Nested Data Manipulation in Distributed and Heterogeneous Environments – extended version

JOÃO COSTA SECO
NOVA LINCS – Universidade Nova de Lisboa, Lisboa

PAULO FERREIRA, and HUGO LOURENÇO
OutSystems, Lisboa

(e-mail: joao.seco@fct.unl.pt, paulo.ferreira@outsystems.com, hugo.lourenco@outsystems.com)

Abstract

One key aspect of data-centric applications is the manipulation of data stored in persistent repositories, which is moving fast from querying a centralized relational database to the ad-hoc combination of constellations of data sources.

The extension of general purpose languages with query operations is increasingly popular, as a tool to improve reasoning and optimizing capabilities of interpreters and compilers. However, not much is being done to integrate and orchestrate different and separate sources of data. We present a data manipulation language that abstracts the nature and location of data-sources. We define its semantics and a type directed query localization mechanism to be used in development tools for heterogeneous environments to efficiently compile them into native queries. We introduce a localization procedure based on rewriting of query expressions that is confluent, terminating and provides the maximum mapping between site capabilities and the structure of the query. We provide formal type safety results that support the sound distribution of query fragments over remote sites.

Our approach is also suitable for an interactive query construction environment by rich user interfaces that provide immediate feedback on data manipulation operations. This approach is currently the base for the data layer of a development platform for mobile and web applications.

1 Introduction

The state of the art on development of data-centric web, cloud, and mobile applications, is highly based on the use of frameworks, tools, languages and abstractions, specially designed to hide many development and runtime details. One of the key aspects is the safe and easy manipulation of persistent data repositories, usually performed with the help of abstractions like object mappings (e.g. Java JPA), or specialized query languages like Microsoft LINQ.

Obvious benefits are obtained by typefully integrating query languages in the host programming languages, thus increasing the validation and optimizing power of interpreters and compilers (Serrano et al., 2006; Cooper et al., 2007; Fu et al., 2013; Chlipala, 2015). However, the data manipulation paradigm is moving fast from querying a single data repository, to combining data coming from a constellation of data sources. Heterogeneous
queries are pervasive, in scenarios like medical databases and search engines, web service orchestrations, mobile applications, and web or cloud applications that enrich their interfaces with remote web services. Such queries are usually accomplished with ad-hoc code, that is many times inefficient and error prone.

An urgent need arises for development platforms that integrate and query different and separate data sources, in a typeful and seamless way. The wide range of skills needed to query a relational database, efficiently combine the results with a web-service response, and then produce a map-reduce algorithm to join and filter the results in a NoSQL database, is not part of the skill-set of the average developer. Moreover, such an approach contrasts with the data integration efforts of hiding different sources behind a common interface in a very expressive, but predefined way (cf. (Halevy et al., 2006)). This paper introduces a model for a data manipulation language for heterogeneous data-centric environments, and a compilation method based on type and location information on data-sources. We define a model to generate specialized and distributed querying code for each (remote) data source, and the corresponding in-memory post-processing code. We model each kind of database system (relational or NoSQL), parameterized data repository (web services), or in-memory data, by a set of capabilities (e.g. to join collections, group by arbitrary expressions, nest results, filter), that guide the way operations are split between locations (Vassalos & Papakonstantinou, 2000). Languages like Microsoft LINQ do allow for several kinds of data sources to be involved in a query, but, in their case, the default execution includes fetching all data first and then combine the pieces in a centralized location. Our model decentralizes parts of a query, and is extensible with optimizing strategies like (Grade et al., 2013).

This paper extends and refines the approach presented in (Seco et al., 2015). Our construction and query combination model is designed from first principles, targeting a general model of data sources, from relational data to nested collections (e.g. (Colby, 1989; Cheney et al., 2014)). We explore a novel language operation, introduced in (Seco et al., 2015), whose semantics is the in-place modification of nested data, given a tree-like path (cf. XPath (Clark & DeRose, 1999; Cheney et al., 2014)). This operation can either be applied as an in-memory step or be re-written during the code generation process, and incorporated into the target query code, to be executed remotely. This operation is particularly useful both in supporting the visual counterpart of this model, that supports the incremental and interactive construction of nested queries with immediate feedback on results, and in providing a compositional and incremental way of building queries.

We decompose the query transformation process presented in (Seco et al., 2015) into three separate phases and we analyze the contribution of each step in a precise and separate way. We also add extra formal results and proofs. The first phase of our transformation inserts projection operations in a abstract query expression, to adjust it to a concrete usage type. Then, in a second phase we annotate all expression nodes with locations and use a (label) rewriting system to orderly associate locations with expression nodes, according to each location’s capabilities. This second phase uses an intermediate representation for joins that helps distributing the inner queries by the available locations. A third phase is used to translate the located query to the initial syntax and places the necessary remote invocation expressions. Besides the modular design our new approach also provides a uniform process that deals with inner queries in filters and group criteria expressions. Our approach is being used as the model of an industrial grade development platform for mobile
and web applications, the OutSystems Platform (OutSystems, 2015), where different kinds of data-sources can be used in a typed way, and where the data manipulation language provides type safety and language integration.

In the remainder of the paper we introduce the language by means of a running example (Section 3), that we then use to also illustrate the localization process, presented in Section 6. We formalize the operational semantics of language λ_{CDL} and its type system in Sections 4 and 5. The localization process, divided into three phases, is proven sound with relation to the language semantics. Formal results are presented together with summarized proofs, however they are expanded and presented in full in appendix B.

2 Syntax

In this section, we introduce the data manipulation language (λ_{CDL}), defined by the syntax given in Figure 1. Its core is a lambda calculus, with basic values (num, $bool$, $string$, $date$) and predefined operations (abstracted as op), also with records and multisets, and equipped with a data manipulation language fragment, capable of querying nested structured data repositories (cf. relational databases, structured JSON data objects, etc.), similar to works using NRC (Buneman et al., 1995; Cheney et al., 2014). Our language is based on a set of predefined named data sources t, variables x, y, z, and record labels a, b, c, d. We use the list notation $[r]$ to denote the bag construction $[v_1] \uplus [v_2] \ldots \uplus [v_n]$.

Expressions

$$e, c ::=\begin{align*}
&\text{num} \\
&\text{bool} \\
&\text{string} \\
&\text{date} \\
&e \op \ e' \\
&\lambda x: \tau.e \\
&e \\
&(a = e) \\
&e \oplus e \\
&e.a \\
&\emptyset \\
&[e] \\
&e \uplus e \\
&\text{exec } x : \tau = e \text{ in } e \\
&\text{db}_t(t, \tau) \\
&\text{foreach}_{ \{ \leftarrow \rightarrow e \} } e \\
&\text{groupby}_{ \{ x \rightarrow e \} } e \\
&\text{do } e_{xp}[e] \\
&\text{return } e \\
&\tau_{\pi\sigma}(e) \\
&[e]_t
\end{align*}$$

Paths

$$p ::= .ap | /ap | e | /$$

Fig. 1. Language Syntax

<table>
<thead>
<tr>
<th>Expressions</th>
<th>e, c ::=</th>
</tr>
</thead>
<tbody>
<tr>
<td>num</td>
<td></td>
</tr>
<tr>
<td>bool</td>
<td></td>
</tr>
<tr>
<td>string</td>
<td></td>
</tr>
<tr>
<td>date</td>
<td></td>
</tr>
<tr>
<td>$e \op \ e'$</td>
<td></td>
</tr>
<tr>
<td>$\lambda x: \tau.e$</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>$(a = e)$</td>
<td></td>
</tr>
<tr>
<td>$e \oplus e$</td>
<td></td>
</tr>
<tr>
<td>$e.a$</td>
<td></td>
</tr>
<tr>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>$[e]$</td>
<td></td>
</tr>
<tr>
<td>$e \uplus e$</td>
<td></td>
</tr>
<tr>
<td>$\text{exec } x : \tau = e \text{ in } e$</td>
<td></td>
</tr>
<tr>
<td>$\text{db}_t(t, \tau)$</td>
<td></td>
</tr>
<tr>
<td>$\text{foreach}_{ { \leftarrow \rightarrow e } } e$</td>
<td></td>
</tr>
<tr>
<td>$\text{groupby}_{ { x \rightarrow e } } e$</td>
<td></td>
</tr>
<tr>
<td>$\text{do } e_{xp}[e]$</td>
<td></td>
</tr>
<tr>
<td>$\text{return } e$</td>
<td></td>
</tr>
<tr>
<td>$\tau_{\pi\sigma}(e)$</td>
<td></td>
</tr>
<tr>
<td>$[e]_t$</td>
<td></td>
</tr>
</tbody>
</table>
We introduce expressions that represent queries on parameterized data sources \(\text{db}_\ell(t, e)\). There is a general iteration operation, of the form \(\text{foreach} \{ x \gets e \} e'\), over a set of joined inner queries \(\tau\), with cursors \(\pi\), and filtered by a condition \(\sigma\). We introduce an operation, of the form \(\text{groupby} \{ x \gets e \} e\), that groups the results of an inner query \(e\) by a set of computed criteria \(\sigma = \pi\) where the label to access the details of each group is also given \(\ell\). This operation corresponds to the specification of nested query results, regardless of the underlying support. Cursor \(x\) is bound in expressions \(e\). We also include an explicit projection operation \(\tau \pi \sigma(e)\), from type \(\sigma\) to type \(\tau\) that is defined for expressions yielding record or list values. Finally, expression \([e]_\ell\) represents the remote evaluation of a query expression \(e\) in a location \(\ell\). In this section we freely use types \(\tau\) and locations \(\ell\) that will be formally introduced in sections 5 and 6, respectively.

In order to manipulate and transform structured nested data, we introduce a general purpose operation that operates deep in the nested query results. The operation, of the form \(\text{do } e \downarrow p \{ e' \}\), applies the abstraction denoted by expression \(e\) to the fragments of the resulting values of query \(e'\) identified by path \(p\). The so called “at” operation allows in-place modification of parts of nested results, by iterating or filtering them, joining them with other data-sources, or grouping them with local criteria. We define queries as logically separated values, that can be gradually composed (cf. staged computations (Davies & Pfenning, 2001)) by query operations, and whose base constructors have the form \(\text{return } e\) and \(\text{db}_\ell(t, e)\), and where expression \(\text{exec } x : \tau = e\) in \(e'\) represents the execution of the query denoted by \(e\), having a usage type \(\tau\), binding its results to \(x\) in \(e'\). We write \(\text{run } e\) to abbreviate \(\text{exec } x : \tau = e\) in \(x\).

3 Example

To illustrate and motivate the language semantics, we use the running example below. Consider a mobile application that organizes the daily job of field technicians in a telecom company. Its core data is stored in two separate cloud based relational databases named SALESDB and SAP, as depicted in Figures 2, 3, and 4, and whose schemas are as follows:

- **Team**: \(\tau_t\) where \(\tau_t = \langle id: \text{num}, name: \text{string} \rangle\)
- **Job**: \(\tau_j\) where \(\tau_j = \langle id: \text{num}, title: \text{string}, teamId: \text{num}, clientId: \text{num}, date: \text{date}, time: \text{num} \rangle\)
- **Client**: \(\tau_c\) where \(\tau_c = \langle id: \text{num}, name: \text{string}, address: \text{string} \rangle\)

The system also uses a geolocation web service, named GEO, to obtain the GPS coordinates for a given street address, which is specified by the following function type:

- **Coords**: string \(\rightarrow\) \(\tau_L\) where \(\tau_L = \langle lat: \text{num}, lng: \text{num} \rangle\)

A developer needs to know the tasks assigned to a team in a given date, e.g., May 8. So, she gradually builds a query. The first step is to join the tables **Team**, **Job**, and **Client**,
Nested Data Manipulation in Distributed and Heterogeneous Environments

teams = $\text{db}_{\text{SALESDB}}(\text{Team})$

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alpha</td>
</tr>
<tr>
<td>2</td>
<td>Bravo</td>
</tr>
<tr>
<td>3</td>
<td>Charlie</td>
</tr>
</tbody>
</table>

Fig. 2. Teams - SALESDB

jobs = $\text{db}_{\text{SALESDB}}(\text{Job})$

<table>
<thead>
<tr>
<th>id</th>
<th>title</th>
<th>teamId</th>
<th>clientId</th>
<th>date</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Check WiFi</td>
<td>1</td>
<td>2</td>
<td>8/5</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Replace phone</td>
<td>1</td>
<td>3</td>
<td>8/5</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Setup TV</td>
<td>2</td>
<td>1</td>
<td>8/5</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Install router</td>
<td>1</td>
<td>4</td>
<td>8/5</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Replace cable</td>
<td>3</td>
<td>4</td>
<td>10/5</td>
<td>9</td>
</tr>
</tbody>
</table>

Fig. 3. Jobs - SALESDB

Figure 5, using a foreach expression, a basic filter, and record constructs.

\[
\text{work} = \text{foreach}_{t.i.d=j.t.id \land j.j.clientId=c.i.id \land j.j.date=8/5} \left\{ \begin{array}{c}
 t \leftarrow \text{teams}, \\
 j \leftarrow \text{jobs}, \\
 c \leftarrow \text{clients}
\end{array} \right\}
\]

\[
\langle \text{team} = t, \ \text{job} = j, \ \text{client} = c \rangle
\]

Next, the developer groups the results by team’s name, with a groupby operation, Figure 6. The result is a nested collection of records, each containing a team’s name, and a list of records (job, team, and client).

\[
\text{workByTeam} = \text{groupby}_{\text{name}=x.i.team.name} \left\{ x \leftarrow \text{work} \right\}
\]

In our example, we still need the GPS coordinates of each client’s address. To obtain them, we call the Coords web-service for each one of the addresses, by modifying the current query with an in-place operation using path $/\text{details}$. See Figure 7 for the data resulting from

\[
\text{addLoc} = \lambda x. \text{foreach} \left\{ y \leftarrow x \right\}
\]

\[
(y \oplus \langle \text{loc} = \text{run} \text{db}_{\text{GEO}}(\text{Coords}, y.i.client.address) \rangle)
\]

\[
\text{withLoc} = \text{do} \ \text{addLoc}_{/\text{details}} \left\{ \text{workByTeam} \right\}
\]

Our approach is suited to a scenario of a visual manipulation language where a user interface can be designed to naturally define “at” operations, by pointing to the displayed data. It is also useful in an incremental query composition environment where the original data is originally nested, via other queries or web services, and the developer writes refinements over existing queries, in opposition to modify the initial query to include the new column.
clients = dbSAP(Client)

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Helen</td>
<td>75 Globe Road, London</td>
</tr>
<tr>
<td>2</td>
<td>Ive</td>
<td>58 Pitfold Road, London</td>
</tr>
<tr>
<td>3</td>
<td>James</td>
<td>4 Dean’s Court, London</td>
</tr>
<tr>
<td>4</td>
<td>Lewis</td>
<td>25 Ebury Bridge Road, London</td>
</tr>
</tbody>
</table>

Fig. 4. Clients - SAP

work = \(\forall t.t.id = j.teamId \land j.clientId = c.id \land j.date = 8/5\) \{ t ← teams, j ← jobs, c ← clients \}

\(\langle \text{team} = t, \text{job} = j, \text{client} = c \rangle\)

Fig. 5. Work assignment for May 8

Given the complete, expanded query

\[
\text{do}_{\text{details}} \left(\lambda x. \text{foreach} \{ y ← x \} \{ y \odot (\text{loc} = \text{run dbGEO}(\text{Coords}, y \cdot \text{client.address})) \} \right)
\]

\[
\{ \text{groupby} name = x \cdot \text{team.name} \{ x ← \text{foreach} t.t.id = j.teamId \land j.clientId = c.id \land j.date = 8/5 \{ t ← \text{dbSALESDB}(\text{Team}), j ← \text{dbSALESDB}(\text{Job}), c ← \text{dbSAP}(\text{Client}) \} \} \}
\]

the best way to orchestrate this query is to dispatch the join between the Team and Job tables to the SALESDB database server running SQL, while the join with the Client table needs to be done in memory since the data comes from location SAP, a different database server. The Coords web-service must also be called in memory. Moreover, we aim at using (typing) information about the concrete usage of data. For instance, if a given client application is not using the GPS coordinates, the call to the Coords web service can be safely discarded and a significant amount of processing time can be spared.

In the following sections we define the semantics of the language, and the corresponding typing relation.

4 Semantics of \(\lambda_{\text{CDL}}\)

The operational semantics for \(\lambda_{\text{CDL}}\) is defined by a big-step relation on expressions with relation to a state \(\mathcal{S}\), representing referred data repositories. We write \(\{e\}\) to denote
Nested Data Manipulation in Distributed and Heterogeneous Environments

\[\text{workByTeam} = \text{groupby}_{n \text{name}=x} \{ x \leftarrow \text{work} \} \]

<table>
<thead>
<tr>
<th>name</th>
<th>team</th>
<th>job</th>
<th>client</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>id title</td>
<td>clientId</td>
</tr>
<tr>
<td>Alpha</td>
<td>...</td>
<td>1</td>
<td>Check WiFi</td>
</tr>
<tr>
<td>Alpha</td>
<td>...</td>
<td>2</td>
<td>Replace phone</td>
</tr>
<tr>
<td>Alpha</td>
<td>...</td>
<td>4</td>
<td>Install router</td>
</tr>
<tr>
<td>Bravo</td>
<td>...</td>
<td>3</td>
<td>Setup TV</td>
</tr>
</tbody>
</table>

Fig. 6. Group by team’s name

\[\text{withLoc} = \text{do} \ \text{addLoc}_{v / \text{details}} \{ \text{workByTeam} \} \ \text{where} \]
\[\text{addLoc} = \lambda x. \text{foreach} \{ y \leftarrow x \} \ (y \oplus \langle \text{loc} = \text{run dbGeo}(\text{Coords}, y.\text{client.address}) \rangle) \]

<table>
<thead>
<tr>
<th>name</th>
<th>team</th>
<th>job</th>
<th>client</th>
<th>loc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>clientId</td>
<td>id</td>
<td>name</td>
</tr>
<tr>
<td>Alpha</td>
<td>...</td>
<td>2</td>
<td>...</td>
<td>2</td>
</tr>
<tr>
<td>Alpha</td>
<td>...</td>
<td>3</td>
<td>...</td>
<td>3</td>
</tr>
<tr>
<td>Alpha</td>
<td>...</td>
<td>4</td>
<td>...</td>
<td>4</td>
</tr>
<tr>
<td>Bravo</td>
<td>...</td>
<td>1</td>
<td>...</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 7. Get address coordinates

the computed value of an expression \(e \), defined by the grammar in Figure 8, and define it using the cases in Figures 9 and 10. The evaluation of query expressions corresponds to the staging of queries, that are afterwards executed with relation to the given state, by means of an exec expression. In our scenario, this corresponds to executing queries in remote database systems. We use sets (\{\(e \)\}) and multi-sets ([\(e \)]), with list comprehension notation, as the basis to define the semantics of executing query values \(r \), by the relation \(J_r \), defined in Figure 11. Our approach is inspired by works like (Buneman et al., 1994; Buneman et al., 1995; Jones & Wadler, 2007; Cheney et al., 2014).

The call-by-value semantics of expressions is straightforwardly defined in the structure of the expressions in most of the cases, hence we avoid a detailed explanation. Instead, we describe the cases of non-standard constructs. For instance, we resort to a native definition of the semantics for predefined operations (op). For instance, in the case of a projection operation, the base cases are defined on record values, by removing the fields filtered out, and the projection operator commutes with all other operators like abstraction and list construction. Notice that a projection operation is only meaningful if the resulting type is strictly a supertype of the source type. Moreover, note that if a projection operation is applied to a query, it is staged and thus promoted to a query value itself. In the case of expression exec \(x : \tau = e \) in \(e' \), it first evaluates (stages) the query value denoted by \(e \), and proceeds with the evaluation of \(e' \) binding \(x \) to the results of the query (cf. Davies &
Values
\[u, v ::= \lambda x \cdot e \]
\[\emptyset \]
\[|v| \]
\[v \sqcup v \]
\[\text{num} \]
\[\text{bool} \]
\[\text{string} \]
\[\text{date} \]
\[r \]

Query values
\[r, s ::= \text{db}_t(r, s) \]
\[\text{foreach}_c \{ x \leftarrow r \} \]
\[\text{do} (\lambda x \cdot e) \downarrow p \{ r \} \]
\[\text{return} v \]
\[\tau \pi \sigma (r) \]
\[|r| \]

Fig. 8. Language Values

\[\langle v \rangle = v \]
\[\langle e \circ e' \rangle = \langle e \rangle \circ \langle e' \rangle \]
\[\langle e \circ e' \rangle = \langle e'' \{ \tau \} \rangle \]
\[\langle \lambda x \cdot e \rangle = \langle a = \langle e \rangle \rangle \]
\[\langle e.a \rangle = \nu \]
\[\langle e \circ e' \rangle = \langle \theta = v, b = u \rangle \]
\[\langle e \circ e' \rangle = \{ v/\theta \} \{ e' \} \]

\[\tau^\sigma \pi^\sigma \circ (\emptyset) = \emptyset \]
\[\tau^\sigma \pi^\sigma (\emptyset) = \emptyset \]
\[\tau^\sigma \pi^\sigma (u \sqcup v) = \tau^\sigma \pi^\sigma (u) \sqcup \tau^\sigma \pi^\sigma (v) \]
\[\tau^\sigma \pi^\sigma (e) = \{ \tau^\sigma \pi^\sigma (e) \} \]
\[\langle \text{exec} x = e \text{ in } e' \rangle = \langle e' \{ x \} \rangle \]

Fig. 9. Operational semantics for expressions

Pfenning, 2001)). This is an extension point of the language that we use to introduce the typed compilation procedure, that transforms queries before actually executing them.

Query expressions are interpreted at the top-level as to evaluate their inner expressions that represent queries, producing query values (Figure 10). The semantics of executing query values (Figure 11), states that a data source invocation (\text{db}_t(t, r)) is represented by
Nested Data Manipulation in Distributed and Heterogeneous Environments

\[\langle \text{db}_i(t, \pi) \rangle = \text{db}_i(t, \{e\}) \]

\[\langle \text{foreach}_v \{ x \mapsto r \} e' \rangle = \text{foreach}_v \{ x \mapsto \{e\} \} e' \]

\[\langle \text{groupby}_b \{ x \mapsto e' \} \rangle = \text{groupby}_b \{ x \mapsto \{e\} \} \]

\[\langle \text{do } e_{ip}\{e'\} \rangle = \text{do } e_{ip}\{\{e'\}\} \]

\[\langle \text{return } e \rangle = \text{return } \{e\} \]

\[\langle \{e\} \rangle = \{e\} \]

Fig. 10. Operational semantics for query expressions

\[[\text{db}_i(t, \pi)] = (\mathcal{O}(t))(\pi) \]

\[[\text{foreach}_v \{ x \mapsto r \} e] = [e(\mathcal{O}_x) | u \in [r], e(\mathcal{O}_x)] \]

\[[\text{groupby}_b \{ x \mapsto e \}] = [k \oplus b = \text{details}_k \mid k \in \text{keys} \]

where

\[\text{keys} = \{ (u = e_u(\mathcal{O}_x)) \mid u \in [r] \} \]

\[\text{details}_k = [u \mid u \in [r], (u = e_u(\mathcal{O}_x)) = k] \]

\[[\text{do } e_{ip}\{e'\}] = \text{run}(e(\text{return } [r])) \]

\[[\text{do } e_{ij}\{e\}] = \text{run}(e(\text{return } u)) \mid u \in [r] \]

\[[\text{do } e_{ij}\{e\}] = ([a = \text{do } e_{ip}\{\text{return } u\}], b = v) \]

where

\[[r] = (a = u, b = v) \]

\[[\text{do } e_{ij}\{e\}] = (a = [\text{do } e_{ip}\{\text{return } u\}], b = v) \mid (a = u, b = v) \in [r] \]

\[[\mathcal{O}(\pi') \mid r] = (\mathcal{O}(\pi')([r])) \]

\[[r] = [r] \]

Fig. 11. Operational semantics for query values

directly accessing state \(\mathcal{O} \), and calling the data source end point with the given parameters. This general model using sources with parameters allows the representation of both web-services that require parameters, and database tables which do not. The execution of an iteration expression (foreach) includes joining the results of inner queries, and then producing and filtering a value for each tuple. Group operations (groupby) compute the unique values given by the grouping criteria (i.e. the keys), and use them to produce a nested structure, which pairs each key with a details field containing all the original values that are grouped under it.

The semantics of operations of the form \(\text{do } e_{ip}\{r\} \), is defined by case analysis of the path given. In the case of the empty path, it is mapped onto applying the abstraction denoted by expression \(e \) to the results of query \(r \). The case where the path is \(/ \), corresponds to a map operation, applying the abstraction for each of the elements in the collection. The remaining cases of \(.ap \) and \(/ap \) navigate in the structure of the target value, and apply the operation.
5 Typing

In order to typecheck λ
CDL expressions, we define the following type language,

$$\tau, \sigma ::= \text{num} | \text{bool} | \text{string} | \text{date} | \langle a : \tau \rangle | \tau^* | \tau \rightarrow \sigma | Q(\tau)$$

that includes basic types for integer numbers, strings, and dates, to match our running example. We follow standard lines to type abstractions, records, and multisets, and a existing typing for predefined operations. The type system describes query values, whose result is of type τ, by using a special type Q(τ). Recall that the query resulting data is obtained by the explicit evaluation of the query expression in a exec expression, by rule (EXEC).

We define the typing relation for λ
CDL, expressed by the judgment $\Delta \vdash e : \tau$, by the rules in Figure 12. We omit the rules that are standard from the body of the paper, and present the full type system in appendix A. Rules for the functional fragment of the language are quite standard, and are combined with rules for query expressions, projection and remote execution of expressions. Rule (SOURCE) ensures that all data sources are properly accessed, according to the function type signature given by the typing environment Δ. The expression is typed as a query that returns the prescribed type in the function signature. Select expressions, in rule (SELECT), are typed so that cursors, representing elements of the results of inner queries, and that conditions and select expression are well typed. Also, in group expressions, rule (GROUP), the inner query must be well typed and the group criteria expressions given the corresponding cursor type. Return expressions are typed so that any value can be used as a query, rule (RETURN). Rule (AT) types an operation that is applied, in-place, deep in the structure of a query. The definition below, of a type transformation given a path, follows the structure of the type, matches the type at the end of a path, and applies the corresponding type transformation in-place. The operation applies a query transformation operation, of type $\mathbb{Q}(\tau) \rightarrow \mathbb{Q}(\sigma)$, and the operation on types $\tau_p^{\sigma / \nu}$, validates and transforms the necessary “deep” transformation of the target query.

Definition 5.1 (Type at)

$$\tau_{le}^{\sigma / \tau} = \sigma$$

$$\tau_{\nu / (\sigma / \tau)} = \sigma^*$$

$$(a : \tau) \oplus (a : \tau)_{\sigma / \nu} = ((a : \tau_p^{\sigma / \nu}) \oplus \sigma)$$

$$(a : \tau) \oplus (a : \tau)_{\sigma / \nu} = ((a : \tau_p^{\sigma / \nu}) \oplus \sigma)^*$$

The typing of the query execution expression, rule (EXEC), checks that a query is executed and used according to the expression’s type annotation, representing the actual usage of the results. The (PROJECT) rule checks that a projection is only performed when the subtyping relationship is guaranteed. Finally, the remote execution of expressions, rule (REMOTE), simply checks that the remotely executed (sub) expression is well typed.

Subtyping We also consider the universal (transitive) subtyping relation for function, record, queries, and lists, introduced in typing by means of rule (SUB).
Nested Data Manipulation in Distributed and Heterogeneous Environments

\[
\frac{\Delta \vdash e_i : \tau_i \quad i = 1..n}{\Delta, \tau : \exists \vdash \tau : \text{db}(t, \tau) : \mathcal{D}(\tau)} \quad \text{(SOURCE)}
\]

\[
\frac{\Delta \vdash e_i : \mathcal{D}(\tau_i) \quad i = 1..n}{\Delta, \tau : \exists \vdash \tau : \text{foreach} \{ x \vdash e_i : \sigma_i \quad i = 1..n \} \mathcal{D}(\tau_i)} \quad \text{(GROUP)}
\]

\[
\frac{\Delta \vdash e : \tau}{\Delta \vdash \text{return} e : \mathcal{D}(\tau)} \quad \frac{\Delta \vdash e : \mathcal{D}(\tau) \quad \Delta \vdash \sigma \leq \sigma'}{\Delta \vdash \text{exec} x : \sigma \leftarrow e : \tau} \quad \frac{\Delta \vdash \mathcal{D}(\tau)}{\Delta \vdash \mathcal{D}(\tau')}
\]

\[
\frac{\Delta \vdash e : \mathcal{D}(\sigma') \quad \sigma' \leq \sigma \quad \Delta, x : \sigma \vdash e' : \tau}{\Delta \vdash e : \mathcal{D}(\sigma')} \quad \frac{\Delta \vdash e : \mathcal{D}(\sigma') \quad \Delta \vdash \mathcal{D}(\tau) \quad \Delta \vdash \mathcal{D}(\tau')}{\Delta \vdash e : \mathcal{D}(\tau')}
\]

\[
\frac{\Delta \vdash e : \mathcal{D}(\tau) \quad \Delta \vdash \mathcal{D}(\tau')}{\Delta \vdash \mathcal{D}(\tau) \leq \mathcal{D}(\tau')}
\]

Fig. 12. Typing relation (Selected rules)

\[
\tau \leq \tau' \quad i = 1..n \quad \frac{\tau_i \leq \tau_i'}{\langle \tau_i, \tau_i' \rangle \leq \langle \tau_i, \tau_i' \rangle}
\]

A standard property of the system that is derived from the type system is the weakening property (both width and depth).

Lemma 5.1 (Weakening)

If \(\Delta \vdash e : \tau \) then \(\Delta' \vdash e : \tau \) with \(\Delta' \leq \Delta \) and \(\Delta, x : \sigma \vdash e : \tau \) where \(x \notin \text{FV}(e) \)

We write \(\Delta' \leq \Delta \) to mean that \(\text{Dom}(\Delta') = \text{Dom}(\Delta) \) and \(\forall x : \text{Dom}(\Delta) : \Delta'(x) \leq \Delta(x) \)

Proof. The proof follows by induction on the derivation of the typing relation, and having in mind that the in-place substitution in types is covariant in rule (AT), and using the transitivity of subtyping in rules (EXEC) and (PROJECT).

Lemma 5.2 (Type-At is Covariant)

if \(\tau \leq \sigma \) and \(\delta' \leq \delta'' \) then \(\tau_{\delta'} \{ \delta'/\delta \} \leq \sigma_{\delta'} \{ \delta'/\delta \} \)

Proof. According to the Definition 5.1, the substitution occurs only on positive positions, thus the covariance is proved by induction on the definition.

We prove the soundness to the typing relation with relation to the operational semantics following standard lines, in Theorem 5.1.

Theorem 5.1 (Type preservation)

1. If \(\Delta \vdash e : \tau \) and \(\{ e \} = \nu \) then \(\Delta \vdash \nu : \tau' \) with \(\tau' \leq \tau \).

2. If \(\Delta \vdash r : \mathcal{D}(\tau) \) and \(\{ r \} = \nu \) then \(\Delta \vdash \nu : \tau' \) with \(\tau' \leq \tau \).

Proof. The proof follows by induction on the typing and type transformation definitions, and supports the usual properties of absence of runtime errors for terminating expressions. See appendix B for the detailed proof.
Example Let $\Delta = \{\text{Team} : \tau_T^*, \text{Job} : \tau_J^*, \text{Client} : \tau_C^*, \text{Coords} : \text{string} \rightarrow \tau_L\}$, with τ_T, τ_J, τ_C, and τ_L as defined in section 3. Then, for the queries in figures 2 to 7, we have:

- $\Delta \vdash \text{teams} : \mathcal{D}(\tau_T^*)$
- $\Delta \vdash \text{jobs} : \mathcal{D}(\tau_J^*)$
- $\Delta \vdash \text{clients} : \mathcal{D}(\tau_C^*)$
- $\Delta \vdash \text{work} : \mathcal{D}((\text{team} : \tau_T, \text{job} : \tau_J, \text{client} : \tau_C)^*)$
- $\Delta \vdash \text{workByTeam} : \mathcal{D}((\text{name} : \text{string}, \text{details} : (\text{team} : \tau_T, \text{job} : \tau_J, \text{client} : \tau_C)^*)^*)$
- $\Delta \vdash \text{withLoc} : \mathcal{D}((\text{name} : \text{string}, \text{details} : (\text{team} : \tau_T, \text{job} : \tau_J, \text{client} : \tau_C, \text{loc} : \tau_L)^*)^*)$

6 Localization

Optimizations are a well-known problem in relational databases, with many variants (Silberschatz et al., 2006) that shape the execution plan in order to optimize the usage of memory and CPU time. In a distributed and heterogeneous setting, the criteria to optimize a query’s execution plan are somewhat different. The way different data sources are interplayed can shorten the execution time of a query in a significant way because the determining factor is no longer memory usage and CPU time, but the amount of data that is interchanged through the network (Taylor, 2010), the number of locations visited, and the native capabilities used on each database system or data repository.

We next extend the data manipulation language introduced in section 2 with a location and type based transformation process for queries. Queries are transformed in such a way that subexpressions are grouped to be shipped to remote locations, and executed in the most efficient way possible. We use knowledge about the capabilities of each remote site (Papakonstantinou et al., 1998), in order to place the operations as close as possible to the origin of the data. The parts of a query that can be computed remotely are grouped and dispatched, and an in-memory post-processing phase is generated to complete the job, in the starter location. We leverage not only on the locations of data sources, but also on the actual usage of data, which is expressed as type information. The transformation process prunes the query tree, to avoid fetching unnecessary data, and eliminates all remote invocations that have impact on the processing time but do not influence the query result. We divide the compilation process into the use of type information to prune parts of the query and the eager localization of the query components. For an optimized distributed execution we foresee that we can use orthogonal strategies to efficiently execute it (e.g. (Grade et al., 2013) and (Taylor, 2010)).

We improve and refine the process presented in (Seco et al., 2015) and present a query transformation process consisting of three separate and orthogonal steps. The first phase corresponds to the pruning of the query expression based on the result usage type. The process takes as input a query expression and the corresponding usage type and recursively transforms it by either erasing unnecessary subexpressions or explicitly inserting projection expressions in the query code. The second phase of the process is based on a rewriting system on expressions. Each (sub)expression node in a query is annotated with a location such that the whole expression is executable in the starting location. The rewriting process then refines the location of expression nodes based on their intrinsic capabilities and the
locations assigned to its children nodes. We prove that the rewriting function is monotone, and hence the process stops when a fixed point is reached. This phase uses a special representation and organization of select query binders, so that binders and conditions can be grouped according to their intrinsic locations. Finally, the third phase of our transformation process is designed to explicitly produce located query code, by introducing remote calls when needed and expanding groups of binders into located sub-queries.

One important aspect on our setting is that it does not change the structure of the query, it is based solely only on the location of subexpressions. Standard use of a cost model may lead to further optimizations in the execution of query fragments in remote nodes.

6.1 Phase I: Usage based projection

The first step of our compilation process consists on recursively transforming query expressions, by inserting explicit projection operations, and trimming record construction operations to adjust them to the actual usage type. We define a projection relation, represented by the judgment,

$$\Delta; \Gamma \vdash e : \tau \Rightarrow e' : \sigma$$

that denotes the transformation of expression e to expression e', based on the expression type τ, the actual usage type σ, the typing environment Δ that maps all free variables of e to their type, and the usage typing environment Γ that maps all free variables in e' to their actual usage. Algorithmically, the rules should be read as if the typing environment Δ, type τ and usage type σ are given as input, and the algorithm’s outputs are the transformed expression e' and its usage typing environment Γ.

Definition 6.1 (Type Directed Projection)

We inductively define the type directed projection relation, written $\Delta; \Gamma \vdash e : \tau \Rightarrow e' : \sigma$, by the rules in Figures 13 and 14.

The obvious soundness invariant in the projection relation, is that the expression type τ is a subtype of its possible usages σ. This is expressed and verified by the soundness Lemma 6.1 below. Notice that for all basic values, rules ($\pi - \text{NUM}$), ($\pi - \text{BOOL}$), ($\pi - \text{DATE}$), ($\pi - \text{STRING}$), types and expressions are not changed. In the case of identifiers, a projection operation is introduced, only if the types strictly differ, rules ($\pi - \text{ID}$) and ($\pi - \text{ID-SUB}$). Recall that the projection operation is also defined for abstraction values and corresponds to projecting its resulting value, Figure 9. In the case of function literals, the projection is expanded to the function body. The case of record literal expressions, the filtered out field expressions are simply omitted (since we are in a purely functional setting), rule ($\pi - \text{RECORD}$), while the case for concatenation of records splits the required usage between both its record expressions, rule ($\pi - \text{CONCAT}$). Notice that $\tau \oplus \sigma$ denotes the concatenation of disjoint record types, in the same lines of record values concatenation. List construction and concatenation result directly from the type directed projection of their sub-expressions, by rules ($\pi - \text{SINGLETON}$) and ($\pi - \text{APPEND}$).

Query expressions are recursively transformed according to the usage type, and projections are inserted when no transformation is possible or the inner query results are needed for the current operation. For instance, in rule ($\pi - \text{SOURCE}$), a projection is always inserted, although it can be compiled to code when transformed into native query code.
Rule (π-SELECT) propagates the usage of the results to the select expression and the usage of the cursors in conditions and the select expression to the inner queries. Notice that some rules include subtyping constraints that help shaping the projection operations inserted in the resulting expression. Algorithmically, some of these restrictions have to be interpreted as finding the nearest supertype that satisfies the condition. For instance, in rule (π-SELECT), the type δ is the greatest supertype that satisfies all conditions. In all cases, the environment is the output of the algorithm, denoting the usage type of all free variables of the expression being transformed.

In rule (π-GROUP), the usage of attributes is not changed to avoid interfering with the groupby results, hence an explicit projection must be used. The usage type of an “at” operation, in rule (π-DO), influences both the abstraction being applied as well as the target query. Given the application path and the full usage type, we are able to decompose it and determine the desired return type for the abstraction, and infer the usage type of the target query. This is a rule whose implementation is not direct and requires type inference reasoning to reach a final projection of the code. Rule (π-EXEC) must use the annotated type as guide for the usage, the compliance of both query and continuation expressions is given by the relation invariant. Technically, a stronger result of typing environment contraction is needed to drop the annotation in the expression.

Lemma 6.1 (Type Preservation - Phase I)
If $\Delta; \Gamma \vdash e: \tau \Rightarrow e': \sigma$ then $\tau \leq \sigma$, $\Delta \leq \Gamma$, and $\Delta \vdash e': \sigma$.

Proof. We prove this result by simple induction on the size of the derivations and using subsumption in the cases where a common supertype is needed. See the detailed proof in appendix B. □

Lemma 6.2 (Semantic Preservation - Phase I)
If $\Delta; \Gamma \vdash e: \tau \Rightarrow e': \sigma$ then $\sigma \pi^*(\langle\langle e\rangle\rangle) = \langle\langle e'\rangle\rangle$.

Proof. Many cases are solved by simple induction on the size of the derivation, while the cases where an explicit projection operation is inserted, the result is reached by the definition of the semantics of the projection operation. □

Example Recall the query withLoc from section 3

```plaintext
addLoc = \lambda x.\text{foreach } \{ y \leftarrow x \}
\hspace{1em} (y \oplus \{loc = \text{run db}_\text{GEO}(\text{Coords}, y.client.address)\})

withLoc = do addLoc\_\text{\_\_\_details}\{\text{workByTeam}\}
```

In section 5 we’ve determined its type to be $\mathcal{D}(\tau^*)$, with

$\tau = \langle\text{name: string, details: } \tau_d^*\rangle$

$\tau_d = \langle\text{team: } \tau_T, \text{job: } \tau_J, \text{client: } \tau_C, \text{loc: } \tau_L\rangle$

Consider an usage of this query where we don’t the need the GEO location information, i.e., let the actual usage type be $\mathcal{D}(\sigma^*)$, with

$\sigma = \langle\text{name: string, details: } \sigma_d^*\rangle$

$\sigma_d = \langle\text{team: } \tau_T, \text{job: } \tau_J, \text{client: } \tau_C\rangle$
It is possible to observe that by (1) applying \((\pi-\text{NUM})\), \((\pi-\text{BOOL})\) and \((\pi-\text{DATE})\), then (2) \((\pi-\text{SELECT})\) and \((\pi-\text{ABSTRACTION})\), and finally (3) \((\pi-\text{GROUP})\) and \((\pi-\text{DO})\):

1) \(\Delta; \theta \vdash num : \text{Num} \Rightarrow num : \text{Num} \)
2) \(\Delta; \theta \vdash bool : \text{Bool} \Rightarrow bool : \text{Bool} \)
3) \(\Delta; \theta \vdash date : \text{Date} \Rightarrow date : \text{Date} \)
4) \(\Delta; \theta \vdash string : \text{String} \Rightarrow string : \text{String} \)

Fig. 13. Type Directed Projection transformation (I)

\(\Delta; \theta \vdash \tau; \theta, x : \tau \vdash x : \tau \Rightarrow x : \tau \) \hfill \((\pi-\text{ID})\)

\(\Delta; \theta \vdash \tau; \theta, x : \tau \vdash \tau \Rightarrow \tau' \pi\xi(x) : \tau' \quad \tau < \tau' \hfill \((\pi-\text{ID-SUB})\)

\(\Delta; \tau, \Delta, \xi \vdash e : \sigma \Rightarrow e' : \sigma' \quad (\pi-\text{ABSTRACTION})\)
\(\Delta, \tau \vdash e : \delta \Rightarrow \tau' : \sigma \quad (\pi-\text{APPLICATION})\)
\(\Delta, \tau \vdash (e e') : \delta \Rightarrow (e'' e'') : \sigma \quad (\pi-\text{APPLICATION})\)
\(\Delta, \tau \vdash e_1 : \sigma_1 \Rightarrow e'_1 : \sigma'_{i=1} \quad (\pi-\text{RECORD})\)
\(\Delta, \tau \vdash e_1 e_2 : \sigma_1 \sigma_2 \Rightarrow e'_1 e'_2 : \sigma'_{i=1} \quad (\pi-\text{CONCAT})\)
\(\Delta, \tau \vdash [e] : \tau' \Rightarrow [e'] : \sigma' \quad (\pi-\text{SINGLETON})\)
\(\Delta, \tau \vdash e_1 \uplus e_2 : \sigma_{i=1} \Rightarrow e'_1 \uplus e'_2 : \sigma'_{i=1} \quad (\pi-\text{APPEND})\)

where

\(\text{addLoc}' = \lambda x. \text{foreach} \{ y \leftarrow x \} \ y \uplus ()\)

\(\text{withLoc}' = \text{do addLoc}'_{/\text{details}} \{ \text{workByTeam} \} \)
João Costa Seco et al.

\[\Delta(t) = \overline{\sigma} \rightarrow \tau \quad \Delta; \Gamma \vdash e_i \colon \sigma \Rightarrow e'_i \colon \sigma \quad i = 1, n \quad \tau \leq \tau' \]
\[\Delta; \Gamma \vdash db_i(t, \tau) \colon \mathcal{D}(\tau) \Rightarrow \mathcal{D}(\tau) \pi \mathcal{D}(t_i)(\overline{db_i(t, \tau)}) \colon \mathcal{D}(\tau') \]
\[\Delta; \Gamma \vdash e_i \colon \mathcal{D}(\delta^{i}) \Rightarrow e'_i \colon \mathcal{D}(\delta^{m}) \quad i = 1, n \]
\[\Delta; x \vdash \delta; \Gamma, x : \delta \vdash c : \text{bool} \Rightarrow e' : \text{bool} \]
\[\Delta; \Gamma \vdash \text{foreach} \{x \leftarrow e\} e' : \mathcal{D}(\sigma^{*}) \Rightarrow \text{foreach} \{x \leftarrow e\} e'' : \mathcal{D}(\sigma^{m}) \]
\[\langle \overline{\pi \cdot \sigma}, b : \tau' \rangle \leq \delta \]
\[\Delta; \Gamma \vdash \text{groupby}^{\overline{\mathcal{D}}} \{x \leftarrow e\} e' : \mathcal{D}(\overline{\mathcal{D}^{*}}) \Rightarrow \mathcal{D}(\delta^{*}) \mathcal{D}(\overline{\mathcal{D}^{*}} \mathcal{D}(\overline{\mathcal{D}^{*}})) \{x \leftarrow e\} \Rightarrow \mathcal{D}(\delta) \]
\[\Delta; \Gamma \vdash \text{return} e : \mathcal{D}(\tau) \Rightarrow \text{return} e' : \mathcal{D}(\sigma) \]
\[\Delta; \Gamma \vdash e : \mathcal{D}(\tau') \Rightarrow \mathcal{D}(\sigma^{*}) \Rightarrow \mathcal{D}(\tau'') \Rightarrow \mathcal{D}(\sigma^{m}) \]
\[\Delta; \Gamma \vdash e' : \mathcal{D}(\tau) \Rightarrow e'' : \mathcal{D}(\delta^{*}) \Rightarrow \delta = \delta^{*}_{\text{exec}}(\tau' /_{\mathcal{D}^{*}}) \]
\[\Delta; \Gamma \vdash \text{do } e'_{\text{do}} : \mathcal{D}(\tau_{\text{do}}(\tau^{*} /_{\mathcal{D}^{*}})) \Rightarrow \text{do } e''_{\text{do}} : \mathcal{D}(\delta) \]
\[\Delta; \Gamma \vdash \text{exec } x : \sigma = e \Rightarrow e' : \tau \Rightarrow \text{exec } x : \sigma = e'' \Rightarrow e'' : \tau' \]

Fig. 14. Type Directed Projection transformation (II)

Note that addLoc is doing nothing. During compilation we can detect and omit patterns like these.

6.2 Phase II: Localization of expression nodes

The second phase of the localization and optimization process is responsible for assigning concrete locations to each of the query expression nodes. We assume a finite set of site locations \(\mathcal{S} \), and a lattice \((\mathcal{S} \cup \{ \top, \bot \}, \sqsubseteq) \). Location \(\top \) represents in-memory execution, where all query operations can be evaluated. Location \(\bot \) is assigned to expressions that can be computed or transported to any location (e.g. literals, identifiers, etc). We define the usual order relation between \(\bot \) and \(\top \) and all other locations

\[\forall \ell \in \mathcal{L} \cdot \ell \sqsubseteq \top \land \bot \sqsubseteq \ell \]

Since at this stage we are ignoring site delegation, all locations other than \(\bot \) and \(\top \), representing the different sites locations of the system, are kept unrelated. Comments about possible extension with delegation are spread along the technical parts of the paper, but not really taken into account in the results.

We consider also a set of predefined predicates to specify capabilities of locations. The truth value of the predicates is predetermined and immutable. The selection of predicates
used here is inspired on the concrete experience of developing a DSL (OutSystems, 2015) for data manipulation, and is adapted to the set of operations that is included in the language. We say that proposition \textit{can_group}(\ell) holds if the database engine running at location \(\ell\) is able to execute a \texttt{groupby} operation with aggregation of results, as in relational databases. Predicate \textit{can_nestgroups}(\ell) holds for locations (\(\ell\)) running database engines which have support for the nested grouping operations, i.e. return a query together with the details of its groups. This is the case of some NoSQL databases such as MongoDB. Predicate \textit{can_join}(\ell) states that the database repository at location \(\ell\) supports the joining of two (or more) sources given a condition, and \textit{can_iterate}(\ell) indicates that it supports the iteration of a list and the computing of a given expression on all elements of a query. Predicates \textit{can_lambda}(\ell) and \textit{can_call}(\ell) refer to the definition and use of abstractions. As for predicates \textit{can_createrecords}(\ell) refers to handling of record expressions, and \textit{can_createlists}(\ell) refers to handling of list expressions.

Notice that predefined functions can be encoded in native operations (op), each one with a different capability. For instance, SQL databases provide function \(\texttt{NOW}()\) and MongoDB provides specialized operators such as \$\texttt{near} to compare GPS coordinates. Common operations must be encoded in a single (abstract) operation and then compiled differently on each source. As an extra example, consider a classic REST interface, yielding a JSON object. None of the above predicates holds since the interface’s only capability is to return the data. The extension of this relation to a meta-level, between operations and locations, is out of the scope of this work, and will be pursued in the future.

We define location labeled expressions \(e_{\ell} \in E\), as an expression given by the syntax of Figure 1, but where each node is labeled with a location from \(L \cup \{\top, \bot\}\), and define a localization relation on labeled expressions by means of a rewriting system, as follows:

\textit{Definition 6.2 (Localization relation)}

We define the rewrite system \((E, \Rightarrow)\), to express the localization of location labeled expressions \(E\), by the rules in Figures 15 and 16.

The different rules of this rewriting system are designed to update the locations assigned to expressions, that indicate where they may or should be evaluated, according to each site capabilities and maximizing the query code discharged to the remote sites − without actually changing the query structure. Operations such as record concatenation and append are encoded in the case of op.

Literals are initially labeled with the location \(\bot\), meaning that they can be computed in any location. The remaining expression nodes are labeled with the \(\top\) location, which means that they can be evaluated in-memory. The rewrite system will converge to assign each expression with location \(\top\) a more specific evaluation location. The final locations are then used by the process phase III to produce located code. Data source expressions nodes are explicitly given location \(\ell\) in the expression syntax, even if the whole node containing argument expressions is given location \(\top\). The initial labeled expression is therefore \((\text{db}_{\ell}(t, \overline{e})_\top)\), where \(\top\) corresponds to the location where the computation of arguments should be performed, and location \(\ell\) corresponds only to the site where the
fetching of data occurs. Formally, the initial assignment of locations to expressions it is defined as follows

Definition 6.3 (Initial Labeling)

With the exception of identifiers (x), expressions with no sub-expressions are initially labeled with location \bot. The remaining expressions are assigned location \top. Binders in foreach expressions are initialized as ungrouped, and groups of binders are initialized for all locations in L with an empty set of binders and condition true_\bot.

In order to make our reasoning more precise, consider the following extra definitions on locations of expressions,

Definition 6.4 (Locations of Strict Sub-Expressions)

For any expression e, $L(e)$ denotes all the locations in strict sub-expressions of e. The particular case of $L(\text{db}(t,e))$ also includes the location t.

Definition 6.5 (Minimal Distribution)

A labeled expression e_m is **minimally distributed**, if all its strict sub-expressions are minimally distributed and $m \sqsubseteq \top$ implies that $m = \sqcap L(e)$.

Notice that our initial state for a location labeled expression is **minimally distributed**, according to Definition 6.5, as stated in Lemma 6.3, which is also an invariant of our rewriting system, stated in Lemma 6.5.

Lemma 6.3 (Minimally Distributed Initial Labeling)

Initially labeled expressions are minimally distributed.

Proof. Proven by induction on the expression structure and analysis of the two cases in Definition 6.3.

Notice that most rewriting rules in Figures 15 and 16 are of the form $e_m \leadsto e_m'$ where the final location m' is the least upper bound of all locations in strict subexpressions of e, written $\sqcap L(e)$, and restricted to extra conditions on the capabilities of the target site.
Nested Data Manipulation in Distributed and Heterogeneous Environments

\[(db_i(t, π))_m \leadsto (db_i(t, π))_{m'} \quad \text{(when } m' = \cap \mathcal{T} \cap \ell) \quad \text{(\textasciitilde{}SOURCE)}\]

\[\tau_{m'}^e(e_\ell) \leadsto \tau_{m'}^e(e_\ell) \quad \text{(when can_project(\ell))} \quad \text{(\textasciitilde{}PROJECT)}\]

\[(\text{return } e_\ell)_m \leadsto (\text{return } e_\ell)_\ell \quad \text{(\textasciitilde{}RETURN)}\]

\[\text{foreach}_{\ell / d} \left\{ x = e, (y = e', c')_\ell, (\bar{z} = \bar{e}', \bar{c}')_\ell \right\} \Rightarrow e \leadsto \text{foreach}_{\ell / d} \left\{ x = e, (y = e', c')_\ell, (\bar{z} = \bar{e}', \bar{c}')_\ell \right\} \Rightarrow e \quad \text{(when } \ell \subseteq \ell' \land \text{FV}(c) \subseteq \{\tau\} \land \text{can_iterate}(\ell')\) \quad \text{(\textasciitilde{}FILTER)}\]

\[\text{foreach}_{\ell / d} \left\{ w \leftarrow e_\ell, x = e, (y = e', c')_\ell, (\bar{z} = \bar{e}', \bar{c}')_\ell \right\} \Rightarrow e \leadsto \text{foreach}_{\ell / d} \left\{ w \leftarrow e_\ell, x = e, (y = e', c')_\ell, (\bar{z} = \bar{e}', \bar{c}')_\ell \right\} \Rightarrow e \quad \text{(when can_iterate}(\ell') \land (\text{can_join}(\ell') \lor |\{\tau, w\}| = 1)\) \quad \text{(\textasciitilde{}BINDER)}\]

\[\text{foreach}_{\ell / d} \left\{ \{ x = e_\ell, c_\ell \}_\ell \right\} \Rightarrow \text{foreach}_{\ell / d} \left\{ \{ x = e_\ell, c_\ell \}_\ell \right\} \Rightarrow e \quad \text{(when } \ell' = \ell \cap \ell' \cap \ell'' \land \text{can_iterate}(m') \land (\text{can_join}(m') \lor |\{\tau\}| = 1)\) \quad \text{(\textasciitilde{}SELECT)}\]

\[(\text{groupby}_b{\text{\overline{x = e'}}})_m \leadsto (\text{groupby}_b{\overline{x = e'}})_m \quad \text{(\textasciitilde{}GROUP-CURSOR)}\]

\[(\text{groupby}_b{\overline{x = e'}})_m \leadsto (\text{groupby}_b{\overline{x = e'}})_m \quad \text{(\textasciitilde{}GROUP)}\]

This evolution is the basis for our confluence and termination results. Notice for instance in rule (\textasciitilde{}Or) that if the chosen site \(m'\), where the operands can both be computed, has the capability to perform a certain operation, then the whole expression gets localized there. The same happens in all the rules in Figure 15. Notice that the old location is ignored on all steps of the rewriting process.

In the case of query expressions, Figure 16, we have that the location of a data source expression \((db_i(t, π))_m\) is given by the least upper bound of the data source location and its arguments \(\cap \mathcal{T} \cap \ell\), by rule (\textasciitilde{}SOURCE). This kind of rewriting rules propagates the locations of data sources from the expression leaves, up the abstract syntax tree, according
to the capabilities of remote sites. Rules (⇝PROJECT), (⇝SINGLETON) and (⇝RETURN) are particular cases of the pattern in Figure 15, propagating the location of the single inner expression directly to the top.

We have a special treatment for binders in foreach expressions, which we group according to the locations of inner queries. In rule (⇝BINDER) we encode the actual grouping of binders, while in rule (⇝FILTER) we distribute conditions according to the sources they use. We introduce a specialized and flexible labeling scheme for foreach expression binders (following the approach from [DBPL15]) that includes a partition of binders by location, and an association of boolean conditions — parts of the original condition in the conjunctive form — to each one of the binder partitions. Hence, a foreach expression takes the transient form

\[
\text{foreach}_c \left\{ y \leftarrow e, (x \leftarrow e_\ell, c)_\ell \right\} e
\]

where the ungrouped binders (\(\top\)) correspond to the binders in the \(\top\) location, and partitions contain sets of binders attached to conditions that only refer to the corresponding identifiers (\(\top\)). There are partitions for all locations in \(L\) (but not for \(\top\) or \(\bot\)), and whose initial state is an empty set of binders and condition \(\text{true}_{\bot}\).

The process of localizing subexpressions is incremental, hence the rules that group binders do not support delegation directly, based on the relation on locations in \(L\). For that to happen, the rules would have to join groups of binders, based on the delegation capabilities of their locations.

This transient form is compiled, in the third step in our query transformation process to:

\[
\text{foreach} \left\{ y \leftarrow e, z \leftarrow \text{foreach}_c \left\{ x \leftarrow e_\ell \right\} \langle x = x \rangle_\ell \right\} e \left[z \leftarrow z / x \right]
\]

Transforming a group of binders into a subquery, and adjusting both the conditions and select expression with explicit substitutions. This generalized form is easily encoded into the original language, but it technically helps us to prove the confluence of our definition up to equivalence of partitions (binders and conditions).

A fully localized binder list is captured by rule (⇝SELECT) provided that the appointed remote site has the capability to iterate and join data sources, and that the condition and select expression can also be transported there. The rules for groupby operations cover two possible cases, rule (⇝NESTING) is applied when the location has the capability of processing nested data, and rule (⇝GROUP) that covers the case of sites where the grouping operation does not provide nested buckets of detail rows. This means that we capture in the rule the pattern containing a projection.

Note that, since identifiers are initially located at \(\top\), the expressions where they are used are forced by the definition of the rewrite system into being located at \(\top\) as well. The rules (⇝GROUP-CURSOR) and (⇝BINDER) locate the uses of a specific cursor (from a groupby or foreach, respectively) to the location of the corresponding source, enabling the specific localization of the expressions using its identifier.

The soundness of our localization system is supported in a few formal results, that establish the soundness invariant (Definition 6.5) and the corresponding preservation throughout the rewriting process (Lemma 6.5). We then state and prove the confluence of the system.
Nested Data Manipulation in Distributed and Heterogeneous Environments

Some intermediate technical results about the rewriting relation are essential to prove the final result, which is confluence, Theorem 6.1.

Given the set of rules in Figures 15 and 16 and the auxiliary Lemma 6.4, we can prove the preservation of our soundness invariant. The confluence result is then built on the termination (Lemma 6.8) and local confluence (Lemma 6.9) of the rewriting relation when restricted to our invariant.

Lemma 6.4 (Fixed Distribution)
If \(e_m \) is minimally distributed, \(m \sqsubseteq \top \) and \(e_m \leadsto e_m' \), then \(m' = m \).

Proof. Proven by case analysis of the possible rewriting reductions, leveraging the fact that rules that change \(m \) don’t change \(e \), and are precisely those that have \(m' = \bigcap L(e') \). □

Lemma 6.5 (Preservation of Minimal Distribution)
If \(e_m \) is minimally distributed and \(e_m \leadsto e_m' \), then \(e_m' \) is minimally distributed.

Proof. Proven by induction on the expression structure and case analysis of the possible rewriting reductions. Rule (\(\leadsto \text{FILTER} \)) doesn’t change \(m \) and only moves its strict sub-expressions. Rules (\(\leadsto \text{BINDER} \)) and (\(\leadsto \text{GROUP-CURSOR} \)) are similar, but change the location of some sub-expressions to a necessarily lower one. In reductions where sub-expressions are changed, such as (\(\leadsto \text{GROUP} \)), we proceed by case analysis of \(m \), leveraging Lemma 6.4. In the remaining cases, minimal distribution is given directly by definition, as \(m' = \bigcap L(e) \).

\[\square \]

Corollary 6.1 (Transitive Preservation of Minimal Distribution)
If expression \(e_m \) is minimally distributed and \(e_m \leadsto^* e_m' \), then \(e_m' \) is minimally distributed.

Proof. Trivially by repeated application of Lemma 6.5.

\[\square \]

Lemma 6.6 (Well-Locatedness)
If \(e \) is minimally distributed, then \(\bigcap L(e) \subseteq \ell \).

Proof. Follows directly by case analysis of \(\ell \) and Definition 6.5.

\[\square \]

Lemma 6.7 (Location Monotonicity)
If expression \(e_m \) is minimally-distributed and \(e_m \leadsto e_m' \), then \(m' \sqsubseteq m \).

Proof. Follows directly by case analysis of \(m \) and Lemma 6.4.

\[\square \]

Lemma 6.8 (Termination)
The localization relation \(\leadsto \) is terminating for minimally distributed expressions.

Proof. Consider as induction measure the lexicographic order of the all linearized locations in an expression, the number of ungrouped binders in a foreach expression and its number of ungrouped conditions.

By Lemma 6.5, we know that for any minimally distributed expression \(e_m \), the derivation \(e_m \leadsto e_m' \) leads to another minimally distributed expression. By Lemma 6.6, we know then that \(\bigcap L(e') \subseteq m' \) and by Lemma 6.7 we know that \(m' \sqsubseteq m \). When applied, rules (\(\leadsto \text{OP} \)) to (\(\leadsto \text{RETURN} \)), (\(\leadsto \text{SELECT} \)), (\(\leadsto \text{NESTING} \)), and (\(\leadsto \text{GROUP} \)) have \(\bigcap L(e) \subseteq m' \) (or they are not applied at all). In the normal form \(\bigcap L(e) = m' \) or the site does not have the needed capabilities. In the case of rules (\(\leadsto \text{BINDER} \)) and (\(\leadsto \text{FILTER} \)), the distance measure stays
the same but the number of ungrouped binders or ungrouped conditions in the `foreach` expression decreases, respectively.

Lemma 6.9 (Local Confluence)

Relation \rightarrow is locally confluent for minimally distributed expressions: for any minimally distributed expressions e_ℓ, e_{ℓ_1} and e_{ℓ_2} such that $e_\ell \rightarrow e_{\ell_1}$ and $e_\ell \rightarrow e_{\ell_2}$, there exists an expression $e'_{\ell'}$ such that $e_{\ell_1} \rightarrow^* e'_{\ell'}$ and $e_{\ell_2} \rightarrow^* e'_{\ell'}$.

Proof. By case analysis of the initial expression e_ℓ and the possible e_{ℓ_1} and e_{ℓ_2} pairs.

We have to consider the particular cases of the (few) overlapping rewriting rules, but the remaining are proven using the same proof strategy. Overlapping rewritings by rules (\rightarrowGROUP), (\rightarrowGROUP-_CURSOR) and (\rightarrowNESTING) don’t change the expression structure, and localize the groupby expression at the exact same location. Contrary to (\rightarrowSELECT), Rules (\rightarrowBINDER) and (\rightarrowFILTER) both rewrite `foreach` expressions with ungrouped binders, but they commute as they move different sub-expressions (binders and conditions, respectively) to binder groups which are guaranteed to be unique per location.

Cases where e_{ℓ_1} and e_{ℓ_2} are obtained by reduction of independent sub-expressions commute, so its just a matter of rewriting the other sub-expression accordingly.

The remaining cases are simply proofs that reduction of the top-level expression commutes with the reduction of one of the sub-expressions in zero or more steps. Since all rewriting rules that change ℓ don’t change e, and forget it in favor of $\cap L(e)$, re-applying the top-level reduction after the sub-expression reduction ensures both converge. If the rewriting requires a specific capability, it is ensured by leveraging Lemma 6.4. For the full proof, check appendix B.

Theorem 6.1 (Confluence)

Relation \rightarrow is confluent for minimally distributed expressions.

Proof. By Lemma 6.5, we know that minimal distribution is preserved through reductions of \rightarrow. Since \rightarrow is both locally confluent (Lemma 6.9) and terminating (Lemma 6.8), by Newman’s Lemma (Newman, 1942) we can say that \rightarrow is confluent for minimally distributed expressions.

Example Recall the query work from Section 3

```
foreach(id=j.teamId ∧ clientId=c.id ∧ j.date=8/5) {
  t ← dbSALESDB(Team),
  j ← dbSALESDB(Job),
  c ← dbSAP(Client)
}
(team = t, job = j, client = c)
```

The localization of this query would begin by labeling it according to Definition 6.3.
Nested Data Manipulation in Distributed and Heterogeneous Environments

\[
\begin{align*}
\left(\text{foreach filter } \begin{cases}
 t \leftarrow \text{db}_{\text{SALESDB}}(\text{Team})_{\top}, \\
 j \leftarrow \text{db}_{\text{SALESDB}}(\text{Job})_{\top}, \\
 c \leftarrow \text{db}_{\text{SAP}}(\text{Client})_{\top}
\end{cases} \right) \text{ select }
\end{align*}
\]

where \(\text{filter} = (t_{\top}.id_{\top} = j_{\top}.teamId_{\top})_{\top} \)
\(\land (j_{\top}.clientId_{\top} = c_{\top}.id_{\top})_{\top} \)
\land (j_{\top}.date_{\top} = 8/5)_{\top} \)

\(\text{select} = \langle \text{team} = t_{\top}, \text{job} = j_{\top}, \text{client} = c_{\top} \rangle_{\top} \)

Since the initial location of all identifiers is \(\top \), repeated rewriting of both the foreach’s filter and its select expression would keep everything localized at \(\top \). Rewriting by applying rule (\(\text{\rightarrow SOURCE} \)), however, would locate all the \text{db} expressions in their respective locations.

\[
\begin{align*}
\left(\text{foreach filter } \begin{cases}
 t \leftarrow \text{db}_{\text{SALESDB}}(\text{Team})_{\text{SALESDB}}, \\
 j \leftarrow \text{db}_{\text{SALESDB}}(\text{Job})_{\text{SALESDB}}, \\
 c \leftarrow \text{db}_{\text{SAP}}(\text{Client})_{\text{SAP}}
\end{cases} \right) \text{ select }
\end{align*}
\]

The localization process would then proceed by rewriting with the rule (\(\text{\rightarrow BINDER} \)) repeatedly, which would group foreach’s binders by location, and appropriately locate the usages of their cursors, \(t \), \(j \) and \(c \), in the filter and select expressions.

\[
\begin{align*}
\left(\text{foreach filter } \begin{cases}
 t \leftarrow \text{db}_{\text{SALESDB}}(\text{Team})_{\text{SALESDB}}, \\
 j \leftarrow \text{db}_{\text{SALESDB}}(\text{Job})_{\text{SALESDB}}, \\
 c \leftarrow \text{db}_{\text{SAP}}(\text{Client})_{\text{SAP}}
\end{cases} \right) \text{ select }
\end{align*}
\]

where \(\text{filter} = (t_{\text{SALESDB}}.id_{\top} = j_{\text{SALESDB}}.teamId_{\top})_{\top} \)
\(\land (j_{\text{SALESDB}}.clientId_{\top} = c_{\text{SAP}}.id_{\top})_{\top} \)
\land (j_{\text{SALESDB}}.date_{\top} = 8/5)_{\top} \)

\(\text{select} = \langle \text{team} = t_{\text{SALESDB}}, \text{job} = j_{\text{SALESDB}}, \text{client} = c_{\text{SAP}} \rangle_{\top} \)

At this point, any rewritings of select expression by rule (\(\text{\rightarrow RECORD} \)) will maintain location \(\top \), as the \text{team} and \text{job} fields are located in \text{SALESDB}, while the \text{client} field is located in \text{SAP}. However, repeated rewriting of the filter expression using rules (\(\text{\rightarrow FIELD} \)) and (\(\text{\rightarrow OP} \)) would result in

\[
\begin{align*}
(t.id_{\text{SALESDB}} = j.teamId_{\text{SALESDB}})_{\text{SALESDB}} \\
\land (j.clientId_{\text{SALESDB}} = c.id_{\text{SAP}})_{\top} \\
\land (j.date_{\text{SALESDB}} = 8/5)_{\text{SALESDB}} \\
\end{align*}
\]
which would allow for the localization of the first and third comparisons to the \(SALESDB\) binder group, using rule \(\text{\textendash\textendash\textendashFILTER}\).

\[
\begin{aligned}
\text{foreach}_{\text{filter}} & \quad \left\{ \begin{array}{l}
(t \leftarrow \text{db}_{SALESDB}(\text{Team})_{SALESDB},) \\
(j \leftarrow \text{db}_{SALESDB}(\text{Job})_{SALESDB},) \\
(t.i\text{id}_{SALESDB} = j.i\text{teamId}_{SALESDB})_{SALESDB} \\
\land (j.date_{SALESDB} = 8/5)_{SALESDB}
\end{array} \right\} \text{SALESDB} \\
& \quad \text{select} \left\{ \begin{array}{l}
(c \leftarrow \text{db}_{SAP}(\text{Client})_{SAP},) \\
\text{true}_{\perp}
\end{array} \right\} \text{SAP}
\end{aligned}
\]

where \(\text{filter} = (j\text{iSALESDB}.\text{clientId}_{SALESDB} = c\text{iSAP}.\text{id}_{SAP})_{\top}\)

\(\text{select} = (\text{team} = t\text{SALESDB}, \text{job} = j\text{SALESDB}, \text{client} = c\text{SAP})_{\top}\)

At this point, no other rewriting would change the labeled query, so we reached a normal form of our localization algorithm. If we were localizing the full \(\text{withLoc}\) query introduced in Section 3, we’d reach the exact same result for the \text{foreach} expression, but would also be able to localize the \\(\text{Coords}\) web-service call at location \(\text{GEO}\), as expected.

6.3 Phase III: Finalizing

The third, and final phase of the process consists in transforming the labeled expression format back to the regular syntax, while ensuring that all operations are indeed evaluated in the most appropriate location.

The labeled (query) expressions \(r\) are transformed, written \(\langle\langle r \rangle\rangle\), in such a way that remote execution expressions, of the form \(\langle e \rangle_{\ell}\), are explicitly placed when crossing the border of a location, and so that binder groups in \text{foreach} queries are rewritten as full-fledged remote inner queries (see intermediate format description in Phase II). It is important to note that all transitions from \(\top\) to a different location are enclosed by a remote execution expression, and that a transition from a location \(\ell\) to \(\perp\) is ignored. Expressions at \(\perp\) can be evaluated anywhere.

To conclude the transformation process, we extend the operational semantics so that all three phases described here are called in sequence, and that the query results are produced using the transformed version of the query (see Figure 9).

\[
\langle\langle \text{exec } x : \sigma = e \text{ in } e' \rangle\rangle = \langle\langle e' \rangle\rangle
\]

where \(r = \langle e \rangle\)

\[
\begin{array}{l}
\emptyset; \Gamma \vdash r : \tau \Rightarrow r' : \sigma \\
\tau \leadsto^{*} r'' \\
r'' = \langle e'' \rangle \\
v = \llbracket r'' \rrbracket
\end{array}
\]

We have presented results that support the soundness of the two first steps (Lemma 6.1 and Lemma 5.1), as for the process described above, the structure and semantics of the query is maintained, and soundness is not an issue. The application of this transformation process ends with the compilation of the query and corresponding generation of native query code using the languages of each database system running in the remote locations.
class DBData { public string Name; }

return ExecuteQuery<DBData>(
 "SELECT Team.Name FROM Team
 INNER JOIN Job ON Team.Id = Job.TeamId
 WHERE Job.Date = '8/5' GROUP BY Team.Name";

Fig. 17. Code for Figure 7, using only top level data.

Code located at location \top is translated into a general purpose language (Java, C#, or Javascript), while others include languages like SQL, or Javascript using MongoDB API and operators. Notice that we are not introducing any kind of middleware that interprets a general query language, serving the results to a client. Instead, we devise a method that allows the adaptation and discharging of query fragments to the native database systems, providing glue code as necessary.

When compiling a query we take advantage of the way its results are being used. As an example, consider two possible usages of the $\textit{withLoc}$ query from Figure 7. First, consider that we only want to display the name of the teams that have any work to do. We thus compile the query using $\tau = \langle \textit{name} : \textit{String} \rangle^\ast$ as the target usage type. In this process we can safely ignore the \textit{Client} table and the calls to the \textit{Coords} service, resulting in the (abbreviated) query:

$$\text{SALESDB} \; \left[\text{groupby} \left(\text{details} : \langle \textit{job} : \langle \textit{title} : \textit{String} \rangle \rangle, \right. \left. \textit{client} : \langle \textit{name} : \textit{String} \rangle, \textit{loc} : \langle \textit{lat} : \textit{num}, \textit{lng} : \textit{num} \rangle \rangle^\ast \right]$$

Notice that the groupby operation is compiled and localized in the SALESDB database, since the usage does not refer to group details nor the \textit{Client} table, which resides in a different database. Notice also that the \textit{addLoc} term is projected, as in the example in section 6.1, to $\textit{addLoc}' = \lambda \textit{x}. \textit{foreach} \{ \textit{y} \leftarrow \textit{x} \} \textit{y} \oplus \langle \rangle$ which in practice is doing nothing. During the code generation phase we detect and remove patterns like these. For the sake of simplicity, the abbreviated query above is shown using this optimization. This query can then be used to produce the C# code shown in Figure 17. If we instead compile it with relation to type

$$\tau = \langle \textit{name} : \textit{string}, \textit{details} : \langle \textit{job} : \langle \textit{title} : \textit{string} \rangle, \textit{client} : \langle \textit{name} : \textit{string} \rangle, \textit{loc} : \langle \textit{lat} : \textit{num}, \textit{lng} : \textit{num} \rangle \rangle^\ast \rangle^\ast$$

then we no longer can omit the call to the \textit{GEO} service. Furthermore, the groupby operation needs to be performed in memory.

The resulting code is shown in Figure 18. Although neither the $\textit{Job.ClientId}$ nor $\textit{Client.Id}$ fields are present in the usage type, we need to fetch them because they’re used by the in-memory join operation. Similarly, we need to fetch the client’s address because it is needed for the \textit{Coords} service. For simplicity reasons we have omitted the code required to remove these fields from the result.
We leave further query optimization for future work. Looking at the code in Figure 18, it is obvious that fetching all clients is not a very efficient approach. We can take advantage of the results returned by the query in the SALESDB database to restrict the data to be fetched from the SAP database, e.g. by introducing an “IN” condition.

7 Related Work

Unlike many DSLs for the development of complete applications (Fu et al., 2013; Cooper et al., 2007), we focus on the problem of typeful integration of data sources, as in (Lindley & Cheney, 2012), but dealing with the particular aspect of distributing and optimizing code given a usage.

Our proposal provides a flexible nesting base model (as (Buneman et al., 1995)), that fits several variants of data repositories, from relational databases, to NoSQL document based repositories, to parameterizable web services. An approach like (Cheney et al., 2014) may be used to complement our approach. Additionally, we naturally deal with raw nested data (Colby, 1989), by means of our in-place modification operation.

Our work is related to the composition of higher order queries, and higher order manipulation of XML data (Robie et al., 2014; Benzaken et al., 2003). We use the uniform and compositional mechanism of in-place modifications, that applies to all kinds of repositories, and is suitable to query simplification.

Capabilities of data repositories are captured using description logics, in systems that solve the problem of answering queries by combining existing repositories (Vassalos & Papakonstantinou, 2000). Our goal is different, as we limit the capabilities to the language operations, and do not use the semantics of the schema.

Related work includes systems that integrate, behind a single interface, several data based systems (e.g. (Halevy et al., 2006)). We address a simpler, and yet relevant scenario, that is how to integrate data sources via a programming tool for applications, that typically are already capable of orchestrating several data sources. This approach lets the developer seamlessly access and combine data sources of different natures.

8 Final Remarks

We introduced a common data manipulation language for nested collections that allows the orchestration of several data sources remotely located. Our language abstracts the capabilities of each data repository, and the type based compilation and optimization algorithm we presented allows for the generation of specific code for each kind of database engine, eagerly aggregating the operations as close to the data sources as possible, and falling back to in-memory processing when needed.

An interesting development of this work is to incorporate sites that delegate parts of queries to others, forming a more interesting lattice of locations and capabilities. Our setting uniformly extends to this feature. Also, it is interesting to incorporate this approach in an optimization approach using a cost based model and simplification of general query expressions. Although we are advancing in these fields, the work presented can be developed independently.
Nested Data Manipulation in Distributed and Heterogeneous Environments

```csharp
class Client {
    public int Id;
    public string Name;
    public string Address;
}

class Team {
    public string Name;
}

class Job {
    public string Title;
    public int ClientId;
}

class SalesDBData {
    public Team Team;
    public Job Job;
}

class SAPData {
    public Client Client;
}

class JoinData {
    public Team Team;
    public Job Job;
    public Client Client;
}

class Location {
    public float Lat;
    public float Lng;
}

class Detail {
    public Client Client;
    public Job Job;
    public Location Loc;
}

class QueryData {
    public IEnumerable<Detail>
    Details;
    public string Name;
}

var salesDBData = ExecuteQuery<SalesDBData>(
    @"SELECT Team.Name, Job.Title, Job.ClientId FROM Team
    INNER JOIN Job ON Team.Id = Job.TeamId
    WHERE Job.Date = '8/5';");

var sapData = ExecuteQuery<SAPData>(
    @"SELECT Client.Id, Client.Name, Client.Address FROM CLIENT";)

var joinData = salesDBData.Join(sapData,
    x => x.ClientId,
    y => y.Id,
    (x, y) => new JoinData {
        Team = x.Team,
        Job = x.Job,
        Client = y.Client
    });

return joinData.GroupBy(
    elem => new { Name = elem.Team.Name },
    elem => elem,
    (key, elems) => new QueryData() {
        Name = key.Name,
        Details = elems.Select(a => new Detail() {
            Client = a.Client,
            Job = a.Job,
            Loc = GEO.Coords(a.Client.Address)
        })
    });
```

Fig. 18. Generated code for query in Figure 7, using job’s title, the client’s name and the address’ coordinates.
Our model is the base for a new visual data manipulation language in the OutSystems platform, one that allows the gradual construction of queries with immediate feedback to developers. Future work includes the definition of the query rewriting mechanism that simplifies the deep data manipulation operations on nested data, and the corresponding integration with the localization algorithm.

References

Clark, James, & DeRose, Steven J. (1999). XML Path Language (XPath) Version 1.0.

Nested Data Manipulation in Distributed and Heterogeneous Environments

A Type System

\[\Delta \vdash x : \tau \quad \Delta, y : \tau \vdash e : \sigma \]

\[\frac{\Delta, x : \tau \vdash e : \sigma}{\Delta \vdash \lambda y : \tau. e : \tau \to \sigma} \quad \text{(Fun)} \]

\[\frac{\Delta \vdash e' : \tau \quad \Delta \vdash e : \tau \to \sigma}{\Delta \vdash e : \tau \to \sigma} \quad \text{(App)} \]

\[\frac{\Delta \vdash e : \tau \quad \sigma \leq \tau}{\Delta, e : \tau \vdash e : \sigma} \quad \text{(Sub)} \]

\[\frac{\Delta \vdash e_i : \tau_i \quad i = 1..n}{\Delta, \tau : \tau \vdash e : \bigoplus (\tau_1, \tau_2, ..., \tau_n)} \quad \text{(Field)} \]

\[\frac{\Delta \vdash e : \tau \quad \Delta \vdash e' : \tau'}{\Delta \vdash e \uplus e' : \tau'} \quad \text{(Append)} \]

\[\frac{\Delta \vdash e : \tau}{\Delta \vdash [e] : \tau} \quad \text{(Singleton)} \]

\[\frac{\Delta, i : \tau \vdash e : \bigoplus (\tau_1, \tau_2, ..., \tau_n) \quad \Delta, (e_1, e_2, ..., e_n) \vdash f : (\tau_1, \tau_2, ..., \tau_n)}{\Delta \vdash \text{db}(i, e) : \mathcal{D}(\tau)} \quad \text{(Source)} \]

\[\frac{\Delta \vdash e : \mathcal{D}(\tau') \quad \Delta, x : \tau \vdash e_i : \sigma_i \quad i = 1..n}{\Delta \vdash \text{foreach}_{\tau'}\{ x \leftarrow e \} : \mathcal{D}(\tau')} \quad \text{(Select)} \]

\[\frac{\Delta \vdash e : \mathcal{D}(\tau') \quad \Delta, x : \tau \vdash e_i : \tau' \quad \Delta, x : \tau \vdash e : \mathcal{D}(\tau')} \quad \text{(Group)} \]

\[\frac{\Delta \vdash e : \mathcal{D}(\tau') \quad \Delta \vdash \text{return } e : \mathcal{D}(\tau)} \quad \text{(Return)} \]

\[\frac{\Delta \vdash e : \mathcal{D}(\tau') \quad \Delta \vdash e' : \mathcal{D}(\tau)}{\Delta \vdash \text{do } e\{e'\} : \mathcal{D}(\tau' / \tau')} \quad \text{(At)} \]

\[\frac{\Delta \vdash e : \mathcal{D}(\tau') \quad \sigma' \leq \sigma \quad \Delta, x : \sigma \vdash e' : \tau'}{\Delta \vdash \text{exec } x : \sigma = e \text{ in } e' : \tau} \quad \text{(Exec)} \]

\[\frac{\Delta \vdash e : \sigma \quad \sigma \leq \tau}{\Delta \vdash \pi^\tau(e) : \tau} \quad \text{(Project)} \]

\[\frac{\Delta \vdash e : \tau}{\Delta \vdash [e] : \tau} \quad \text{(Remote)} \]
Nested Data Manipulation in Distributed and Heterogeneous Environments

B Formal Results

Lemma B.1 (Substitution Lemma)

If $\Delta, x : \tau \vdash e : \sigma$ and $\Delta \vdash v : \tau$ then $\Delta \vdash e\{v/x\} : \sigma'$ with $\sigma' \leq \sigma$.

Proof. By induction on the size of the type derivation, performing case analysis on the last typing rule applied.

$$\Delta \vdash v : \tau.$$ \hspace{1cm} H0.

Case (NUM).

$\Delta \vdash num : num.$ \hspace{1cm} (NUM).
$\Delta \vdash num\{v/x\} : num.$ \hspace{1cm} (SUBST).

Cases (BOOL), (STRING), (DATE). Similar.

Case (Id).

Assuming $x \neq y$, by alpha-renaming.

$$\Delta, x : \tau \vdash y : \sigma.$$ \hspace{1cm} H1.
$\Delta(y) = \sigma.$ \hspace{1cm} Invert (Id) on H1.
$\Delta \vdash y : \sigma.$ \hspace{1cm} (Id).
$\Delta \vdash y\{v/x\} : \sigma.$ \hspace{1cm} (SUBST).
$\sigma \leq \sigma$

Case (FUN).

Assuming $x \neq y$, by alpha-renaming.

$$\Delta, x : \tau \vdash \lambda y. e : \sigma_1 \rightarrow \sigma_2.$$ \hspace{1cm} H1.
$\Delta, x : \tau, y : \sigma_1 \vdash e : \sigma_2.$ \hspace{1cm} Invert (FUN) on H1.
$\Delta, y : \sigma_1, x : \tau \vdash e : \sigma_2.$ \hspace{1cm} (EXCHANGE).
$\Delta, y : \sigma_1 \vdash \lambda y. e : \sigma_2.$ \hspace{1cm} (SUBST).
$\sigma_1 \rightarrow \sigma_2 \leq \sigma_2.$
$\Delta \vdash \lambda y. e\{v/x\} : \sigma_1 \rightarrow \sigma_2'.$ \hspace{1cm} (FUN).
$\Delta \vdash (\lambda y. e\{v/x\})\{\sigma_1/x\} : \sigma_1 \rightarrow \sigma_2'.$ \hspace{1cm} (SUBST).
$\sigma_1 \rightarrow \sigma_2' \leq \sigma_1 \rightarrow \sigma_2'$

Case (APP).

$$\Delta, x : \tau \vdash e e' : \sigma.$$ \hspace{1cm} H1.
$\Delta, x : \tau \vdash e : \tau' \rightarrow \sigma.$ \hspace{1cm} Invert (APP) on H1.
$\Delta \vdash e\{v/x\} : \tau'' \rightarrow \sigma'.$ \hspace{1cm} (APP).
$\tau'' \rightarrow \sigma' \leq \tau' \rightarrow \sigma$ \hspace{1cm} Induction.
$\tau' \leq \tau''$
$\sigma' \leq \sigma$
$\Delta, x : \tau \vdash e' : \tau'.$ \hspace{1cm} Invert (APP) on H1.
\[\Delta \vdash e' \{v/x\} : \tau'''. \]
\[\tau''' \leq \tau' \quad \text{Induction.} \]
\[\tau''' \leq \tau'' \]
\[\Delta \vdash e' \{v/x\} : \tau'. \]
\[\Delta \vdash (e' \{v/x\}) \{e' \{v/x\}\} : \sigma'. \]
\[\Delta \vdash (e' e') \{v/x\} : \sigma'. \quad \text{(APP).} \]

Case (RECORD).
\[\Delta, x : \tau \vdash \{a = \sigma\} : \langle a : \sigma \rangle. \quad \text{H1.} \]
\[\Delta, x : \tau \vdash \sigma' \quad \text{Invert (RECORD) on H1.} \]
\[\Delta \vdash e' \{v/x\} : \sigma'. \]
\[\sigma' \leq \sigma \quad \text{Induction.} \]
\[\Delta \vdash \{a = e' \{v/x\}\} : \langle a : \sigma' \rangle. \]
\[\{a : \sigma'\} \leq \{a : \sigma\} \quad \text{(RECORD).} \]

Case (CONCAT).
\[\Delta, x : \tau \vdash e \cup e' : \sigma. \quad \text{H1.} \]
\[\Delta, x : \tau \vdash e : \sigma. \]
\[\Delta \vdash e' \{v/x\} : \sigma'. \]
\[\Delta \vdash e' \{v/x\} : \sigma. \]
\[\sigma' \leq \sigma \quad \text{Subsumption.} \]
\[\Delta, x : \tau \vdash e' : \sigma''. \]
\[\Delta \vdash e' \{v/x\} : \sigma''. \]
\[\sigma'' \leq \sigma \quad \text{Induction.} \]
\[\Delta \vdash e' \{v/x\} : \sigma. \]
\[\Delta \vdash (e' \{v/x\}) \cup (e' \{v/x\}) : \sigma. \quad \text{(CONCAT).} \]
\[\Delta \vdash (e \cup e') \{v/x\} : \sigma. \quad \text{(SUBST).} \]

Case (EXEC).
Assuming \(x \neq y \), by alpha-renaming.
\[\Delta, x : \tau \vdash \text{exec } y = e' \quad \text{in } e' : \sigma. \quad \text{H1.} \]
\[\Delta, x : \tau \vdash e : \mathcal{Q}(\sigma'). \]
\[\Delta \vdash e' \{v/x\} : \sigma'. \]
\[\Delta, y : \sigma' \vdash v : \sigma. \quad \text{Apply (WEAKENING) on H0.} \]
\[\Delta, x : \tau, y : \sigma' \vdash e' : \sigma. \quad \text{Invert (EXEC) on H0.} \]
\[\Delta, y : \sigma' \vdash e' \{v/x\} : \sigma. \]
\[\Delta, y : \sigma' \vdash e' \{v/x\} : \sigma. \quad \text{(EXCHANGE).} \]
\[\Delta \vdash \text{exec } y = e' \{v/x\} \quad \text{in } e' \{v/x\} : \sigma. \quad \text{(EXEC).} \]
Nested Data Manipulation in Distributed and Heterogeneous Environments

\(\Delta \vdash (\text{exec } y = e \text{ in } e') \{ y \mapsto \} : \sigma. \quad \text{(Subst).} \)

Case (Select).
Assuming \(x \notin y \), by alpha-renaming.
\(\Delta, x : \tau \vdash \text{foreach}_e \{ y \mapsto \tau \} e'' : \Delta(\sigma^*) \).
\(\Delta \vdash \text{foreach}_e \{ y \mapsto \tau \} e'' : \Delta(\sigma^*). \quad \text{(Sel.)} \)

Case (Group).
Assuming \(x \neq y \), by alpha-renaming.
\(\Delta, x : \tau \vdash \text{groupby}_{\pi_\tau} \{ y \leftarrow e \} : \Delta(\langle \sigma, b : \tau \rangle^*) \).
\(\Delta \vdash \text{groupby}_{\pi_\tau} \{ y \leftarrow e \} : \Delta(\langle \sigma, b : \tau \rangle^*). \quad \text{(Subst).} \)
Lemma B.2

In the following proofs, we consider the following typing rule for set and multi-set (bag) comprehensions.

Definition B.1 (Typing states)

If $\Delta \vdash \varphi : \mathcal{P}(\sigma)$, $[db(t, \tau)] = v$, $\Delta(t) = \overline{\tau} \rightarrow \tau$ and $\Delta \vdash v_i : \tau$, then $\Delta \vdash v : \tau$.

In the following proofs, we consider the following typing rule for set and multi-set (bag) comprehensions.

Definition B.2 (Typing comprehensions)

\[
\Delta \vdash e : \mathcal{Q}(\tau) \quad \Rightarrow \quad \Delta \vdash \text{run } e : \tau.
\]

Proof.

$\Delta \vdash e : \mathcal{Q}(\tau)$
$\Delta, x : \tau \vdash x : \tau$ (ID).
$\Delta \vdash \text{exec } x = e \text{ in } x : \tau$ (EXEC).
Nested Data Manipulation in Distributed and Heterogeneous Environments

\[\Delta \vdash \text{run } e : \tau \]
By definition.

\[\square \]

Lemma B.3 (Semantics of Run)
\[\langle \langle \text{run } e \rangle \rangle = \langle \langle e \rangle \rangle \]

Proof.
\[\langle \langle \text{exec } x = e \text{ in } x \rangle \rangle = x[\{e\}/x] \]
Definition of \{\}.
\[\langle \langle \text{exec } x = e \text{ in } x \rangle \rangle = \langle \langle e \rangle \rangle \]
(SUBST).
\[\langle \langle \text{run } e \rangle \rangle = \langle \langle e \rangle \rangle \]
By definition.

\[\square \]

Theorem 5.1 (Type preservation).
If \(\Delta \vdash \not S \) then

1. If \(\Delta \vdash e : \tau \) and \(\langle \langle e \rangle \rangle = v \) then \(\Delta \vdash v : \tau' \) with \(\tau' \leq \tau \).
2. If \(\Delta \vdash r : \not Q(\tau) \) and \(\langle \langle r \rangle \rangle = v \) then \(\Delta \vdash v : \tau' \) with \(\tau' \leq \tau \).

Note: \(\not S \) is omitted in the \([] \) and \(\{\} \) relations used in the whole paper (and proofs) because it is always constant.

Proof. The two cases are proven by mutual induction on the size of the evaluation derivation. Case 1 is proven by case analysis on the last typing rule applied.

Case Literals and (1d).
N/A (no reduction).

Case op.
\[\Delta \vdash e \text{ op } e' : \tau \]
H1.
\[\Delta \vdash \text{op} : \tau' \rightarrow \tau'' \rightarrow \tau \]
H2.
\[\Delta \vdash e' : \tau' \]
H3.
\[\Delta \vdash e : \tau' \]
IND H2.
\[\sigma' \leq \tau' \]
IND H3.
\[\Delta \vdash \langle \langle e' \rangle \rangle : \sigma'' \]
\[\sigma'' \leq \tau'' \]
By definition of \{\}.

Case (FUN).
By definition of \{\}.

Case (APP).
\[\Delta \vdash e e' : \sigma. \]
H0.
\[\Delta \vdash e' : \tau. \]
Inversion of (APP).
\[\Delta \vdash e : \tau \rightarrow \sigma \]
H1.
\[\{e e'\} = v' \]
Inversion of (H1).
\[\langle \langle e \rangle \rangle = \lambda x.e'' \]
Induction.
\[\langle \langle e' \rangle \rangle = v \]
\[\{e''[v'/x]\} = v' \]
\[\Delta \vdash \lambda x.e'' : \tau \rightarrow \sigma \]
\[\Delta \vdash \lambda x.e'' : \tau \rightarrow \sigma \]
Induction.
\[\Delta \vdash v : \tau \quad \text{Induction.} \]
\[\Delta \vdash e''(v/I) : \sigma \quad \text{Lemma B.1.} \]
\[\Delta \vdash v' : \tau \quad \text{Induction.} \]

Case (RECORD). Similar, by induction.

Case (CONCAT). Similar, by induction.

Case (SOURCE).
\[\Delta \vdash \text{db}_i(t, \overline{r}) : \mathcal{D}(\tau) \quad \text{H0.} \]
\[\{ \text{db}_i(t, \overline{r}) \} = \text{db}_i(t, \overline{v}) \quad \text{H1.} \]
\[\Delta \vdash e_i : \tau \quad \text{Inversion of (SOURCE).} \]
\[\{ e_i \} = \{ v_i \} \quad \text{Inv. of definition of \{ \} in H1.} \]
\[\Delta \vdash v_i : \tau \quad \text{Induction.} \]
\[\Delta \vdash \text{db}_i(t, \overline{v}) : \mathcal{D}(\tau) \quad \text{(SOURCE).} \]

Case (SELECT).
\[\Delta \vdash \text{foreach}_\nu \{ \overline{x} \leftarrow e \} e'' : \mathcal{D}(\sigma^*) \quad \text{H0.} \]
\[\{ \text{foreach}_\nu \{ \overline{x} \leftarrow e \} e'' \} = \text{foreach}_\nu \{ \overline{x} \leftarrow \overline{r} \} e'' \quad \text{H1.} \]
\[\Delta \vdash e_i : \mathcal{D}(\tau_i^*) \quad \text{Inversion of (SELECT).} \]
\[\{ e_i \} = \{ r_i \} \quad \text{Inv. of definition of \{ \} in H1.} \]
\[\Delta \vdash r_i : \mathcal{D}(\tau_i^*) \quad \text{Induction.} \]
\[\Delta \vdash \text{foreach}_\nu \{ \overline{x} \leftarrow \overline{r} \} e'' : \mathcal{D}(\sigma^*) \quad \text{(SELECT).} \]

Case (GROUP).
\[\Delta \vdash \text{groupby}_b \{ \overline{x} \leftarrow e \} : \mathcal{D}((\overline{a} : \sigma, b : \tau^*)^*) \quad \text{H0.} \]
\[\{ \text{groupby}_b \{ \overline{x} \leftarrow e \} \} = \text{groupby}_b \{ \overline{x} \leftarrow \overline{r} \} \quad \text{H1.} \]
\[\Delta \vdash e : \mathcal{D}(\tau^*) \quad \text{Inversion of (GROUP).} \]
\[\Delta, x : \tau \vdash e : \sigma_i \quad \text{Inv. of definition of \{ \} in H1.} \]
\[\{ e \} = \{ r \} \quad \text{Induction.} \]
\[\Delta \vdash r : \mathcal{D}(\tau^*) \quad \text{(GROUP).} \]

Case (RETURN).
\[\Delta \vdash \text{return } e : \mathcal{D}(\tau) \quad \text{H0.} \]
\[\{ \text{return } e \} = \text{return } v' \quad \text{H1.} \]
\[\Delta \vdash e : \tau \quad \text{Invert H0.} \]
\[\{ e \} = \{ v' \} \quad \text{Inv. of definition of \{ \} in H1.} \]
\[\Delta \vdash v' : \tau \quad \text{Induction.} \]
\[\Delta \vdash \text{return } v' : \mathcal{D}(\tau) \quad \text{(RETURN).} \]

Case (AT).
\[\Delta \vdash \text{do } e_{ip}[e'] : \mathcal{D}(\tau_{ip}\{\tau'/\sigma\}) \quad \text{H0.} \]
\[\{ \text{do } e_{ip}[e'] \} = \text{do } e_{ip}(r) \quad \text{H1.} \]
Nested Data Manipulation in Distributed and Heterogeneous Environments

\[\Delta \vdash e : \mathcal{D}(\tau') \rightarrow \mathcal{D}(\sigma')\]
Inversion of (At).
\[\Delta \vdash e' : \mathcal{D}(\tau)\]
Inv. of definition of \(\{\}\) in H1.
\[\{e\} = r\]
Induction.

\[\Delta \vdash \text{do} e_{i,p} \{r\} : \mathcal{D}(\tau_{i,p}\{\tau' / \sigma'\})\]
(At).

Case (Exec).
\[\Delta \vdash \text{exec} x = e \in e' : \tau\]
H0.
\[\{\text{exec} x = e \in e'\} = v'\]
H1.
\[\Delta \vdash x : \sigma \vdash e' : \tau\]
§2.
\[\{e\} = r\]
Inversion of (Exec).
\[\{e'\{v'/x\}\} = v'\]
Inv. of definition of \(\{\}\) in H1.
\[\Delta \vdash v : \sigma\]
Case 2 on §1 and §2.
Lemma B.1.
\[\{\text{exec} x = e \in e'\{v'/x\}\} = v\]
Induction.

Case 2 is proven by induction on the size evaluation derivation \([r]\) and case analysis of the last typing rule used.

Case (Source).
\[\Delta \vdash \text{db}_l(s, \tau) : \mathcal{D}(\tau)\]
H0.
\[\Delta \vdash v_i : \tau_i\]
Inversion of (Source).
\[\{\text{db}_l(s, \tau)\} = v\]
H1.
\[\Delta \vdash v : \tau\]
Definition B.1.

Case (Select).
\[\Delta \vdash \text{foreach}_{\tau} \{\pi_{\tau}\} e'' : \mathcal{D}(\sigma^+): H0.\]
\[\{\text{foreach}_{\tau} \{\pi_{\tau}\} e''\} = [v''^\pi_{\tau}]_{\forall \pi \in \tau, v''^\pi_{\tau}}\]
H1.
\[\Delta \vdash r_i : \mathcal{D}(\tau_i^+)\]
Inversion of (Select).
\[\{r_i\} = v_i\]
Inv. of definition of \(\{\}\) in H1.
\[\Delta \vdash v_i : \tau_i^+\]
§1. By induction.
\[\Delta \vdash u_j : \tau_i\]
§1 and \(v_i = m_i\)

\[\Delta, \tau, \tau : e' : \text{bool}\]
Inversion of (Select).
\[\Delta \vdash e'\{\tau_{\pi}\} : \text{bool}\]
By Lemma B.1 for all \(u_j\).
\[\{e'\{\tau_{\pi}\}\} = v''^\pi_{\tau}\]
Inv. of definition of \(\{\}\) in H1.
\[\Delta, \tau, \tau : e'' : \sigma\]
Case 1.
\[\Delta \vdash e''\{\tau_{\pi}\} : \sigma\]
By Lemma B.1.
\[\{e''\{\tau_{\pi}\}\} = v''^\pi_{\tau}\]
Inv. of definition of \(\{\}\) in H1.
Case (GROUP).

\[\Delta \vdash \text{groupby}_u \{ x \leftarrow r \} : \mathcal{Q}(\langle a : \sigma, b : \tau \rangle^*) \]
\[[\text{groupby}_u \{ x \leftarrow r \}] = [k \oplus \langle b = \text{dils}_k \rangle | k \in ks] \]

Inversion of (GROUP).
Inv. of definition of [] in H1.

Case (RETURN).

\[\Delta \vdash \text{return} v : \mathcal{Q}(\tau) \]
\[[\text{return} v] = v \]
\[\Delta \vdash v : \tau \]
Invert (RETURN).

Case (AT).

\[\Delta \vdash \text{do } e_{\text{p}} \{ r \} : \mathcal{Q}(\tau_{\text{p}}[\sigma'/v]) \]
\[\Delta \vdash r : \mathcal{Q}(\tau) \]
\[\Delta \vdash e : \mathcal{Q}(\tau' \rightarrow \mathcal{Q}(\sigma')) \]
\[\Delta \vdash [r] : \tau' \]
Invert (At)
Induction on H1, §1.

SubCase \(p = \varepsilon \).

\[[\text{do } e_{\varepsilon} \{ r \}] = \{\text{run } (e \ (\text{return } [r]))\} \]
\[\Delta \vdash \text{return } [r] : \mathcal{Q}(\tau) \]
\[\tau = \tau' \]
\[\Delta \vdash e \ (\text{return } [r]) : \mathcal{Q}(\sigma') \]
\[\Delta \vdash \text{run } (e \ (\text{return } [r])) : \sigma' \]
Definition of [].
(RUN).
Inversion of H0, definition 5.1.
(App).
By Lemma B.2.
Nested Data Manipulation in Distributed and Heterogeneous Environments

\[\begin{align*}
\langle e \ (\text{return} \ [r]) \rangle & = r' \\
\Delta \vdash \tau' : 2(\sigma') & \quad \text{By Lemma B.3.}
\end{align*} \]

Case 1.
\[\begin{align*}
[\text{do } e_i/\{r\}] & = [\text{run (e (return u)) \mid u \in [r]}] \\
\Delta, u : \tau' \vdash u : \tau' & \quad \text{(In).}
\end{align*} \]

\[\begin{align*}
\Delta, u : \tau' & \vdash \text{return u : } 2(\tau') \\
\Delta, u : \tau' & \vdash e \ (\text{return u}) : 2(\sigma') \\
\Delta, u : \tau' & \vdash \text{run (e (return u)) : } \sigma'
\end{align*} \]

By Lemma B.2.

\[\begin{align*}
\{ \text{run (e (return u))} \} & = [[e \ (\text{return u})]] \\
\{ e \ (\text{return u}) \} & = r_u \\
\Delta, u : \tau' & \vdash r_u : 2(\sigma') \\
[r_u] & = \tau_u
\end{align*} \]

By definition.

Note: \([r_u]\) is a subderivation of \([[e \ (\text{return u})]]\)

\[\begin{align*}
\Delta \vdash \tau' : \sigma' & \quad \text{Induction.}
\end{align*} \]

\[\begin{align*}
\Delta \vdash v_u & \vdash u \in [r] : (\sigma')^* \\
\Delta \vdash [v_u \mid u \in [r]] & : (\tau')^*, \tau'_{u/ap} \{\sigma'/v\}
\end{align*} \]

By definition 5.1.

SubCase \(p = / \).
\[\begin{align*}
\tau = (\tau')^* & \quad \text{Inversion of H0, definition 5.1.}
\end{align*} \]

\[\begin{align*}
\{do e_i/\{r\}\} & = \langle a = [do e_i/p \ (\text{return u})], b = v \rangle \\
\Delta \vdash u : \tau & \quad \text{§1.}
\end{align*} \]

\[\begin{align*}
\tau_{u/ap} \{\sigma'/v\} & = \langle a : \sigma_{i/p} \{\sigma'/v\}, b : \tau \rangle \\
\Delta \vdash \{do e_i/p \ (\text{return u})\} & : \sigma_{i/p} \{\sigma'/v\} \\
\{do e_i/p \ (\text{return u})\} & = v \\
\Delta \vdash v : \sigma_{i/p} \{\sigma'/v\} & \quad \text{(RETURN) and (AT)}
\end{align*} \]

Induction

\[\begin{align*}
\Delta \vdash \langle a = v, b = v \rangle & : \langle a : \sigma_{i/p} \{\sigma'/v\}, b : \tau \rangle \\
\Delta \vdash \langle a = v, b = v \rangle \vdash \tau_{u/ap} \{\sigma'/v\} & \quad \text{(RECORD)}
\end{align*} \]

SubCase \(p = / ap' \).
\[\begin{align*}
\tau = (a : \sigma, b : \tau)^* & \quad \text{§1.}
\end{align*} \]

\[\begin{align*}
\{do e_i/ap\{r\}\} & = \langle a = \langle [do e_i/p \ (\text{return u})], b = v \rangle \rangle (a = u, b = v) \in [r] \\
\Delta \vdash u : (a : \sigma, b : \tau)^* \\
\tau_{u/ap} \{\sigma'/v\} & = \langle a : \sigma_{i/p} \{\sigma'/v\}, b : \tau \rangle^*
\end{align*} \]

\[\begin{align*}
\Delta \vdash \{do e_i/p \ (\text{return u})\} & : \sigma_{i/p} \{\sigma'/v\} \\
\{do e_i/p \ (\text{return u})\} & = v_i \\
\Delta \vdash v_i : \sigma_{i/p} \{\sigma'/v\} & \quad \forall u_i \in \pi, v_i \in \tau
\end{align*} \]

Induction

\[\begin{align*}
\Delta \vdash [(a = v_i, b = \bar{v}) \mid v \in \tau] & : \langle a : \sigma_{i/p} \{\sigma'/v\}, \bar{b} : \tau \rangle^* \\
\Delta \vdash [(a = v_i, b = \bar{v}) \mid v \in \tau] \vdash \tau_{u/ap} \{\sigma'/v\} & \quad \text{(RECORD) and (LIST)}
\end{align*} \]
Theorem 6.1 (Type Preservation - Phase I).

If $\Delta; \Gamma \vdash e : \tau \Rightarrow e' : \sigma$ then $\tau \leq \sigma$, $\Delta \leq \Gamma$, and $\Delta \vdash e' : \sigma$.

Proof. We prove this lemma by induction on the size of the derivation of $\Delta; \Gamma \vdash e : \tau \Rightarrow e' : \sigma$ and analysing the last rule applied.

Case base values ($\text{num, bool, date, string}$).

$e = e'$ and $\tau = \sigma$.

Case Identifier.

$\text{SubCase } \tau = \tau'$.

$\Delta, x : \tau, \emptyset, x : \tau \vdash x : \tau$ \hspace{1cm} H1.

$\text{SubCase } \tau \neq \tau'$.

$\Delta, x : \tau, \emptyset, x : \tau' \vdash x : \tau \Rightarrow \tau' \pi_1(x) : \tau'$ \hspace{1cm} H1.

$\tau \leq \tau'$ \hspace{1cm} H2.

$\Delta, x : \tau \vdash x : \tau$ \hspace{1cm} §1., (Id)

$\Delta, x : \tau \vdash \tau' \pi_1(x) : \tau'$ \hspace{1cm} §H2, §1, (Projection)

$\Delta, x : \tau \leq \emptyset, x : \tau'$ \hspace{1cm} (EnvSub).

Case Abstraction.

$\Delta, \Gamma \vdash (\lambda x : \tau. e) : \tau \Rightarrow (\lambda x : \tau. e') : \tau \Rightarrow \sigma'$

$\Delta, x : \tau, \Gamma, x : \tau \vdash e : \sigma \Rightarrow e' : \sigma'$ \hspace{1cm} H1.

$\sigma \leq \sigma'$ \hspace{1cm} IND.

$\Delta, x : \tau \vdash e' : \sigma'$ \hspace{1cm} IND.

$\Delta, x : \tau \leq \Gamma, x : \tau$ \hspace{1cm} IND.

$\Delta \vdash \lambda x : \tau. e' : \tau \Rightarrow \sigma'$ \hspace{1cm} Abstraction.

$\Delta \leq \Gamma$ \hspace{1cm} (EnvSub).

Case Application.
Nested Data Manipulation in Distributed and Heterogeneous Environments

\[\Delta; \Gamma \vdash (e, e') : \tau \Rightarrow (e'', e''') : \sigma \]
\[\Delta; \Gamma \vdash e : \delta \Rightarrow e'' : \delta' \Rightarrow \sigma \]
H1.
\[\Delta \vdash e' : \delta \Rightarrow e''' : \delta'' \]
H2.
\[\Delta \vdash e'' : \delta' \Rightarrow \sigma \]
§1.
\[\Delta \vdash e''' : \delta'' \]
§2.
\[\Delta \leq \Gamma \]
IND.
\[\Delta \vdash (e''', e''') : \sigma \]
§1, §2, and (APPLICATION)

Case Record.
\[\Delta; \Gamma \vdash \langle a = e, b = e' \rangle : \langle a : \tau, b : \sigma \rangle \Rightarrow \langle a = e'' \rangle : \langle a : \tau' \rangle \]
H1.
\[\Delta; \Gamma \vdash e_i : \tau_i \Rightarrow e''_i : \tau'_i, i = 1..n \]
§1.
\[\Delta \leq \Gamma \]
IND.
\[\Delta \vdash \langle a = e'' \rangle : \langle a : \tau' \rangle \]
§1 and (RECORD)

Case Concat.
\[\Delta; \Gamma \vdash e_1 \oplus e_2 : \tau_1 \oplus \tau_2 \Rightarrow e'_1 \oplus e'_2 : \sigma_1 \oplus \sigma_2 \]
H1.
\[\Delta \vdash e'_i : \sigma_i, i = 1..n \]
§1.
\[\Delta \leq \Gamma \]
IND.
\[\tau_i \leq \sigma_i, i = 1..n \]
§2.
\[\tau_1 \oplus \tau_2 \leq \sigma_1 \oplus \sigma_2 \]
§2 and (SUB RECORD).
\[\Delta \vdash e'_i \oplus e'_2 : \sigma_1 \oplus \sigma_2 \]
§1 and (CONCAT).

Case Singleton.
\[\Delta; \Gamma \vdash [e] : \tau^* \Rightarrow [e'] : \sigma^* \]
H1.
\[\Delta; \Gamma \vdash e : \tau \Rightarrow e' : \sigma \]
H1.
\[\Delta \vdash e' : \sigma \]
IND.
\[\tau \leq \sigma \]
IND.
\[\Delta \leq \Gamma \]
IND.
\[\tau^* \leq \sigma^* \]
§1 and (SUB LIST).
\[\Delta \vdash [e'] : \sigma^* \]
§1 and (SINGLETON).

Case Append.
\[\Delta; \Gamma \vdash e_1 \uplus e_2 : \tau^* \Rightarrow e'_1 \uplus e'_2 : \sigma^* \]
H1.
\[\Delta; \Gamma \vdash e_i : \tau^* \Rightarrow e'_i : \sigma^*, i = 1..n \]
§1.
\[\Delta \leq \Gamma \]
IND.
\[\tau^* \leq \sigma^* \]
§1 and (APPEND).

Case Data source.
\[\Delta; \Gamma \vdash db_i(t, \tau) : \mathcal{O}(\tau) \Rightarrow \mathcal{O}(\tau') \pi \mathcal{O}(\tau)(db_i(t, \tau)) : \mathcal{O}(\tau') \]
H1.
\[\Delta; \Gamma \vdash e_i : \sigma \Rightarrow e'_i : \sigma, i = 1..n \]
H2.
\[\tau \leq \tau' \]
H3.
Δ ≤ Γ
Δ ⊢ e_i : σ \ i = 1..n
Δ ⊢ db_i(t, ν) : Δ(t)
Δ ⊢ Δ(t) ≤ Δ(t')
Δ ⊢ Δ(t) \π(\Delta(db_i(t, ν))) : Δ(t')

Case Select.
Δ; Γ ⊢ foreach \{ x \leftarrow ν \} e : Δ(σ') \Rightarrow foreach \{ x \leftarrow ν \} e'' : Δ(σ'')
Δ; Γ ⊢ e_i : Δ(σ^i) \Rightarrow e'_i : Δ(σ'^i) \ i = 1..n
Δ; x: δ, Γ; x: δ' ⊢ c: bool \Rightarrow c': bool
Δ; x: δ, Γ; x: δ' ⊢ e: σ \Rightarrow e'' : σ'
Δ; x: δ', Γ; x: δ' \leq δ''
Δ; x: δ'' \leq δ'
Δ; x: δ'' \leq δ
Δ ≤ Γ
Δ ⊢ e_i : Δ(σ'^i) \ i = 1..n
Δ; x: δ \leq Γ, x: δ'
Δ; x: δ \vdash c': bool
Δ; x: δ \leq Γ, x: δ'
Δ; x: δ \vdash e'' : σ'
Δ; x: δ'' \vdash c': bool
Δ; x: δ'' \vdash e': σ'
Δ ⊢ foreach \{ x \leftarrow ν \} e'' : Δ(σ'')

Case Group.
Δ; Γ ⊢ groupby<bb>\{ x \leftarrow e \} Δ(\{a/\sigma,b : τ^\star\}) \Rightarrow
Δ; Γ ⊢ groupby<bb>\{ x \leftarrow e \} Δ(\{a/\sigma,b : τ^\star\}) \Rightarrow
Δ; Γ ⊢ e_i : Δ(σ_i) \i = 1..n
Δ ⊢ groupby<bb>\{ x \leftarrow e \} Δ(\{a/\sigma,b : τ^\star\})
Δ ⊢ groupby<bb>\{ x \leftarrow e \} Δ(\{a/\sigma,b : τ^\star\})

Case Return.
Δ; Γ ⊢ return e : Δ(σ) \Rightarrow return e' : Δ(σ)
Δ; Γ ⊢ e : τ \Rightarrow e' : σ
τ ≤ σ
Δ ≤ Γ
Δ ⊢ e' : σ
Δ ⊢ return e' : Δ(σ)

Case At.
Δ; Γ ⊢ do e_i\{e'\} : Δ(\tau_i\{e'/e\}) \Rightarrow do e''_i\{e''\} : Δ(δ)
Nested Data Manipulation in Distributed and Heterogeneous Environments

\[\Delta, \Gamma \vdash e : \mathcal{L}(\tau') \Rightarrow \mathcal{L}(\sigma') \Rightarrow e'' : \mathcal{L}(\tau'') \Rightarrow \mathcal{L}(\sigma'') \]
H1.

\[\Delta \vdash e' : \mathcal{L}(\tau) \Rightarrow e'' : \mathcal{L}(\delta') \]
H2.

\[\delta = \delta'_{\mathcal{L}_p}(\sigma'/\tau') \]
H3.

\[\Delta \vdash e'' : \mathcal{L}(\tau'') \Rightarrow \mathcal{L}(\sigma'') \]
\[\mathcal{L}(\tau') \Rightarrow \mathcal{L}(\sigma') \leq \mathcal{L}(\tau'') \Rightarrow \mathcal{L}(\sigma'') \]
H1 and IND

\[\Delta \vdash e'' : \mathcal{L}(\delta') \]
\[\tau \leq \delta' \]
H2 and IND

\[\sigma' \leq \sigma'' \]
\[\tau' \leq \tau \]
LEMMA 5.2.

Case Exec.

\[\Delta \vdash \text{exec } x : \sigma = e \text{ in } e' : \tau \Rightarrow \text{exec } x : \sigma = e'' \text{ in } e'' : \tau' \]
H1.

\[\Delta, \Gamma \vdash e : \mathcal{L}(\sigma') \Rightarrow e'' : \mathcal{L}(\sigma) \]
H1 and IND

\[\Delta, x : \sigma, \Gamma, x : \sigma' \vdash e' : \tau \Rightarrow e'' : \tau' \]
H2.

\[\sigma \leq \sigma' \]
\[\tau \leq \tau' \]
H2 and IND

\[\Delta \vdash \text{exec } x : \sigma = e'' \text{ in } e'' : \tau' \]
EXEC.

\[\square \]

Lemma 6.9 (Local Confluence). Relation \(\rightarrow \) is locally confluent for minimally distributed expressions: for any minimally distributed expressions \(e_1, e_1_{\ell_1} \) and \(e_2_{\ell_2} \) such that \(e_1 \rightarrow e_1_{\ell_1} \) and \(e_2 \rightarrow e_2_{\ell_2} \), there exists an expression \(e'_{\ell'} \) such that \(e_1_{\ell_1} \rightarrow^* e'_{\ell'} \) and \(e_2_{\ell_2} \rightarrow^* e'_{\ell'} \)

Proof. By case analysis of the initial expression \(e \) and the possible \(e_1 \) and \(e_2 \) pairs. Note that:

- Cases where \(e_1 = e_2 \) are omitted, since the lemma trivially holds.
- Cases where \(e_1 \) and \(e_2 \) are obtained by the reduction of independent sub-expressions are also omitted, as confluence is just a matter of applying both reductions in any order.

Case \((\lambda x.e_1)_{\ell} \).

The possible reductions are:

1. \((\lambda x.e_1)_{\ell} \) if has__lambdas(\ell) (by rule \(\rightarrow \text{LAMBDA}))
2. \((\lambda x.e'_{\ell'})_{\ell} \) if \(e_1 \rightarrow e'_{\ell'} \)

Analysis of the possible pairs:

- Pair of 1. and 2.:
 - If \(\ell = \top \), then for the expression to be well-located, \(m = \top \).
\[(\lambda x.e) \tau \leadsto_{\text{sub}} (\lambda x.e') \tau \]

— Otherwise if \(\ell \subseteq \top \), then by Lemma 6.4 we know that \(\ell' = \ell \). Therefore has_lambdas(\(\ell' \)) holds, since has_lambdas(\(\ell \)) is a premise.

\[(\lambda x.e)_\ell \leadsto_{\text{sub}} (\lambda x.e')_\ell \leadsto_{\text{Lambda}} (\lambda x.e')_\ell \text{ if has_lambdas}(\ell') \]

\[(\lambda x.e')_m \leadsto_{\text{Lambda}} (\lambda x.e')_\ell \text{ if has_lambdas}(\ell') \]

Case \(e_1 \ell_1 \op_m e_2 \ell_2 \).

The possible reductions are:

1. \(e_1 \ell_1 \op_{\ell_1 \cap \ell_2} e_2 \ell_2 \) if can_op(\(\ell_1 \cap \ell_2 \)) (by rule \(\leadsto_{\text{Op}} \))
2. \(e_1' \ell_1' \op_m e_2 \ell_2 \) if \(e_1 \ell_1 \leadsto e_1' \ell_1' \)
3. \(e_1 \ell_1 \op_m e_2' \ell_2' \) if \(e_2 \ell_2 \leadsto e_2' \ell_2' \)

Analysis of the possible pairs:

- Pair of 1. and 2.:
 - If \(\ell_1 \cap \ell_2 = \top \), then for the expression to be well-located, \(m = \top \).
 \[e_1 \ell_1 \op_\top e_2 \ell_2 \leadsto_{\text{sub}} e_1' \ell_1' \op_\top e_2 \ell_2 \]
 - Otherwise if \(\ell_1 \cap \ell_2 \subseteq \top \), then \(\ell_1 \subseteq \top \) and by Lemma 6.4 we know that \(\ell_1' = \ell_1 \). Therefore \(\ell_1' \cap \ell_2 = \ell_1 \cap \ell_2 \), implying can_op(\(\ell_1 \cap \ell_2 \)) holds.
 \[e_1 \ell_1 \op_{\ell_1 \cap \ell_2} e_2 \ell_2 \leadsto_{\text{sub}} e_1' \ell_1' \op_{\ell_1' \cap \ell_2} e_2 \ell_2 \leadsto_{\text{Op}} e_1' \ell_1' \op_{\ell_1' \cap \ell_2} e_2 \ell_2 \text{ if can_op}(\ell_1' \cap \ell_2) \]
 \[e_1' \ell_1' \op_m e_2 \ell_2 \leadsto_{\text{Op}} e_1' \ell_1' \op_{\ell_1' \cap \ell_2} e_2 \ell_2 \text{ if can_op}(\ell_1' \cap \ell_2) \]

- Pair of 1. and 3.: similar to the previous.

Cases \((e \ e' \ m), (a = e) \ m, e_1 a_m, \) (return \(e_1 \)) _m or (groupby \(\{ x \leftarrow e' \} \)) _m, \(e_m \).

The same proof strategy as the previous cases applies.

Case \(db(t, e_1, \ldots, e_n) _m \)

The possible reductions are:
Analysis of the possible pairs:

- Pair of 1. and 2.:
 \[\text{Pair of 1. and 2.} \]
 \[\text{Pair of 2. and 3.} \]
 \[\text{Pairs of 1. and 2., and 1. and 3.} \]

\[\ell \in \underbrace{\cdots}_{\text{n times}} \]

\[\text{Nested Data Manipulation in Distributed and Heterogeneous Environments} \]

1. \[\text{db}(t, e_{1_1}, \ldots, e_{n_1}) \]
2. \[\text{db}(t, e_{1_1}, \ldots, e'_{i_1}, \ldots, e_{n_1}) \]
 \[\text{if} \ e_{i_1} \rightsquigarrow e'_{i_1} \]

Case \(\pi^m_\ell(e_t) \).

The possible reductions are:

1. \[\text{\(\pi^m_\ell(e_t) \)} \text{ if can_project(\(\ell \))} \]
2. \[\text{\(\pi^m_\ell(e_{i_1}) \)} \text{ if } e_{i_1} \rightsquigarrow e'_{i_1} \]
3. \[\text{\(\pi^m_\ell(e_{i_1} \ldots e_{i_n}) \)} \text{ if } e = \text{groupby}_{\pi^m_\ell} \{ x \leftarrow e_{i_{\ell_k}} \} \land \text{can_group}(\underbrace{\ldots}_{\ell_k}) \land \tau = \ldots \land \sigma = \ldots \]

Analysis of the possible pairs:

- Pair of 1. and 2., and 1. and 3. are proven using the same proof strategy as previous expressions.

- Pair of 2. and 3. is proven by case analysis of \(e_{i_1} \rightsquigarrow e'_{i_1} \):
 1. If \(e_{i_1} \) reduces by rule \(\rightsquigarrow \text{nesting} \), \(e'_{i_1} = e \) and \(\ell' = \underbrace{\ldots}_{\ell_k} \), implying 2. and 3. are already the same.
 2. If \(e_{i_1} \) reduces by \(e_{i_{\ell_k}} \rightsquigarrow e'_{i_{\ell_k}} \), we proceed by case analysis of \(\ell_{\ell_k} \), using the same proof strategy as previous expressions.
 3. If \(e_{i_1} \) reduces by \(e_{i_{\ell_j}} \rightsquigarrow e'_{i_{\ell_j}} \), we proceed by case analysis of \(\ell_{\ell_j} \), using the same proof strategy as previous expressions.

Case \(\text{foreach}_c \{ \ x \leftarrow e_{i_1}, \ldots, (x \leftarrow e_{i_1}, c_n) \} \ e_t \).

The possible reductions are:

1. \[\text{foreach}_c \{ \ x \leftarrow e_{i_1}, \ldots, (x \leftarrow e_{i_1}, c_n) \} \ e_t \] if \(k = 0 \)
2. \[\text{foreach}_{d_2} \{ \ x \leftarrow e_{i_1}, \ldots, (x \leftarrow e_{i_1}, c_n) \} \ e_t \] if \(c_n = d_1 \)
3. \[\text{foreach}_c \{ \ x \leftarrow e_{i_1}^{-1}, \ldots, (x \leftarrow e_{i_1}, c_n) \} \ e_t \] if \(\ell_k = \ell_j \)
4. \((\text{foreach}_{c_n} \left\{ x \leftarrow e_{\ell 1}^{k}, (x \leftarrow e_{\ell 1}, c_n)_{\ell} \right\} e_{\ell}' \right\}_m \text{ if } e_{\ell} \rightarrow e_{\ell}'\)

5. \((\text{foreach}_{c'_n} \left\{ x \leftarrow e_{\ell 1}^{k}, (x \leftarrow e_{\ell 1}, c_n)_{\ell} \right\} e_{\ell}_m \text{ if } c_n \rightarrow c'_{n'}\)

6. \((\text{foreach}_{c_n} \left\{ x \leftarrow e_{\ell 1}^{k-1}, x_i \leftarrow e_{i1}', x_i \leftarrow e_{i1+1}, (x \leftarrow e_{\ell 1}, c_n)_{\ell} \right\} e_{\ell}_m \text{ if } e_{i1} \rightarrow e_{i1}'\)

7. \((\text{foreach}_{c_n} \left\{ x \leftarrow e_{\ell 1}^{k}, (x \leftarrow e_{\ell 1}, c_n)_{\ell}, (x \leftarrow e_{\ell 1}, c'_n)_{\ell_j} \right\} e_{\ell} \text{ if } c_{n_j} \rightarrow c'_{n'_j}\)

8. Reduction of sub-expressions inside grouped binders (similar to the above).

Analysis of the possible pairs:

- Case 1. and 3.: impossible because 1. requires \(k = 0\) and 3. requires \(k > 0\).
- Case 1. and sub-expression cases: 1. doesn’t change sub-expressions so they can always reduce, and the only sub-expression that affects the result of 1. is \(e_{\ell}\), which we can show using the usual proof strategy won’t affect the final \(\ell_i \cap \ell\).
- Case 3. and sub-expression cases: 3. doesn’t change locations, and doesn’t change sub-expressions other than moving the outer condition \(c'_\ell\). Moving the outer condition doesn’t impact it’s own reduction.