−1 s−1, respectively (pH 7.4)).502 Furthermore, and remarkably, under acidic conditions (pH 6.5), the rate constants of the HisE7-Leu and HisE7-Gln mutants increase above 2500 and 2000 M−1 s−1, respectively,502 being the highest reaction rates of nitrite with a mammalian HG ever reported. In this respect, it should be noted that a similar mutation of the Mb leads to a marked decrease in the nitrite reduction (1.8 and <0.5 M−1 s−1 for HisE7-Ala and HisE7-Leu Mb mutants).504,505

Although these high rates cannot reflect the physiological NO formation, they confirm that the Nb-dependent NO generation is feasible and controlled by the hexa- to penta-coordination conversion and, consequently, by (at least) the thiols redox state.

Unsurprisingly, the penta-coordinated deoxy-Nb/Cb also rapidly traps NO in a stable (Nb/Cb)Fe2+–NO complex, as deoxy-Hb/Mb do (equivalent to eq 19; koff ≈ 108 M−1 s−1 for human ferrous deoxy-neuroglobin and deoxy-cytoglobin (oxy-Nb) and oxy-cytoglobin (oxy-Cb)304,407,439,461,391 (k ≈ 107 M−1 s−1). Once more contrary to the Hb/Mb reactions 20 and 18, the global rate of these Nb and Cb oxidations is dependent on the competition between the dioxygen and the distal histidine (which controls the concentration of oxygenated protein). The higher auto-oxidation rate (comparatively to Hb/Mb) also contributes to further decrease the oxy-Nb/Cb concentration available to react with NO and nitrite.413,435,442

Regardless of these “side” reactions (eqs 18–20) and of all the other possible haem reactions (Figure 9), the in vivo nitrite reductase/NO synthase activity of Nb and Cb is supported by two lines of evidence: (i) Nb491,441,445–447,450,451,475–480 and Cb407,439,441,445,447,471,484–492,503 have been shown to
mediate cytoprotective responses to ischaemic stress, promoting cell survival, and (ii) in the presence of nitrite, both can stimulate the NO signaling and inhibit the mitochondrial "respiration", in a manner dependent on the pH, dioxygen concentration, cysteine redox state, and haem coordination state.502,503

Crucial for the in vivo significance of Nb and Cb reactions is the existence of regenerating systems that efficiently rereduce the oxidized met-neuroglobin and met-cytoglobin (met-Nb and met-Cb). This is particularly important, because these proteins are present at low concentrations (micromolar range). Comparatively, the high concentration of Hb and Mb allows them to effectively form and scavenge NO, despite the relatively slow reduction rates.275,507 Although presently there are no known specific reductases, met-Nb and met-Cb can be rapidly reduced in vitro using conditions that mimic those existing within living cells.413,435,447 met-Cb, for example, can be rapidly reduced by cellular reductants such as cytochrome b5 and cytochrome b5 oxidoreductase,487,488 cytochrome P450 reductase (NADPH; k ≈ 3 × 10^5 M^-1 s^-1488), or even ascorbate (k ≈ 50 M^-1 s^-1488). These "recycling" reactions (ferric to ferrous) would greatly increase the rate of NO formation, as well as of NO scavenging, allowing Nb and Cb to act as catalysts of NO and nitrite metabolism at the low concentration that they are found in vivo.

In summary, the Nb and Cb-catalyzed nitrite reduction to NO presents the same features and "weaknesses" as discussed for Hb/Mb, but with an additional level of complexity: the nitrite reduction is modulated by the redox state of key surface cysteine residues and/or by any other hypothetical "modification" that decreases the distal histidine affinity, for example, phosphorylation, protein–protein interaction, protein–lipid interaction, nitration. In accordance, these HG have been suggested to be allosteric-regulated nitrite reductases. In particular for Nb, the following mechanism has been proposed (Figure 10): (i) Under normal conditions, the high cellular concentration of reduced thiols (e.g., GSH ≈ 5 mM, with GSH/GSSG > 500) keeps the Nb cysteine residues reduced and "locks" the protein mainly in a "closed" bis-histidinyl-hexacoordinated configuration, with low nitrite reductase activity. (ii) As oxidative stress312 conditions develop and the concentration of reduced thiols decreases, the population of disulfide-containing penta-coordinated Nb would increase, amplifying the NO formation.502 Subsequently, the NO formed can, for example, inhibit the mitochondrial "respiration", limiting the dioxygen consumption and ROS formation, thus preventing further oxidative stress damage. Hence, the proposed mechanism allows the “translation” of changes in the cellular redox status into a differentiated NO flux that would be, subsequently, “translated” into a biological response (in the example, antioxidant protection). In a scenario of an ischaemic insult, the mechanism hypothesized predicts that the protective action of Nb would be exerted after the ischaemic phase, during reperfusion, when oxidative stress develops and dioxygen is already present. Nevertheless, the hexa- to penta-coordination conversion of either Nb or Cb could be, in principle, promoted by other regulators/mechanisms that are "triggered" during the hypoxic phase. Thus, the protective action of these proteins could, in principle, occur also under hypoxia (when the proteins are found to be up-regulated).

The existence of the equilibrium 34 explains how an alleged hexa-coordinated haemic protein can bind nitrite to convert it into NO: the hexa-coordinated protein is not a "rigid body", and the "internal" sixth coordination position can be "open" to allow for the binding of an "external" ligand. The fact that this equilibrium can be modulated (changed in time) provides the answer for "why choose a hexa-coordinated protein?": to have a protein whose reactivity can be directly controlled by a selected stimuli, through a mechanism of the type "unready" versus "ready" (a regulatory strategy further discussed in section 3 and further exemplified with Cc and Cd,NiR). A protein with such "tunable" reactivity would allow the tissue to quickly respond toward different cellular conditions.

In this scenario, Nb seems to present the ideal characteristics to be a nitrite reductase: (i) it is present at low concentrations, more in line with a catalyst role;441 (ii) has a low haem reduction potential;413,435,442 (iii) holds a large cavity (120 Å^3)397,403,429 connecting the haem with the bulk, that has no counterpart in vertebrate Hb or Mb and that can function as a channel for substrates entrance/products release;415 (iv) it is plausible to be involved in redox reactions, as discussed above; (v) it displays a redox-controlled "internal" hexa-coordination, linked with the cellular redox status; and (vi) it has been associated with hypoxia and oxidative stress conditions, when it is up-regulated. In addition, Nb is of ancient evolutionary origin, having remained highly conserved throughout mammalian evolution,597,403,404 and it displays characteristics that are more in line with the bacterial and plant hexa-coordinated HG. The presence of these relatively similar proteins in so many different organisms suggests a strongly selected vital role. Nb may be a "molecular fossil" reminiscent of a redox catalytic function of the HG family that was vital to preserve throughout the evolution:420 a nitrite reductase/NO synthase or/and a redox sensor.

The major challenges concerning the nitrite reductase activity of Nb and Cb are essentially the same as those discussed for Hb and Mb. Primarily, how can the NO formed avoid the dogmatic scavenging by oxy- and deoxy-Nb/Cb? The identification of regenerating systems that efficiently rereduce the oxidized met-Nb and met-Cb is also essential. Without this knowledge, the physiological significance of the Nb/Cb-mediated NO pathway could not be fully evaluated.

Also of major importance is the identification of other allosteric regulators of the hexa- to penta-coordination conversion of both Nb and Cb, for example, phosphorylation, protein–protein interactions, protein–lipid interactions, or nitration. This may reveal new mechanisms to control the nitrite reductase activity and, consequently, the NO signaling. In this respect, the interplay between nitrite reduction/thiols redox status/dioxygen should be further investigated: on one
hand, nitrite reduction requires hypoxic conditions to increase the concentration of deoxy-Nb, but, on the other hand, those hypoxic conditions would not favor the formation of the disulfide-containing, penta-coordinated Nb that is able to reduce nitrite. Moreover, dioxygen is a probable inhibitor of nitrite reduction, because (i) both dioxygen and nitrite would compete to bind to Nb and (ii) the oxy-Nb formed would decrease the concentration of deoxy-Nb and simultaneously scavenge the NO formed.

2.2.1.2.b. Cytochrome c. Cc needs no introduction: discovered more than a century ago, it is a small (∼13 kDa) globular haem protein (Figure 11b) present in the intermembranar space of the mitochondria; there, it transfers one electron from cytochrome bc, complex (Complex III) to cytochrome oxidase complex (Complex IV), in the electron transport chain responsible for the oxidative phosphorylation. However, besides this well-known "respiratory" function, Cc is also an apoptotic signaling molecule: a variety of metabolic stimuli and insults trigger the Cc release to the
cytoplasm, where it participates in signaling pathways underlying apoptotic cell death.522 In addition, Cc is involved in oxidative and nitrosative stress responses: (i) it is an ideal antioxidant molecule to scavenge the superoxide anion radical23 formed by the mitochondrial electron transport chain,526 but it is also (ii) a lipid peroxidation catalyst, namely of mitochondria cardiolipin and of cytoplasm membrane phosphatidylserine (also associated with apoptosis),527–530 (iii) a peroxidase-like enzyme, and (iv) a nitrating agent (roles discussed in section 2.2.1.2.3).

Cc holds a "closed" e haem, hexa-coordinated by His\textsubscript{6a} and Met\textsubscript{80} (human numbering), as expected for an electron transfer protein (Figure 11b). Nevertheless, and as discussed for Nb and Cb, the Met\textsubscript{80} coordination is reversible, and a penta-coordinated species is formed when Tyr\textsubscript{147} is nitrated,531–535 methionine is oxidized,536,537 or Cc interacts with anionic ligands, such as the mitochondrial cardiolipin.528,538–540 The Cc interaction with negatively charged lipids, membranes, and inorganic electrode surfaces has been subjected to numerous studies.528,540–551 The interaction results, not only in protein conformational changes,541–545,548,549,352,553 but also in a significant decrease (\textasciitilde 300–400 mV531,532,540,547,550,551) of the reduction potential, which should facilitate the Cc participation in reduction reactions. Once the haem is "open" (becomes penta-coordinated), Cc can bind "external" ligands (substrates), and the haem redox chemistry can be explored to catalyze several reactions, including the reduction of nitrite and of hydrogen peroxide (peroxidase-like activity, discussed in section 2.2.1.2.3). In this way, the Cc activity is "switched" from simple electron transfer to catalysis, which is ideal for the Cc roles in stress and apoptotic responses.

The in vivo Cc "function switching", "respiration" into stress/apoptotic mediator, demands for regulatory mechanisms to control the "activity switching": hexa-coordinated/electron carrier into penta-coordinated/catalyst. Once more (as in Nb and Cb), the regulatory mechanisms (oxidation, nitration, interaction with lipids) consist of posttranslational structural modifications that facilitate the cleavage of the methionine-iron coordination.527,528,533–536 In this respect, it is noteworthy that, besides the Met\textsubscript{80} also the Tyr\textsubscript{147} Tyr\textsubscript{168} and Tyr\textsubscript{148} Tyr\textsubscript{168} (the lysine residues are involved in interactions with anionic phospholipids) (Figure 11b) are highly conserved in Cc from different species, suggesting the existence of multiple conserved biological "switches". In particular during apoptosis, it has been suggested that cardiolipin-binding is one of the main "switches".540

As it is now expected, when under conditions that favor the haem penta-coordination, the Cc effectively catalyzes the anoxic and acidic nitrite reduction to NO\textsubscript{3} the nitrite reductase activity of hexa-coordinated Cc is negligible.557 A comprehensive kinetic characterization was not yet undertaken, but 100 \textmu M Cc (a reasonable physiological value for cytoplasmatic Cc558,559), in the presence of negatively charged liposomes, can catalyze the formation of NO at an appreciable rate of 0.18 nM s−1 (pH 6.4).557 Also, the Cc mutant Met\textsubscript{80}Ala, which harbors a "locked" penta-coordinated haem, displays an electrochemical catalytic response toward nitrite reduction that is similar to the bacterial Cd\textsubscript{3}NiR one.560 Somewhat surprising, the NO scavenging by Cc (equivalent to eq 19) is considerably slower than that by the HG, with a \textk_{\textsc{on}} \approx 10 and 103 M−1 s−1 for hexa- and penta-coordinated Cc, respectively,557,561–563 which could contribute to increase the bioavailable NO concentration. Nevertheless, once formed, the (Cc)Fe4+−NO complex would be quite stable (\textk_{\textsc{off}} \approx 10^{-5} and 10^{-7} s−1 for hexa- and penta-coordinated Cc, respectively).561–563 Despite the expected NO trapping, the Cc-catalyzed NO formation can significantly inhibit the mitochondrial "respiration" through inhibition of CcO557 and cause the guanylate cyclase activation (in vitro).503

The physiological significance of this Cc nitrite reductase activity would depend on the existence of regenerating systems that efficiently rereduce the oxidized Cc. Because Nb binds450,451,467–469,564 and reduces ferric Cc very rapidly (\textk = 2 \times 107 M−1 s−1 1467,468,564), this globin has been suggested to be one of potential Cc "cosubstrates".565 If so, a Nb regenerating system must be in place to efficiently rereduce the Nb present in tissues in low concentrations (see section 2.2.1.1.2.a).

In summary, Cc is able to reduce nitrite and to produce bioactive NO, under the conditions found during ischaemia injury, apoptosis, and others, when its haem may become penta-coordinated due to protein nitration, oxidation, and interaction with anionic ligands. Hence, the nitrite reductase activity of Cc can be of physiological relevance not only for hypoxia- and redox-dependent signaling, but also for the apoptotic process: (i) on one hand, nitrite and low NO concentrations are known to prevent pore opening, lipid peroxidation, and Cc release, in isolated mitochondria after ischaemia;557,567 (ii) but, on the other hand, high NO concentrations or high nitrite reduction rates can lead to Cc self-nitrosylation and nitration and inhibition of CcO, leading to membrane depolarisation, Cc release, and apoptosis.557,568–573 One of the major challenges for future research is to understand how the posttranslational regulatory mechanisms are orchestrated to control the Cc "activity switch" from an electron transfer protein into a nitrite reductase (or other activities, like peroxidase). In particular, how are the nitrite reductase and nitrite oxidase (discussed in section 2.2.1.2.3) activities articulated?

Of major importance is also the identification of other regulators of the hexa- to penta-coordination conversion that should control the Cc action in apoptotic and nonapoptotic cells. Two examples follow: (i) It would be of interest to study the effect of partial proteolysis, which is known to increase the peroxidase and nitrating activities.574 (ii) Because Tyr\textsubscript{148} phosphorylation inhibits the electron transfer process and impairs the caspase activation (an antiapoptotic "switch"), it would be of interest to also study the phosphorylation effect.575,576 Also pertinent would be (i) the identification of physiological relevant regenerating systems that efficiently rereduce the oxidized (Fe3+) Cc, (ii) the comprehensive kinetic characterization of the nitrite reductase activity, (iii) the accurate description of the concentration and coordination state of cytoplasmatic and mitochondrial Cc, or (iv) the comparative study of the equivalent "side" reactions described in Figure 9.

To conclude, Cc is a "multitask" protein, certainly involved in complex regulator mechanisms that control its "activity switching". The allosteric/redox-regulated nitrite reductase activity could play a relevant role in the Cc-mediated signaling pathways. Precisely how this activity will affect signaling in apoptotic and nonapoptotic cells remains to be truly explored.557

2.2.1.1.3. MoIybdemum-Dependent Nitrite Reduction — Xanthine Dehydrogenase/Oxidase and Aldehyde Oxidase. Several studies have suggested that the mammalian nitrite reduction can also be achieved with the molybdenum-containing XDO and AOX.
Mammalian XO (Figures 11a, 28, eq 35) and AO (Figure 11c, eq 36) are cytoplasmatic molybdoenzymes, belonging to the XO family (see section 3), that are present in various tissues.1,566–602 Noteworthy, besides the cytoplasm,603,604 XO was also described to be present on the outer surface of the cell membrane of endothelial and epithelial cells605–612 and on the peroxisomes.613,614 In vivo, XO exists predominantly as a Cys\textsubscript{992}, or irreversible, by limited proteolysis at Lys\textsubscript{551} or Lys\textsubscript{569} NAD+).615,616 Yet, XD can be rapidly converted into a “strict” oxidase form that reduces dioxygen instead of NAD+, the commonly studied and very well-documented XO. This conversion can be reversible, through oxidation of CyS\textsubscript{551} and CyS\textsubscript{569}, or irreversible, by limited proteolysis at Lys\textsubscript{551} or Lys\textsubscript{569} (conversion details will be described in section 3.2.3.1). Hence, XO/XD is the third protein type here described (after Nb and Cc) whose activity can be “switched” by a posttranslational conformational modification. AO is structurally similar to XO/XD, but exists exclusively as an oxidase (reduces dioxygen, not NAD+).615,616

$$\text{xanthine} + \text{O}_2 \rightarrow \text{urate} + n\text{O}_2^{-} + m\text{H}_2\text{O}_2 \quad (35)$$

$$\text{xanthine} + \text{O}_2 \rightarrow \text{carboxylate} + n\text{O}_2^{-} + m\text{H}_2\text{O}_2 \quad (36)$$

$$\text{xanthine} + \text{NAD}^{+} \rightarrow \text{urate} + \text{NADH} + \text{NO} \quad (37)$$

Physiologically, mammalian XO/XD is a key enzyme in purine catabolism, where it catalyzes the hydroxylation of both hypoxanthine and xanthine to the terminal metabolite, urate, with the simultaneous reduction of dioxygen (XO, eq 35) or NAD+ (XD, eq 37).596–602 The physiological function of AO remains a matter of discussion, being a probable partner in the metabolism of xenobiotics, neurotransmitters, and retinoic acid.616–619 However, XO/XD, as well as AO, catalyzes also the oxidation of a wide variety of substituted pyridines, purines, pteridines, related compounds, including the NADH,578–584 and aldehydes.596–602,620,621 Besides this broad specificity for oxidizing substrates, these enzymes are also promiscuous with the reducing substrates, being able to catalyze the reduction of several sulfoxides and N-oxides, including nitrate and nitrite.622–634 This unusual broad specificity has suggested the enzymes participation in other physiological pathways, including the beneficial activation of pro-drugs (e.g., refs 616,618,635–637) or the deleterious activation of azo dyes used as colorants in food and cosmetics (e.g., ref 638). In addition, their ability to catalyze the reduction of dioxygen has suggested their involvement in signaling pathways and, most important, in some ROS-mediated diseases,639–647 including ischaemia-reperfusion injury648–653 and ethanol hepatotoxicity.581,654–659 Furthermore, XO/XD is also the target of development of new drugs against hyperuricaemia and gout. The proposed roles of both XO/XD and AO in a range of physiological and pathological conditions have resulted in a considerable and increasing medical interest in these enzymes. More recently, the demonstration that XO/XD and AO can also catalyze the nitrite reduction with NO formation contributed to further stimulate the interest in the catalytic properties of these versatile enzymes. Interestingly, it also changed the way in which these enzymes are being thought: from damaging (ROS sources) to beneficial players (NO sources).

In vitro, under anaerobic conditions, XO/XD and AO catalyze the nitrite reduction to NO, in a reaction that is pH dependent (highly favored at pH < 7).626–634,660 The reaction mechanism will be discussed in section 3.2.3. However, and as can be foreseen, dioxygen and NAD+, the “classic” oxidizing substrates, act as strong competitive inhibitors of the nitrite reduction, “stealing” the electrons needed to reduce nitrite.629,631,661 This in vitro anaerobic reaction establishes the starting point for the suggested hypoxic XO/XD/AO-dependent NO formation in vivo.

During ischaemia, several events occur that, in concert, can favor the nitrite reduction by XO/XD and AO (Figure 12):

- First, and obviously, is the decrease in dioxygen concentration (hypoxia or even anoxia) and the resulting acidosis (pH values of 6.5–5.5). Second, in the course of ischaemia, the mitochondrial electron transfer chain would be disrupted and the ATP synthesis hindered; the subsequent ATP catabolism leads to an accumulation of hypoxanthine and NADH in tissues.662–668 This increase in the concentration of two reducing substrates can “fuel” the enzymes with reducing equivalents to reduce nitrite. Third, as the ATP concentration decreases, the transmembranar ion gradients are dissipated, causing elevated cytoplasmatic calcium concentrations, which, in turn, activate calcium-dependent proteases that would convert the XD into the XO form.615,660–673 In summary, during ischaemia: (i) the pH values are lower enough to provide the acidic conditions required for the nitrite reaction; (ii) reducing substrates are available to supply the necessary electrons; (iii) the formerly prevailing XD form (that reacts with NAD+) can be converted into the “dioxygen-user” XO, by proteolysis; (iv) the concentration of the competitive dioxygen is very low; and (v) NAD+ (regardless of its high concentration) would be no longer a competitive substrate of the nitrite reduction, because XO and AO do not react with it. Therefore, all of the conditions seem to be gathered for nitrite to be reduced by XO and AO during in vivo ischaemia.

In accordance with the above reasoning, several in situ and in vivo studies suggested that these enzymes are acting as nitrite...
reductases, in models of ischaemia (and others) injury in heart, liver, lung, kidney, and vessels.185–187, 192, 202, 203, 503, 627, 631–633, 676–681 Those studies were validated with employment of the XO and AO specific inhibitors allopurinol/oxypurinol and raloxifene, respectively, and also the general molybdenoenzymes inhibitor tungstate. Particularly relevant is the demonstration of the XO/nitrite protective role within the context of cardiac ischaemia in an isolated heart model.185

Despite those in situ and in vitro studies, some authors argue that the high K_m values for nitrite ($\sim 0.5–2$ mM629,634 and ~ 3 mM633 for XO and AO, respectively), 1–2 orders of magnitude higher than the nitrite concentration in tissues (<20 μM171,682,683), are a major limitation for the in vivo relevance of these molybdenum-dependent pathways. However, the kinetic parameters indicate that these enzymes can produce NO, with reasonable rates ($k_{opf} \approx 40$ M$^{-1}$ s$^{-1}$1634), at conditions “fine-tuned” by the availability of nitrite and dioxygen.629,634 That is, by functioning in a concentration range well below the K_m value, the reaction rate is first order on nitrite (k_{opf}), thus allowing the NO formation to be directly controlled by the nitrite availability. In addition, the NO generation should be readily controlled by the strong competitor dioxygen, whose k_{in}/K_m (pseudo-first-order rate constant) is 2–3 orders of magnitude higher.684 In this way, the concentration of NO is kept within the characteristics of a local signaling molecule and controlled. In this respect, it should be emphasized that, in vivo, where NO performs its functions at nanomolar concentrations, it is not conceivable to produce NO at micromolar or millimolar levels (the enzymes K_m order). At micromolar concentrations, it would not be achievable to control the NO specificity and toxicity. In fact, it is in situations of NO overproduction that its deleterious effects begin (e.g., in chronic inflammation, where 2–4 μM of NO was described to be formed154,155). Thus, if these molybdoenzymes are to be physiologically relevant NO sources, they should not catalyze the formation of NO at the nitrite K_m concentration values.634

Another point against the feasibility of these pathways in vivo is related to the conversion of the in vivo-predominant XD into XO. The extent and rate of this conversion are a matter of great controversy: from no conversion at all (with XO being considered as an experimental artifact), to a small (20%) and slow conversion588,644,669–671,673–675,685,686 and a conversion that is enhanced by hypoxo conditions and in vivo ischaemia.612,672 The issue here is the competition between nitrite and NAD$^+$ to react with reduced XD. The NAD$^+$ concentration ($\sim 0.5–1$ mM665,666,687–690), 2–3 orders of magnitude higher than that of NADH, is not significantly decreased by the NADH accumulation during ischaemia.664–668 As a result, if the conversion of XD into XO is not efficient (or does not occur at all), the NAD$^+$ reaction (with a k_{cat}/K_m 2–3 orders of magnitude higher691) would prevail over the nitrite reduction, and the NO formation by this protein would be seriously compromised. Nonetheless, the AO would still be able to achieve the NO formation, because it does not react with NAD$^+$. In addition, also the competition between nitrite and dioxygen is critical, and these pathways require substantial hypoxia or even anoxia.629,631,661 Moreover, in the presence of dioxygen, even at low concentrations (K_m for dioxygen is $\sim 10^{-5}$ M684,697), the superoxide radical formed would react with NO, to yield the strong oxidizing peroxynitrite (eq 13).153–155 Thus, under nonanoxic conditions, the copresence of superoxide dismutase is crucial for the NO signaling function.

Besides those chemical and kinetic constrains, the proposed role of XO/XD as a NO source faces another obstacle: for long, countless studies pointed toward a beneficial clinical outcome through the inhibition of XO (reduction of symptoms by treatment with allopurinol).648,649,653,693 How can those results be reconciled with a beneficial XO-mediated role? Clearly, the old perspective has to be “broken” to allow new, more comprehensive studies.694

In summary, in vitro, under anaerobic conditions, the molybdenum centers of XO/XD and AO are able to reduce nitrate and, contrary to the haemic proteins so far discussed, to promptly release the NO formed (fully discussed in section 3.2.3). With the molybdenum-containing proteins, the dilemma is related to the competition between nitrite and the “classic” oxidizing substrates, dioxygen and NAD$, for the enzymes electrons. In vivo, the molybdenum-dependent NO formation would be determined by the extension of ischaemia (hypoxia), the copresence of superoxide dismutase and other antioxidants, and by the availability of oxidizing and reducing substrates. In the case of XD/XO, the NO formation is further dependent on an additional factor: its conversion to XO. Thus, a parallelism with Nb andCc can be drawn, and the XD/XO can be suggested to be an allosteric-regulated nitrite reductase, controlled by limited proteolysis or by the redox state of key cysteine residues. Nevertheless, while the activity regulation by proteolysis is easily reconciled with an ischaemic event (Figure 12), the regulation through cysteines oxidation is subjected to criticism. As for Nb (Figure 10), it can be argued that, after the ischaemic phase, during reperfusion, as oxidative stress212 conditions develop and the concentration of reduced thiols decreases, the fraction of XO increases and the NO formation would be promoted. However, under these conditions, the dioxygen present inhibits the nitrate reduction.

In light of the well-known molybdenum oxo-transfer chemistry (discussed in detail in section 3.2.3), the nitrite reductase activity of XO/XD and AO is not at all unexpected: once again, the mammalian cells are doing “subrate adaptations” to available redox systems and “switching” the systems activities in accordance with the cellular needs. In this context, the hypothesis of XD nitrite reductase activity being further dependent on the conversion into XO adds an additional level of complexity (allosteric regulation) to the “activity switching”.

One of the major challenges concerning the molybdenum-dependent enzymes is to understand if, in vivo, the XD is converted into XO. Is the conversion an experimental artifact or a deliberated regulatory strategy? If it is not an artifact, how, to what extent, and when does the in vivo conversion take place? How are the posttranslational regulatory mechanisms orchestrated to control the “switching” between XD/XO activities? On the other hand, if the conversion does not occur in vivo, how can the XD avoid reacting with NAD$^+$ to be able to produce NO?

Another challenge is related to the development of novel in situ/in vivo experimental approaches. Most of the XO studies are validated with the employment of allopurinol/oxypurinol, which is a recognized ROS scavenger and is known to interfere with alternative purine catabolism pathways (in particular with adenosine).695–698 Also, raloxifene (an estrogen receptor modulator) interferes with other vital pathways.699 In this respect, the use of a new XO inhibitor, febuxostat (with a K_i value 3 orders of magnitude lower than the one of allopurinol),
could in principle be useful. Also valuable would be the obtai
Review

The in vivo relative relevance of these enzymes on the total nitrite-dependent NO formation also needs to be reevaluated in a tissue-dependent manner. For example, the XO/XD interaction with the negatively charged glycosaminoglycans of vessel wall was poorly explored. It has been suggested that several pathologies (including liver and intestine ischaemia) cause the XO/XD release into circulation.663,693,700–704 Once in circulation, XO/XD can bind to the endothelia glycosamino-
glycans605–612 to form a new complex, polysaccharide-XO/
XD, which displays different kinetic properties toward xanthine and allopurinol.705 How does this complex affect the nitrite activity of XO/XD? Is the enzyme reaching locations where it was not present before the injury and where the NO formation can be relevant?

2.2.1.1.4. Protein-Independent Nitrite Reduction. Remark-
ably, mammals still can count on another mechanism to produce NO: the protein-independent nitrite reduction under acidic and reducing conditions. The protein-independent NO formation has been demonstrated in the stomach,706–715 skin surface,714,715 infected urinary tract,716 and oral cavity, even though the mouth higher pH (relative to the stomach one) dictates a lower NO formation.717,718 This protein-independent NO generation may play a decisive role, not only on the (obvious) control of vasodilation,719–721 but also in gastric mucosa formation722 and in host defense (as bactericide in oral cavity,718 stomach,708,723–729 urinary tract,716 and even in skin723). In this context, it is worth mentioning the commensal bacteria of the oral cavity that reduce nitrate to the necessary nitrite for NO generation in the stomach (through the swallowed saliva).730,731,726–729,732–734 Moreover, the microbial communities of human dental plaque are capable of carrying out the complete denitrification pathway, mediating the nitrate reduction to NO, and further to nitrous oxide and dinitrogen.735 This constitutes an overlooked symbiotic interaction that may question the overuse of antibacterial mouthwash. On the other hand (and ironically), it is the nitrite production by some pathogenic nitrate-reducing bacteria that may cause their own destruction through the formation of cytotoxic concentrations of NO.716

The protein-independent NO formation relies on the nitrite decomposition, at acidic pH, to dinitrogen trioxide (eqs 38,39), which can then dismutate to NO and nitrogen dioxide radical (eq 27) or be converted to a RSNO (eq 28).348,736,737

\[
2\text{NO}_2^- + 2\text{H}^+ \rightleftharpoons 2\text{HNO}_2
\]
\[38\]

\[
2\text{HNO}_2 \rightleftharpoons \text{H}_2\text{O} + \text{N}_2\text{O}_3
\]
\[39\]

\[
\text{N}_2\text{O}_3 \rightleftharpoons \text{NO} + \text{NO}_2
\]
\[40\]

Global reactions (eqs 38 + 39 + 27):

\[
2\text{NO}_2^- + 2\text{H}^+ \rightarrow \text{NO} + \text{NO}_2 + \text{H}_2\text{O}
\]
\[41\]

\[
\text{N}_2\text{O}_3 + \text{RSH} \rightarrow \text{RSNO} + \text{NO}_2^- + \text{H}^+
\]
\[42\]

The extent of this NO generation, however, is expected to be very small and limited to conditions of profound hypoxia and/or acidosis, because it depends on (i) the formation of nitrous acid (pK_a 3.1–3.4 for eq 38) and (ii) the dismutation of dinitrogen trioxide, whose equilibrium (eq 27) is expected to be rapidly dislocated toward the NO consumption (as was discussed in section 2.2.1.1.1). Nevertheless, the rate and direction at which the reactions 38→39→27 would be driven (in vitro and in vivo) depend not only on the pH, but also on (i) factors that potentially shift the equilibria by consuming NO, such as dioxygen (eq 41), haem-containing proteins, and thiol compounds, and (ii) the presence of reducing compounds.738 In its turn, the aqueous redox chemistry of nitrite is, once more, highly pH-dependent: the nitrite reduction to NO is proton-coupled (2H^+/e−; eq 16), and its reduction potential drops from 1.00, at pH 1, to 0.37 V, at pH 7 (vs NHE).738 Hence, on a laboratory scale, it is the reduction of acidified (pH 1) nitrite solutions with iodide that is used to rapidly and estequimetrically synthesized NO. In less harsh conditions, ascorbic acid, which acts as both a reducing and an acidifying agent, rapidly reduces nitrite to NO (eq 42).7 In accordance, the NO generation in stomach and urinary tract was observed to be enhanced by the presence of vitamin C7,716,721 and polyphenolic compounds.711,712,739,740

In this respect, it is should be emphasized that reactions 38 plus 39 result in the global reaction 26, which was described to be catalyzed by ferrous Hb (in section 2.2.1.1.1). Hence, in both cases, the dinitrogen trioxide formation is dependent on the presence of a reducer. In summary, the protein-independent NO formation is expected to be highly pH and reducer-dependent.

\[
2\text{NO} + \text{O}_2 = 2\text{NO}_2
\]
\[43\]

\[
2\text{HNO}_2 + \text{ascorbic acid} \rightleftharpoons \text{dehydroascorbic acid} + 2\text{NO} + 2\text{H}_2\text{O}
\]
\[44\]

Although the protein-independent NO generation had been demonstrated in the few above-mentioned organs/localizations, it is worth mentioning that this pathway is likely to occur at any site where nitrate is present under acidic and reducing conditions,741,742 in particular, in any tissue under ischaemia, where the pH decreases to values as low as 5.5 and the reducing equivalents accumulate.741–746 In fact, it was shown that the reducing (nonenzymatic) compounds present in homogenates of hearts subjected to ischaemia greatly (40-fold, at pH 5.5) increase the rate of NO formation.741,746,747 Even so, it should be noted that this protein-independent, reducers-dependent NO formation was observed to be lower (<15%748) than the protein-dependent one described in the previous sections.

Presently, little is know about the regulation and physiological/pathological significance of this protein-inde-
dependent NO formation pathway, in particular in the stomach, where its occurrence seems to be beyond any doubt. This is one of the major challenges for future research.

2.2.1.1.5. Nitrous Anhydrase. Besides the “nondedicated” nitrite reductases so far discussed, also the zinc-containing ubiquitous carbonic anhydrase (Figure 11d) was shown to readily produce NO from nitrite.749 Because Zn^{2+}, with its d^{10} electronic configuration, does not support redox chemistry, the carbonic anhydrase was suggested to act as a nitrous anhydrase (eqs 38→39), in a reaction that would be equivalent to the reverse of the carbon dioxide hydration (eq 43). The subsequent dinitrogen trioxide dismutation would yield nitrogen dioxide radical and the aimed NO (eq 27).749 The feasibility of this mechanism is, however, questionable, because (i) the formation of dinitrogen trioxide (eqs 38→39) and (ii) the direction and rate of the equilibrium 27 have been
subjected to controversy (as discussed in sections 2.2.1.1 and 2.2.1.1.4).

Despite those criticisms, the carbonic anhydrase-dependent NO was shown to induce the vasodilation of aortic rings.749 Hence, this enzyme was suggested to contribute to the regulation of local blood flow in response to an increase in the tissue metabolic activity, through the following mechanism:749 (i) increased metabolic activity results in an increased carbon dioxide formation; (ii) carbonic anhydrase very rapidly "translates" this higher carbon dioxide into a decreased pH (eq 43); (iii) the local transient acidosis would then favor the dioxygen delivery to the tissue, via the Bohr effect that decreases the Hb dioxygen affinity;750 and (iv) in addition, the local transient acidosis would also favor the carbonic anhydrase-dependent NO formation (eqs 38→39→27), triggering the vasodilation, which further favors the dioxygen supply to the tissue.

Noteworthy, and contrary to all of the other pathways discussed, the carbonic anhydrase-dependent NO formation could occur before the dioxygen concentration decreases below critical values.749

\begin{equation}
\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{CO}_3 \rightleftharpoons \text{HCO}_3^- + \text{H}^+ \quad (43)
\end{equation}

\begin{equation}
2\text{NO}_2^- + 2\text{H}^+ \rightleftharpoons 2\text{HNO}_2 \rightleftharpoons \text{H}_2\text{O} + \text{N}_2\text{O}_3 \quad (38,39)
\end{equation}

\begin{equation}
\text{N}_2\text{O}_3 \equiv \text{NO} + \text{NO}_2 \quad (27)
\end{equation}

The major challenge concerning this nitrite anhydrase is, undoubtedly, the identification of the reaction mechanism responsible for the dinitrogen trioxide/NO formation in the absence of a redox active metal. Also, the competition between carbon dioxide and nitrite should be thoroughly explored.

2.2.1.1.6. Nitrite Reduction – Summary. In summary, the mammalian nitrite-derived NO formation is, theoretically, quite simple, noteworthy, much simpler than the NOS-catalyzed synthesis (eqs 14, 15). It involves the one-electron reduction of nitrite by a redox active metalloprotein and requires just protons (acidosis), a low dioxygen concentration, and an electron donor to reduce the metal. Therefore, from a chemical point of view, mammals that do not have a "dedicated" nitrite reductase can reduce nitrite by doing a "substrate adaptations" to an available redox active metalloprotein. From a physiological standpoint, mammals are "reusing" metalloproteins, present in cells to accomplish other functions, and "switching" the proteins activity when it is necessary to generate NO and the NOS activity is impaired. However, as was discussed, the in vivo nitrite "recycling" to NO is, actually, a very complex subject, further complicated by the (present) lack of knowledge to connect the in vitro understanding of nitrite reduction mechanisms with the in vivo observed nitrite effects.

Although the physiological relevance of each individual pathway (Figure 3, Table 2) is currently being (and will be) debated, the fact that nitrite can be reduced to NO (i) by diverse metalloproteins (enzymes, metabolite transporters, and electron transfers), with (ii) different cellular roles, (iii) tecidual and subcellular localizations, and (iv) molecular features, suggests that nitrite does play a critical role in the mammalian cellular homeostasis. From a physiological point of view, the existence of several NO formation pathways seems sensible. (i) It is not probable that biology developed only one specialized enzyme to generate such a crucial molecule. Certainly, it would be an advantage to have some "rescue" pathways to ensure the NO formation. (ii) These would be particularly relevant for mammals to be able to avoid the deleterious hypoxic/anoxic conditions, when the oxygen-dependent NOS activity would be impaired. (iii) In addition, the promiscuous function of an enzyme/protein can be reasoned as a "vestige" of the function of its ancestor.751 The choice of nitrite as the NO source (instead of, e.g., another

Table 4. Proteins Involved in Nitrite Oxidation in Mammals

<table>
<thead>
<tr>
<th>protein</th>
<th>"classic" reaction ^{a}</th>
<th>"classic" functions</th>
<th>site of nitrite oxidation ^{b}</th>
<th>reaction of nitrite oxidation ^{b}</th>
<th>figure ^{c}</th>
<th>section ^{d}</th>
</tr>
</thead>
<tbody>
<tr>
<td>haemoglobin (Hb) (blood)</td>
<td>dioxygen transport</td>
<td>(b) haem (Fig. 19(a)), penta-coordinated by a histidine residue ((\text{Hb})\text{Fe}^{2+}\text{O} \rightleftharpoons \text{HCO}_3^- + \text{H}^+ \rightleftharpoons (\text{Hb})\text{Fe}^{2+}\text{NO}_2^- \rightleftharpoons (\text{Hb})\text{Fe}^{2+}\text{NO}_2^- + \text{H}_2\text{O}_2)</td>
<td>(b) haem (Fig. 19(a)), penta-coordinated by a histidine residue ((\text{Mb})\text{Fe}^{2+}\text{O} \rightleftharpoons \text{HCO}_3^- + \text{H}^+ \rightleftharpoons (\text{Mb})\text{Fe}^{2+}\text{NO}_2^- \rightleftharpoons (\text{Mb})\text{Fe}^{2+}\text{NO}_2^- + \text{H}_2\text{O}_2)</td>
<td>(4, 13, 14)</td>
<td>2.2.1.2.1.</td>
<td></td>
</tr>
<tr>
<td>myoglobin (Mb) (cardiac, skeletal and smooth muscle)</td>
<td>dioxygen transport; recently, several novel functions were suggested: cardiac NO homeostasis, O2 sensing, ROS scavenging, intracellular fatty acid transport</td>
<td>(b) haem (Fig. 19(a)), penta-coordinated by a histidine residue ((\text{Mb})\text{Fe}^{2+}\text{O} \rightleftharpoons \text{HCO}_3^- + \text{H}^+ \rightleftharpoons (\text{Mb})\text{Fe}^{2+}\text{NO}_2^- \rightleftharpoons (\text{Mb})\text{Fe}^{2+}\text{NO}_2^- + \text{H}_2\text{O}_2)</td>
<td>(4)</td>
<td>2.2.1.2.1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peroxidases (several tissue types)</td>
<td>antioxidant and immune defence</td>
<td>haem (Fig. 19(a)), penta-coordinated</td>
<td>(perox)(\text{R})\text{Fe}^{2+}=\text{O} + \text{NO}_2^- \rightleftharpoons (perox)(\text{R})\text{Fe}^{2+}=\text{O} \rightleftharpoons \text{NO}_2)</td>
<td>(2.2.1.2.2.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cytochrome c (Cc) (all tissue types)</td>
<td>electron transfer complex III ^{c} \rightleftharpoons complex IV mitochondrial oxidative phosphorylation; "non-classic" functions include apoptotic signalling molecule, O2^- scavenger, lipid peroxidation catalyst, peroxidase-like enzyme, nitrating agent</td>
<td>c haem (Fig. 19(a)), hexa-coordinated by a histidine (proximal) and a methionine (distal) residues; hexa-coordination reversible</td>
<td>(\text{Cc})\text{Fe}^{2+}=\text{O} \rightleftharpoons \text{NO}_2^- \rightleftharpoons (\text{Cc})\text{Fe}^{2+}=\text{O} \rightleftharpoons \text{NO}_2)</td>
<td>(11)</td>
<td>2.2.1.2.3.</td>
<td></td>
</tr>
</tbody>
</table>

\^a Figures where the protein is represented. \^b Sections where the protein is discussed.\n
\text{dx.doi.org/10.1021/cr400518y/ | Chem. Rev. 2014, 114, 5273–5357}
amino acid) can be thought as a “vestige” of the preaerobic pathways.\(^{752,753}\)

Interestingly, some of those metalloproteins have a known oxygen-dependent or oxygen-related activity, but, under hypoxia, the proteins apparently “switch” from their “classic” activity to a nitrite reductase activity. Furthermore, in a few of these proteins, Nb, Cc, and possibly XD/XO, the “activity switch” is allosterically regulated. These “activity switches” put forward the hypothesis that nitrite is acting, not only as a NO source, but also as an oxygen or redox sensing molecule. According to this hypothesis, each individual nitrite-mediated pathway would be activated when the oxygen concentration decreases below its own threshold of oxygen-dependent activity. So, different pathways would be triggered by different oxygen concentrations/redox conditions. In this way, all pathways would act in a concerted and self-regulated manner, with each individual pathway being relevant under different conditions and in different tissues.\(^ {754,755}\)

The “activity switching” hypothesis adds another level of complexity to the intricate puzzle of nitrite-mediated pathways and catapults the nitrite relevance to the entire physiological oxygen gradient, from normoxia to anoxia.

2.2.1.2. Nitrite Oxidation in Mammals

When compared to its reduction, the nitrite oxidation (Figure 3, Table 4) and its potential role in mammalian physiology and pathology have been overlooked.

Although no “dedicated” mammalian nitrite oxidase was yet described, several haem proteins seem to be used to carry out the oxidase function. Those proteins catalyze the nitrite oxidation, not only to nitrate (a two-electron oxidation), but also to nitrogen dioxide dimer radical (one-electron reaction). As described in sections 2.2.1.1.1–2.2.1.1.2, the oxygenated HG are able to oxidize nitrite to nitrate (eq 18). In addition, nitrite can also be oxidized by several peroxidases, myeloperoxidase, lactoperoxidase, eosinophil peroxidase, and catalase, as well as by Cc and “inflammatory” oxidants, such as the hypochlorous acid (see references throughout the following subsections).

Unlike nitrate, the nitrogen dioxide is a powerfully oxidizing and nitrating agent that can nitrate, not only protein residues, but also fatty acids and guanine nucleotides.\(^ {756–764}\) Yet, while limited nitrification of fatty acids and guanine nucleotides has been shown to elicit protective responses against inflammatory tissue injury,\(^ {765,766}\) protein nitrination is considered to be a deleterious process that alters the protein function and targets it for degradation. Moreover, the nitration reactions have been evoked to explain the loss of protection observed when higher doses of nitrate are administered in ischaemia-reperfusion conditions.\(^ {186,191}\)

2.2.1.2.1. Haem-Dependent Nitrite Oxidation — Haem Globins

The nitrite oxidation by oxy-Hb is known for more than a century, with the initial studies endeavored essentially to investigate nitrite poisoning.\(^ {677–779}\) From this reaction results the formation of nitrate and met-Hb (eq 18). However, the reaction kinetics is far more complex than just a simple bimolecular reaction (pH-dependent), with a single rate-limiting step. Instead, it was shown to be an autocatalytic radical chain reaction, described by reactions 18 and 44–47 (Figure 13).\(^ {779}\)

initiation: (Hb)Fe\(^{3+}\)–O\(_2\) + NO\(^{-}\) + H\(^{+}\)

\[\rightarrow (\text{Hb})\text{Fe}^{3+} + \text{NO}_{3}^{-} + \text{H}_{2}\text{O} \quad (18)\]

global reaction of the propagation cycle (eqs 44 + 45 + 46 + 47):

\[(\text{Hb})\text{Fe}^{3+}–\text{O}_{2} + 2\text{NO}_{2}^{-} + 2\text{H}^{+} + \text{H}_{2}\text{O} \rightarrow \text{NO}_{3}^{-} + 2\text{H}_{2}\text{O} + (\text{Hb})\text{Fe}^{4+} = \text{O} + \text{NO}_{3}^{-} \quad (48)\]

The nitrogen dioxide and ferryl-haemoglobin radicals formed can initiate new propagation cycles, autocatalyzing the reaction until all oxy-Hb is consumed. In vivo, under normal conditions, however, the presence of antioxidants should limit the propagation phase: (i) catalase and glutathione peroxidase should consume the initiator hydrogen peroxide, (ii) the erythrocyte-NADH-cytochrome b\(_{5}\) reductase system reduces the met-Hb to ferrous Hb, and (iii) small molecule antioxidants such as glutathione, urate, and ascorbate should reduce the radical species that propagate the cycle. Other termination reactions include (i) the nitrogen dioxide dimerization to dinitrogen tetraoxide (N\(_2\)O\(_4\), eq 49; \(K_{d} \approx 10^{-5}\text{ M}^{348}\)), (ii) its reaction with NO to yield dinitrogen trioxide (reverse eq 27 = eq 51), both of which could be hydrolyzed to yield nitrite and nitrate (eqs 50 and 52), and (iii) its participation in nitrating reactions.\(^ {763–766}\) Therefore, in vivo, the reaction is not expected to become autocatalytic, except for severe nitrite poisoning.\(^ {770}\)

Under normal conditions, the rate of nitrite oxidation by oxy-Hb is suggested to be determined only by reaction 18 and to be slow (\(k \approx 0.5–1 \text{ M}^{-1} \text{s}^{-1}\)).\(^ {779}\)

\[2^{*}\text{NO}_{2} = \text{N}_{2}\text{O}_{4} \quad (49)\]

\[\text{N}_{2}\text{O}_{4} + \text{H}_{2}\text{O} \rightarrow \text{NO}_{2}^{-} + \text{NO}_{3}^{-} + 2\text{H}^{+} \quad (50)\]

\[^{*}\text{NO} + ^{*}\text{NO}_{2} = \text{N}_{2}\text{O}_{4} \quad (51)\]
\[
\text{N}_2\text{O}_3 + \text{H}_2\text{O} \rightarrow 2\text{NO}_2^- + 2\text{H}^+ \tag{52}
\]

Nevertheless, it should be noted that the reactions of the propagation phase are not triggered only by the previous nitrite oxidation (eq 18). The propagation phase (eq 44) is also driven by the presence of hydrogen peroxide originated from other sources, when the antioxidant defenses are not able to efficiently remove it. Actually, the peroxidase-like activity of Mb \(^{753,784–788}\) and Hb \(^{789–791}\) has long been known; it results in the formation of ferryl- (eq 53) and radical ferryl-haems (eq 44). These oxidized proteins, in a situation of oxidative stress, \(^{212}\) could greatly amplify the oxidation of nitrite to nitrogen dioxide (eqs 45 and 46) and, thus, promote the deleterious protein nitration \(^{759,792,793}\) observed, for example, during myocardial ischaemia-reperfusion injury. \(^{794–798}\) The presence of nitrated proteins in circulating erythrocytes is controversial. \(^{759,799}\) Moreover, the acidic conditions, characteristic of ischaemia, favor the nitration reactions and decrease the rate of nitrite oxidation scavenging by thiols, therefore increasing effectively the efficiency of protein nitration. \(^{793,800}\)

\[
\begin{align*}
(Mb)\text{Fe}^{2+} + \text{H}_2\text{O}_2 & \rightarrow (Mb)\text{Fe}^{4+} = \text{O} + \text{H}_2\text{O} \tag{53} \\
(Mb)\text{Fe}^{4+} = \text{O} + \text{NO}_2^- + 2\text{H}^+ & \rightarrow (Mb)\text{Fe}^{3+} + \text{NO}_2 + \text{H}_2\text{O} \tag{46} \\
(Mb)\text{Fe}^{2+} + \text{H}_2\text{O}_2 & \rightarrow (*Mb)\text{Fe}^{4+} = \text{O} + \text{H}_2\text{O} \tag{44} \\
(*Mb)\text{Fe}^{4+} = \text{O} + \text{NO}_2^- & \rightarrow (Mb)\text{Fe}^{4+} = \text{O} + *\text{NO}_2
\end{align*}
\]

Because nitrite can reduce the ferryl and radical ferryl species, \(^{801,802}\) it was suggested that reactions 45 and 46 could function as "sinks" of those oxidizing species and, in this way, prevent the oxidation and peroxidation reactions they promote (Figure 14). \(^{753,784–789}\) The nitrogen dioxide radical simultaneously formed in reactions 45 and 46 should be scavenged by the high concentration of thiols and other antioxidants present in cells, until a relatively high concentration is formed. Reactions 45 and 46 could also be regarded as "regenerators" of Mb (Figure 14). This "recycling" would allow a more efficient scavenging of hydrogen peroxide by Mb (eq 53). This reasoning implies that nitrite oxidation can be a mechanism of cytoprotection, \(^{810}\) and it should not be thought of only as a source of deleterious nitrogen dioxide radical. \(^{300}\)

Overall, it is clear that the reactions 45 and 46 have "two faces", and, in vivo, it is likely that a delicate balance takes place between the protective and deleterious role of nitrite/hydrogen peroxide/Mb (Figure 14). \(^{300}\) The antioxidant capacity and the extent of the oxidative injury, in particular of ischaemic and inflammatory injury (where nitrite accumulates), could dictate whether the Hb/Mb peroxidase-like activity should be protective or deleterious.

In what concerns Nb (described in section 2.2.1.1.2), as expected, its oxidizing and nitrating activities are dependent on the conditions that favor the penta-coordination, with disulphide-containing Nb exhibiting the highest activities. \(^{448}\) Because met-Nb does not react with hydrogen peroxide to form ferryl-haem species, \(^{448,462}\) its nitrating activity has been ascribed to the following mechanism: nitrite binding to the haem iron, followed by reaction with hydrogen peroxide, to eventually yield an iron-peroxynitrite nitrating species \(^{448}\) (see also ref 800). In this context, it is remarkable the apparent inability of Nb to form cytotoxic ferryl-haem species, which could be related and relevant to its observed role in cellular survival. \(^{441,445}\)

2.2.1.2.2. Haem-Dependent Nitrite Oxidation – Peroxidases. It is remarkable that reactions 44–46, described for the autocatalytic nitrite oxidation by Hb, represent precisely a typical mechanism of a peroxidase-catalyzed reaction. \(^{811–815}\) In general, a native ferric peroxidase reacts with hydrogen peroxide to form compound I (eq 54). The enzyme is then regenerated by two one-electron reduction steps, yielding compound II (equivalent to eq 55) and subsequently the ferric protein (equivalent to eq 56). Alternatively, the enzyme can be regenerated by one two-electron reaction, oxidizing halides to the respective hypohalous acids (as, e.g., in myeloperoxidase), or oxidizing a second molecule of hydrogen peroxide to dioxygen (as in catalase). Hence, taking as model the mechanism above-described for oxy-Hb, it is not difficult to envisage how a peroxidase enzyme can account for the nitrite oxidation (eqs 54→55→56 or global reaction in eq 57), as long as nitrate can bind to the active site and the reaction is kinetically feasible.

\[
\begin{align*}
\text{peroxidase}\text{R} = \text{Fe}^{3+} + \text{H}_2\text{O}_2 & \rightarrow \text{peroxidase}\text{R} = \text{Fe}^{4+} = \text{O} + \text{H}_2\text{O} \tag{54} \\
\text{peroxidase}\text{R} = \text{Fe}^{4+} = \text{O} + \text{NO}_2^- & \rightarrow \text{peroxidase}\text{R} = \text{Fe}^{3+} + \text{NO}_2 + \text{H}_2\text{O} \tag{55} \\
\text{peroxidase}\text{R} = \text{Fe}^{3+} + \text{O} + \text{NO}_2^- + 2\text{H}^+ & \rightarrow \text{peroxidase}\text{R} = \text{Fe}^{2+} + \text{NO}_2 + \text{H}_2\text{O} \tag{56}
\end{align*}
\]

Global reaction (eqs 54 + 55 + 56):

\[
\text{H}_2\text{O}_2 + 2\text{NO}_2^- + 2\text{H}^+ \rightarrow 2\text{NO}_2^2 + 2\text{H}_2\text{O} \tag{57}
\]

For instance, nitrite is readily oxidized by myeloperoxidase at acidic pH (\(<6\)), in the presence of hydrogen peroxide, with a rate that is limited by the reaction with compound II. \(^{816–821}\) In fact, nitrite is a good substrate for myeloperoxidase compound I (eq 55; \(k \approx 2 \times 10^6 \text{M}^{-1} \text{s}^{-1} \text{pH} 7\) or \(10 \times 10^6 \text{M}^{-1} \text{s}^{-1} \text{pH} 5\)), but it reacts more slowly with myeloperoxidase compound II (eq 56; \(k \approx 6 \times 10^5 \text{M}^{-1} \text{s}^{-1} \text{pH} 7\) or \(900 \times 10^5 \text{M}^{-1} \text{s}^{-1} \text{pH} 5\)). \(^{820,822}\) Therefore, if a "fast substrate" is available to reduce compound II and regenerate the enzyme, the myeloperoxidase can rapidly oxidize nitrite to nitrogen dioxide. \(^{821,822}\) The subsequent nitrogen dioxide-mediated nitrination reactions could constitute a feasible protective response at the onset of inflammatory injury, through limited nitrination of fatty acids and guanine nucleotides. \(^{855,766}\) The nitrogen dioxide reactions could also constitute a defensive mechanism against pathological microorganisms (e.g., \(P. aeruginosa\)). \(^{835}\) However, under chronic inflammatory conditions, when nitrate accumulates as a consequence of the induction of inducible NO, \(^{827–829}\) myeloperoxidase could

Figure 14. The "two faces" of nitrite oxidation: potential pathways to mediate deleterious and beneficial effects. See text for details.
catalyze a burst of nitrogen dioxide. Hence, myeloperoxidase could be responsible for the observed biomolecules nitration in a wide range of inflammatory diseases involving activated neutrophils and macrophages. A parallel situation is thought to occur in asthma and other allergic inflammatory disorders characterized by activation of eosinophils. A parallel situation is thought to occur in asthma and other allergic inflammatory disorders characterized by activation of eosinophils. The eosinophils, however, are more efficient (at least 4-fold) at promoting nitrination than the neutrophils, because the nitrite oxidation by compound II is faster ($k \approx 6 \times 10^9$ M$^{-1}$ s$^{-1}$ at pH 7.4) than in myeloperoxidase. However, the one-electron reduction of compound I by two electrons directs the redox reactions toward the formation of the ferric state ($k \approx 2 \times 10^6$ M$^{-1}$ s$^{-1}$ (pH 7.2)), with no observable nitrogen dioxide formation, 816, 817, 822, 830, 833–835, 837, 838 as catalase does. 769, 834, 839, 840 However, the one-electron reduction of compound I can be carried out by a small molecular mass phenolic substrate (Phr), followed by nitrination as described for nitrite oxidation of compound II to yield the nitrogen dioxide (eq 56) and subsequent phenol nitration (eq 59). 817 In addition, at least in vitro, in the presence of a high nitrite concentration, lactoperoxidase is able to promote nitrination via an iron-peroxynitrite species, as was suggested for Mb (section 2.2.1.2.1). 817

\[
\text{Ph} - O^* + *NO_2 \rightarrow \text{HO} - Ph - NO_2
\]

(59)

In summary, it is presently widely accepted that peroxidases-mediated oxidation of nitrite contributes to the observed deleterious nitrination in several pathologies, in particular, in inflammatory conditions. 822

2.2.1.2.3. Haem-Dependent Nitrite Oxidation – Cytochrome c. The peroxidase-like mechanism of nitrite oxidation can be further generalized, anticipating that other haemic proteins with peroxidase-like activity 842 can also promote the nitrogen dioxide radical formation, contributing to cellular oxidative damage. 844–846 In this context, the “multitask” Cc stands out. (See section 2.2.1.1.2.b for the description of this hexa/penta-coordinated haemic protein, its several proposed activities/roles, including the peroxidase-like activity, and suggested “activity switching” mechanisms.)

In the presence of hydrogen peroxide, Cc catalyzes the oxidation of various reducers, including endogenous antioxidants, such as glutathione or ascorbate. 844,847–852 This peroxidase-like reaction is carried out through the formation of a compound I-like intermediate, in which one oxidizing equivalent is present as an oxoferryl-haem species and the other as a protein tyrosyl radical (equivalent to reactions 44 plus 45). The subsequent nitrite oxidation by the oxoferryl-haem yields nitrogen dioxide radical, in a reaction similar to the peroxidases one. 853 The nitrogen dioxide would then nitrinate Cc itself and proximal molecules. As expected, the peroxidase and nitrating activities of Cc are greatly increased by the presence of cardiolipin, 827,830,840,843 oxidation by peroxynitrite 832 or reactive halogen species, 836 nitrination, 831,832 and also by partial proteolysis. 833–837

In this context, it is of note that the presence of nitrated proteins and of cytoplasmatic Cc are two characteristics of cells undergoing apoptosis; moreover, mitoplasts depleted versus repleted with Cc display significant differences in nitrination yields. 853 This “coincidence” could be due (at least in part) to the nitrite oxidase activity of Cc, which would constitute a plausible mechanism for the cell to control the molecular and spatial specificity of the nitrination reactions. 853

The Cc peroxidase-like activity can also constitute an important antioxidant defense against hydrogen peroxide-dependent oxidative damage, in mitochondria. 858 Besides phagocytes, mitochondria are a relevant source of hydrogen peroxide. Under normal conditions, mitochondria oxidize up to 1–2% of the oxygen consumed to hydrogen peroxide and superoxide radical. 859 Under “non-normal” conditions that proportion is higher, for example, during ischaemia-reperfusion injury or in the presence of redox cycling drugs. 860–863 Hence, Cc could be an antioxidant molecule that scavenges the hydrogen peroxide formed. In this scenario, the presence of nitrite could contribute to “regenerate” Cc, as was discussed for Mb/Mb, exerting, in this way, a beneficial (antioxidant) effect. Yet, Cc has also been associated with deleterious effects, such as peroxidation of mitochondrial cardiolipin 828,829 or burst nitrations. 853 Overall, the beneficial and deleterious effects of Cc are probably in a delicate balance, as was above-discussed for Mb/Mb (section 2.2.1.2.1).

2.2.1.2.4. Nitrite Oxidation – Summary. One of the mechanisms that prevents the in vivo accumulation of nitrite is its oxidation. While the formation of the relatively “inert” nitrate is usually associated with the nitrite reaction with oxygenated Hb and Mb, it should not be forgotten that the same reaction produces, besides hydrogen peroxide, the reactive nitrogen dioxide radical. On the other hand, the formation of that oxidizing and nitrating radical has been linked with the nitrite reaction with proteins with peroxidatic activity. In summary, to oxidize nitrite, either by one or by two electrons, mammals are doing “substrate adaptations” to the haem redox chemistry of haemic proteins already present in cells to accomplish other functions. However, contrary to its reduction, the nitrite oxidation seems to have two quickly identifiable “faces”: (i) the beneficial, controlled formation of the signaling/defensive nitrogen dioxide and (ii) the deleterious, pathological, nitrogen dioxide overproduction. The “ugly face” of this nitrite handling arises from the accumulation of nitrite and hydrogen peroxide under conditions of oxidative and nitrosative stress, when both can be responsible for biomolecules modifications (oxidation and nitration) and, consequently, for injury.

Following the identification of nitrated proteins under a variety of pathological conditions, in vivo, the mechanisms of nitrotyrosine and nitrotryptophan formation became the focus of interest by the medical scientific community. For long, the observation of nitrotyrosine residues was considered as an unequivocal fingerprint of the peroxynitrite formation. However, the occurrence of nitrated proteins in cells would reflect not only the peroxynitrite formation or the NO trapping by tyrosyl radicals, but also the nitrate oxidation by “inflammatory oxidants” 856,816,864 or by haemic proteins such as those here described. The existence of these different nitrating pathways supports the relevance of this nitrite-dependent posttranslational protein modification for normal cellular signaling, but also in injury. 853

Regardless of its physiological and pathological significance, the mechanisms of formation of nitrogen dioxide radical are only beginning to be studied at a molecular level of detail. Concerning the nitrite oxidation, the future goals include not
only the mechanistic aspects, but mainly the understanding of its in vivo interplay and relative relevance.

2.2.1.3. Mammalian Nitrite Handling – Concluding Remarks. To conclude the discussion on the mammalian nitrite handling, two last points must be addressed.

First, in a review of the mammalian nitrite roles, it must be mentioned that nitrite itself has been suggested to be a signaling molecule, that is, with no need to be converted into the “active” molecule. Although the nitrite stability and in vivo abundance would make it an interesting signaling molecule, it is difficult to prove that it is nitrite itself, and not NO or nitrogen dioxide, that is responsible for the observed effects. If confirmed, this mechanism may overcome the impasse of the rapid NO scavenging.

Second, if nitrite is a key molecule for cellular homeostasis, how is its concentration controlled to respond to daily changes in dietary intake and in NO metabolism (NOS activity/NO consumption; Figure 15)? In humans, nitrite is obtained from diet sources such as vegetables (e.g., spinach, lettuce, or beetroot), curried meat,869 or drinking water,870 either directly or indirectly through the nitrate reduction by commensal bacteria in the mouth740 and gastrointestinal tract.713,726,727,732,734 Most of this exogenous nitrite (which it is not converted in the stomach) diffuses to the systemic circulation, where it is transported to resistance vessels and tissues.726 The second main source of nitrite is the NO oxidation itself,152,871,872 with 70% of plasma nitrite being derived from endogenously produced NO.326,873 To this pool of nitrite contributes the oxidation of NO through (i) reaction 30, (ii) reaction with dioxygen874 (eqs 41→51→52), and (iii) ceruloplasmin.179

\[
\begin{align*}
&\text{(Hb)Fe}^{3+} + \text{NO} \rightarrow \text{(Hb)Fe}^{3+} - \text{NO} \quad (24) \\
&(\text{Hb})\text{Fe}^{3+} - \text{NO} \rightarrow (\text{Hb})\text{Fe}^{2+} - \text{NO}^+ \quad (29) \\
&(\text{Hb})\text{Fe}^{2+} - \text{NO}^+ + \text{H}_2\text{O} \rightarrow (\text{Hb})\text{Fe}^{2+} + \text{NO}_2^- + 2\text{H}^+ \\
&2\text{NO} + \text{O}_2 \rightarrow 2\text{NO}_2 \\
&\text{NO} + \text{NO}_2 = \text{N}_2\text{O}_3 \\
&\text{N}_2\text{O}_3 + \text{H}_2\text{O} \rightarrow 2\text{NO}_2^- + 2\text{H}^+ \\
\end{align*}
\]

All of the nitrite sources are, thus, potentially subjected to great daily variation (Figure 15). Hence, how does a cell control the nitrite concentration to cope with its oxidation and reduction reactions? Presently, the mechanisms of nitrite transport and intracellular accumulation/export are poorly understood and mainly restricted to the erythrocyte, where the anion exchanger AE1 of band 3 is probably involved (see ref 365).875–879 Yet it would be very interesting if the nitrite transport across cell membranes was modulated by the oxygen concentration, allowing the nitrite transport to be directed to cells that need it to produce NO.878,879 Future work will dictate if this is a reasonable hypothesis.

Undoubtedly, the knowledge of nitrite physiological roles in mammals has evolved considerably over the last two decades, giving a novel relevance to the formerly “irrelevant” nitrite. This knowledge offers will create new therapeutic approaches for the management of several pathological conditions, including ischaemia injury, cardiovascular dysfunctions, myocardial infarction, stroke, or pulmonary hypertension.185, 186, 191, 194, 198, 200, 206, 247, 285, 886–899 Also, in infection, nitrite is being used as a bactericide/fungicide in stomach and airways (see ref 823).900–903 Thus, the mammalian nitrite metabolism research will certainly reserve many surprises for the future.

2.2.2. Nitrite in Signaling (and Other) Pathways in Plants. As all other organisms, plants must perceive and respond to a plethora of external stimulus and internal signals. NO is one of the signaling molecules used by plants to respond to abiotic and biotic challenges, as well as for their survival: NO has been shown to be involved in response to temperature, salt, or drought stresses, in disease resistance pathways, germination, flowering, root development, leaf senescence, or stomatal closure.904–944 However, the plant NO formation and signaling pathways are, by far, less well characterized than the mammalian counterparts.

Plants have several potential NO-generating proteins, localized in different subcellular compartments, but only a few of them have been thoroughly studied. Presently, it is accepted that NO can be formed through oxidative and reductive pathways.

The oxidative pathways are believed to produce NO, aerobically, through the oxidation of organic compounds such as polyamines,945,946 hydroxylamine,947 and arginine.948 However, the plant NO formation and signaling pathways are, by far, less well characterized than the mammalian counterparts.

In the reductive pathways, apparently the predominant ones,928,947,965,966 NO is formed through the (by now familiar) nitrite reduction and is favored by low dioxygen concentrations and acidic conditions (see references throughout the following sections). However, in plants, the nitrite reduction occurs in a different “scenario”: nitrate and nitrite, both precursors and end-products of signaling NO, are also normal substrates of the plant nitrogen assimilation pathway (see section 2.1.1; Figure 1, orange arrows; Table 1). When nitrate is the main nitrogen source available, plants must assimilate it under conditions that range from normoxia to anoxia; nitrate and nitrite can, thus,

Figure 15. Nitrate/nitrite/NO sources in humans. See text for details.
accumulate to very high (millimolar) concentrations, in particular under hypoxia/anoxia (further discussed below). This situation is clearly different from the modest (nano- to micromolar) nitrite concentrations found in mammalian tissues, where nitrite is not involved in any primary biosynthetic pathway. As a consequence, when plants use nitrite to synthesize signaling NO, they must do it in a controlled and parallel way to the nitrogen assimilation. Is this the reason plant nitrate reductase is one of the possible nitrite reductases/NO synthases? These circumstances make the "signaling" nitrite/NO metabolism more complex in plants, but also allow nitrite to have roles not possible in mammals, like the maintenance of the cellular redox status under hypoxia (as will be discussed in section 2.2.2.1.4).

The nitrite reduction/NO formation in plants has been ascribed to proteins such as the molybdenum-containing cytoplasmatic nitrate reductase (C-NaR) or the haem-containing Cc, CcO, cytochrome bc1 (Complex III), or nonsymbiotic HG (see references in the following subsections). Unexpectedly, the CSNiR, responsible for the assimilatory nitrate reduction to ammonium, does not reduce nitrite to NO (see sections 2.1.1 and 3.1.2 for details about CSNiR; Figure 1, orange arrows, Table 1).

To restrict the scope of information presented to a manageable size, only a few proteins will be here discussed (Figure 16, Table 5). Some proteins were chosen due to their parallelism with the mammals and others because of their novelty. Therefore, only C-NaR, XO/XD, AO (molybdenoenzymes), nonsymbiotic HG (haem proteins), and the plasma membrane-bound nitrite reductase and nitrate reductase (the novel "players") will be discussed (sections 2.2.2.1.1–2.2.2.1.4). The protein-independent nitrite reduction will also be included (section 2.2.2.1.5). In addition, also the nitrite oxidation by plants will be briefly mentioned (section 2.2.2.2).

2.2.2.1. Nitrite Reduction in Plants. 2.2.2.1.1. Molybdenum-Dependent Nitrite Reduction – Cytoplasmatic Nitrate Reductase. The nitrite-dependent NO formation in plants, either in vivo or in vitro, has been ascribed mainly to the C-NaR. This enzyme is involved in the first and rate-limiting step of plant nitrate assimilation pathway, where it catalyzes the nitrate reduction to nitrite, with the simultaneous oxidation of NADH (eq 60; see section 2.1.1, Figure 1, orange arrows, Table 1). The C-NaR is a homodimeric molybdoenzyme (Figure 11f), belonging to the sulfate oxidase family (see section 3; Figure 19c). Besides the molybdenum center, where the nitrate reduction takes place, C-NaR holds one b5 haem and one FAD center, which is involved in the NADH binding and oxidation. In accordance with its key role in the nitrogen metabolism, C-NaR is highly regulated by complex transcriptional, translational, and posttranslational mechanisms that respond to nitrogen, carbon dioxide, and dioxygen availabilities, pH, temperature, and light.967,969–971,973,974 Noteworthy, C-NaR is rapidly degraded in darkness (half-life of 6 h).

\[
\begin{align*}
\text{NO}_3^- + \text{NADH} + \text{H}^+ & \rightarrow \text{NO}_2^- + \text{NAD}^+ + \text{H}_2\text{O} \\
& \rightarrow \text{NO} + 1/2\text{NAD}^+ + \text{H}_2\text{O}
\end{align*}
\] (60)

Besides this well-established role in the reduction of nitrate, C-NaR from different species were shown to also catalyze the subsequent nitrite reduction to NO (eq 61), not only in vitro,928,975–977 but also in vivo. The in vivo evidences for C-NaR-dependent NO generation were provided by studies with (i) transgenic plants expressing a permanently active C-NaR,978,925,984–986 (ii) C-NaR knockout mutants (nia1 and nia2 genes),923,988–995 (iii) inactive C-NaR (e.g., plants with tungstate supply instead of molybdate),989,990,996–1001 and (iv) others.921,943,944,1002–1012. The nitrite reduction by C-NaR was also studied in silico, and it was found that both nitrate and nitrite are easily reduced (to nitrite and NO, respectively), although, as expected, nitrate is the preferred substrate.1013

\[
\begin{align*}
\text{NO}_3^- + 1/2\text{NADH} + 3/2\text{H}^+ & \rightarrow \text{NO} + 1/2\text{NAD}^+ + \text{H}_2\text{O}
\end{align*}
\] (61)

These two C-NaR activities, nitrate reductase and nitrite reductase, seem to be controlled by the dioxygen concentration. (a) Under normoxic conditions, the cytoplasmatic nitrate availability (in millimolar range1014) “autocontrols” the C-NaR nitrite reductase activity, because nitrate competitively inhibits the nitrite reduction (K_i of 50 μM928,1015). Simultaneously, the available nitrite concentration,(1016 1–2 orders of magnitude lower than the respective K_m value (∼100 μM928), does not favor its reduction.928 (b) Under hypoxic and acidic conditions,1017 the C-NaR concentration and activity are increased.928,977,1032–1041. Simultaneously, the nitrite reduction by CSNiR is decreased, especially in hypoxic roots, due to the decreased NAD(P)H generation through the pentose phosphate pathway.928,1015,1032,1034,1036 As a consequence, when nitrate is the main nitrogen source, nitrite accumulates in hypoxic tissues928,1032,1034,1035,1044,1042 and its reduction by C-NaR is progressively increased, leading to the NO formation.928,966,1052. The same C-NaR “activity switch”, from nitrate reductase to nitrite reductase, is observed upon nitrite accumulation triggered by inhibition of the photosynthetic activity997,1045,1047–1049 or by the expression of an antisense CSNiR with very low activity.988,989,1050

In summary, when C-NaR activity is increased to an extent that nitrite formation exceeds its rate of consumption by CSNiR and/or nitrite accumulates to an extent that CSNiR could not cope with it, the nitrite reductase activity of C-NaR would become significant and the formation of NO is amplified928. The concept of doing “substrate adaptations” in plants is obvious and opportune: if plants are using C-NaR to abstract one oxygen atom from nitrate, why not to use the same redox system to continue the reaction and abstract the second oxygen atom?

Clearly, the amount of NO produced would be very low, predicted to be much less than 1% of the nitrate reducing activity (mainly due to competitive inhibition by nitrate).928,949
However, as was discussed for mammals, the NO concentration should be kept very low, within the characteristics of a local signaling molecule. Obviously, and again as in mammals, the plant NO formation should be tightly controlled. Hence, it can be argued that the well-known complex C-NaR regulation serves not only to control the nitrogen assimilation, but also to regulate the formation of the signaling NO.

The C-NaR-dependent NO formation has been suggested to be involved in (i) stomatal closure,923,933,990,1051,1052 (ii) onset of germination,965 (iii) phenylpropanoid metabolism,1053 or (iv) immune defense mechanisms, because pathogen signals induce the C-NaR and increase the NO formation (strikingly similar to the mammalian inducible NOS).991,993,995,1000,1001,1054 This enzyme is also suited to play a role as a cytoplasmatic nitrite sensor, to "signalize" the presence of toxic nitrite concentrations.987 In addition, C-NaR/nitrite may be acting not only as a NO source, but also as an oxygen sensor: it is intriguing that an enzyme that is rapidly degraded in darkness to avoid nitrite accumulation987 is increased during hypoxia, which also leads to nitrite accumulation. Is this a coincidence or a strategy?

Before finishing this section, another C-NaR activity must be discussed: the C-NaR-catalyzed dioxygen reduction.977,1055,1056 This reaction not only consumes the electrons needed to reduce both nitrate and nitrite, but also produces superoxide that scavenges NO to form the strong oxidizing peroxynitrite (eq 13). However, the NO formation by purified C-NaR was described to be rather insensitive to the presence of air,989 suggesting that the reduction of dioxygen would not compete with the nitrite reduction. In addition, the dioxygen reduction would also compromise the in vivo nitrate reduction under normoxia, which was not yet reported to occur. Surely, the relative extension of nitrate reduction versus nitrite reduction versus dioxygen reduction will depend on the respective in vivo concentrations and kinetic specificity constants, whose values remain to be determined. If the dioxygen reductase activity is significant in vivo, then dioxygen would control the C-NaR at two time scales: (i) short-term, determining the nature of the reaction products, and (ii) long-term, increasing/decreasing C-NaR activity and concentration.

2.2.2.1.2. Molybdenum-Dependent Nitrite Reduction — Xanthine Dehydrogenase/Oxidase and Aldehyde Oxidase. The molybdenoenzyme XD is a relevant candidate to reduce nitrite to NO in plants. As the mammalian enzyme (see sections 2.2.1.1.3 and 3.2.3), plant XD is involved in the purine catabolism and in the generation of reactive oxygen species,1057−1059 in the cytoplasm1060 and in peroxisomes.1061−1065 However, the conversion of XD into a XO form is not common to all plants: while the enzyme from Arabidopsis thaliana does not have the two corresponding cysteine residues1057 involved in the conversion mechanism of the mammalian enzyme (see section 3.2.3), the pea leaf peroxisomal enzyme was described to exist mainly (70%) as a XO form.1063−1065 Besides the purine catabolism, plant XD has been suggested to be involved in a variety of challenging environmental conditions, where increased XD activities and ROS production were observed, namely upon drought stress,1058 plant—pathogen interactions,1067−1069 hypersensitive response,1070 and natural senescence.1057,1071

The fact that mammalian XD/XO is able to reduce nitrite to NO (sections 2.2.1.1.3 and 3.2.3) anticipates a similar role for the homologous plant enzyme. In accordance, in vivo inhibition studies with allopurinol have revealed a probable role for the enzyme in the formation of NO upon phosphate deficiency, in white lupin roots.1072 In this context, other studies, planned to assess the in vivo C-NaR-dependent NO formation by inhibiting C-NaR with tungstate, or using cyanide, should be revaluated. Besides interfering severely with the metabolism, both tungstate and cyanide should inhibit XD/XO, by replacing the molybdenum atom and removing the sulfo group of the catalytic center, respectively (see section 3.2.3).1073 Thus, the use of these and other nonspecific inhibitors should be done with care: the decreased NO formation attributed to C-NaR might be due also to the inhibition of XD/XO. Nevertheless,
the definitive establishment of plant XD/XO as a NO source must wait for the characterization of the nitrite reductase activity of purified XD/XO, which was not yet accomplished.1074

Another relevant candidate to contribute to the plant NO formation is AO. Like the mammalian enzyme, the plant AO is a “strict” oxidase that catalyzes only the reduction of dioxygen (not NAD)1058,1075. Initially, it was described to catalyze the formation of only hydrogen peroxide,1058 but a recent work demonstrated the expected superoxide radical formation.1076 The plant AO isoenzymes (Arabidopsis thaliana, e.g., contains four isozymes1077–1080) are responsible for the oxidation of the abscisic aldehyde into the abscisic acid.1079,1081 one plant hormone involved in development processes and in a variety of abiotic and biotic stress responses.1082–1084 Plant AO isoforms are also implicated in the biosynthesis of indole-3-acetic acid, an auxin phytohormone, during early stages of plant development.1085 The AO involvement in plant NO formation is still speculative, although promising.

2.2.2.1.3. Haem-Dependent Nitrite Reduction – Haemic Globins. Haemic globins (HG) are a large family of ancient haem proteins, with the globin fold, which are widely distributed in all kingdoms of life. The HG family includes the well-known dioxygen transporters Hb, Mb, and leghaemoglobin,1087 which use a penta-coordinated state of oxygen and other gaseous ligands, NO scavenging, and formation (further discussed below). The HG family is divided into classes 1, 2, and 3.1085

Class 1 NS-HG are homodimers (~35 kDa; Figure 1g,h).1096,1122 expressed in low concentrations (5–20 μM in hypoxic tissues, 2 orders of magnitude lower than leghaemoglobin1123,1124). A conserved cysteine residue, located in the α-helix that holds the distal histidine, seems to be involved in the dimer formation,1120,1125 as well as in the increased rate of haem iron reduction.1126 These proteins have the lowest affinity for the distal histidine coordination (K ≈ 1–2×10^3,1108,1127) and display a low dioxygen dissociation rate constant (k_\text{off} \approx 0.03–0.2 s^{-1} and k_\text{on} \approx 60–70 μM^{-1} s^{-1}1106,1097,1104,1120,1128,1129) (Figure 11g,h). This results in a global oxygen affinity (2–3 nM) 2 orders of magnitude higher than the CeO one and suggests that class 1 proteins remain oxygenated at extremely low oxygen concentrations.1121,1128,1129 These characteristics suggest that class 1 proteins do not meet to the equilibrium and kinetic requirements for functioning in oxygen transport,1092,1096,1103,1117,1130 as was described for Nb (section 2.2.1.1.2; also ref 440). Instead, it has been suggested that class 1 NS-HG are involved in NO scavenging and in the maintenance of the cellular redox status, contributing to the cell survival under hypoxia (further discussed below and in section 2.2.2.1.4). In this respect, possible mechanisms of action of NS-HG involve sensing of oxygen and other gaseous ligands, NO scavenging, and formation (further discussed below).1117,1131

Following the discussion on the mammalian hexa-coordinated HG, it is expected that plant NS-HG would also be able to reduce nitrite to NO upon conversion to a penta-coordinated state. Furthermore, as was described for mammalian Nb and Cb, also plant NS-HG have been found to be induced by low dioxygen concentrations, suggesting a cellular protective role during hypoxia.1095,1097,1104,1119,1120,1131–1136

However, and surprisingly, this potential plant nitrite reductase only recently began to be explored with the discovery that rice deoxygenated NS-HG (deoxygen-NS-HG) reduces nitrite to NO with a remarkable rate constant of 83 M^{-1} s^{-1}, at pH 7, under anaerobic conditions (equivalent to eq 17).1135 The pH effect was not yet thoroughly explored, but it is expected that the rate further increases as the pH value decreases.

This nitrite reductase/NO synthase activity of plant NS-HG is supposed to be of physiological relevance, because (i) the fraction of “open” penta-coordinated NS-HG molecules is high (affinity constant for coordination by the distal histidine of ~1–2×10^11,127), (ii) plants can be often subjected to extreme hypoxia/anoxia (see ref 1017), (iii) during which nitrite accumulates, (iv) the pH values decrease, and (v) NS-HG are induced and can become deoxygenated.

Nevertheless, and as expected, the NO formed can be rapidly trapped by deoxy-NS-HG (equivalent to eq 19) or be oxidized by oxygenated NS-HG (oxy-NS-HG; equivalent to eq 20). In fact, in the literature, plant NS-HG are mentioned mainly as NO scavengers responsible for the NO oxidation to nitrate,1097,1092,1103,1110,1119,1124,1126,1135–1136,1138–1150. The rate constants toward dioxygen and the resulting high global oxygen affinity increase,1114,1120,1128,1129 thus supporting their role as NO scavengers (and not as NO sources). Also, the observation of reduced NO formation in plants overexpressing NS-HG supports this role.1134,1141 In this respect, it is interesting that NS-HG are also induced by conditions where the NO formation might be increased, namely by nitrate, nitrite, or NO itself.1144,1145,1149,1151 This up-regulation is more in line with a scavenger role, that is, defense against the deleterious excessive NO formation, than with a NO synthase role. Noteworthy, also the hypoxia-mediated induction of NS-HG could be related to the NO accumulation that is known to occur under low dioxygen stress.

According to these evidences, NS-HG would be key players of NO homeostasis, preventing the unwanted NO effects in a manner similar to that described for mammalian oxy-Hb and oxy-Mb (see ref 276, section 2.2.1.1.1). Yet, as reasoned above, the nitrite reductase/NO synthase activity of NS-HG can also be of physiologically relevance. Hence, it is plausible that, in vivo, a delicate balance takes place between NO scavenging and NO formation, as was exemplified for Mb (end of section 2.2.1.1.1): NS-HG might be responsible for “translating” a mismatch between oxygen supply and consumption into an increased NO flux. However, in the NS-HG case, the reaction
should be shifted toward lower dioxygen concentrations, because NS-HG become deoxygenated at lower oxygen concentrations. Concurrently, the fluxes of NO should be higher, as the rate constant of nitrite reduction and available nitrite concentrations are higher.

In addition to (i) controlling the NO homeostasis and (ii) generating NO under extreme hypoxia, plant NS-HG can (iii) contribute to consume the nitrate that can accumulate to dangerous concentrations during hypoxia/anoxia and (iv) maintain the cellular redox status under hypoxia/anoxia (the last point will be addressed in section 2.2.2.1.4).

Crucial for all of the above catalytic roles of plant NS-HG is the protein conversion to an “open” penta-coordinate state. In accordance, it is of major importance to characterize potential mechanisms that control the conversion of hexa- into penta-coordinated states. Those mechanisms would dictate if NS-HG are posttranslationally redox/allosterically regulated nitrite reductases or, on the contrary, if the equilibrium penta/hexa could not be modified (regulated) by a posttranslational modification.

Also decisive for the in vivo significance of the NS-HG reactions is the existence of regenerating systems that efficiently rereduce the oxidized proteins. In plant roots, one of the most plausible systems comprises the enzyme monodehydroascorbate reductase and NADH (at least in barley, with K_m (NS-HG) = 0.3 μM). Nevertheless, this system is believed to be slow to account for a “catalytic” rereduction of NS-HG, and the identification of more efficient systems is one of the challenges for future research. It is also essential to study and compare the nitrite reductase activity of the other plant HG, not only of classes 2 and 3 NS-HG, but also of leghaemoglobins, that are penta-coordinated, present in higher (millimolar) concentrations, and could display a behavior more in line with the Mb one. To conclude, also the question of how the nitrite-dependent NO avoids the dogmatic haem scavenging, to be able to fulfill its signaling role, has to be answered in the plant kingdom.

In the context of the plant haem-dependent nitrite reduction, it is noteworthy that Cc should also be a physiologically relevant nitrite reductase in plants.

2.2.2.1.4. New Pathways — Plasma Membrane-Bound Nitrite Reductase. Plants are also able to produce nitrite-dependent NO in root apoplast, through the recently identified root-specific, plasma membrane-bound nitrite reductase (RPM-NiR). This novel enzyme catalyzes the formation of NO from nitrite using a not yet identified physiological electron donor. Its activity is maximal under the acidic conditions (pH 6) characteristic of hypoxia and is reversibly inhibited by dioxygen. Most important, it can account (with 500 nmol/g FW/h) for the NO formation rates observed under hypoxic conditions (10–50 nmol/g FW/h). The RPM-NiR was suggested to act in concert and in tight association with the root-specific, plasma membrane-bound, succinate-dependent, nitrate reductase (RPM-NaR). The RPM-NaR, localized on the apoplastic side of the plasma membrane, is assumed to catalyze the in vivo reduction of apoplastic nitrate to nitrite.

The root apoplastic nitrite-dependent NO formation might, thus, be one of the primary signals that report the presence of nitrate in roots. For the same reasoning, the toxicity cause by high nitrate concentrations might be the result of increased NO formation. In addition, it may also act as an oxygen sensor, because RPM-NiR-dependent NO formation is reversibly inhibited by dioxygen. Furthermore, a role in root developmental or in regulation of mycorrhizal inoculation was also envisaged.

Nonetheless, the root apoplastic nitrite might have another function. Root, the key organ that provides nutrients and water to the whole organism, is commonly subjected to hypoxia (see ref 1017). To ensure cell viability under hypoxic conditions, plants promote the glycolysis and fermentation pathways to synthesize ATP and regenerate NAD$^+$. However, there is evidence that an additional pathway, mediated by nitrate, may be important for plant survival under hypoxic conditions.

In fact, it has long been known that the presence of nitrate increases the tolerance to flooding. The nitrate-mediated protection has been ascribed to the nitrate reduction to ammonium, a pathway that consumes 4 mol of NAD(P)H and six protons, being, in this way, more efficient at regenerating NAD$^+$ and consuming protons than any of the fermentation reactions (see nitrate assimilation under section 2.1.1; Figure 1, orange arrows; Table 1). Yet the NO formation by the sequential activity of RPM-NaR and RPM-NiR puts forward another hypothesis for the beneficial role of nitrate: the operation of a cycle that actively “recycles” NADH using nitrate, nitrite, and NO (Figure 17).

The C-NaR is also suggested to contribute to this cycle, although its activity in the roots is believed to be lower than that of the RPM-NaR. The cycle is proposed to be closed by a hypoxia-induced oxygenated class 1 NS-HG, which, due to its high oxygen affinity, remains oxygenated even at extremely low oxygen concentrations (details about these proteins in section 2.2.2.1.3). The NS-HG would oxidize NO to nitrate (equivalent to eq 20) and would be, subsequently, “recycled” by a reductase (Figure 17). Because both the RPM-NiR activity and the induction of NS-HG are controlled by dioxygen concentration, the metabolic flux through the cycle would be limited to hypoxic conditions and would not compromise the nitrogen assimilation (nitrate reduction to ammonium) under normoxia. This cyclic pathway is suggested to oxidize 2.5 NADH molecules per nitrate molecule “recycled”, helping, in this way, to maintain the redox status of the cell along with the fermentation pathways. Hence, in plants, nitrite may play a new role: contribute to the oxidation of NAD(P)H under hypoxia and ultimately maintain the cellular redox and energy status.
In this context, it is noteworthy that nitrite might also be involved in an alternative pathway that would enable plants to maintain the ammonium production and/or ATP generation even under anoxia (<1 nM).1165 In accordance with a recent suggestion,1165 under anoxia, plants would be able to reduce nitrite to ammonium through three individual steps (eq 62) that would replace the normoxic one-step CSNiR-catalyzed reaction (details in section 3.1.2). The last of these three steps (eq 62) was suggested to be catalyzed by deoxy-NS-HG that were shown to reduce not only nitrite to NO (section 2.2.2.1.3), but also hydroxylamine to ammonium (25 m M⁻¹ s⁻¹).1165 The reasonability of an haem to catalyze the hydroxylamine reduction to ammonium is supported by the known reactivity of the c haem of CCNiR, sirohaem of CSNiR (sections 3.1.1 and 3.1.2), and b haem of Hb and Mb.1165–1167

In addition, also several model complex mixtures have been shown to electrochemically reduce NO to ammonia, via hydroxylamine-like intermediates.1168–1170 Nevertheless, this alternative pathway raises two important questions: how NS-HG transfers the two electrons needed to reduce hydroxylamine and how is the three-electrons reduction of NO carried out? In summary, this alternative nitrite-mediated pathway would remove toxic nitrogen metabolites, at the same time as it would act as an electron sink by coupling the reducing power produced during anaerobic glycolysis to the ammonium production.1165

\[\text{NO}_2^- - (1e-) \rightarrow \text{NO} - (3e-) \rightarrow \text{NH}_2\text{OH} - (2e-) \rightarrow \text{NH}_4^+ \]

(62)

Globally, both proposals suggest that, under hypoxia, nitrogen oxides and oxo-anions are essential metabolites to decrease the NAD(P)H concentrations and maintain the ATP/ADP ratio sufficiently high to enable plants to survive.

The increasing amount of evidence that root apoplastic nitrite/NO may play important roles in vivo demands for a deeper knowledge of the two root-specific RPM-NaR and RPM-NiR enzymes. Unfortunately, the present data are still very limited (and raise more questions than answers). The RPM-NiR is believed to be different from CSNiR and to share some features with RPM-NaR: (i) succinate as electrons source, probably via the quinone pool of plasma membrane, and (ii) the regulatory mechanisms, inhibition by dioxygen and activity dependent on nitrate supply.1154 The RPM-NaR has also been described to be different from the known NaR of higher plants.1158 Instead, there is evidence that it might be similar to the prokaryotic "respiratory" membrane-bound nitrate reductases NaRGH (see refs 1667,1679 for details about these enzymes and Figure 11g,h).1171 Recently, the successful RPM-NaR extraction from Hordeum vulgare indicated that this protein is remarkably similar in sequence to the prokaryotic NaRH subunit. Interestingly, NaRH is not the subunit responsible for nitrate reduction. Furthermore, a database study suggested that Populus trichocarpa might hold homologous NaR (75% identity) and NaRG (68% identity) peptides, although the existence of NarI-related peptides in plants remains questionable.1171 This alleged similar structure and localization of RPM-NaR puts forward the hypothesis of a similar function, that is, the hypothesis that higher plants are able to carry out part of the denitrification pathway (Figure 1, blue arrows; section 2.1.1, Table 1).1171 This poletmic hypothesis raises the possibility that nitrate/RPM-NaR/nitrite/RPM-NiR might be able to contribute to the ATP synthesis under hypoxic/anoxic conditions. If confirmed, this will be an unprecedented role for nitrite in higher organisms, as a "respiratory" substrate! Such hypothesis, however, must wait for the future evaluation of the hypothetical ability of nitrate/nitrite reduction to create a proton motive force at root plasma membranes.1171

2.2.2.1.5. Other Nitrite Reduction Reactions. In addition to the nitrite reduction reactions so far discussed, plants could also rely on a protein-independent NO source. As previously discussed (section 2.2.1.1.4), the protein-independent NO formation depends on the nitrite decomposition to dinitrogen trioxide, in an overall reaction that is highly pH and reducer-dependent. The acidic pH,1172–1174 the availability of nitrite, and the presence of reducing antioxidants, like ascorbate and phenolic compounds,1175,1176 suggested that the apoplast could be a relevant source of protein-independent NO on roots and seeds.922,1175,1177 In addition, the protein-independent NO formation could occur at microlocalized acidic environments, as in the chloroplast.1176

Besides the apoplast, plasma membrane, and cytoplasm, also mitochondria, peroxisomes, and chloroplasts have been found to generate nitrite-dependent NO, although the proteins responsible for the catalysis were not yet identified.966,101,1074,1178–1181

2.2.2.2. Nitrite Oxidation in Plants. Plants also handle nitrite to oxidize it to nitrogen and dinitrogen dioxide radical using haemic proteins with peroxidase-like activity. Nevertheless, this oxidative chemistry has been (comparatively) poorly studied.

As it is expected following the discussion on mammalian nitrite oxidation, plant peroxidases can behave as "non-dedicated" nitrite oxidases.817,819,834,835,1182–1185 In addition, also a number of plant HG with peroxidase-like activity were shown to be able to oxidize nitrite and mediate protein nitration, at least in vitro.1186

2.2.2.3. Plant Nitrite Handling — Concluding Remarks. In summary, nitrite reduction to NO in plants could be accomplished by diverse metalloproteins, with different cellular roles and different tecidual and subcellular localizations (Figure 16, Table 5), suggesting that nitrite-dependent NO performs specific functions in the various subcellular compartments and tissues. Despite the diversity, all of the pathways reviewed depend on hypoxic/anoxic conditions to operate. As was discussed for mammals, it is possible that each individual pathway is activated when the dioxygen concentration decreases below its own threshold of oxygen-dependent activity. In this way, all pathways would act in a concerted and self-regulated manner, with each pathway being relevant under different conditions and in different tissues. Thus, in plants, like in mammals, nitrite could act not only as a source of signaling NO, but also as an oxygen sensor. Nevertheless, due to the nitrite specific function in plants, as an ordinary metabolite of nitrogen assimilation, the control of its CSNiR-independent reduction has to be more complex (or at least different from) than the mammalian one.

To reduce nitrite to NO, higher plants and mammals share some strategies: both do "substrate adaptations" to available redox systems, depending on proteins that are not "normally" committed to synthesize NO. The C-NaR is a remarkable example of how plants can obtain a "new" NO synthase from an "old" (i.e., previously existent) protein. For this reason, it would be very interesting to understand if plant XD/XO and AO are also able to generate NO. Yet plants use also different, unique, strategies to handle nitrite: the RPM-NaR and RPM-NiR enzymes constitute a new and promising pathway, not
only for NO synthesis, but also for nitrite-dependent NAD(P)H “recycling” under hypoxia/anoxia.

The major challenge in plants is, undoubtedly, to attain the same level of knowledge we now have about mammalian NO formation and signaling, focusing on (i) characterization of the pathways so far identified and on potential new ones (inspired by the mammalian ones) and (ii) how those different pathways could act in a concerted manner to produce the signaling network observed in plants.

Regarding the first point (pathways characterization), the study of NO formation by plant proteins (both nitrite-dependent and independent) is still a new field. Most of the enzymatic reactions were not yet characterized, neither kinetically nor at molecular level. Moreover, the great majority of studies relied on the use of inhibitors, most of them not specific at all, and on genetic manipulation that, besides silencing the target enzyme, also extensively alters the metabolism, as is observed with C-NaR knockout mutants. The “bottleneck” here is the capacity to obtain the purified proteins in sufficient quantities and the development of new, more specific, in vivo assays. In this point, the most imperative questions are related to the molecular composition and chemistry behind the RPM-NaR and RPM-NiR reactions and the expected ability of XD/XO and AO to form NO. Also, the characterization of the reaction mechanism of nitrite reduction by C-NaR (a sulfite oxidase family member) is crucial to our understanding of the molybdenum-dependent reactivity toward nitrite. In addition, although outside of the scope of this Review, it is clear that the search for a higher plant NOS will continue. Presently, it seems that higher plants have lost the specific NOS in the course of evolution. Is its activity carried out using a different chemistry and, consequently, a protein not related to NOS?

Concerning the second point (concerted action of different pathways to produce the signaling network observed in plants), the questions are more numerous and exciting. How do plants regulate the nitrite-dependent NO signaling in the presence of a variable nitrate supply? Why do they have two NO forming nitrite reductases, one in the cytoplasm and another facing the apoplasm? Are plants really doing denitrification?

Nitrite/NO metabolism in humans is becoming increasingly important, offering innovative therapeutic approaches. The plant nitrite/NO metabolism is also promising. The future world will be characterized by increasing concentrations of carbon dioxide, global warming, and occurrence of extensive flooding (with consequent root anoxia), drought, and other extreme meteorological phenomena. In such a scenario, the knowledge of plant nitrite/NO metabolism would certainly be essential for understanding and managing crop productivity.

The influence of carbon dioxide on nitrate (and nitrite) assimilation is an interesting example. Since the Industrial Revolution, the atmospheric carbon dioxide has increased ca. 40%, and predictions are that it may double by the end of the 21st century. This carbon dioxide increase could be mitigated through its photosynthetic assimilation, but many plants are unable to sustain rapid growth under elevated carbon dioxide, because, at least, nitrate assimilation into organic compounds is inhibited by elevated carbon dioxide. Nitrate is the most abundant form of inorganic nitrogen in agricultural (temperate well aerated) soils, and, if plants are unable to assimilate it, crops will become depleted of organic nitrogen compounds and thus compromised. Therefore, in the near future, the relative availability of soil nitrate and ammonium will be crucial to determine the crops productivity and the food quality, as well as to achieve the desirable biological sequestration of carbon dioxide. However, if the decline in nitrate assimilation is already being studied in several plants, the effects on the generation of NO have been overlooked, and, plausibly, NO is a key molecule in the response to increased carbon dioxide. Furthermore, to understand how plants respond to the soil available nitrogen form, the NO metabolism has certainly to be considered.

Another remarkable example of the potential relevance of plant nitrite/NO metabolism would be the managing of crop productivity under extensive flooding, because the oxygen availability influences nitrite-dependent NO formation, which, in turn, controls “respiration” in plant mitochondria.

2.2.3. Nitrite in Signaling (and Other) Pathways in Bacteria. In prokaryotes, the NO formation had for long been thought to occur only in denitrification (section 2.1.1; Figure 1, blue arrows; Table 1), where the anaerobic reduction of nitrogen compounds is used to derive energy. More recently, NO was found to take part in other dissimilatory pathways that “copy” the first steps of denitrification (Figure 1, gray and violet arrows; Table 1). Therefore, on the organisms that carry out those pathways, NO is an ordinary intermediate metabolite, that is, a reaction product and substrate of a “respiratory” pathway. In addition, NO is also as a signaling molecule that activates the genes required for its own anabolism/catabolism (a common regulatory strategy in biology) through, for example, regulators of the FNR family (in Pseudomonas, Paracoccus, and Rhodobacter).

However, presently, it is clear that the prokaryotic NO is also involved in “nonrespiratory” pathways. Two examples are the recovery from radiation-induced damage (in Deinococcus radiodurans) and the biosynthesis of secondary metabolites, namely nitration of tryptophane (Deinococcus radiodurans) and of the tryptophanyl moiety of thaxtomin (Streptomycetes turgidiscabies). In addition, “nonrespiratory” NO is also involved in cytoprotection against oxidative stress, through different mechanisms, such as activation of catalase, inhibition of the Fenton chemistry by S-nitrosation of reduced thiols, and through transcription factors like OxyR, SoxR, Fur, or FNR (in Escherichia coli, Bacillus subtilis, Bacillus anthracis, Staphylococcus aureus). In this scenario, it is intriguing that NO is important for the pathogen survival and, and, simultaneously, for the host defense (phagocytes produce ROS and RNS to damage pathogens and protect themselves from infection). Clearly, there is still much to be learned about host/pathogen interactions.

In prokaryotes, the aerobic NO formation is catalyzed by enzymes homologous to the oxygenase domain of the mammalian NOS (see section 2.2.1.1), but lacking the reductase domain. These prokaryotic enzymes successfully reduce arginine to NO, using cellular redox equivalents that are not normally committed to the NO production. The Sorangium cellulosum NOS is an exception, because the enzyme holds a “fused” reductase domain (even though with a different domain organization). Interestingly, the prokaryotic NOS is found only in a subset of bacteria, mostly gram-positive (Exiguobacterium, Staphylococcus, Geobacillus, Bacillus, Rhodococcus, Streptomycetes, and Deinococcus), but also gram-negative (Sorangium cellulosum), and in an archeon (Natronomonas). This distribution rai-
Table 6. Proteins Involved in Nitrite Reduction to NO in Prokaryotes

<table>
<thead>
<tr>
<th>protein</th>
<th>"classic" reaction</th>
<th>site of nitrite reduction reaction of nitrite reduction</th>
<th>major drawback</th>
<th>figure</th>
<th>section</th>
</tr>
</thead>
<tbody>
<tr>
<td>"respiratory" membrane-bound nitrate reductase (NaRHT)</td>
<td>NO$_3^−$ + 2e$^−$ + 2H$^+$ \rightarrow NO$_2^−$ + H$_2$O</td>
<td>molybdenum centre of dimethylsulfoxide reductase family type (Fig. 19(c)) NO$_3^−$ + 2H$^+$ + (NaR)MoS$	ext{X}^−$ \rightarrow (NaR)MoS$	ext{X}^−$ + NO + H$_2$O \times competition with nitrate</td>
<td>molybdenum centre of dimethylsulfoxide reductase family type (Fig. 19(c)) NO$_3^−$ + 2H$^+$ + (NaR)MoS$	ext{X}^−$ \rightarrow (NaR)MoS$	ext{X}^−$ + NO + H$_2$O \times competition with nitrate</td>
<td>11</td>
<td>2.1.1, 2.2.3, 3.3.1</td>
</tr>
<tr>
<td>haemic globin (HG)</td>
<td>no "classic" functions; is a new protein, whose functions are still controversial and speculative: NO scavenging/formation, antioxidant defence</td>
<td>haem, hexa-coordination reversible NO$_3^−$ + 2H$^+$ + (HG)FeII \rightarrow (HG)FeII + NO + H$_2$O \times NO scavenging by haem \times mechanism of conversion of penta into hexa-coordinated ??</td>
<td>haem, hexa-coordination reversible NO$_3^−$ + 2H$^+$ + (HG)FeII \rightarrow (HG)FeII + NO + H$_2$O</td>
<td>2.2.3</td>
<td></td>
</tr>
<tr>
<td>aldehyde oxidoreductase (AOR)</td>
<td>aldehyde \rightarrow carboxylate aldehyde scavenger linked to reduction of protons</td>
<td>molybdenum centre of XO family type (Fig. 19(c)) NO$_3^−$ + 2H$^+$ + (AOR)MoIII \rightarrow (AOR)MoIII + NO + H$_2$O \times competition with physiological oxidising substrates</td>
<td>molybdenum centre of XO family type (Fig. 19(c)) NO$_3^−$ + 2H$^+$ + (AOR)MoIII \rightarrow (AOR)MoIII + NO + H$_2$O \times competition with physiological oxidising substrates</td>
<td>11</td>
<td>2.2.3, 3.2.3</td>
</tr>
</tbody>
</table>

"Major drawback concerning the feasibility of nitrite reduction to release bioactive NO. Figures where the protein is represented. Sections where the protein is discussed."
Nitrite participates in several different metabolic pathways, with remarkably different biological purposes (section 2). From a mechanistic point of view, these pathways can be better thought of as a series of nitrogen compounds, with oxidations states ranging from 5^+ (nitrate) to 3^- (ammonium), that are interconverted, oxidized and reduced, by several metalloenzymes (Figure 18). The nitrite oxidation involves the abstraction of one electron (to form nitrogen dioxide radical) or the addition of one oxygen atom (to form nitrate), while the reduction can be a “simple” abstraction of one oxygen atom (to yield NO), or a “complex” abstraction of both oxygen atoms with the addition of four protons (to ammonium). To carry out these distinct reactions, biology developed several strategies, exploring different nitrite binding modes (Figure 20) and using, in the great majority of cases, haem iron and molybdenum, but also copper (Figure 19).

Haem is one of the most employed cofactors in biology, participating in electron transfer, catalysis, sensing, and transport of small molecules.

One haem consists of an iron atom coordinated by four equatorial nitrogen atoms of a porphyrin ring (Figure 19a) and by one or two axial ligands. The number of the axial ligands is dictated by the haem function. For electron transfer (e.g., “respiratory” Cc), haem has two axial ligands from the protein, typically histidine and/or methionine residues, leaving no vacant coordinating position (“closed” hexa-coordinated haem).

For small molecules transport, haem is coordinated by only one amino acid residue (“open” penta-coordinated haem), creating an “open” position for binding (e.g., the monohistidinyl-coordinated haem of Hb that transports dioxygen).

The same situation is (usually) found in catalysis, where a water/substrate molecule occupies the sixth coordination position (water is a weak ligand that can be easily replaced by the substrate). These are the “ready” enzymes, according to the nomenclature of Moura et al.

However, there are some enzymatic active centers where haems are hexa-coordinated and need an activation step to lose an axial ligand to become penta-coordinated, the “unready” enzymes. Some examples worth mentioning of “unready” proteins are Cd,NiR (see section 3.2.1.), bacterial cytochrome c peroxidase, $^\text{1266,1267}$ Nb, or Cc (section 2.2.1.1.2). As discussed, “unready” proteins are ideal regulatory points to control the cellular metabolism (“unready” versus “ready” as a mechanism of “on/off”). The nature of the fifth protein-derived haem axial

above were carried out with NaR mutants; the hypothetical NO formation by purified periplasmatic and cytoplasmatic NaR was not yet kinetically characterized nor studied in silico).

Although the “respiratory” NaR is presently believed to be the major source of nitrite-dependent signaling NO, other sources remain to be identified. Because of the parallelism with mammals, two NO sources will be described below, an HG and a XO family enzyme member (Table 6).

Deoxygenated HG are believed to be relevant NO sources (details about these proteins were given in sections 2.2.2.1.3 and 2.2.1.1.2.a). In accordance, an HG from the cyanobacterium *Synechocystis* $^{1251-1255}$ was shown to be able to reduce nitrite to NO with a remarkable rate constant of 68 M$^{-1}$ s$^{-1}$, at pH 7, under anaerobic conditions. 1137 Together with NS-HG, acting in a complex chain of electron transporters involved in “respiratory” pathways would be suggested: (i) under normal conditions, the electron transporters involved in “respiratory” pathways would be reduced and the aldehyde oxidizing activity of AOR would be coupled with the reduction of protons; (ii) in a situation of oxidative stress, as the “respiratory” pathways began to be disrupted and the proteins began to become oxidized, nitrite would accumulate and AOR could link the aldehyde oxidation to nitrite reduction. The NO thus formed could, subsequently, participate in signaling cascades that would eventually protect the organism from oxidative stress damage. In this way, this hypothetical mechanism would allow the bacteria to “translate” a situation of oxidative stress (a change in the cellular redox status) into a differentiated NO flux that would be, subsequently, “translated” into a biological defensive (antioxidant) response.

The nitrite reduction by bacterial NaR and AOR, fungus NaR, plant C-NaR, and mammalian XD/XO and AO suggests that all forms of life can use a molybdoenzyme when they need to produce NO for purposes other than “respiration”. This consensus emphasizes the relevance of the molybdenum chemistry to catalyze the oxygen atom abstraction from nitrite and suggests that it is worth investigating the possible role of bacterial XD in nitrite reduction.

3. BIOLOGICAL MECHANISTIC STRATEGIES TO HANDLE NITRITE
Chemical Reviews

Review

Figure 18. Chemical view of the nitrite reduction/oxidation in the nitrogen biochemical cycle and signaling pathways. The pathways represented in Figures 1, 3, and 16 are here depicted as a whole series of nitrogen compounds, with oxidation states ranging from 5+ (nitrate) to 3− (ammonium), to emphasize the redox chemistry involved in each step. Signaling pathways, red arrows; dinitrogen fixation, yellow arrow; assimilatory ammonification, orange arrows; “organic nitrogen pool”, pink arrows; denitrification, blue arrows; dissipimilatory nitrate reduction to ammonium (DNRA), green arrows; nitrification, black arrows; anaerobic ammonium oxidation (AnAmOx), gray arrows; “denitrification/anaerobic methane oxidation”, violet arrows. Dotted lines represent reactions that do not involve nitrite handling.

The great majority of biological redox reactions involve one or two-electron reduction/oxidation steps. When higher reductions/oxidations are needed, the reaction is divided into several individual reactions of one or two-electron reduction/oxidation, each catalyzed by a specific enzyme. The denitrification pathway (Figure 1, blue arrows, Table 1) is an example where nitrate is reduced by five electrons to dinitrogen in four individual steps (eq 4). The uncommon multielectron reactions, where several electrons are transferred through a single enzyme, without the release of any intermediate, are devoted to key steps of the metabolism. Oxidative phosphorylation (dioxogen reduction by four electrons to water, catalyzed by CcO), “respiration”, and assimilation of sulfur or in catalysis (e.g., activation and reduction of dioxogen, superoxide radical, nitrous oxide, and nitrite). A copper center consists of a copper atom coordinated by nitrogen, oxygen, or sulfur atoms from different amino acid residues. According to their geometry and electronic structure, the copper centers have been divided into several groups: (i) type 1 (T1; Figure 19b), where copper is coordinated by two histidines, one cysteine, and a variable axial ligand (e.g., a sulfur atom of a methionine residue, as will be described for the CuNiR T1 centers); (ii) type 2 (T2), with no sulfur atom coordination (e.g., the three histidines and water/nitrite molecule of the CuNiR T2 centers); (iii) type 3, with coupled binuclear copper centers (e.g., haemocyanin);1,273–276 (iv) trinuclear copper clusters (containing type 2 and 3 centers);1277–1279 (v) mixed-valence binuclear CuA center;1280–1284 (vi) heteronuclear CuB-haemA center (CcO);1285 and (vii) tetranuclear CuE center (nitrous oxide reductase).1286–1289

Molybdenum is essential to most organisms, including humans, catalyzing important redox reactions of the metabolism of carbon, nitrogen, and sulfur, many of which constitute critical steps in the global biogeochemical cycles of those elements.597,1290–1295 With the exception of the iron/molybdenum cofactor of nitrogenase, involved in dinitrogen fixation (section 2.1.1; Figure 1, yellow arrow, Table 1), and a few other heteronuclear centers, whose physiological function is not yet fully understood,1296–1298 molybdenum is found in a mononuclear form, hereafter designated as molybdenum center. In these centers, molybdenum is coordinated by the cis-dithiolene group of one or two pyranopterin cofactor molecules (Figure 19c (i)) and by oxygen, sulfur, or selenium atoms in a diversity of arrangements that determines the classification of the molybdenenzymes into three families (Figure 19c (ii));597 XO, sul fate oxidase, and dimethylsulfoxide reductase families. In addition, a fourth family might be created to hold a molybdenum-containing enzyme recently described in mammals, the mitochondrial amidoxime-reducing component (mARC),1299–1301 whose classification is presently unknown.

The mechanistic strategies of biological nitrite reduction/oxidation will be discussed in the following sections (3.1–3.3). The starting point will be the protein structure (under “Enzymatic Machinery”). A brief description of the enzyme promiscuity1302 (under “Promiscuity”) will also be included. A detailed discussion of the reaction mechanism will follow (“Mechanism”), where we will confine our considerations only to the active centers. The structure–activity relationships will be, as much as possible, systematically explored to discuss the mechanistic strategies biology developed to reduce/oxidize nitrite.

3.1. Nitrite Reduction to Ammonium

The great majority of biological redox reactions involve one or two-electron reduction/oxidation steps. When higher reductions/oxidations are needed, the reaction is divided into several individual reactions of one or two-electron reduction/oxidation, each catalyzed by a specific enzyme. The denitrification pathway (Figure 1, blue arrows, Table 1) is an example where nitrate is reduced by five electrons to dinitrogen in four individual steps (eq 4). The uncommon multielectron reactions, where several electrons are transferred through a single enzyme, without the release of any intermediate, are devoted to key steps of the metabolism. Oxidative phosphorylation (dioxogen reduction by four electrons to water, catalyzed by CcO), “respiration”, and assimilation of sulfur...
(sulfite reduction by six electrons to sulfide, catalyzed by sulfite reductases), assimilation of molecular nitrogen (dinitrogen reduction by six electrons to ammonium, catalyzed by nitrogenases) are some of the few examples found in biology.

The assimilation and “respiration” of nitrite constitute two remarkable examples of what was stated above (Figure 1, Table 1). In both pathways, nitrite is reduced by six electrons to ammonium, in a reaction catalyzed by a single enzyme, without the release of any intermediate. The metal chosen for this catalysis is iron, probably a reminiscence of the prebiotic ammonium formation on the early Earth, where nitrite is believed to have been readily reduced to ammonium by reduced iron.1303

However, assimilation and “respiration” serve different cellular purposes and evolved to be two distinct metabolic pathways, located in different cellular compartments (cytoplasm/chloroplasts strom and periplasm/cytoplasmatic membrane, respectively), catalyzed by structurally different enzymes, containing different redox centers (here discussed separately in sections 3.1.1 and 3.1.2).

3.1.1. Dissimilatory Nitrite Reduction to Ammonium.

The dissimilatory nitrite reduction to ammonium (eq 64) is achieved within the haem of multi- or mono- or di- or tri- or tetra-haem-containing nitrite reductase (CcNiR) enzymes (EC 1.7.2.2).

\[
\text{NO}_2^- + 6e^- + 8H^+ \rightarrow \text{NH}_4^+ + 2H_2O
\]

3.1.1.1. Enzymatic Machinery

CcNiR (also known as NrfA1304) are part of larger complexes. In the periplasm of *Wolinella succinogenes*, *Desulfovibrio desulfuricans*, or *D. vulgaris*, CcNiR forms a stable membrane-associated complex with NrfH, most likely NrfA,NrfH2,1307 NrfH is a small (~20 kDa), membrane-anchored, tetra-haem quinol oxidase that provides electrons to CcNiR directly from the membrane quinone...
Chemical Reviews

Figure 20. Nitrite binding modes. (a) Possible binding modes of nitrite to the metal atom (Me). Nitrite can bind the metal atom through the nitrogen atom, the so-called “nitro” mode, via one of the oxygen atoms, in a trans or cis conformation of the “nitrito” mode, or through both oxygen atoms, in a “bidentate nitrito” mode. (b) Binding modes for each product of nitrite reaction expected a priori; schematic representation (it is not intended to be a mechanistic representation). (i) To form ammonium, it would be expected that only the “nitrito” binding mode is productive, to “remove” both oxygen atoms and “add” several protons without releasing intermediates. (ii) To synthesize NO, all of the binding modes seem feasible, although the simplest possible mechanism would be the (ii), via a “nitrito” binding mode, involving only one N–O bond cleavage with “automatic” release of NO (the abstracted oxygen atom remain bound to the metal, probably as a water molecule). (v) To produce nitrate it is necessary to “add” one oxygen atom, and the simplest mechanism would be with a “nitro” binding mode to an oxo group of the metal (which, in the course of the reaction, would be “added” to the product molecule).

Pool, in a fast and efficient way. Escherichia coli CcNiR, on the contrary, uses a “soluble” periplasmatic penta-haem cytochrome (NrfB) as a direct redox partner (NrfA2,NrfB2), which, in its turn, acts in conjunction with a ferredoxin (NrfC) and a putative membrane quinol oxidase (NrfD). All CcNiR structurally characterized to date host penta-haem or octa-haem subunits. Penta-haem CcNiR are homodimers (~120 kDa), with each monomer folded as a single domain (Wolinella succinogenes (Figure 21), Escherichia coli, Sulfurospirillum deleyianum, Desulfovibrio desulfricans, Desulfovibrio vulgaris, Shewanella oneidensis). These CcNiR contain five covalently bound c haems (Figure 19a) per monomer, arranged in near-parallel and near-perpendicular haem pairs (Figure 21b). Four of the haems (#2–#5, Figure 21b) are bis-histidinyl-coordinated (CysXXCysHis binding motif) and, together, form a “wire” that facilitates the fast and effective electron transfer from the physiological partner (likely through haem #2) to the active site. The fifth haem (#1) constitutes the enzyme active site and is coordinated by a water/haemoyxl group in the distal position and by a lysine residue in the proximal position (CysXXCysLys134 motif, W. succinogenes numbering; Figure 21c). The active site also comprises conserved histidine (His317) and arginine (Arg114) residues, which undergo hydrogen-bonding to nitrite and play a key role in the reduction process (as will be described). The active site pocket is completed with one tyrosine (Tyr158) and one glutamine (Gln276) residue that forms a conserved calcium binding site, localized at ~10 Å from the iron atom. The presence of calcium is essential for the enzyme activity, possibly due to a structural and/or catalytic roles: to keep the distal histidine away from the iron atom, conformational stabilization through electrostatic interactions and/or to facilitate the proton transfer steps. In the D. desulfuricans enzyme, a second calcium ion was identified coordinated to the propionates of the noncatalytic haems #3 and #4, whose main role is believed to be structural. Furthermore, two channels allow the nitrite entrance and the ammonium release. The first one is a funnel-like entrance, with a significantly positive electrostatic surface potential that stabilizes the negatively charged substrate and presumably supplies the necessary protons (eq 64); the second channel, localized on the opposite site of substrate entry, has a predominantly negative electrostatic surface potential to assist the efflux of the cationic product.

Octa-haem CcNiR

The octa-haem CcNiR (Thialkalivibrio nitratireducens and Thioalkalivibrio paradoxus) is a homo-hexameric enzyme containing eight haems per monomer. The monomer of the octa-haem CcNiR consists of two domains: one N-terminal domain, with three haems in a unique fold, and one catalytic C-terminal domain, with five haems in an...
arrangement similar to that found in the penta-haem CcNiR. Despite the low (20%) sequence homology with known penta-haem CcNiR, the catalytic haem of octa-haem CcNiR comprises (i) the lysine residue at the proximal position (CysXXCysLys motif), (ii) the histidine, arginine, and tyrosine residues at the distal side, and (iii) two conserved calcium binding sites. However, octa-haem CcNiR has special structural features, such as an unusual topography of the product channels that opens into the void interior space of the protein hexamer.

3.1.1.2. Promiscuity. In addition to nitrite, CcNiR also catalyzes the reduction of NO and of hydroxylamine to ammonium, although with lower specific activities.1324,1326,1333−1337 Surprisingly, CcNiR is also able to catalyze the reduction of NO to nitrous oxide (eq 11),1334,1338,1339 a reaction typical of denitrifiers (Figure 1, blue arrows, Table 1). Although the NO reductase activity of CcNiR has been known for long, only recently has it been re-evaluated, when it was realized that CcNiR is a key player of the oxidative and nitrosative stress defense network of W. succinogenes and E. coli.1339−1344 Noteworthy, CcNiR mediates resistance, not only to hydroxylamine and NO, but also to hydrogen peroxide-induced stress.1345 Moreover, CcNiR catalyzes the six-electron reduction of sulfite to sulfide and with a specific activity higher than that reported for the true dissimilatory sulfite reductase. In this way, CcNiR connects the sulfur and nitrogen cycles.1326,1347−1351 CcNiR is, therefore, one more “multitask” protein, involved in at least two distinct functions, anaerobic “respiration” and stress defense.

3.1.1.3. Mechanism. CcNiR catalyzes the reduction of nitrite to ammonium. To catalyze this reaction, CcNiR has to remove two oxygen atoms from nitrite (cleavage of two N−O bonds), at the same time as it has to add six electrons and eight protons (eq 64), and do all of these without releasing any intermediates, with no doubt a remarkable reaction.

To achieve this purpose, the properties of the catalytic haem are certainly crucial, starting from the back-bonding interaction between iron and nitrite that, as will be described below, is quite important for the substrate binding mode and strength and for the N−O bond activation. Also, the unusual lysine coordination present on CcNiR should have a decisive functional role, although theoretical calculations have not yet shown any striking electronic reasoning for lysine choice over the more conventional histidine ligand.1328,1352,1353 Nevertheless, this odd coordination should represent an evolutionary advantage, because it requires the additional biological effort of producing a specialized haem lyase (coevolution).1354−1357 In addition to the direct iron coordination, the second sphere coordination should play an essential role to define the catalytic properties of the haem. In CcNiR, the active site arginine and histidine residues seem to be important in directing the nitrite binding mode, which, in turn, would condition the reaction product: because CcNiR abstracts both oxygen atoms from nitrite and reduces it to ammonium, the catalytic mechanism is reminiscent of a genuine reductase, but one that is able to process both the “catalytic” and the “oxidative” functions of nitrite.

Figure 21. Cytochrome c-containing nitrite reductase — penta-haemic enzyme. (a) Three-dimensional structure view of the Wolinella succinogenes CcNiR homodimer (α helices and β sheets are shown in pink and yellow, respectively). The protein folds into one compact domain, with α helices as the predominant secondary structural motif, ranging from short helical turns to four long helices at the C-terminal end of the peptide chain. (b) Haems arrangement in the same orientation as in (a). The five haems are numbered according to their attachment to the protein chain (shown on the monomer on the left); haem #1 is the catalytic center. The distances (Fe-to-Fe) between adjacent centers (expressed in Å) are shown on the monomer on the right. (c) Catalytic haem with the nitrite molecule bounded (haem is represented in dark red and the calcium atom in green). The structures shown in (a) and (b) are based on the PDB file 1FS71305 (the images were obtained from www.rcsb.org/pdb/explore/moi; the structure shown in (c) is based on the PDB file 2E801332 (the image was produced with Accelrys DS Visualizer, Accelrys Software Inc.).
nitrite, it can be anticipated that the “nitro” binding mode is the productive one (Figure 20a,b(i)). This proposal is supported by theoretical studies that point toward the “nitro” coordination as the energetically more favorable one,1352,1353 and by the crystallographic structures showing the “nitro” binding mode in nitrite and hydroxylamine complexes of oxidized CcNiR.1330,1352

The catalytic cycle is believed to begin from a Fe$^{2+}-$OH$_2$ complex (Figure 22b), because the reduced enzyme binds nitrite much more strongly than the oxidized form.1352,1353,1358-1362 Despite the less favorable electrostatic interaction (Fe$^{3+}$$-\cdot\cdot\cdotNO_2^-$ versus Fe$^{2+}$$-\cdot\cdot\cdotNO_2^-$), the back-bonding interaction with reduced iron (an effect described below) makes nitrite affinity for Fe$^{2+}$ higher (stronger Fe$-N$ bond) than that for Fe$^{3+}$.

After the reduction of Fe$^{3+}$$-\cdot\cdot\cdotOH_2$ (the enzyme resting state (Figure 22a)), the Fe$-O$ bond is weakened, as a consequence of the increase in the Fe$-O$ distance, and the axial water molecule is readily displaced by nitrite, resulting in a low spin Fe$^{2+}$$-\cdot\cdot\cdotNO_2^-$ complex (Figure 22c).1352,1353,1361 When nitrite is approaching the iron, the positively charged Arg114 and protonated His277 would establish strong hydrogen bonds with the nitrite oxygen atoms, “anchoring” the nitrite molecule in the “nitro” mode (Figure 22c).1355 These hydrogen bonds would cause an asymmetric charge distribution in nitrite, with the oxygen atoms gaining additional negative charge and thus becoming more susceptible to electrophilic attack. Simultaneously, the N$-O$ bonds became longer and more single bond-like (1.25 instead of 1.5 bond order) and thus weaker, which should facilitate the cleavage.

In addition to these interactions with the positively charged residues, a back-bonding interaction between the nitrogen atom and the iron is of key importance for the Fe$-N$ bond strength and for the initial activation of the N$-O$ bond:1352,1353,1359,1360 in the nitrite–iron complex, the nitrite LUMO, which has π-antibonding character, interacts with the iron HOMO, d$_{xz}$ orbital, receiving electron density from the iron. Moreover, theoretical calculations1353 suggest that nitrite is positioned with its plane perpendicular to the iron d$_{xz}$ orbital, in a way that the π-acceptor capability of the nitrite nitrogen atom is maximized.1353,1363,1364 This back-bonding interaction makes two effects: (i) a stronger Fe$-N$ bond (responsible for the strong binding of substrate to reduced active site) and (ii) a weaker N$-O$ bond, that is, longer and with a lower order, due to the electron density transfer into an orbital that is antibonding with respect to the N$-O$ bond.

Upon nitrite binding with the concomitant N$-O$ bond activation, the reaction proceeds with the abstraction of the first oxygen atom, through heterolytic cleavage (Figure 22c\rightarrowf). The first oxygen atom to be abstracted is the one closest to the

Figure 22. Mechanism of nitrite reduction to ammonium catalyzed by cytochrome c-containing nitrite reductase. See text for details. *When all of the reducing substrate or nitrite is consumed, the enzyme returns to the oxidized resting state.
His_{277}, as suggested by the crystal structure of oxidized CcNiR complexed with the putative reaction intermediate hydroxylamine.1352 To do this abstraction, this oxygen has to be converted into a good leaving group, which is achieved with the addition of two protons (Figure 22c→e). In fact, the protonated His_{277} positioned at a short distance from the nitrite oxygen atom (1.56 Å1353) and with a “fine-tuned” acidity,365 is well suited for this role.1353,1366 Remarkably, His_{277} is located to facilitate the donation of protons and at the same time to “anchor” the nitrite in the correct position to maximize the back-bonding interaction with the iron atom.1353 At high pH values (>8, where His_{277} is most likely deprotonated) is the Arg_{114} (with a pK\textsubscript{a} > 7) that probably acts as a proton donor.1367 After the protonation steps, the \{FeNO\}_6 intermediate1367 is formed (Figure 22f), and the first water molecule is released.

The reaction is proposed to proceed toward the formation of a \{Fe–NH(O)\}_8 complex (Figure 22g). To accomplish it, the enzyme active site must be “recharged” with the necessary protons and electrons.1352 At this point, the enzyme must either overcome or avoid the formation of a \{FeNO\}_7 complex. Such complex (prepared reacting reduced CcNiR with NO) has been well characterized spectroscopically,1352,1369 and at a theoretical level,1352 and it is proposed experimentally to represent a thermodynamic sink and confirmed theoretically to represent a deep potential energy minimum. Moreover, in model complexes1170,1373–1375 and also in Mb1376 the reduction potentials of \{FeNO\}_7 complexes were found to be truly low (<−1 V1170,1373–1375 and −650 mV1376 respectively).

To avoid the formation of \{FeNO\}_7 complexes, biology has developed several strategies, including hydride transfer (as is the case of the eukaryotic NO reductase of Fusarium oxysporum1377) and proton-coupled electron transfer. In CcNiR, thermodynamic and kinetic theoretical analysis suggested that two proton-coupled electron transfer steps are the probable mechanism to achieve the formation of the \{Fe–NH(O)\}_8 complex (Figure 22f→g).1328 (i) the first step proceeds rapidly (activation barrier of 1.6 kcal/mol) and is highly exothermic (−46 kcal/mol), leading to the probable protonation of the active site Arg_{114}; (ii) the subsequent proton-coupled electron transfer results in the formation of the \{Fe–NH(O)\}_8 complex through a rate-limiting equilibrium step (activation barrier of 6.5 kcal/mol, in an almost thermoneutral (0.7 kcal/mol) step). Possible alternative mechanisms, involving individual reduction and protonation steps, were also analyzed.1328 Noteworthy, the calculations revealed that, while the first electron can be added either via simple reduction or coupled with proton transfer, the second electron can only be supplied upon addition of a proton (a simple second reduction requires more than 40 kcal/mol).1328 Nevertheless, the simulation of reaction kinetics showed that the mechanism involving two proton-coupled electron transfers is the more probable one, leading to the formation of only trace quantities of the \{Fe(NO)\}_7 intermediate.

The resultant double occupation of the NO π-antibonding orbital leads to the splitting of one of the N–O bonds and to the formation of two separate lone electron pairs on the NO nitrogen and oxygen atoms.1352 These two lone electron pairs should make the NO more easily protonable.1168,1328,1352,1378–1381 However, contrary to what happens with the first oxygen atom to be abstracted (Figure 22c→e), at this reaction point it is the nitrogen atom that is thought to be protonated1328,1352 resulting in the formation of a \{Fe–NH(O)\}_8 complex (Figure 22g). This suggestion is supported by much evidence: (i) free HNO is much more stable than NOH (∼23 kcal/mol),1352 (ii) the formation of Fe–NO versus Fe–N(H)O is not energetically favorable (by ∼19 kcal/mol),1352 (iii) HNO is formed in a model system of ferrous reduction of NO,1382 (iv) NO was observed in a biologically relevant system (Mb1376,1385) and (v) the Mb–NH(O) formation (over Mb–NOH) was confirmed by theoretical calculations.1384 To achieve the \{Fe–NH(O)\}_8 formation, also the protonation of the Tyr_{218} was shown to be needed.1328 This protonation may be necessary to maintain a high redox potential of the active site, to facilitate the next reduction step.1328 The proton supply process can be modulated by the conserved calcium binding site, present at close proximity of the iron atom (see the “Enzymatic Machinery”1328 a proton localized on the calcium site would be more favorably transferred, because its energy is higher (∼6 kcal/mol) than the one of a proton in a pure water solution. As a result, the calcium site could be involved in facilitating the proton transfer steps.

In a few words, the proton-coupled electron transfer mechanism efficiently “recharges” the enzyme active site: the electron transfer haems donate the electrons; the change in the reduction state is immediately accompanied by proton transfer from a well-organized network of proton donors in the inlet channel, part of which is the calcium site.1328 Each reduction increases the proton affinity of the previous intermediate, and each protonation increases its electrophilicity. The “recharged” enzyme then promptly reduces \{FeNO\}_8 to the reactive \{Fe–NH(O)\}_8 intermediate (Figure 22f→g), thus overcoming the formation of the stable \{FeNO\}_7 intermediate. In this context, it can be speculated that the reasoning for the presence of four noncatalytic haems in CcNiR is the requirement for the timely electron transfer. This speculation, however, is questioned by CSNiR that, despite catalyzing the same reaction, has only one Fe/S center to transfer electrons to the active site (see section 3.1.2).

At this stage (Figure 22g), the enzyme still has one oxygen atom to remove and several protons and electrons to add (eq 64). Unfortunately, the mechanism of this last part of the reaction is not yet so well characterized. The reaction should continue to form an iron–hydroxylamine complex (Figure 22h). The formation of such intermediate is suggested by the known hydroxylamine reductase activity of CcNiR that reduces this compound with one-half of the specific activity observed with nitrite. The oxidized form of this complex (Fe^{III}–hydroxylamine) was, in fact, observed in crystals of oxidized CcNiR, where the oxygen atom was found hydrogen-bonded to the N\textsubscript{a} atom of the Arg_{114}.1335,1352 To form this complex, the reaction is suggested to proceed with the alternating transfer of two electrons and two protons, possibly as two proton-coupled electron transfers (with no critical energetic barriers, regardless the sequence of transfers1352) to yield the Fe–NH(H)(OH) complex (Figure 22h).

Now, the reaction is almost completed. The addition of one more proton converts the hydroxyl moiety into a water molecule (the second one), which leaves the enzyme (Figure 22h→i). After the addition of one electron, the oxidation of Fe^{II} to a proton transfer would yield the Fe^{III}–ammonium complex (Figure 22i). Theoretical calculations indicate that the crucial role of the active site Tyr_{218}. Revealed by the almost complete inactivation of the enzyme when this residue is mutated to a phenylalanine,1349 is probably carried
out at this final stage, possibly in a radical step involving hydrogen atom transfer.1353 The Fe3+–ammonium complex can then be readily dissociated.1352 This suggestion is supported by model ammonium–iron porphyrins complexes that show a strong tendency to hydrolyze,1385 unless a steric protective group is included.1386 Alternatively (energetically similar1352,1362), the Fe3+–ammonium complex is first reduced to Fe2+–ammonium (Figure 22j), after which the ammonium is displaced by a new nitrite molecule (Figure 22j \rightarrow c), closing the catalytic cycle.

Note that, until this point, all of the reaction steps were proposed to take place with reduced iron, which is made possible due to the efficient electron transfer to the active site. Ammonium is, subsequently, electrostatically guided to the protein surface through the product channel.

In summary, the CcNiR-catalyzed reaction is presently suggested to start from a ferrous–nitrite complex. The nitrite reduction proceeds with the initial cleavage of the first N–O bond, to form an \{FeNO\}6 complex (Figure 22c \rightarrow f). The success of the first N–O bond cleavage (Figure 22c \rightarrow f) is due (at least) to the back-bonding with iron and to the hydrogen bonds with second sphere amino acid residues. The back-bonding interaction (i) strengthens the Fe–N bond and (ii) weakens the N–O bond. The hydrogen bonds (i) direct the nitrite molecule to the correct position to allow the back-bonding interaction; (ii) enhance this back-bonding (stabilizing the nitrite \pi-antibonding orbital, bringing it energetically even closer to the iron \textit{d} orbitals); (iii) cause an asymmetric charge distribution that activates the N–O bond (make it more single bond-like) for reductive cleavage; and (iv) supply the necessary protons.

The \{FeNO\}6 intermediate is subsequently reduced and protonated to eventually form an iron–hydroxylamine complex (Figure 22f \rightarrow h). This reduction is made possible through two proton-coupled electron transfers that overcome the formation of the stable \{Fe(NO)\}7 complex. Each reduction step increases the proton affinity of the previous intermediate, and each protonation increases its electrophilicity. Once the hydroxylamine intermediate is formed, further reduction and protonation lead to lysis of the last N–O bond, and the product is released (Figure 22h \rightarrow c).

3.1.2. Assimilatory Nitrite Reduction to Ammonium.

The assimilatory nitrite reduction to ammonium (eq 65) is achieved within the sirohaem of the sirohaem-containing nitrite reductase (CSNiR) enzymes. As described in section 2.1.1, both ferredoxin- and NAD(P)H-dependent enzymes hold a sirohaem and an Fe/S. The NAD(P)H-dependent enzymes (EC 1.7.1.4) contain, in addition, a FAD domain, bound to an extended N-terminus, which is involved in the NAD(P)H binding and oxidation. This Review will focus only on the ferredoxin-dependent nitrite reductases (EC 1.7.7.1).
3.1.2.1. Enzymatic Machinery. CSNiR have been studied from a number of higher plants, algae, and cyanobacteria. The spinach chloroplast enzyme is the most extensively characterized CSNiR (also the first 3D structure known), whereas much less is known about the enzymes from cyanobacteria or from algae. Recently, the tobacco enzyme became the focus of increasing interest.

CSNiR (product of nasB, nirB, and Nii genes, in e.g., Paracoccus denitrificans, E. coli, and tobacco, respectively) are monomers (∼65 kDa), folded into three domains, containing one [4Fe–4S] center and one sirohaem (Figure 23). The [4Fe–4S] center is coordinated by four cysteine sulfur atoms, with the characteristic Cys441XXXXXCys447X(2)(Cys482XXCys486) motif (spinach enzyme numbering), and transfers the electrons from the physiological electron donor (reduced ferredoxin) to sirohaem (Figure 23c). Sirohaem (Figure 19a) is found in nitrite and sul fate reductases, where it constitutes the enzymes active site. The sirohaem is connected to the Fe/S through the Cys486 residue that also coordinates the haem iron (Figure 23c). Despite being coupled by the bridging sulfur, the Fe/S and sirohaem act as independent one-electron carriers in catalysis and in titrations. The haem sixth coordination position is occupied by a water molecule. The active site also comprises conserved Arg109, Arg179, and Lys224 residues, which are thought to facilitate the binding and subsequent reduction of nitrite (hydrogen-bonding/proton donation). In addition, several other potentially positively charged residues seem to be essential to stabilize the sirohaem eight carboxylate groups, some of which are also conserved in sul fate reductases.

CSNiR has a wide (∼8 Å) tapered channel, where the Fe/S and sirohaem are located, and through which nitrite, ammonium, and solvent have a clear path between the protein surface and the haem distal side. It is also at the surface of this channel that the reduced ferredoxin is proposed to bind, to deliver one electron at a time to the CSNiR Fe/S, “closing” the channel from the solvent in the binding process.

3.1.2.2. Promiscuity. Like CcNiR, CSNiR also catalyzes the reduction of hydroxylamine to ammonium and of sulfite to sulfide, but with lower affinity comparatively to nitrite. Remarkably, in tobacco enzyme, the mutation of the active site residue Asn226 to a lysine results in an increase of the sulfite reductase activity of 1 order of magnitude.

3.1.2.3. Mechanism. CSNiR-catalyzed nitrite reduction to ammonium also takes place without the release of detectable intermediates, and several biochemical, spectroscopic, and crystallographic studies support that the reaction mechanism is similar to the CcNiR one and to the dissimilatory sul fate reductase one on its key aspects: (i) The reaction is believed to start from a low spin (sirohaem)Fe2+ intermediate (eq 66), in the second step of nitritation (section 2.1.1; Figure 1, black arrows, Table 1). The enzyme from Nitrosomonas europaea is a homotrimer (∼210 kDa) of octa-haem monomers. Seven of which are bis-histidinyl-coordinated and one, the catalytic site, that has the unusual lysine coordination characteristic of CcNiR.

HAOR catalyzes the oxidation of hydroxylamine to nitrite (eq 67), in the second step of nitrification (section 2.1.1; Figure 1, black arrows, Table 1). The enzyme from Nitrosomonas europaea is a homotrimer (∼210 kDa) of octa-haem monomers. Seven of which are bis-histidinyl-coordinated and one, the catalytic site, that has the unusual lysine coordination characteristic of CcNiR.

The structures of these two enzymes and of CcNiR show significant similarities in haem “architecture”. Five of the TTR...
haems are almost overlapped with the CcNiR haems, including the substrate binding site and the position of the coordinating lysine at the active site. Four of the HAOR haems are superposable with the noncatalytic haems of CcNiR, with the catalytic haems positioned flipped with respect to each other. In addition, both TTR1432,1433 and HAOR1434−1436 are able to catalyze the reduction of nitrite and hydroxylamine to ammonium as CcNiR does. Actually, the TTR catalytic specificities toward nitrite and hydroxylamine, comparable to the CcNiR ones1433 suggest that this enzyme may have a role in the biochemical cycle of nitrogen.

On the other hand, it is surprising how HAOR, an enzyme that is "tuned" to catalyze the oxidation of hydroxylamine, is able to catalyze reduction reactions. In fact, the HAOR specificity constants toward nitrite and hydroxylamine reduction are 2 orders of magnitude lower than the CcNiR ones.1434,1435 However, in vitro, in the presence of sufficient reducing power, HAOR and CcNiR reactions probably proceed through comparable intermediates (eq 68). The occurrence of those reductase activities under more physiological conditions, where the P460 haem should be mostly oxidized,1436 is, nevertheless, controversial.

$$\text{Fe}^2+\text{NH}_4^+ \leftrightarrow \text{Fe}^3+N\text{(H}_2\text{)OH} \equiv \text{Fe}^3-N\text{(H)O} \equiv \text{Fe}^3-\text{NO}$$

$$\equiv \text{Fe}^2-\text{NO}_2^-$$ (eq 68)

It was hypothesized that the multihaem enzymes of the "oxidative branches" of nitrogen cycle, namely HAOR (nitrification) and hydrazine oxidoreductase (AnAmmOx), had evolved from the more ancient penta-haemic nitrite reductase enzymes, under a variety of environmental pressures that triggered the function changing from reduction to oxidation.1350,1441

3.2. Nitrite Reduction to Nitric Oxide

NO is a remarkable biomolecule. Its formation from nitrite constitutes the first committed step in denitrification and is an essential step in the primitive AnAmmOx and other "respiratory" pathways (section 2.1.1; Figure 1, Table 1). NO is also a crucial mammalian signaling molecule, and, for its synthesis, biology developed a "dedicated" enzyme, NOS, and several nitrite "recycling" pathways to ensure the NO formation when the NOS activity is impaired (section 2.2.1.1). Remarkably, also plants and bacteria are using similar "rescue" nitrite-dependent pathways to produce NO (sections 2.2.2.1 and 2.2.3). Therefore, the biological nitrite reduction to NO is an ubiquitous, universal reaction that was "invented" for the anaerobic world and has been "reinvented" and employed ever since.

To carry out this "old" reaction, biology developed different "solutions", using three metals, iron, copper, and molybdenum. For the "respiratory" function, two distinct classes of enzymes were developed, haem-dependent and copper-dependent nitrite.

Figure 24. Cytochrome d1-containing nitrite reductase. (a) Three-dimensional structure view of oxidized Pseudomonas aeruginosa Cd1NiR homodimer (α helices and β sheets are shown in pink and yellow, respectively). The protein folds into two domains: (i) one typical bacterial α-helical cytochrome c N-terminal domain (on top), containing one c haem, and (ii) one eight-bladed β-propeller C-terminal domain (on bottom), comprising one d1 haem. The N-terminal Ala-Pro loop is "swapped" between the two monomers; as a result, the Tyr10 of one monomer is found close to the d1 haem of the partner monomer (i.e., the Tyr10 of monomer "A" is hydrogen-bonded to the hydroxyl group that coordinates the d1 haem of monomer "B"). (b) Haems arrangement in the same orientation as in (a), c haem on top and d1 haem on bottom. The distance between the c and d1 haem within a monomer (Fe-to-Fe of 19.7 Å; edge-to-edge of 9.0 Å) is shown on the monomer on the right. (c) Catalytic haem with a hydroxyl moiety bonded (haem is represented in dark red). The structures shown in (a) and (b) are based on the PDB file 1NIR1433 (the images were obtained from www.rcsb.org/pdb/explore/jmol); the structure shown in (c) is based on the same PDB file (the image was produced with Accelrys DS Visualizer, Accelrys Software Inc.).
reductases (Cd,NiR, section 3.2.1, and CuNiR, section 3.2.2, respectively). Remarkably, the first “solution”, the iron-dependent enzyme developed in the preoxic era, was so successful that it was used in different strategies of survival (denitriﬁcation, AnAmmOx “denitriﬁcation/intra-aerobic methane oxidation”, and possibly others). This wide use further emphasizes the in vivo importance of NO as the alleged first deep electron sink on Earth, before the emergence of dioxygen.1451,1442 For signaling pathways, biology “reuses” iron and molybdenum-based redox systems, present in cells to accomplish other functions, to carry out the nitrite reduction to NO (section 2.2).

3.2.1. Dissimilatory Nitrite Reduction to Nitric Oxide by an Iron-Dependent Enzyme. The dissimilatory iron-dependent nitrite reduction to NO (eq 69) is achieved with the d_1 haem of the c and d_1 haem-contained nitrite reductase (Cd$_1$NiR) enzymes (EC 1.7.2.1).

$$\text{NO}_2^- + \text{e}^- + 2\text{H}^+ \rightarrow \text{NO} + \text{H}_2\text{O} \quad (69)$$

$E^0 (\text{NO}_2^-/\text{NO}) = +0.34 \text{ V}$

3.2.1.1. Enzymatic Machinery. Cd$_1$NiR (product of nirS genes) are peril plastom homodimers (~120 kDa), with each monomer folded into two domains: (i) one typical bacterial α-helical cytochrome c-terminal domain, containing one c haem, and (ii) one eight-bladed β-propeller C-terminal domain, comprising one d_1 haem (Pseudomonas aeruginosa (Figure 24)1443–1446 and Paracoccus pantotrophus1447–1455). The c haem is responsible for the electron transfer from different electron carriers (section 2.1.1) to the d_1 haem (Figure 19a), which constitutes the enzyme active site.1444,1450,1452–1457 The active site also comprises two conserved histidine residues (His$_{157}$ and His$_{159}$ in P. aeruginosa, and His$_{145}$ and His$_{158}$ in P. pantotrophus), which are essential for catalysis (Figure 24c) as will be discussed.1443–1451,1458,1459

P. aeruginosa Cd$_1$NiR has the c haem coordinated by Met$_{55}$ and His$_{151}$ while the d_1 haem is coordinated by His$_{139}$ in the proximal position, and by a hydroxyl group, in the distal position (Figure 24c).1445 When the d_1 haem is oxidized, regardless of the c haem state,1440 this hydroxyl group is hydrogen-bonded to the Tyr$_{10}$ of the partner monomer (this occurs because the $7-29$ loop is “swapped” over the two monomers). According, the active site haem is in a “closed” hexa-coordinated state. After d_1 haem reduction, the $56-62$ loop is displaced (6 Å), and the Tyr$_{10}$ is (4.2 Å) shifted away from the d_1 haem.1446,1460 This concerted movement in the N-domain of one monomer “opens” the active site haem present in the C-domain of the partner monomer, allowing nitrite to bind to the haem iron. For the following mechanism discussion, it should be emphasized that it is the electron transfer to d_1 haem, and not the c haem reduction, that is responsible for these conformational changes.1460

In P. pantotrophus Cd$_1$NiR, the structural changes are more complex. Despite having a similar overall structure, in P. pantotrophus, the N-terminal segment is not “domain-swapped”, but “wrapped” around the same monomer, at the interface between the two domains.1447 In addition, as-isolated, oxidized enzyme has the c haem His$_{157}$-His$_{80}$-coordinated and the d_1 haem His$_{139}$-Tyr$_{10}$-coordinated (proximal and distal positions, respectively).1447,1449,1450 This haems coordination is surprising: first, because neither His$_{157}$ nor Tyr$_{10}$ are conserved in other Cd$_1$NiR, apart from the very closely related P. denitrificans enzyme;1461 and, second, because Tyr$_{15}$ is coordinat the iron directly. The presence of a His$_{29}$-Tyr$_{15}$-coordinated active site haem, with no vacant position for substrate binding, indicates that the P. pantotrophus Cd$_1$NiR is isolated in an inactive form, an “unready” enzyme (as denominated in section 3). However, in a situation parallel to that of P. aeruginosa Cd$_1$NiR, reduction of the P. pantotrophus enzyme triggers a concerted movement in a N-domain loop that changes the coordination sphere of both haems: the c haem becomes Met$_{106}$-His$_{80}$-coordinated, and the tyrosine residue of the d_1 haem is displaced to yield an “open” penta-coordinated active site, now a “ready” enzyme.1443,1450,1462,1463

Accompanying the structural changes, the predetermination of P. pantotrophus Cd$_1$NiR leads to a cataclysmically more active enzyme, which exhibits higher k_{cat} values than the as-isolated enzyme.1456,1464,1468

The conformational changes needed to activate Cd$_1$NiR could be relevant to the in vivo regulation of the enzyme (and not an experimental artifact that has to be overcome). Actually, the P. pantotrophus Tyr$_{10}$Phe mutant, which has a “locked” penta-coordinated d_1 haem iron, is an active enzyme without needing the reductive activation step.1469 Similarly, the P. aeruginosa Tyr$_{10}$Phe mutant is functionally and spectroscopically identical to the wild-type.1470,1471 Therefore, the presence of the tyrosine residue, which is not essential for catalysis, could be an intentional biological regulatory strategy: having an enzyme whose reactivity can be controlled through a mechanism of the type “unready versus ready” (“on/off”) to allow the organism to quickly respond to different cellular/environmental conditions/stimuli1463,1466,1469 (as was previously discussed for Nb, Cc, XD/JO).

The Cd$_1$NiR structural changes, however, are not driven only by reduction, but also by the protonation state of the residues at the active site. In fact, it is remarkable how comparable are the structures of the oxidized P. aeruginosa His$_{159}$Ala and His$_{32}$Ala mutants at pH 5.5–6.51445,1458,1463 and of the reduced wild-type P. pantotrophus Cd$_1$NiR crystalized under anaerobic conditions at pH 9.0.1463 These three structures (i) preserve the individual c and d_1 coordination and folding characteristic of reduced enzymes and (ii) show the c domain ~60° rotated, ~20 Å displaced, relative to the d_1 domain. The structural organization observed in the mutants was initially interpreted as suggesting that the two conserved histidines are crucial for the enzyme conformation.1445 Yet, the fact that a parallel structure was observed in the wild-type P. pantotrophus enzyme at pH 9, where the histidine residues are likely deprotonated and thus uncharged and electrostatically equivalent to the His-Ala mutants of P. aeruginosa, points toward another hypothesis: it is the protonation state of those histidines that is determinant for the conformation adopted by Cd$_1$NiR. Therefore, it is probable that not only the localized iron charge (oxidized versus reduced), but also the overall charge in the active site control the enzyme conformation.

These remarkable Cd$_1$NiR structural changes, driven by oxidation/reduction and also protonation/deprotonation, further support that the conformational changes are a deliberate mechanistic strategy of Cd$_1$NiR.

3.2.1.2. Promiscuity. Besides the nitrite reduction to NO, Cd$_1$NiR catalyzes the two-electron reduction of hydroxylamine to ammonium and the four-electron reduction of dioxygen to water, in the presence of any of its electron donors.1456,1468,1472 In fact, the enzyme was long thought to be an oxidase and classified as a cytochrome oxidase (EC 1.9.3.2).
Contrary to CcNiR, the Cd,NiR does not catalyze the reduction of NO to hydroxylamine (eq 70). This is a very interestingly observation, because that reaction would prevent the primitive “recycling” of nitrogen through the AnAmmOx (eq 71) suggested in section 2.1.1.

\[
\text{NO}^+ + \text{CdNiR} \rightarrow \text{NO} \rightarrow \text{NH}_2\text{OH} \rightarrow \text{CdNiR} + \text{NH}_2^+ \tag{70}
\]

\[
\text{NO} + \text{CdNiR} \rightarrow \text{NO} + \text{CdNiR} \rightarrow \text{CdNiR} + \text{N}_2 \tag{71}
\]

3.2.1.3. Mechanism. Comparatively to the nitrite reduction to ammonium, the formation of NO is considerably simpler. As will be discussed, the Cd,NiR-catalyzed reaction involves the nitrite binding to the reduced d_1 haem iron, followed by the abstraction of one oxygen atom and the addition of one electron. In this way, the Cd,NiR reaction can be considered as a “copy” of the first part of the CcNiR reaction illustrated in Figure 22b-f. However, the well-known high affinity of NO to haem iron raises an intriguing question: how is the NO released from the active site haem of the Cd,NiR?

The Cd,NiR catalytic cycle begins after the reductive activation of the resting (inactive) enzyme, with the concomitant tyrosine displacement from the d_1 reduced iron (Figure 25a→b). In addition to “opening” the active site haem, the enzyme reduction provides the reduced iron, for which the nitrite affinity is higher. For NO formation, the “nitrito” binding mode would be a priori expected (Figure 20a), although all of the binding modes are feasible (Figure 20b(ii)→(v)). However, crystal structures showed that nitrite binds to Cd,NiR in the “nitro” mode (Figure 25c), with the nitrite oxygen atoms forming hydrogen bonds with the two conserved histidine residues (His$_{327}$ and His$_{369}$ in P. aeruginosa, and His$_{345}$ and His$_{388}$ in P. pantotrophus). This Cd,NiR–nitrite interaction mode is clearly a “copy” of the CcNiR one, and the initial nitrite binding and activation is believed to be ruled by the same principles that were proposed for CcNiR: back-bonding and hydrogen bond. However, it

Figure 25. Mechanism of nitrite reduction to NO catalyzed by cytochrome d_1-containing nitrite reductase. See text for details. The c haem is represented as a blue box. The nitrite reduction reaction, taking place at the d_1 haem, is explicitly represented (except in “a”, where the d_1 haem is represented as a black box). The fast NO release is triggered by the electron transfer from c to d_1 haem, but the present data do not allow one to discriminate if the NO is released from the “mixed-valence” protein (g→i), or from the fully reduced enzyme (h→c). In the absence of reducing substrate or nitrite, the enzyme is trapped in a “dead-end” species (g).
should be here emphasized that it is plausible that the d_1 haem unique features (two electron-withdrawing carbonyl groups (Figure 19a) and inversion of the iron d orbitals energy levels, both discussed below) made the d_1 haem less effective at such back-bonding than the e haem of CcNiR.1475

Subsequent to the nitrite binding, and again as in CcNiR, the oxygen atom to be abstracted is protonated, the N–O bond is heterolytically cleaved, and a water molecule is released (Figure 25c → e).1445,1459,1473,1474 The two conserved histidine residues are well positioned to act as proton donors,1445 and their key role in this step is supported by the abolishment of the nitrite reductase activity on the His327Ala and His369Ala mutants1445 and by theoretical calculations.1473 Nonetheless, the two histidine residues are not equivalent, and the His369 (located at a shorter distance from both nitrite oxygen atoms) seems to be essential to control the stability of the enzyme–substrate complex, possibly via the formation of two hydrogen bonds.1445,1446,1473 These steps (Figure 25c → e) culminate with the formation of a ferrous $\{\text{FeNO}\}^6$ complex, as was described for CcNiR (Figure 22f).

From this point, the similitude ends and the CcNiR and Cd$_1$NiR reactions follow separate strategies. While the CcNiR “objective” is to retain the NO bound to be further reduced, the Cd$_1$NiR should promote the rapid NO release (the purpose of an NO synthase enzyme).

In the $\{\text{FeNO}\}^6$ complex, the NO is already formed, and it is “waiting” to be released from the active site. Initially, due to the very slow dissociation of ferrous–NO complexes in haem proteins (see, e.g., the discussion about the haem proteins in section 2.2, and also refs 254–268,1459), the Cd$_1$NiR Fe$^{3+}$–NO$^\cdot$ complex (Figure 25e) was considered to be a “dead-end” product. For that reason, the NO was suggested to be released from the Fe$^{3+}$–NO complex (Figure 25f).1369,1444,1445,1452,1453,1478 Such ferric complex is formed by intramolecular iron oxidation (equivalent to eq 29), with the transfer of one electron from the Fe$^{2+}$ into the bound NO (Figure 25e → f), “valence isomerization”; the NO π antibonding orbital would readily accommodate this electron. Theoretical calculations1479 showed that the low-spin Fe$^{3+}$–NO state exists as a stable energy minimum, located just 1–3 kcal/mol above the Fe$^{3+}$–NO$^\cdot$ ground state and with a Fe–N bond only 0.05–0.1 Å longer than the Fe$^{3+}$–NO$^\cdot$ one. As a result, a small elongation of the Fe–N bond, caused, for example, by an interaction of the protein with the bound NO, would trigger the critical electron transfer from Fe$^{2+}$ into NO$^\cdot$. The ferric complex thus formed would have weaker Fe–NO and N–O bonds, due to the reduction of back-bonding and to the electron transfer into a π antibonding.1479 Further elongation of the Fe–N bond (0.2 Å) would lead to a high-spin Fe$^{3+}$–NO state, further lowering the thermodynamic stability of the Fe–N bond (10 to 4 kcal/mol).1479 Accordingly, once the system has entered the ferric state, the dissociative nature of this potential energy surface would force the NO dissociation, providing an explanation for the observed higher dissociation rate constants of NO in ferric comparatively to ferrous complexes.1479

Although reasonable, the initial proposal of NO release from the Fe$^{3+}$–NO complex (Figure 25f) was never proven. In fact, several studies failed to show kinetically competent NO dissociation from the ferric complex.1465,1478 In addition, experimental evidence suggested that the last step of NO formation should be different: (i) nitrite reduction is not inhibited after preincubation of reduced enzyme with a large excess of added NO, showing that the fully reduced enzyme–NO complex is not a “dead-end” species;1459,1480,1481 (ii) the NO release is triggered by the intramolecular c to d_1 haem electron transfer;1480,1482 (iii) the presence of the electron donor (that transfers electrons to the c haem) must contribute to effecting NO release;1456,1478,1483,1484 and (iv) the Cd$_1$NiR mutant (P. pantotrophus Mel108His mutant) with the c haem “locked” in the oxidized state (with a reduction potential of -60 mV1460) and reduced d_1 haem, is able to reduce nitrite to NO, unable to release the NO from the ferric d_1 complex thus formed.1465 Together, these data indicate that (i) the iron–NO complex has to be first reduced, with one electron transferred from the c haem (Figure 25f → g), and that (ii) NO is released from the ferrous $\{\text{FeNO}\}^7$ complex thus formed. However, this new via of NO release is, once more, contrary to the well-known properties of the ferrous–NO complexes (see above).

After much debate about the iron–NO complexes dissociation, this impasse was recently overcome with the demonstration that NO can be rapidly released from the ferrous d_1 haem: k_{cat} of 200 and 65 s$^{-1}$ from P. pantotrophus Cd$_1$NiR1481 and of 35 and 6 s$^{-1}$ from P. aeruginosa Cd$_1$NiR1459,1473 (biphasic dissociations in both cases), values that compare with $k_{\text{cat}} \approx 10^{-5}$–$10^{-3}$ s$^{-1}$ from Mb and Hb or guanylate cyclase.163,255,261 Moreover, and most important, these (d_1)Fe$^{2+}$–NO dissociation rates are sufficiently high to be catalytically relevant, with the NO dissociation being the probable rate-limiting step in P. pantotrophus Cd$_1$NiR ($k_{\text{cat}} \approx 72$ s$^{-1}11456$) and, possibly, in P. aeruginosa Cd$_1$NiR ($k_{\text{cat}} \approx 3$–6 s$^{-1}1445,1452,1456,1459,1482,1485$). The agreement between the catalytic kinetic parameters and the rates of (d_1)Fe$^{2+}$–NO dissociation strongly supports the NO release from the ferrous $\{\text{FeNO}\}^7$ complex during the catalytic cycle.1459,1474,1481,1486

The present data, however, do not allow one to discriminate if the NO is released from the “mixed-valence” protein, (d_1)Fe$^{2+}$–(c)Fe$^{3+}$ (Figure 25g → i), or from the fully reduced enzyme, (d_1)Fe$^{2+}$–(c)Fe$^{3+}$ (Figure 25g → h → c).1459,1481

Once the ferrous $\{\text{FeNO}\}^7$ complex is formed, a new nitrite molecule is able to react with the enzyme at a rate limited by the NO dissociation, showing that the high affinity of ferrous d_1 haem for nitrite actively contributes to the NO dissociation during the catalytic cycle.1477 Thus, after nitrite displacement of the bound NO, the reduced d_1 haem can immediately start a new catalytic cycle, not being inhibited between (Figure 25g → h → c or g → i → c).

Interestingly, the release of NO from a ferrous $\{\text{FeNO}\}^7$ complex can rationalize why an enzyme that catalyzes a one-electron reduction has two one-electron redox centers: nitrite reduction oxidizes the d_1 haem, and the c haem is needed to rapidly rereduce the d_1 haem to trigger the NO release.

The surprising rapid NO dissociation from a (d_1)Fe$^{2+}$–NO complex is largely controlled by the unique features of the d_1 haem structure. An elegant and definitive demonstration of the relevance of haem was the observation that apomyoglobin (that has a different binding pocket), when reconstituted with d_1 haem, releases NO at a rate 4 orders of magnitude greater than the native b haem-containing Mb (2 s$^{-1}1485$ versus 1.2 \times 10$^{-4}$ s$^{-1}1253,256,259,260$). The mechanism by which the d_1 haem achieves this fast NO release is, presently, not well understood, but two of the d_1 features should be important. First is the peculiar ordering of the d orbitals energy levels of the d_1 haem ion: (d_{xz},d_{yz})1(d_{xy})1, instead of the common (d_{xy})2(d_{xz},d_{yz})2.1449,1487 The fact that the d_1 iron HOMO lies...
in the haem plane, instead of lying above and below the haem plane \(d_{\pi\pi}\), would not favor its interaction with the NO SOMO/LUMO \(\pi\) (\(\pi\)-antibonding), and thus the NO would be less strongly bound to the \(d_{\pi\pi}\) than to a \(b\) type haem.\footnote{1449} Second, the presence of two electron-withdrawing carbolyl groups in the \(d_{\pi\pi}\) structure (Figure 19a) would weaken the electron donation of the iron orbitals to the NO nitrogen atom, contributing to weaken the Fe–N bond.\footnote{1481} Future spectroscopic and theoretical studies will undoubtedly contribute to a better understanding of the properties of this unique haem ring.

In addition to the unique properties given by the singular \(d_{\pi\pi}\) haem structure, the C\(d\)NiR catalysis seems to be also dependent on deliberate conformational changes, allosteric control of catalysis. The remarkable C\(d\)NiR conformational changes, driven by oxidation/reduction and/or protonation/deprotonation (described under “Enzymatic Machinery”), can, in fact, represent an additional mechanism to control the catalysis, and they were recently evoked to explain the negative cooperativity in the intramolecular electron transfer:\footnote{1485} this decrease in the intramolecular electron transfer rate as the level of enzyme reduction increases may, in principle, arise from a decrease in the electronic coupling between the \(c\) and \(d_{\pi\pi}\) haems, which, in turn, may be caused by conformational changes. Accordingly, the relocation of \(\text{Ty}_{10}\) displacement of the \(56\)–\(62\) loop, and the large rotation/slide of the \(c\) haem domain would disrupt the hydrogen-bond network, thus decreasing the electronic coupling between the \(c\) and \(d_{\pi\pi}\) haems.\footnote{1485} In the same way, the decreased intramolecular electron transfer rate as the pH is increased toward basic values (5.8 to 8.0)\footnote{1488} could be attributed to conformational changes.

Yet the allosteric control may have other implications. It is tempting to speculate that the \(c\) and \(d_{\pi\pi}\) domains are acting as “rigid bodies,” linked by flexible loops that propagate the changes in the oxidation state and protonation state occurring in one haem pocket to the other one. In this “modular” structure, it can be speculated that the \(c\) haem oxidation/\(d_{\pi\pi}\) haem reduction (Figure 25f→g) and/or the deprotonation of the conserved histidines (Figure 25c→e) would initiate a conformational alteration that modifies the position of the residues involved in the stabilization of the \((d_{\pi\pi})\text{Fe}–\text{NO}\) complex and/or affects the \(d_{\pi\pi}\) affinity for ligands, facilitating, in this way, the NO release. After NO release, the enzyme would have to undergo another conformational change, to return to the “initial” conformation that would favor nitrite binding. This step could be triggered by the reduction of the \(c\) haem (by the external electron donor) or by the reprotonation of the histidine residues. Obviously, future work will be needed to evaluate the possibility of these conformational changes being part of the catalytic mechanism.

To finish this discussion, it should be mentioned that a dynamic and cooperative network of bonds (not controlled by the conformational changes) was also proposed to be responsible for the strong nitrite binding and fast NO release.\footnote{1474} A combination of high field electron–nuclear double resonance techniques (to detect the hydrogen bonds) and density function theory calculations (to correlate the experimental results with the structure)\footnote{1474} puts forward the following hypothesis: (i) in the beginning of the catalytic cycle, the positively charged histidine residues “attract” the nitrite, hold it in place, and donate the necessary protons to do oxygen atom abstraction; (ii) at the same time, the \(\text{Ty}_{10}\) establishes a hydrogen bond with the nitrite nitrogen atom; and (iii) after the iron–NO complex formation, the now deprotonated His\(_{369}\) forms a hydrogen bond with the \(\text{Ty}_{10}\) removing it from the proximity of the still bound NO, that is, preventing it from forming a hydrogen bond with the NO and, in this way, facilitating the NO release. Alternatively, if the His\(_{369}\) is rapidly reprotonated and forms a hydrogen bond with the NO oxygen atom, it was proposed that the simultaneous hydrogen bond between the tyrosine and the NO nitrogen atom ((\(\text{Ty}_{10}\)O–H···N(O)–Fe) would populate the (partial sp\(^3\)) nitrogen non-bonding orbital, weakening the Fe–N bond, and, therefore, facilitating the NO release.\footnote{1474} With this proposal, the nitrite reduction is facilitated by a dynamic and cooperative network of hydrogen bonds that, first, keeps the nitrite in the haem and then, after the oxygen abstraction step, changes and no longer holds the NO in the active site.\footnote{1489} The role ascribed to His\(_{369}\) has been difficult to prove. The fast NO dissociation displayed by the His\(_{369}\)Ala mutant (only 2 times slower than the wild-type\footnote{1459}) seems to indicate that this residue is not involved in the NO release. However, in the mutant, the \(\text{Ty}_{10}\) is displaced such that it cannot form a hydrogen bond with the NO nitrogen atom.\footnote{1474} Also, the role of the tyrosine residue has been criticized, because the \(\text{Ty}_{10}\)Phe mutant is catalytically active.\footnote{1470,1471} Nevertheless, it can be argued that, in the absence of \(\text{Ty}_{10}\), its role can be played by His\(_{327}\). A more definite assignment of the tyrosine role must wait for measurement of the rate of NO release from the \(\text{Ty}_{10}\)Phe mutant, or from \textit{Pseudomonas stutzeri} C\(d\)NiR, which does not have an equivalent tyrosine.

In summary, as presently suggested, the catalytic cycle of C\(d\)NiR can be considered as a “copy” of the first part of the C\(c\)NiR reaction, until the \{FeNO\}\(^3\) complex is formed (Figure 25b→e versus Figure 22b→f). Once this complex is formed, the C\(c\)NiR keeps the NO bound to be further reduced by two electrons, yielding an \{FeNO\}\(^5\) complex. The C\(d\)NiR, on the other hand, reduces that complex by only one electron (to \{FeNO\}\(^4\)), and, after that, the rapid NO dissociation is promoted (Figure 25f→g→h). The dissociation mechanism has to be fast, to compete with the hypothetical reduction by a second electron, and efficient, to effectively promote the NO release. The nature of this mechanism is the most interesting aspect of the C\(d\)NiR-catalyzed reaction: what happens after the electron transfer from \(c\) to \(d_{\pi\pi}\) haem that triggers the fast NO release? Undoubtedly, the unique \(d_{\pi\pi}\) haem has a leading role in controlling the C\(d\)NiR reactivity with NO. Its exceptionally high NO dissociation rate, in conjunction with the probable allosteric control of catalysis and the probable dynamic network of hydrogen bonds, act synergistically to efficiently synthesize and release NO.

C\(d\)NiR uses the same basic machinery, haem, as C\(c\)NiR and C\(s\)NiR, but “tuned” by a different ring structure to yield a different product, NO. The \(d_{\pi\pi}\) haem evolved specifically to form and release NO: (i) it is present only in the C\(d\)NiR enzyme,\footnote{1490} where it is “tailored” to meet the challenging mechanistic requirements of NO formation and release, and (ii) this “tailored” structure required the development of huge and specific machinery to be synthesized (\(d_{\pi\pi}\) synthesis requires a substantial biological effort, met by the \textit{nirECFD-LGHJN} genes products\footnote{1491}). The evolutionary success of the \(d_{\pi\pi}\) haem structure is put in evidence by the presence of the C\(d\)NiR enzyme in so many organisms still today.

Despite all of the successful efforts to create the \(d_{\pi\pi}\) haem, and due to the importance of the nitrite reduction/NO formation, biology made other “experiments” that culminate with the
development of a different, de novo, invention of theoxic era: the CuNiR.

3.2.2. Dissimilatory Nitrite Reduction to Nitric Oxide by a Copper-Dependent Enzyme. The dissimilatory copper-dependent nitrite reduction to NO (eq 72) is achieved with the copper center of the copper-containing nitrite reductase (CuNiR) enzymes (EC 1.7.2.1).

\[
\text{NO}_2^- + 1e^- + 2H^+ \rightarrow \text{NO} + \text{H}_2\text{O} \\
E^0(\text{NO}_2^-/\text{NO}) = +0.34 \text{V}
\]

3.2.2.1. Enzymatic Machinery. CuNiR (product of nirK genes) are periplasmatic homotrimers (\(\sim\)110 kDa), with each monomer folded into two eight-stranded \(\beta\)-barrel domains, called I and II (Alcaligenes faecalis, \(1492-1495\) Achromobacter cycloclastes (Figure 26), \(1496-1498\) Alcaligenes xylosoxidans, \(1499-1505\) Rhodobacter sphaeroides\(1506\)). The three monomers are tightly associated around a central channel of 5\(\sim\)6 Å, with domains I positioned at the corners of the trimer and domains II forming the core of the molecule. An extensive network of hydrogen bonds (within and between monomers) maintains the rigidity of these complex structures, where \(\sim\)1/3 of the monomer surface has to be used in the trimer formation.\(1497\)

The CuNiR enzymes contain two different copper centers per monomer, one T1 and one T2 (see section 3; Figure 19b): the T1 center is responsible for the electron transfer from the physiological partners to the T2 center, which constitutes the enzyme active site. Each T1 center is located within domain I of each monomer, while the T2 is found bound in a cleft formed by apposition of domain II of one monomer and domain I of the adjacent monomer (Figure 26a,b). The T1 center copper is

![Figure 26. Copper-containing nitrite reductase.](image-url)

The T1 center copper is located within domain I, buried 7 Å beneath the protein surface. The T2 is found bound in a cleft formed by apposition of domain II of one monomer and domain I of the adjacent monomer (Figure 26a,b). The T2 copper center is coordinated by three histidines: His100 and His135, from domain I of monomer “A”, and His306, from domain II of the adjacent monomer “B”. The structures shown in (a) and (b) are based on the PDB file 2BW4\(1498\) (the images were obtained from www.rcsb.org/pdb/explore/jmol); the structure shown in (c) is based on the PDB file 1NIA\(1497\) (the image was produced with Accelrys DS Visualizer, Accelrys Software Inc.).
coordinated by two histidine (His$_{95}$ and His$_{145}$) and one cysteine (Cys$_{136}$) residues, in a distorted trigonal planar geometry, and by one methionine residue (Met$_{150}$) forming a weaker interaction in an axial position (A. cycloclastes numbering (Figure 26c)). The T2 center copper (the active site) is coordinated by three histidines (His$_{100}$, His$_{135}$, and His$_{98}$) and by a water molecule, in a distorted tetrahedral geometry (Figure 26c). The two centers are connected through the (1)Cys$_{156}$–(T2)His$_{153}$ bond, which enables a path for rapid electron transfer across the \sim12.5 Å that separates the copper atoms.1492,1504,1507,1508 The CuNiR active site also comprises conserved aspartate, histidine, and isoleucine residues (Asp$_{100}$ His$_{135}$ and Ile$_{157}$, the last two provided by the domain II of the adjacent monomer, Figure 26c) that are essential for catalysis.1495,1503,1504,1509,1510

Historically, CuNiR were classified into two subgroups, depending on their color being blue or green in the as-isolated oxidized state (e.g., the A. xylosoxidans blue CuNiR and the A. faecalis, A. cycloclastes, or Sinorhizobium melliloti green CuNiR).1511. The color of the enzyme is given by the T1 center: while the methioine sulfur ligand of the A. xylosoxidans blue enzyme deviates only slightly from the axial position, that of the A. faecalis green enzyme is in a considerably tilted position (relatively to the His-His-Cys plane), resulting in a distorted tetrahedral and flattened tetrahedral geometries, respectively.1500 The perturbed geometry of the green enzymes modifies the copper–ligands interactions, resulting in the redistribution of absorption intensity in the charge transfer and ligand field transitions:1512 the absorption at \sim600 nm decreases, the intensity of the absorption envelope at \sim450 nm increases, and the EPR signal change from axial to rhombic symmetry. Besides the small differences in the geometry of the T1 center, green and blue CuNiR show a marked difference in the overall surface charge distribution. This is probably responsible for the different specificity toward the redox partner, pseudoazurin for green CuNiR and azurin for blue CuNiR (thus supporting the electron transfer via protein–protein complex formation).1497,1500,1513,1514

More recently, the resolution of the structure of a CuNiR isolated from the Hyphomicrobium denitrificans1515 led to the definition of a novel family of CuNiR, characterized by an homohexameric structure containing an additional T1 copper center per monomer.1516 The H. denitrificans CuNiR monomer is folded into three domains: one N-terminal β-barrel domain (\sim15 kDa), containing one T1 copper center, and two C-terminal domains (\sim35 kDa), containing the T1 and T2 centers in the characteristic organization of “classic” trimeric CuNiR. The N-terminal and C-terminal T1 copper centers are blue and green, respectively, given the enzyme its greenish-blue color in the oxidized form.1516–1519 A genome analysis points toward the wide occurrence of this new N-terminal extended CuNiR, which probably exists also in two distinct subclasses as the “classic” family, that is, blue and green enzymes.1520 The H. denitrificans CuNiR molecule is a dimer of trimers (a trigonal prism-shaped hexameric structure) containing 12 T1 and 6 T2 copper centers, for a total of 18 copper atoms per molecule.1515 However, and surprisingly, the additional copper center was found to be too far away (>24 Å) from the catalytic core to effectively participate in electron transfer.1515,1521 Nevertheless, that distance can be shortened to an appropriate value for electron transfer by a simple rotation of the “extra” domain, a movement that could take place, hypothetically, when the redox partner protein binds.1521,1522

In addition to these N-terminal extended CuNiR, genome analysis identified the occurrence of another type of CuNiR with a C-terminal extension containing a c type haem.1520,1523 In accordance, the Ralstonia pickettii enzyme was shown to be a trimeric protein (\sim50 kDa), with each monomer holding, besides the two copper centers, a single c haem.1521,1524 The enzyme folds as the “classic” (only copper-containing) CuNiR, with the additional haem domain of one monomer localized in close proximity to the T1 center of the adjacent monomer, with a copper-to-haem edge distance of 10.1 Å (an electron transfer compatible distance).1521 The observed folding clearly defines an electron transfer path between the haem domain and the catalytic core, supporting the functional importance of the haem during turnover.1521 In this context, the new c haem-copper-containing enzyme can be thought of as a “fused version” of the electron transfer complex of a “classic” CuNiR with cytochrome c_{551} whose structure was recently elucidated.68 In this “fused version”, the enzyme may have captured the partner gene to construct an effective self-sufficient electron transfer system, where the additional domain acts as a physiological electron donor: electron donor and acceptor proteins fused together by genomic acquisition for functional advantage.1521

The enzyme from Pseudoalteromonas haloplanktis constitutes a different example of a “fused” c haem-copper-containing nitrite reductase. This protein folds as a unique trimeric “domain-swapped” structure, with the haem domain localized at the surface of the T1 center from the adjacent monomer at a haem-to-copper distance of 10.6 Å.1522 Therefore, the conformation of the P. haloplanktis enzyme shows a self-sufficient electron transfer system. However, the structural aspects of the domain–domain interface and the electron transfer kinetics indicate that the haem–copper domain interaction should be highly transient, that is, similar to the interaction of two noncovalently bound proteins in an electron transfer complex.1522 In addition, and as mentioned above for the additional copper center of the H. denitrificans enzyme, the haem does not seem to be involved in the electron transfer from the cognate redox partner protein to the catalytic core.1522 Clearly, there is still much to be learned about the biological function of the “extra redox domains” of the extended CuNiR enzymes. The occurrence of several types of “extensions” supports that they are of biological importance; otherwise, why were not the additional domains evolutionally split or lost?1522

Another example of how the “classic” CuNiR structure can be transformed is provided by the Neisseria gonorrhoeae enzyme: its structure revealed a C-terminal extension that is glycosylated, as well as the deletion of specific surface loops and the inclusion of a lipid modification site in a N-terminal extension (this enzyme is the major anaerobically induced outer membrane lipoprotein).1525,1526

The “classic” and “new” N- and C-terminal extended CuNiR enzymes constitute, thus, fascinating examples of how biology once had found a “solution”, reuses it recurrently, introducing only minor adjustments to respond to specific cellular demands. 3.2.2.2. Promiscuity. In addition to the nitrite reductase, CuNiR has significant superoxide dismutase activity (56% of the bovine enzyme activity)1500,1520 and is also able to catalyze the reduction of dioxygen to hydrogen peroxide (being inactivated in the process).1527

3.2.2.3. Mechanism. Although it was initially thought that the CuNiR reaction mechanism would be a “copy” of the Cd,NiR one,1569 the most recent results point toward a
different strategy. One of the key differences between CuNiR and Cd3NiR is the nitrite binding mode: nitrite binds to the CuNiR T2 center, either oxidized or reduced, in an asymmetric “bidentate nitrito” mode (Figure 20a). Several crystal structures and theoretical calculations1494,1497,1498,1510,1528–1534 show that nitrite is bound through its two oxygen atoms, in a distorted square pyramidal geometry, with the two oxygen atoms of nitrite plus the two nitrogen atoms of the histidine residues in the distorted base; the longest Cu–O bond is with the oxygen atom closest to the conserved aspartate residue (Figure 27c).

The observation of the “bidentate nitrito” binding mode was unpredicted, because Cu2+–NO\textsubscript{2} model complexes bind nitrite, generally, through the nitrogen atom1533–1538 (exceptions in, e.g., refs 1539–1541). Nevertheless, cupric copper compounds are known that bind nitrite through the three binding modes (“nitrito”1542,1543, “nitrito”,1543–1545 and “bidentate nitrito”1545,1546–1552). Theoretical calculations1552 showed that the three possibilities are energetically close, with “bidentate nitrito” and “nitrito” displaying the lowest total energy (just 0.1 kcal/mol apart), but only 5.5 kcal/mol lower than the “nitro” mode. Consequently, the CuNiR nitrite binding mode should be directed by the conserved active site amino acid residues, the aspartate and histidine residues, but also by the hydrophobic isoleucine residue present on top of the nitrite binding site.1494,1495,1498,1510,1534,1553,1554

The mechanism of nitrite reduction to NO by CuNiR is less well characterized than the Cd3NiR one, with several details not known yet.1555 To begin, there is a debate about which species binds the nitrite: the oxidized or the reduced T2 center? Both hypotheses are supported by several crystallographic and kinetic studies.1369,1494,1495,1502,1533,1534,1556–1569 In solution, CuNiR follows a random sequential steady-state mechanism, with two alternative routes: (i) T2 center reduction followed by nitrite binding (Figure 27a→b→c) or (ii) nitrite binding to the oxidized T2 followed by T2 reduction (Figure 27a→d→c).1559,1562,1567,1569 The prevailing route is determined by the nitrite concentration and pH (e.g., the second route prevails at high nitrite concentration or high pH, when the T1 to T2 electron transfer is the rate-limiting step). Moreover, the kinetic studies suggest that the reduced T2 center can exist in two interconvertible forms, where only one form is catalytically active. Although the inconsistent results may be ascribed to different assay conditions and/or to the presence of CuNiR molecules with inactive reduced T2 centers, a definitive consensus is far from being established, and both routes are here considered (i.e., a random sequential mechanism). Accordingly, in Figure 27, the beginning of the catalytic cycle is depicted with the T2 center reduction, followed by nitrite binding (Figure 27a→b→c) and with the nitrite binding to the oxidized T2 center, after which an electron is transferred from the T1 center (Figure 27a→d→c).

Several elegant combinations of experimental and theoretical studies confirmed that the T2 center reduction is triggered by a protonation step (Figure 27a→b or d→c).1499,1508,1533,1558,1566,1570–1574 Theoretical calculations1531,1533 suggested that it is protonation of the conserved aspartate residue that increases (electrostatically) the reduction potential of the T2 center, and thus drives the electron transfer from T1 to T2 and eventually the nitrite reduction. Moreover, nitrite binding has also been suggested to induce a favorable shift in the reduction potential of the T2 center.1534 Therefore, the nitrite-bound reduced T2 center, with a neighboring protonated aspartate residue (Figure 27c), is suggested to be the key complex that initiates the nitrite reduction,1533 regardless of the order of the events that leads to its formation.

Once the square pyramidal (T2)Cu2+–O(N)O complex (Figure 27c) is formed, the reaction is believed to proceed with the protonation of the oxygen atom to be abstracted. Steady-state kinetic studies show the existence of two protonation equilibriums that were attributed to the only two ionizable conserved residues present in the T2 center, the aspartate (to which is attributed a pK\textsubscript{a} of ∼5) and histidine residues (pK\textsubscript{a} ∼7).1495,1498,1508,1528,1553,1557,1558,1575,1576 Both residues were found to be essential for the CuNiR activity,1495,1503,1505,1509,1528,1553,1558,1575,1576 but theoretical calculations suggested that the proton is transferred from the protonated aspartate residue1533 (Figure 27c→e). The subsequent N–OH bond cleavage is thought to be facilitated by an emergent back-bonding interaction between the copper and the nitrite oxygen atoms.1533 (i) on the initial nitrite–copper complex (Figure 27e) there is no back-bonding;1577 (ii) along the reaction coordinate, as the N–OH bond is elongated, its α-backbonding

Figure 27. Mechanism of nitrite reduction to NO catalyzed by copper-containing nitrite reductase. See text for details.
orbital is lowered in energy and becomes mixed with the copper HOMO, the \textit{d}_{\pi\alpha} receiving electron density from the copper. This back-bonding interaction is made possible by the “bidentate nitrito” binding mode of nitrite, which allows for an efficient interaction between the copper and the nitrite oxygen atoms.1533 The back-bonding interaction would strengthen the Cu–OH bond and weaken the N–OH bond, leading to the N–O bond homolysis and, eventually, to the NO dissociation from the copper complex (Figure 27e--a).1533

Unfortunately, the details of the NO release from the copper complex are still elusive. The catalytic cycle would continue with the addition of a second proton, probably transferred from the histidine residue1495,1505,1509,1528,1553,1558,1572, to yield a bound water molecule (Figure 27a), but the order of the protonation/NO release was not yet definitively established.

Nevertheless, the side-on Cu+−NO complex observed in some crystal structures1498,1530,1532 does not seem to be part of the catalytic cycle. In-depth spectroscopic characterization coupled with theoretical calculations1579 demonstrated that, in solution, the complex formed by reacting reduced CuNiR either with nitrito1579 or with exogenous NO1561,1579 is in a strongly bent (\textasciitilde135°) end-on conformation, but likely not in a side-on conformation. Actually, additional theoretical calculations showed that the side-on binding mode corresponds only to a local energy minimum, the global minimum being attained with the end-on conformation (localized 8.4 kcal/mol below the former).1580 Moreover, the side-on conformation is thought to be largely due to steric interactions with Ile\textsubscript{257}, which were suggested to destabilize the end-on species.1580 Accordingly, in solution, a small conformational change of the active site would modify the position of Ile\textsubscript{257} and would allow the formation of the end-on binding mode. On the other hand, in a crystal, where the orientation of the amino acid residues must be strongly restricted, the repositioning of the Ile\textsubscript{257} would not be feasible, and the side-on conformation would be formed. Therefore, the existence of the side-on Cu+−NO complex and its involvement in the catalytic cycle is subject to criticism.

In summary, the key steps for the CuNiR-catalyzed NO formation are the proton transfer from the aspartate residue to the nitrite molecule, followed by the electron transfer from the reduced copper to the now protonated nitrite, that is, proton transfer triggering electron transfer.1533 According to the suggested mechanism, the success of the N–O bond lysis by the CuNiR is due to the unusual nitrite binding mode and to the presence of a proton donor amino acid residue: i) the “bidentate nitrito” binding mode of nitrite enables an effective back-bonding interaction that lowers the activation barrier for the N–OH bond cleavage and simultaneously stabilizes the Cu–OH complex to be formed; and (ii) the presence of a proton donor residue (the protonated aspartate) is essential for the stabilization of the copper complex that will be formed after the N–O bond cleavage (Cu–OH). It should be noted that, if the N–O bond was cleaved without the proton being transferred, it would result in the formation of a Cu+−O complex, where the charge density is not stabilized (energetically very unfavorable, \textasciitilde50 kcal/mol versus \textasciitilde16 kcal/mol1533). In this point, the choice of an aspartate, a residue with a low \textit{pK}_\textit{a} value that is not usually associated with proton donation, is intriguing. In the CcNiR, CsnNiR, and Cd\textsubscript{3}NiR-catalyzed reactions, the proton donors were found to be the “expected” positively charged residues, histidine, arginine, and lysine residues. The strategies to reduce nitrite to NO followed by Cd,NiR (an old enzyme) and CuNiR (a de novo invention of theoxic era) are thus remarkably different.

3.2.3. Signaling Nitrite Reduction to Nitric Oxide by a Molybdenum-Dependent Enzyme. The mammalian signal- ing molybdenum-dependent nitrite reduction to NO (eq 73) can be achieved with the molybdenum center of the xanthine oxidase (XO) enzyme (EC 1.17.3.2).

\[
\text{pyranopterin} \quad \begin{array}{c}
\text{NO}_2^- + 1e^- + 2H^+ \quad \stackrel{\text{Mo}}{\longrightarrow} \quad \text{NO} + \text{H}_2\text{O} \\
\chi^0 (\text{NO}_2^-/\text{NO}) = +0.34 \text{ V}
\end{array}
\text{ (73)}
\]

As described under “Nitrite in Signaling Pathways”, besides mammalian XO, also mammalian AO (section 2.2.1.3) and bacterial AOR (section 2.2.3) catalyze the nitrite reduction to NO. Mammalian XO and AO are structurally very similar, both comprising one identical molybdenum center (described below), two Fe/S, and one FAD center. Bacterial AOR holds a slightly different molybdenum center, with the pyranopterin cofactor esterified with cystidine monophosphate (Figure 19c (i)), and only two Fe/S (no FAD center). \textit{Desulfovibrio} ggas AOR was the first XO family member for which the crystal structure was determined1581–1583 with the first mammalian XO and AO structures being reported only in 20001584 and in 20121585,1586, respectively. To restrict the information presented to a manageable size, for the sake of simplicity, this Review will focus only on the mammalian XO, the benchmark of this family of molybdoenzymes.

Physiologically, mammalian XO is a key enzyme in purine catabolism, where it catalyzes the hydroxylation of both hypoxanthine and xanthine to the terminal metabolite urate, with the simultaneous reduction of dioxygen to superoxide anion radical and hydrogen peroxide (eq 35).505–507 In this sense, the XO is quite different from the previously described enzymes: XO has two “classic” substrates, hypoxanthine/xanthine and dioxygen, and two active sites to react with each substrate, molybdenum and FAD centers (eqs 74, 75), respectively.

\[
\text{hydroxylation (oxidation) half-reaction:} \quad \text{pyranopterin} \quad \begin{array}{c}
\text{xanthine} \quad \stackrel{\text{Mo}}{\longrightarrow} \quad \text{H}_2\text{O} \\
\chi^0 (\text{Mo}/\text{H}_2\text{O}) = +0.74 \text{ V}
\end{array}
\text{ (74)}
\]

\[
\text{reduction half-reaction:} \quad \text{O}_2 + 2e^- + 2\text{H}^+ \quad \stackrel{\text{FAD}}{\longrightarrow} \quad \text{H}_2\text{O} + \text{O}_2^- + 2\text{H}^+ \quad \text{ (75)}
\]

3.2.3.1. Enzymatic Machinery. Mammalian XO is a cytoplasmatic (see also section 2.2.1.3) homodimer (\textasciitilde290 kDa), with each monomer folded into three domains:1584,1587 (i) one small (\textasciitilde20 kDa) N-terminal domain, constituted by two subdomains (characterized by \textit{\alpha}-helical and \textit{\beta}-sheet structures), each holding one \textit{[2Fe–2S]} center (named Fe/S I and II, respectively); (ii) a second domain (\textasciitilde40 kDa), holding one FAD; and (iii) one large (\textasciitilde85 kDa) C-terminal domain, also constituted by two subdomains that bind the molybdenum center at their interface (Figure 28a,b). Although the two monomers contact each other through the molybdenum domain, their molybdenum centers are structurally very different (\textasciitilde50 Å apart), suggesting that the two monomers act independently.

The molybdenum center, solvent-accessible at the bottom of a 14.5 Å hydrophobic channel, is the XO active site responsible for the hydroxylation half-reaction (eq 74).1584,1587 It holds the molybdenum atom coordinated in a distorted square pyramidal
geometry, with an apical oxo (═O) group and with the four equatorial positions occupied by one essential sulfo (═S) group, one labile hydroxo (−OH) group, and two sulfur atoms of the cis-dithiolene (═S−C≡C−S═) group of the pyranopterin cofactor molecule (Figure 19c; Figure 28c).1584,1587,1588 This active site also comprises four conserved glutamate (Glu802, Glu1261), glutamine (Gln 767), and arginine residues (Arg 880, bovine enzyme numbering), essential for the hydroxylation reaction (Figure 28c). In addition, two phenylalanine residues (Phe914, Phe1009) seem to be important to position the substrate (hypoxanthine/xanthine) in front of the equatorial labile Mo−OH group, in a plane parallel to the apical Mo═O group of the molybdenum center (Figure 28c). Closest to the molybdenum center is the Fe/S I, coordinated by the Cy535XXCy992X(Cys535XXCy992 motif (Figure 28b). Further away, in the proximity of the FAD center, the Fe/S II is coordinated by the Cy535XXCy992XXCy535XXCy992 in a folding that resembles that of plant [2Fe−2S] ferredoxins.1589,1590 At last, FAD, the active site responsible for the reduction half-reaction (eq 75), is bound in an extended conformation in a deep cleft of the FAD domain, with the si-side of the isoalloxazine ring accessible to the solvent. On the whole, the four redox centers (molybdenum, Fe/S I, Fe/S II, and FAD centers) are aligned in an almost linear fashion (Figure 28b), defining an intramolecular electron transfer pathway that rapidly delivers the electrons from the molybdenum center (where the hydroxylation takes place, eq 74) to the FAD (to reduce dioxygen, eq 75).

In the context of the XO enzymatic machinery, it is pertinent to mention here the structural changes responsible for the interconversion of XD into XO.

The mammalian XO enzymes are synthesized as a NAD⁺-dependent dehydrogenase form, the XD, and, under normal physiological conditions, exist mostly as such in the cell.596−602 However, the XD form can be readily converted into a “strict” oxidase form, the XO.1591 The distinction between XD and XO is based on the electron acceptor used by each form: while XD transfers the electrons preferentially to NAD⁺, XO fails to react with NAD⁺ and uses exclusively dioxygen (as the oxidase classification indicates).1603−1607,1613,1614 At this point, it should be mentioned that both dioxygen and NAD⁺ react at the FAD center. That is, the electrons introduced at the molybdenum center, during xanthine hydroxylation, are transferred to the FAD in both enzyme forms; once in the FAD center, the electrons react with dioxygen or NAD⁺, depending on the affinity of each enzyme form.

The dehydrogenase into oxidase conversion can be reversible, through oxidation of the Cy535 and Cy992, or irreversible, by proteolysis after Lys651 or Lys656.290,1584,1602−1609,1613,1615−1619 The substrate “switching”, dioxygen versus NAD⁺, is achieved by the following mechanism:500,1584,1619 the disulfide bond formation or the proteolysis drive a movement of the 423−433 loop, on the si-face of the FAD isoalloxazine ring, that shifts the Asp429 away and bring the Arg426 guanidinium group closer. In this way, the loop displacement changes the electrostatic potential in the vicinity of the FAD (from negatively to positively charged), increasing the FAD midpoint potential. In addition, the novel...
loop position obstructs the access to the FAD binding site, blocking the NAD⁺ binding to FAD. In concert, these conformational changes, that occur only at the FAD center, are responsible for the different substrate specificity of XD and XO. The fact that the global fold of XD and XO is not significantly changed at the Fe/S and molybdenum centers is consistent with the kinetic studies that demonstrate that the two enzyme forms are virtually identical with respect to the binding and catalysis of substrates at the molybdenum center. This is also the case of the nitrite reduction reaction (that, as will be described, occurs at the molybdenum center).

The concerted conformational changes responsible for the dehydrogenase into oxidase conversion suggest that the conversion could play a role in vivo, in a situation similar to that discussed for Nb, Cc, or CdNiR. Indeed, the dehydrogenase into oxidase conversion could be the basis of several cellular regulatory strategies: (i) Proteolysis, triggered, for example, by an hypoxic event, would contribute to the formation of XO, an enzyme form that favors the nitrite reduction/NO formation, instead of the NAD⁺ reduction by XD, as discussed in section 2.2.1.1.3. (ii) Under oxidative stress conditions, for example, during the reperfusion phase, the decreased concentration of reduced thiols would increase the population of disulfide-containing XO molecules; the ROS formed by this enzyme form would then be responsible for signaling cascades (see, e.g., refs 1620, 1621). The same mechanism would contribute to some ROS-mediated diseases including ischaemia-reperfusion injury and ethanol toxicity in situations where the cellular antioxidants could not cope with the overproduction of ROS (accounting, in this way, for the well accepted XO pathological role). Therefore, XD/XO could be another protein type with posttranslational allosteric control of catalysis.

3.2.3.2. Promiscuity

To no other of the enzymes here described does the term promiscuity make more sense: XO has a "broad specificity" for both reducing and oxidizing substrates. Besides the well-known hydroxylation of hypoxanthine and xanthine, XO catalyzes the oxidation of a wide variety of aldehydes and substituted pyridines, purines, pteridines, and related compounds. XO can also catalyze the reduction of several compounds apart from reduced thiols would increase the population of disulfide-containing XO molecules; the ROS formed by this enzyme form would then be responsible for signaling cascades (see, e.g., refs 1620, 1621). The same mechanism would contribute to some ROS-mediated diseases including ischaemia-reperfusion injury and ethanol toxicity in situations where the cellular antioxidants could not cope with the overproduction of ROS (accounting, in this way, for the well accepted XO pathological role). Therefore, XD/XO could be another protein type with posttranslational allosteric control of catalysis.

3.2.3.3. Mechanism – Xanthine Hydroxylation

Before discussing the nitrite reduction mechanism, it is useful to briefly review the xanthine hydroxylation reaction mechanism (eq 74).

In general, the molybdenoenzymes (of all families) catalyze the transfer of an oxygen atom from water to product or from substrate to water, in reactions that imply a net exchange of two electrons and in which the molybdenum cycles between Mo⁶⁺ and Mo⁴⁺. It is based on this catalytic feature that these enzymes are commonly referred to as oxo-transferases. Most of the enzymes of the XO family, and XO in particular, catalyze the cleavage of a C–H bond, with the subsequent oxygen atom insertion in a novel C–O bond, in reactions of oxidative hydroxylation. Yet there are exceptions, like the hydroxybenzoyl-CoA reductase, that catalyzes the irreversible dehydroxylation (an oxygen abstraction reaction) of the phenol ring.

In its reaction with xanthine, the XO molybdenum center catalyzes the insertion of its equatorial oxygen atom into the xanthine molecule to produce urate (Figure 29a→b).

The two electrons (eq 74) thus introduced into the molybdenum (Mo⁶⁺→Mo⁴⁺) are then rapidly distributed throughout the Fe/S and FAD centers, according to their redox potentials. At the FAD center, the electrons are finally transferred to dioxygen (or NAD⁺, in XD), to give superoxide anion radical and hydrogen peroxide (or, in XD, NADH). The intramolecular electron transfer (Mo→Fe/S I→Fe/S II→FAD) is, therefore, an integral aspect of the XO catalysis (eqs 74→75). The XO-catalyzed hydroxylation reaction is, in this way, quite different from the monoxygenases reaction, as XO generates (rather than consumes) reducing equivalents and uses oxygen as an oxidant and not as the source of oxygen atoms, which in the XO case is, ultimately, water.

Before resuming to the nitrite reduction mechanism itself, two remarks should be made: (i) nitrite reduction is virtually identical in both XO and XD, and (ii) electrons obtained from the reducing substrate must reduce nitrite and cannot be deviated to dioxygen, NAD⁺, or other electron acceptor. It is because of this last point that the XO-dependent nitrite reduction/NO formation is thought to occur only under hypoxic/anoxic conditions (as described in section 2.2.1.1.3).

3.2.3.4. Mechanism – Nitrite Reduction

To catalyze the nitrite reduction to NO, XO, like CdNiR and CuNiR, has to bind nitrite, transfer one electron, cleave a N–O bond, and release the NO thus formed. However, the mechanism by
which the XO molybdenum center carries out this reaction still has some lacunae to fill. Nevertheless, an outline of the mechanism can easily be drawn (Figure 29) taking into account the following points.

First, nitrite is believed to be bound through one of its oxygen atoms ("nitrito" binding mode (Figure 20a)). The MoVI chemistry is dominated by the formation of oxides and sulides, but the strong tendency of molybdenum to bind oxo groups is balanced by its ability to easily lose a single oxygen atom; this chemistry makes the molybdenum cores excellent "oxygen atom exchangers", as long as the thermodynamics of the reactions is favorable. In accordence, substrates or products of XO family enzymes interact with the molybdenum atom through an oxygen atom.

Second, nitrite should bind to the reduced molybdenum center. Kinetic and spectroscopic (EPR) studies showed that the NO formation only occurs after molybdenum reduction and suggested a role for nitrite in the displacement of urate from the active site.

Third, the reduced molybdenum transfers one electron to nitrite, being oxidized in this process. Spectroscopic (EPR) assays demonstrated unequivocally that the reduced molybdenum center (enzyme reduced with compounds that interact at the molybdenum, Fe/S or the FAD centers) is oxidized in the presence of nitrite. Moreover, the simultaneous NO formation showed that nitrite was concomitantly oxidized.

Fourth, the molybdenum center catalyzes the N–O bond cleavage and releases the NO thus formed. That the reaction is not a novelty, because the hydroxybenzoyl-CoA reductase catalyzes the irreversible dehydroxylation of the phenol ring (to yield benzoyl-CoA). However, it is tempting to speculate that the strategy followed by XO would be analogous to the CuNiR one, because both metals share the same square pyramidal geometry and have a redox active HOMO on the xy plane (for MoVI and copper, respectively) and the molybdenum coordinated ligands change dramatically with the oxidation state, with the lower oxidation states holding highly protonated nitrite, as was described for CuNiR (section 3.2.2), causing the N–OH bond homolysis and subsequent NO release (Figure 29d–e). The mechanism by which the N–OH bond cleavage is undertaken is presently not known.

At this stage (Figure 29e), one molecule of NO is already formed and released. However, because xanthine oxidation is a two-electron process (Mo$^{VI} →$MoIV; eq 74), the molybdenum...
center still has one electron (Mo(VI)) to reduce another nitrite molecule. Thus, the reaction is proposed to proceed with the binding of a second nitrite molecule.654 To generate a good leaving group, water (Mo(VI)–OH2), the consumption of one proton is suggested (Figure 29e–f). Subsequently, nitrite displaces the water molecule (Figure 29f–g), and, after a second cycle of nitrite reduction/molybdenum oxidation, a second NO molecule is released (Figure 29g→h→a). The molybdenum is now in a 6+ oxidation state (Figure 29a), which would favor the deprotonation of its ligands,1648,1649 and ready to start another catalytic cycle.

In summary, although the mechanism of XO-catalyzed nitrite reduction is not yet fully defined, it seems probable that a strategy similar to that of the CuNiR is employed. Therefore, in XO, nitrite is suggested to bind to the reduced molybdenum center, in a “nitrito” binding mode, and, after a protonation event, the N−OH bond is believed to be homolytically cleaved and the NO promptly released.

The molybdenum unique chemistry makes the molybdenum centers excellent “oxygen atom exchangers”, precisely what is needed to catalyze the nitrite conversion into NO (eq 73). In fact, the molybdenum centers are widely used for oxo-transfer reactions, both abstractions and insertions, in the carbon, sulfur, and nitrogen metabolism.596–602,1290–1295 In this context, it is surprising that so “dedicated” molybdenum-containing nitrite reductase is known to exist. This reasoning suggests that is highly probable that living organisms are using molybdenum to synthesize NO, but employing enzymes that we attribute to other functions. Mammalian XO and AO, plant C-NaR, and bacterial AOR and NaR may become the first examples of such utilization to be described.

3.3. Nitrite Oxidation to Nitrate

Nitrite oxidation has received far less attention than its reduction.

On the eukaryotic side, nitrite oxidation began to be studied only recently, and no “dedicated” nitrite oxidase was yet described to exist. Instead, eukaryotes seem to oxidize nitrite to nitrate and/or to nitrogen dioxide, using different haem proteins present in cells to accomplish other functions (sections 2.2.1.2 and 2.2.2.2).

On the prokaryotic side, nitrite oxidation constitutes the last step of nitrification (section 2.1.1; Figure 1, black arrows, Table 1). The nitriﬁer nitrite oxidase is carried out by chemolithoautotrophs that derive energy from the oxidation of nitrite to nitrate, in a strictly aerobic process, where all of the carbon utilization to be described.

3.3.1. Dissimilatory Nitrite Oxidation to Nitrate. The dissimilatory nitrite oxidation to nitrate (eq 77) is achieved with the molybdenum center of the molybdenum-containing nitrite oxioreductase (MoNiOR) enzymes (tentatively classified as EC 1.7.99.4).

3.3.1.1. Enzymatic Machinery. The known MoNiOR (product of nxr genes) are membrane-bound proteins that can be divided into two groups depending on their subcellular localization:1655 (i) enzymes anchored on the periplasmatic side of the cytoplasmatic membrane (Nitrosospira, Nitrospira, and “Candidatus Nitrotoga” MoNiOR)1651,1656,1658–1663 and (ii) enzymes anchored on the cytoplasmatic side of the intracytoplasmatic and cytoplasmatic membranes (Nitro bacter and Nitrococcus MoNiOR).1653,1652,1658,1664,1665 Very recently, a new bacterium was added to the list of the few known nitirifying nitrite-oxidizing organisms: Nitro lacuntetus hollandicus that belongs to the widespread phylum Chloroflexi and is believed to hold a cytoplasm-faced MoNiOR similar to those of the Nitrobacter and Nitrococcus.1666

Presently, there is no known structure of a MoNiOR, but there is evidence that MoNiOR must share several structural features with a NaR enzyme, more precisely with the “respiratory” NaR (details about these enzymes in refs 1667 and 1679).1682 The Nitrobacter hamburgensis MoNiOR, a cytoplasm-faced enzyme, is a heterotrimer constituted by a catalytically active αβ-complex (~115 and 65 kDa) that interacts with a membranar c type haem y-subunit (~32 kDa),1652,1658,1683,1684 The Nitrospira moscoviensis MoNiOR, a periplasm-faced enzyme, is also a catalytically active αβ-complex (~130 and 46 kDa),1661 but the hypothetical transmembranar y-subunit, responsible for the electron transfer between the β-subunit and the electron transport chain, was not yet identified and awaits experimental clariﬁcation.1653,1661 However, for a periplasm-faced enzyme, the electrons from quinol oxidation do not need to pass back across the membrane, and, perhaps, a membranar haem subunit would not be needed.1681

The MoNiOR β-subunit (product of nxrb gene) of Nitrobacter hamburgensis displays a cysteines distribution identical to that of the E. coli NaR (with a total sequence identity of 45%), and, accordingly, it probably holds three [4Fe–4S] and one [3Fe–4S] centers.100 Four cysteine-rich binding motifs of Fe/S were also identiﬁed in Nitrococcus and Nitrospira β-subunits.1656 Because of the similarities with NaR, the MoNiOR β-subunit is believed to be responsible for the electron transfer from the α-subunit (where the nitrite oxidation should occur) to the γ-subunit or directly to the membrane electron transport chain. The α-subunit (product of nxra gene) shows also a signiﬁcant similarity to the C-terminal sequences of the E. coli NaR, and the biochemical
characterizations carried out point toward the presence of one Fe/S and one molybdenum center in both MoNiOR groups.100,1651,1652,1656,1661,1664,1684,1685 The molybdenum center, where the nitrite oxidation should occur (the enzyme active site), is assumed to be coordinated by two pyranopterin cofactor molecules, as in NaR\textsubscript{G}. The molybdenum center should also hold an oxo group (again as NaR\textsubscript{G}) that, in the course of the reaction, would be transferred to the nitrite molecule to yield nitrate.

3.3.1.2. Mechanism. Little is known about the MoNiOR-catalyzed reaction. As in other molybdenum-containing enzymes, the “new” oxygen atom of nitrate is derived from water and not from dioxygen (eq 77)1686\textendash1689 with the molybdenum center probably intermediating the oxygen atom transfer (see the description of a molybdoenzyme catalytic mechanism in section 3.2.3). The elucidation of the structure and mechanistic strategies followed by cytoplasm- and periplasm-faced MoNiOR must wait for future experimental work.

It is interesting to note that nitrite-oxidizing bacteria are versatile organisms that catalyze both nitrite oxidation and nitrate reduction. These bacteria can “switch” from aerobic nitrite oxidation to anaerobic growth by dissimilatory nitrate reduction, using pyruvate (\textit{Nitrobacter}1651,1652,1656,1690\textendash1692) or hydrogen (\textit{Nitrospira}1651) as electron donors. If the bacteria employ the same enzyme or synthesize de novo a different protein is not known. However, the \textit{Nitrobacter hamburgensis}1651 MoNiOR is able to catalyze the nitrate reduction, at least in vitro1658,1683,1684, while the \textit{Nitrospira} enzyme is not1656.

Presently, the similarities between (i) “respiratory” cytoplasmic NaRGH\textsubscript{L}, (ii) periplasmic NaR, (iii) cytoplasmic anabolic NaR, and (iv) cytoplasm- and (v) periplasm-faced MoNiOR suggest that biology had found one perfect “solution” to interconvert nitrate and nitrite: the pyranopterin-coordinated molybdenum center.

4. OUTLOOK

Nitrite is long known as one of the players of the biogeochemical cycle of nitrogen, participating in key pathways crucial to life on Earth and to the planetary “recycling” of nitrogen. More recently, nitrite is also being recognized as a molecule relevant to cell signaling and survival, virtually in all forms of life. Despite all of those different biological functions, nitrite reduction/oxidation seems remarkably similar in all cases.

Iron, more specifically haem iron, is probably the most used metal to reduce nitrite. As discussed, prokaryotes reduce nitrite for assimilatory and dissipative purposes, using different haem types (c, sirohaem and d\textsubscript{1}), with diverse axial coordinations (lysine, cysteine, and histidine residues), in several protein arrangements (dimers/monomers, with several more haems, with only one additional haem or one Fe/S). Nevertheless, despite the differences, all of the enzymes discussed (i) bind nitrite to ferrous iron, through the “nitro” mode, (ii) activate the nitrite molecule through iron back-bonding and hydrogen bonding to positively charged residues at the active site, (iii) promote the double protonation of one of the nitrite oxygen atoms (releasing a water molecule), and (iv) form an iron\textendashNO complex. Subsequently, the iron\textendashNO complex is cleaved and the NO is released, or the complex is retained and further protonated and reduced to yield ammonium.

The prokaryotic haemic strategy to form NO was so successful that we can find several “vestiges” of the earlier, preaerobic, pathways on nowadays mammalian and plant cells:153 for example, under hypoxia, HG or Mb are taking advantage of the “old” haem-containing NO synthases, NO transporters, and NO receptors (e.g., guanylate cyclase), all of which have to avoid the dogmatic scavenging by haem iron. The dihaem ability to promptly release NO would have allowed the organism to overcome this “dilemma”.

Remarkably, the mammalian cells are also using haemic proteins to oxidize nitrite under normoxic conditions. In this case, it is the haem peroxidatic activity that is being “copied”. Noteworthy, the usage of this chemistry in prokaryotes is not recognized, and only a nitrite oxidoreductase enzyme is presently known to exist, the MoNiOR.

Besides haem iron, also molybdenum can be widely used to reduce/oxidize nitrite. Its unique chemistry makes the enzymatic molybdenum centers excellent “oxygen atom exchangers”, precisely what is needed to abstract/insert one oxygen atom from/into nitrite or even to remove one oxygen atom from nitrite (to form nitrite). In fact, the molybdenum “solution” to interconvert nitrate and nitrite was so successful that three types of molybdenum-containing NaR and two types of MoNiOR were developed.

As was discussed, several molybdooenzymes, with different molybdenum center structures (Figure 19c) and active site pockets, are able to reduce nitrite to generate signaling NO. However, despite the differences, the reaction mechanism “outline” is not expected to be much different within different molybdooenzymes, or even within different reaction types:1693 (i) Mo6+ cores are believed to be oxo group donors, producing “oxygenated” molecules, for example, nitrate (eq 77) or urate (eq 74); (ii) reduced Mo4+ cores are proposed to act as o xo group acceptors, binding an o xo-molecule and abstracting one oxygen atom, for example, binding nitrite to produce NO (eq 73)

In this mechanism, the molybdenum atom would intermediate the oxygen atom transfer from one substrate to the second substrate (“oxygen atom exchange”), as long as the thermodynamics of the reactions is favorable. According to this “double o xo transfer” hypothesis, the nitrite reductase activity of the several molybdooenzymes here described, bacterial AOR and NaR, fungus NaR, plant C-NaR, and mammalian XO/XD and AO, is not at all unexpected: these proteins generate NO using the molybdenum redox chemistry already “tested” in diverse o xo-transfer reactions of the carbon, sulfur, and nitrogen metabolism. On the contrary, it is surprising that no “dedicated” molybdooenem-containing nitrite reductase is known to exist. Are the molybdooenem-containing nitrite reductases “disguised” under proteins that we attribute to other functions?

Biological also uses copper to reduce nitrite, although, comparatively, its utilization is not so diversified. Nonetheless, the copper-dependent nitrite reduction probably shares many
features with the molybdenum handling: nitrite is bound through the “nitrito” mode, and protonation of one of its oxygen atoms yields a metal–hydroxo complex and releases NO.

In summary, to reduce/oxidize nitrite, biology developed several strategies, exploring different protein structures, metals, and nitrite binding modes, but using a comparable “blueprint”. Those strategies are the result of different “evolutionary assays”: (i) CcNiR and CSNiR, two “solutions” based on the same basic machinery (a haem) to solve the same “problem”, form ammonium, but with distinct biological purposes, “respiration” and assimilation; (ii) CdNiR and CuNiR, two truly different “solutions”, developed in different geologic eras, to solve the same “problem”, the “respiratory” NO formation; (iii) CcNiR and CdNiR, two “solutions” based on the same basic machinery (a haem) to solve two different “problems”, “respiratory” formation of ammonium and NO; and (iv) penta- and octa-haemic CeNiR, “classic” and extended CuNiR, AOR, and FAD-containing XO/XD/AO, CSNiR, and FAD-containing CSNiR. All represent fascinating examples of how biology once had found a “solution”, and reuses it, introducing only minor adjustments to respond to specific cellular demands. However, in the context of nitrite reduction, the most striking aspect is the evolutionary convergence, through which virtually all forms of life are using a myriad of different metalloproteins to achieve the same objective: reduce nitrite to signaling NO.

To generate nitrite-dependent signaling NO, the organisms “reuse” different metalloproteins, present in the cells to accomplish other functions, and “switch” their activities to a nitrite reductase/NO synthase, when it is necessary. From a chemical point of view, the organisms are just using the redox chemistry of an available redox system and doing a “substrate adaptation” to generate NO. The biological use of a single protein to accomplish more than one function is not a new concept introduced with the nitrite/NO metabolism. This is a well recognized and common phenomenon, moonlighting, with important implications for systems biology and, in particular, for human physiology and pathology (see, e.g., ref 1694). In the nitrite reduction scenario, this phenomenon is carried out by several proteins and is triggered by the oxygen availability and/or cellular redox status, and, in some cases, by sophisticated (and very interesting) posttranslational modifications that regulate the new nitrite reductase activity of the protein. In accordance, it can be hypothesized that the “nonrespiratory” nitrite reduction to NO is part of a conserved regulatory mechanism that “translates” the dioxygen availability/cellular redox imbalance into a differentiated flux of NO, and then into a biological response that would overcome/repair the cellular changes. As F. Cutruzzolà et al. as pointed out, nitrite reduction to NO is a ubiquitous function, from a preaerobic past,735 that has been “reinvented” and employed ever since.

AUTHOR INFORMATION

Corresponding Author

*E-mail: jose.moura@fct.unl.pt.

Notes

The authors declare no competing financial interest.

Biographies

Luisa Maia is a postdoctoral fellow in the group of José Moura, at the Universidade Nova de Lisboa (Portugal). She received her Ph.D. degree in Pharmaceutical and Clinical Biochemistry from the Universidade de Lisboa (Portugal) for work on the new catalytic activities of mammalian molybdoenzymes relevant to human pathophysiology. Her current research interests involve structure–activity relationships of metalloenzymes and reactive oxygen and nitrogen species biochemistry (formation, elimination, and mediated mechanisms of diseases).

José J. G. Moura has a degree in Chemical Engineering and a Ph.D. in Chemistry and is Professor of Chemistry at Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. His main field of research is bioinorganic chemistry and the role of metals in biology. He has 380 articles indexed in ISI Web of Knowledge and an h-index of 53. He is President of the Chemistry Department and President of the Scientific Council at FCT-UNL, Portuguese Delegate to COST and INTAS, and is a member of the Scientific Panel in the Calouste Gulbenkian Foundation and FCT-MCTES, and of several scientific editorial boards. In 2006, he was elected Member of Academia das Ciências de Lisboa, and in 2010, he was elected for 2 years as President of the Society of Biological Inorganic Chemistry. He is the Director of the FCT-UNL Campus Library. Moura’s current research interests include bioinorganic, biophysics, biocatalysis, energy bioconversion (hydrogen), role of metals in biology (haem and nonhaem iron, molybdenum, tungsten, nickel, copper, vanadium, and cobalt), inorganic systems as models for biocatalysis, spectroscopy (NMR, EPR, and Mössbauer), (bio)-electrochemistry, and protein–protein interactions.
ACKNOWLEDGMENTS

We gratefully acknowledge funding from the projects PTDC/QUI-BIQ/100366/2008 and PEst-C/EQB/LA0006/2013 (FCT/MCTES).

ABBREVIATIONS

AnAnmOx anaerobic ammonium oxidation
AO aldehyde oxidase
AOR aldehyde oxidoreductase
Cb cytoglobin
Cc cytochrome c
CcNiR cytochrome c-containing nitrite reductase (multi-c-haems-containing nitrite reductase)
CcO cytochrome c oxidase (mitochondrial)
CdNiR cytochrome d1-containing nitrite reductase (c and d1 haems-containing nitrite reductase)
C-NaR cytoplasmatic nitrate reductase of plants
CSNiR cytochrome sirohaem-containing nitrite reductase (Fe/S and sirohaem-containing nitrite reductase)
CuNiR copper-containing nitrite reductase (T1 and T2-containing nitrite reductase)
deoxy-Cb deoxy-cytoglobin; (Cb)Fe2+
deoxy-Hb deoxy-haemoglobin; (Hb)Fe2+
deoxy-Mb deoxy-myoglobin; (Mb)Fe2+
deoxy-Nb deoxy-neuroglobin; (Nb)Fe2+
deoxy-NS-HG deoxygenated nonsymbiotic haemoglobin of plants; (NS-HG)Fe2+
DNRA dissimilatory nitrate reduction to ammonium electron(s)
EPR electronic paramagnetic resonance spectroscopy
Fe/S iron/sulfur center
HAOR hydroxyamine oxidoreductase
Hb haemoglobin
HG haemoglobin
Mb myoglobin
met-Cb met-cytoglobin; (Cb)Fe3+
met-Hb met-haemoglobin; (Hb)Fe3+
met-Mb met-myoglobin; (Mb)Fe3+
met-Nb met-neuroglobin; (Nb)Fe3+
MoNiOR molybdenum-containing nitrite oxidoreductase
NaR nitrate reductase (all types of enzymes that reduce nitrate to nitrite)
NaRGHI “respiratory” nitrate reductase, after the name of the encoding genes, narG, H, and I
NaRG NaRH and NaRI, each of the three NaRGHI subunits
Nb neuroglobin
NO nitric oxide radical
NOS NO synthase
NrfA another designation for CcNiR, after the name of the encoding gene nrf (nitrite reduction with formate)
NrfB NrfC, NrfD, NrfH, other proteins that interact with NrfA, belonging to the same encoding nrf gene
NS-HG nonsymbiotic haemoglobin of plants
oxy-Cb oxy-cytoglobin; (Cb)Fe2+-O2
oxy-Hb oxy-haemoglobin; (Hb)Fe2+-O2
oxy-Mb oxy-myoglobin; (Mb)Fe2+-O2
oxy-Nb oxy-neuroglobin; (Nb)Fe2+-O2
oxy-NS-HG oxygenated nonsymbiotic haemoglobin of plants; (NS-HG)Fe2+-O2
P50 the oxygen concentration at which Hb or Mb are half-saturated
RNS reactive nitrogen species
ROS reactive oxygen species
RPM-NaR root-specific plasma membrane-bound, succinate-dependent, nitrate reductase of plants
RPM-NiR root-specific plasma membrane-bound nitrite reductase of plants
RSH thiol compound
RSNO S-nitrosothiol
T1 and T2 type 1 and 2 copper centers of CuNiR, respectively
TTR tetrathionate reductase
TD thiol-disulfide oxidoreductase
TH thiol-disulfide oxidoreductase
TP thiol-disulfide oxidoreductase
XDH xanthine dehydrogenase
XO xanthine oxidase

Note: The abbreviation of the enzymes name indicates the function and, in some cases, includes the type of center or metal present at the active site. A capital C stands for cytochrome and is followed by the letter of the haem type, c, d1, and S for haem c, haem d1, and sirohaem, respectively (Cc, Cd1, CS). The chemical symbols Cu and Mo were used for the respective metals. Ni and Na were used to discriminate between nitrite and nitrate. At the end of the abbreviation, R, O, OR, and D stand for reductase, oxidase, oxidoreductase, and dehydrogenase, respectively. To distinguish between the cytoplasmatic and the root-specific plasma membrane-bound enzymes of plants, the prefixes C- and RPM- were introduced (C-NaR, RPM-NaR, RPM-NiR). Because Hb and Mb are well-recognized abbreviations for haemoglobin and myoglobin, the same scheme was followed for neuroglobin (Nb) and cytoglobin (Cb). To discriminate between haemoglobin and haem globins in general, the abbreviation HG was introduced, giving, consequently, NS-HG for the nonsymbiotic haem globins of plants.

REFERENCES

(5) Bartsch, H.; Montesano, R. Carcinogenesis 1984, 5, 1381.

(18) Besides the molybdopterin-iron-dependent enzyme, there are also other nitrogenases, with different active site metal compositions.19-21

(22) Boal, A. K.; Rosenzweig, A. C. Science 2012, 337, 1617.

(40) Moreno-Vivián, C.; Flores, E. Biology of the Nitrogen Cycle; Elsevier: Amsterdam, 2007; p 263.

(43) Olmo-Mira, M.; Cabello, P.; Pino, C.; Martínez-Luque, M.; Richardson, D. J.; Castillo, F.; Roldán, M. D.; Moreno-Vivián, C. Arch. Microbiol. 2006, 186, 339.

(48) The fungal (Fusarium oxysporum) denitrification system is found in the mitochondria, where the electron transport chain is coupled to the denitrification to produce ATP.49-55 This fungal denitrification is carried out with a CuNiR enzyme (see text ahead). The existence of an anaerobic “respiration” pathway in an organelle devoted to aerobic “respiration” is very interesting for the origin and evolution theories of the mitochondrion (the protomitochondria).
and for monooxygenase-dependent biosynthesis, in (hypoxia/anoxia) and pH (acidosis), precisely the conditions that favor a blockage on the vessels leading to that tissue. Consequently, ischaemia leads to a decrease of tissue dioxygen concentration (hypoxia/anoxia) and pH (acidosis), precisely the conditions that favor the nitrite reduction to NO, as will be described.

Cannon, R. O., III; Gladwin, M. T.

Chemical Reviews

the same time, NO can increase the blood
link the limited dioxygen supply to higher levels of NO formation,
former, leading to potential damage
disturbance in the pro-oxidant/antioxidant balance in favour of the

(205) It is generally accepted that hypoxia and anoxia correspond to
fl
61
, 339.

(212) NO can inhibit the mitochondrial
respiration
(211) NO can inhibit the mitochondrial
release,
and, consequently, preventing further oxidative stress212 damage. At

fl
60
, 7540.

(205) It is generally accepted that hypoxia and anoxia correspond to dioxygen concentrations lower than 20 and 2 μM, respectively.

(211) NO can inhibit the mitochondrial “respiration”, thus limiting the dioxygen consumption, ROS formation, and cytochrome c release, and, consequently, preventing further oxidative stress211 damage. At the same time, NO can increase the blood flow, modulate the dioxygen diffusion, and maintain an antiapoptotic and anti-inflammatory environment.186,194,196,214-220 Therefore, it seems to be crucial to link the limited dioxygen supply to higher levels of NO formation, which can be difficult to achieve with the oxygen-dependent NOS.

(212) Oxidative stress (term introduced by H. Sies, in 1985) is “a disturbance in the pro-oxidant/antioxidant balance in favour of the former, leading to potential damage”212 and also refers to a serious imbalance between the antioxidant defenses and the formation of ROS and RNS.

Review

One important novel function of Mb is certainly the control of the characteristics of a local signaling molecule. The NO lifetime is controlled, and its concentration is kept within the scanning range. The unwanted NO egested into the blood stream, should be opposed a predominant role in facilitating oxygen transport in cardiac NO homeostasis, not only via its NO scavenging activity (as thought to be fully understood half a century ago, has to be reassessed!)

Different Mb functions have been described. The Mb di was no longer considered to be an oxygen carrier in mammals, because of the presence of hemoglobin (Hb). However, the Mb di has been found to participate in the cardiac NO homeostasis, not only via its NO scavenging activity (as thought to be fully understood half a century ago, has to be reassessed!)

(257) Sharma, V. S.; Taylor, T. G.; Gardiner, R. Biochemistry 1987, 26, 3837.

(258) Traylor, T. G.; Sharma, V. S. Biochemistry 1992, 31, 2847.

(276) Under normoxia, these oxidation reactions (eq 20) are thought to be crucial for NO homeostasis. The endothelial NOS-dependent NO, which diffuses toward the blood stream, should be rapidly scavenged and oxidized by the oxy-Hb in the intravascular space; (ii) in the cardiac muscle is the oxidation by oxy-Mb that constitutes the major mechanism to scavenge NO and, thus, to avoid the unwanted NO effects (e.g., protection of mitochondrial “respiration” by CO inhibition). The Mb/Mb formed (eq 20) are then regenerated (reduced), by specific met-Hb/Mb reductases, and oxygenated to yield oxy-Hb/Mb. Therefore, the action of oxy-Hb/Mb results in a “catalytic” NO scavenging under normoxia. In this way, the NO lifetime is controlled, and its concentration is kept within the characteristics of a local signaling molecule.

mentioned in ref 276), but also as a nitrite reductase/NO synthase. Other "unconventional" functions of Mb include oxygen sensing (as will be discussed below), ROS scavenging, and intracellular fatty acid transport.315

(320) McMahon, T. J.; Stone, A. E.; Bonaventura, J.; Singel, D. J.; Stamler, J. S. J. Biol. Chem. 2000, 275, 16738.
complexes termed “metabolons”, like band 3. Band 3 comprises an anion transporter, various glycolytic enzymes, the presumptive carbon dioxide transporter, and carbonic anhydrase. Together, these proteins seem to play a key role in regulating the cell metabolism and its ion and gas transport function. In addition, deoxygenated Hb binds to the band 3 cytoplasmatic face, in the same region as the glycolytic enzymes.

(369) The percentage of met-Hb in blood is normally very low (<1% of total Hb); however, its local relative concentration in the cell membrane could be much higher (within a metabolon that favors the binding of deoxygenated Hb). In addition, the reaction with nitrite should increase it even more (eq 17).

(371) In this respect, it should be recalled that the formation of (Hb)FeIII−NO (eq 24) should not be favored in the presence of (Hb)FeII+ (eq 19). NO is able to bind to ferric haem, but at association rates lower than those for ferrous haem and to form complexes less stable (κκκκ ≈ 10 M−1 s−1 versus κκκκ ≈ 10 M−1 s−1 1.257 and Kκκκκ ≈ 10−12−10−10 M versus Kκκκκ ≈ 10−3−10−4 M 3.262). Accordingly, the proportion of (Hb)FeIII−NO in the presence of (Hb)FeII+ molecules should be low.

(375) Reductive nitrosylation, known for almost a century,376 is the process by which met-Hb is reduced and nitrosylated in the presence of excess of NO. It involves (i) binding of NO (eq 24), (ii) intramolecular haem reduction (eq 29), (iii) water nucleophilic attack to yield deoxy-Hb (eq 30), and (iv) the subsequent nitrosylation of the intramolecular haem reduction (eq 29), (iii) water nucleophilic attack to yield deoxy-Hb (eq 30), and (iv) the subsequent nitrosylation of the

(391) Tsitas, D. Nitric Oxide 2003, 9, 53.
The human Nb coordination state (hexa- versus penta-coordination) is controlled through a redox mechanism that involves the formation, or cleavage, of an intramolecular disulfide bond between the surface CysC$_{CD7}$ and Cys$_{E8}$ (respectively, the seventh residue on the interhelix region between helices C and D (Cys$_{CD8}$) and the fifth residue on helix D (Cys$_{E6}$)). The formation of the CD7–D5 disulfide bond should perturb the positioning of the distal histidine E7 on the neighboring E helix. This would modulate the haem “internal”–hexa-coordination, controlling, in this way, the populations of penta- and hexa-coordinated Nb, as was confirmed by theoretical studies.\(^{427,428}\) Actually, Nb holds two small internal cavities on the haem distal side that enable the distal histidine side chain to move toward either the interior or the exterior of the distal pocket.\(^{415,420}\) Moreover, carbon monoxide binding was shown to be accompanied by conformational changes involving distal histidine reposition and haem “sliding” toward a preformed crevice, while the overall protein structure is not significantly altered.\(^{415,420,424,426}\) In this conversion mechanism, the PhC$_{H2}$ residue was shown to be essential to “translate” the disulfide bond formation into the conformational change of the haem pocket.\(^{429−432}\) Supporting this mechanism of hexa- to penta-coordination conversion is the observation that the disulfide-containing Nb displays an increased histidine-haem dissociation rate \((k_{obs} \approx 0.6 \text{ versus } 7 \text{ s}^{-1})\) and a concomitantly decreased histidine affinity \((K \approx 3300 \text{ versus } 280 \text{ nM})\), relative to the reduced or mutated \((\text{Cys}46\text{Gly}, \text{Cys}55\text{Ser}, \text{Cys}120\text{Ser})\) Nb. The consequent increase in the population of penta-coordinated molecules in disulfide-containing Nb leads to an increase in the global affinity to external ligands.\(^{422,423,433}\) For dioxygen, for example, this means that the dioxygen global affinity increases by the same factor as the disulffide bond formation into the conformational state with dioxygen di

\[^{1422,423,433}\) and a concomitantly decreased

\[^{280422,423,433}\) and a concomitantly decreased

\[^{415,420,424,426}\) The formation of

\[^{440}\) Dioxygen transporters with very high affinities would facilitate dioxygen diffusion only under very low dioxygen concentration. For example, plant leghaemoglobins (see section 2.2.2.1.3 for details about these proteins), with dioxygen affinities \(\sim 10\) times higher than Mb, are believed to facilitate dioxygen transport in hypoxic root nodules. The Nb, with an affinity 2 orders of magnitude higher,\(^{404,413}\) would serve this role only under an oxygen gradient in the nanomolar range.

\[^{458}\) Garry, D. J.; Mannen, P. P. A. Lancet 2003, 362, 342.

\[^{468}\) Fago, A.; Mathews, A.; Brittain, T. IUBMB Life 2008, 60, 398.

(522) Noteworthy, the apoptotic function of Cc is not related to a redox reaction: the task is accomplished through binding to the redox center.524 In a redox reaction: the task is accomplished through binding to the thioredoxin.525

(523) The reduction of Cc is being used for almost 50 years as a laboratory assay to quantify the formation of superoxide radical.524 In a redox reaction: the task is accomplished through binding to the redox center.525

In accordance with this efficient Cc binding and reduction, the Nb neuronal protective role has been suggested to be due to (i) its ability to rapidly bind the Cc that is released from the mitochondria during apoptosis, thus blocking the Cc binding to the apoptotic protease activating factor-1, and (ii) to its ability to reduce the Cc with a high intermolecular electron transfer rate (∼1000 s⁻¹), which is in the range of that of Cc reduction of CcO. In this way, Nb would "reset" the Cc concentration that triggers apoptosis; that is, Nb would "reprogram" the onset of Cc-induced apoptosis.

(577) The enzymes localization has been subjected to a great controversy, due, at least in part, to the different methodologies employed: while enzymatic assays evaluate the xanthine and aldehyde oxidation activities in tissue homogenates (for XO/XD and AO, respectively), immunohistochemical methods do not discriminate between the two enzymes and identify the proteins, in intact tissues, in any of their forms, sulfo-, desulfo-, and demolybdo-forms. The differences between the two types of methodologies are mostly pertinent in tissues where the enzymes can be found in desulfo- or demolybdo-forms and, as a result, are unable to oxidize xanthine or aldehydes (578–584) (see section 3.2.3 for details). This is the case of human milk, which is in heart. In general, it is accepted that human XO is mostly present in liver, intestine, mammal gland, small vessels endothelial cells, and plasma, while AO can be found mostly in the liver, but also in heart, lung, kidney, brain, and eye. 588–595

Nitrite, on the other hand, is present in diet only in originated from diet sources and circulation; up to 25% of circulating nitrate to nitrite.
defenses and trigger the autocatalytic oxidation of Hb, leading to vital ferrous Hb, nitrite poisoning amplifies the nitrogen dioxide radical formation, leading to protein and lipid damage (tyrosine and lipid nitration, protein radical formation, and lipid peroxidation).\(^{(76) - (78)}\)

As a consequence of poisoning, the nitrite concentration in plasma may increase to values of 100–400 \(\mu M\). Such high concentrations of nitrite certainly overwhelm the cellular antioxidant defenses and trigger the autocatalytic oxidation of Hb, leading to severe methaemoglobinemia.\(^{(79)}\)

Besides the fast decrease in vital ferrous Hb, nitrite poisoning amplifies the nitrogen dioxide radical formation, leading to protein and lipid damage (tyrosine and lipid nitration, protein radical formation, and lipid peroxidation).\(^{(76) - (78)}\)

In the context of nitration reactions, it should be mentioned that hydrogen peroxide with the bound nitrite to form an iron-peroxynitrite complex.\(^{(79)}\)

\(^{(79)}\) Besides the fast decrease in vital ferrous Hb, nitrite poisoning amplifies the nitrogen dioxide radical formation, leading to protein and lipid damage (tyrosine and lipid nitration, protein radical formation, and lipid peroxidation).\(^{(76) - (78)}\)

As a consequence of poisoning, the nitrite concentration in plasma may increase to values of 100–400 \(\mu M\). Such high concentrations of nitrite certainly overwhelm the cellular antioxidant defenses and trigger the autocatalytic oxidation of Hb, leading to severe methaemoglobinemia.\(^{(79)}\)

Lab. Invest. 2010, 90, 990.

Roberg, K. Lab. Invest. 2001, 81, 149.

O'Rourke, B.; Cortassa, S.; Aon, M. A. Physiology 2005, 20, 303.

N-Nitrosation and nitrosylation, in the presence of nitrate, that is not changed by NO scavengers or dioxygen does not prove the direct involvement of nitrite, because the NO formed would likely be inaccessible for scavenging or detection. The same reasoning holds for nitration reactions.

223, 177, 17415.

2012, 302, L1044.

285, 149, 436.

286, 54, 4671.

287, 1215.

288, 350, 9.

289, 126, 5763.

290, 54, 1119.

291, 645.

292, 166, 1233.

293, 41, 416.

294, 394, 707.

295, 385.

296, 38, 5357.

297, 41, 691.
linker region between the molybdenum and haem domains. The regulation involves the phosphorylation of a serine residue in the activated and calcium-dependent kinases. This phosphorylation results in a plant that has the C-NaR always active. In vivo, the C-NaR inactivation occurs rapidly in darkness or when carbon dioxide is removed. This posttranslational regulation is essential to lower the C-NaR activity at night, when photosynthetically generated reducing equivalents are not available to reduce nitrite to ammonia. In this way, the nocturnal nitrite levels would not increase to dangerous concentrations.
(1016) Nitrite is promptly transported to the leaves chloroplasts or roots plastids, where it is rapidly reduced by CSNIR, so it does not accumulate.
(1017) Like the ischaemic events of mammals (see section 2.2.1.1), higher plant tissues can also be subjected to a decrease in the dioxygen concentration. Roots can be subjected to hypoxia or even anoxia after a long period of time, depending on its drainage capacity. Thus, the accumulation of hypoxia, without severe cytoplasmatic acidosis. This explains why plants survive for a longer period. The question of whether plants have the same ability as animal to oxidize such compounds is still controversial. The presence of XD in peroxisomes is still controversial.
(1053) The presence of XD in peroxisomes is still controversial. The presence of XD in peroxisomes is still controversial.
(1074) Planchet, E.; Kaiser, W. M. Plant Signaling Behav. 2006, 1, 46.
(1085) Haemic globins are a large family of proteins that hold an haem and display the globin fold, typically, eight α-helices, named “A” to “H”.
(1086) All of the haemic proteins with the globin structure will be here identified by the family name “haemic globins”, abbreviated as HG. To avoid ambiguities, the word “haemoglobin” (abbreviation Hb) will be here used only for the well-known blood oxygen transporter.
(1087) Although it is less familiar, plants also hold haemoglobin (or, as is usually found in the literature, “plants also hold haemoglobin”). Leghæmoglobin is a monomeric HG, present in the root nodules of leguminous plants and in a few other nitrogen-fixing species (in millimolar concentrations). It facilitates the oxygen diffusion to the obligate aerobes involved in nitrogen fixation inside the nodule, at the same time as it maintains a low free oxygen concentration, to avoid the inhibition of the bacterial nitrogenase. The leghaemoglobin rate constants toward oxygen are $k_{\text{on}} \approx 130 \mu\text{M}^{-1}\text{s}^{-1}$ and $k_{\text{off}} \approx 6 \text{s}^{-1}$, values that compare with $k_{\text{on}} \approx 15 \mu\text{M}^{-1}\text{s}^{-1}$ and $k_{\text{off}} \approx 13 \text{s}^{-1}$ for sperm whale Mb. Leghaemoglobin is thus a vital component of the symbiotic nitrogen fixation machinery.
carbonate. In addition, inhibition may be caused by lack of reducing power to carry out the final reduction to ammonium: ammonium formation may proceed only if the availability of reduced ferredoxin exceeds that needed for the formation of the NADPH, and, for most plants, this occurs when carbon dioxide availability limits C4 carbon fixation. If carbon dioxide assimilation is increased, the concomitant competition for reducing equivalents might inhibit the nitrite reduction to ammonium. Inhibition of nitrate assimilation by elevated carbon dioxide is an important phenomenon, common among C4 species (studied in barley, tomato, wheat, and Arabidopsis). Nevertheless, ecosystems display a broad range of responses toward increased carbon dioxide concentrations, possibly as a result of the seasonal and spatial fluctuations in the relative availabilities of ammonium and nitrate. Noteworthy, in ecosystems where ammonium is the dominant nitrogen form, the net primary productivity increases (as much as 25%) under elevated carbon dioxide.

(1252) Scott, N. L.; Xu, Y.; Shen, G.; Vuletich, D. A.; Falzone, C. J.;
(1253) Hvtved, A. N.; Trent, J. T., III; Premer, S. A.; Hargrove, M. S.
(1255) Hoy, J.; Kundu, S.; Trent, J. T.; Ramaswamy, S.; Hargrove, M.
(1257) Gardner, P. R.; Gardner, A. M.; Martin, L. A.; Salzman, A. L.
(1258) Scott, N. L.; Xu, Y.; Shen, G.; Vuletich, D. A.; Falzone, C. J.;
(1259) Moura, J. G.; Xavier, A. V.; Bruschi, M.; Le Gall, J.; Hall, D.
(1261) Echalier, A.; Goodhew, C. F.; Pettigrew, G. W.; Fulop, V.
(1262) Kain, W.; Schwederski, B. Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life; Wiley: Chichester, 1996.
(1267) Echalier, A.; Goodhew, C. F.; Pettigrew, G. W.; Fulop, V.
(1268) Echalier, A.; Brittain, T.; Wright, J.; Boychева, S.; Mortuza, G.
(1269) Li, H. Handbook of Metalloproteins; Wiley: Chichester, 2001; P 486.
(1270) Rosenfeld, A. Handbook of Metalloproteins; Wiley: Chichester, 2001; p 285.
(1271) Gajhede, M. Handbook of Metalloproteins; Wiley: Chichester, 2001; p 195.
(1272) Mate, M. J.; Bravo, J.; Fita, I.; Murshudov, G.; Melik-
(1281) Bursakov, S. A.; Gavel, O. Y.; Moura, I.; Moura, J. J. G.;
(1282) Doronina, C. D.; Rivas, M. G.; Romão, M. J.; Moura, J. J. G.;
(1283) Olsson, M. H. M.; Ryde, U.

(1452) Silvestrini, M. C.; Tordi, M. G.; Musci, G.; Brunori, M. J. Biol. Chem. 1990, 265, 11783.

(1461) Note that this Tyr25 is not equivalent to the Tyr10 of the P. aeruginosa structure. In P. aeruginosa d1 haem, the coordinating Tyr10 belongs to the partner monomer. In P. pantotrophus d1 haem, the coordinating Tyr25 belongs to the same monomer as the d1 haem.

(1464) Two effects should contribute to the activation of the enzyme: (i) the conversion into an "open" penta-coordinated d1 haem, and (ii) the increase of the reduction potential of the c haem, driven by the methioninyl-histidinyl coordination.1465 A methionine residue is more effective than an histidine at stabilizing the reduced c haem iron, which makes the reduction potential of a methioninyl-histidinyl-coordinated c haem more positive than that of a bis-histidinyl counterpart.1466,1467

(1465) Zajicek, R. S.; Cartron, M. L.; Ferguson, S. J. Biochemistry 2006, 45, 11208.

(1577) Note that the copper HOMO is a d_{x2-y2} orbital and the nitrite LUMO is a π-antibonding orbital, while the σ-antibonding orbital is quite high in energy.

The existence of these two types of enzyme is, probably, the response to different environmental pressures. *Nitrospira*, *Nitrosipina*, and "*Candidatus Nitrotoga*" bacteria, with a periplasm-faced MoNIO, grow only under nitrite limitation (0.29–2.9 mM), while *Nitrobacter* and *Nitrococcus*, with a cytoplasmic face, are adapted to high nitrite concentrations (up to 29 mM). Therefore, it can be speculated that a periplasm-faced MoNIO would allow the bacteria to grow with low nitrite concentrations and, at the same time, would be responsible for the inhibitory effects of high nitrite concentration on bacteria growth. On the other hand, a cytoplasmic face would depend on a nitrite/nitrate antiport system and would necessitate/ameliorate a higher nitrite concentration.[1566,1567]

1577 Prokaryotes use nitrate for assimilatory and dissimilatory processes (see section 2.1.1) and, for those purposes, hold three types of NaR: (i) "respiratory" membrane-bound cytoplasm-faced NaR (Figure 11g,h), associated with the generation of a proton motive force across the cytoplasmic membrane; (ii) periplasmic NaR, involved with the generation of a proton motive force or acting as an electron sink to eliminate excess of reducing equivalents; and (iii) cytoplasmic assimilatory NaR, involved in nitrogen assimilation.[1568-1570] All of the prokaryotic NaR are molybdoenzymes of the dimethylsulfoxide reductase family (see section 3; Figure 19c) and catalyze the two electrons reduction of nitrate to nitrite (reverse of eq 77) at their molybdenum center. Apart from the four sulfur atoms from the two pyranopterin molecules (Figure 19c), the molybdenum atom is coordinated by: (i) in "respiratory" membrane-bound NaR, by two oxygen atoms (both from an aspartate residue or one from a terminal oxo group plus another one from an aspartate residue)[1673]; (ii) in periplasmic NaR, by two sulfur atoms (from a terminal sulfo group and another from a cysteine residue) or one terminal hydroxyl group plus a sulfur atom from a cysteine residue;[1673] and (iii) in cytoplasmic assimilatory NaR, probably by a sulfur atom from a cysteine residue (although clear structural insight awaits further investigation).[1674] It should be noted that, despite catalyzing the same reaction, the euryarchaeal assimilatory cytoplasmatic NaR, C-NaR (section 2.2.2.1.1), is distinct from any type of prokaryotic NaR. Belonging to the sulfite oxidase family, its molybdenum atom (responsible for the nitrate reduction) is coordinated by only one pyranopterin molecule (two sulfur atoms), plus one sulfur atom from a cysteine residue, one oxo, and one hydroxyl group (Figure 19c).

(1672) Jormakka, M.; Richardson, D.; Byrne, B.; Iwata, S. Structure 2004, 12, 95.

(1679) "Respiratory" NaR are membrane-bound cytoplasm-faced molybdoenzymes and, as the name indicates, are used by the organisms to generate a proton motive force across the cytoplasmatic membrane. They are also called NaRGHI, because they are the product of the narGH, H, and I genes. These enzymes of the dimethylsulfoxide reductase family are heterotrimers, comprising (Figure 11g,h): (i) a cytosolic nitrate-reducing NaRG subunit (∼125 kDa) that holds one molybdenum center (with the molybdenum atom coordinated as described in ref 1667, the active site) and one [4Fe–4S] center; (ii) an electron-transfer NaRH subunit (∼60 kDa) that holds one [3Fe–4S] and three [4Fe–4S] centers; and (iii) a membrane-bound quinol-oxidizing NaRI subunit (∼22 kDa) that holds two b-type haems. Interestingly, and in harmony with the MoNiOR dual localization, it was recently concluded that there is one molybdenum cycles between Mo6+ and Mo4+, 590±652. It is based on this catalytic feature that these enzymes are commonly referred to as oxo-transferases. However, there is at least one important exception that does not involve an oxygen atom transfer reaction: the formate (HCOO•) oxidation to produce carbon dioxide (CO2) catalyzed by formate dehydrogenase (dimethylsulfoxide reductase family).

(1693) In general, the molybdoenzymes of all families (Figure 19c) catalyze the abstraction or insertion of one oxygen atom into a substrate molecule, in reactions that imply a net exchange of two electrons and in which the molybdenum cycles between Mo6+ and Mo4+. They are also called NaRGHI, because they are the product of the narGH, H, and I genes. These enzymes of the dimethylsulfoxide reductase family are heterotrimers, comprising (Figure 11g,h): (i) a cytosolic nitrate-reducing NaRG subunit (∼125 kDa) that holds one molybdenum center (with the molybdenum atom coordinated as described in ref 1667, the active site) and one [4Fe–4S] center; (ii) an electron-transfer NaRH subunit (∼60 kDa) that holds one [3Fe–4S] and three [4Fe–4S] centers; and (iii) a membrane-bound quinol-oxidizing NaRI subunit (∼22 kDa) that holds two b-type haems. Interestingly, and in harmony with the MoNiOR dual localization, it was recently concluded that there is evidence for the occurrence of both archaean and bacterial periplasm-faced NaRGHI-type nitrate reductases, that is, NaRGHI enzymes with the active site on the outside of the cytoplasmatic membrane. This exciting hypothesis, however, waits for experimental confirmation.

NOTE ADDED IN PROOF

After this Review was accepted, a new work on the reaction mechanism of CcNiR was published: Bykov, D.; Plog, M.; Neese, F. J. Biol. Inorg. Chem. 2014, 19, 97.