
Optimizing Data Queries Over Heterogeneous
Sources

Nuno Grade1, Lúcio Ferrão2, and João Costa Seco1?

1 CITI - Departamento de Informática, FCT Universidade Nova de Lisboa
2 OutSystems, SA

Abstract. The challenge of using heterogeneous data-sources is of great-
est importance in the development of modern software systems. The
current demand is for enterprise software systems with high interoper-
ability that seamlessly integrate local database data with external (and
sometimes remote) services (e.g. SalesForce, SAP) that expose their core
entities through remote APIs.
To be able to express these heterogeneous queries, developers must ex-
plicitly fetch, filter and join data. Optimizations to this kind of queries
are either inexistent, or ad-hoc and highly dependent on the developer’s
domain knowledge.
We present a language-based approach to seamlessly and efficiently mix
local database tables and remote web-service APIs. Our system builds
on top of the .NET LINQ framework, trapping the execution of the
query and using developer hints and statistics to adaptively follow the
best possible execution plan. Our optimization approach involves not
only choosing the fastest and more selective APIs on each execution
step, but find the more convenient combination between local and remote
operations.
Preliminary usability tests showed that our optimizing query execution
engine outperforms the best filtering and joining ad-hoc algorithms de-
signed by highly-skilled developers, while requiring minimum effort to
novice developers.

1 Introduction

Business drivers, such as the imperative for speed to market, the agility to change
business processes and models, and pressure to reduce operational costs are forc-
ing organizations to move from traditional on-premise data storage like relational
databases to cloud-based Software as a Service (SaaS) solutions. This trend has a
deep impact on the enterprise applications architecture, forcing custom applica-
tion development to deal with data that is scattered across relational repositories
and online repositories that are only accessible via remote web-service APIs.

Querying data that is scattered across several heterogeneous systems requires
the explicit programming of filtering and joining algorithms usually using mul-
tiple query languages and remote APIs. Even the simplest of operations like

? Research co-supported by FCT Pest UI527 2011



filtering and merging data sets may become cumbersome, inefficient, error prone
and not automatically optimized. Certainly not accessible to a novice program-
mer as fetching data directly from a database. Thus, the challenges a developer
must overcome to ensure good performance while manually dealing with hetero-
geneous data sources are the following:

– Complexity: developers need to manually choose and explicitly design the
query execution plans. This is necessary for the simplest of operations like
joining two data sources.

– Awareness: Developers need to be aware of the actual performance of each
remote API and the overall plan performance.

– Evolution: As data and network topologies evolve, query execution plans
need to be adapted.

The motivation for this work is to simplify the integration scenarios where
data is scattered across relational databases and remote APIs with a solution
that could be later integrated in the OutSystem Platform, an integrated de-
velopment platform that focus on enterprise custom software development and
operation. This project is inspired by OutSystems use cases where customers
frequently have a central SQL database that is used to extend either SalesForce
or SAP core entities, only available through remote web-service APIs.

This paper presents a language-based system that uses a common query
language layer for database tables and remote web-service APIs, and leverages
on an automatic and adaptive optimization algorithm to provide an efficient and
robust way of combining heterogeneous data sources. This work was developed
as a master thesis [7]. We use a SQL-like model (LINQ) to abstract the actual
API used to get data from remote sites. Since APIs may be overlapping, the
choice of the most adequate remote method at each step of the query plan, is
also an outcome of the optimizing algorithm.

Our approach leverages on standard results on database query optimizers [1,
8, 9, 11, 12, 18] and web-service orchestration optimizers [3, 5, 10, 17], and pro-
poses a novel adaptive algorithm that on each query execution step chooses the
next operation that leads to better execution time. The algorithm is also able to
identify situations where several steps can be clustered in the local database, and
executes them in small batches. Technically, we proceed by using the Re-LINQ
framework [14] that allows a developer access to the query abstract representa-
tion, and build a query graph that can then be executed step by step in the best
possible order using a specially designed coverage algorithm.

As part of the integration process of various data-sources one needs to create
a local model of the remote core entities. Our architecture enhances that under-
lying data model, not only with collected runtime statistics, but also allowing
developers to explicitly annotate data objects code with domain dependent hints
– e.g. primary keys of entities in web-services, number of records – and statis-
tics that help the algorithm to find the best execution plan. An example of the
interplay between statistics and annotation is explained in sections 3.1 and 3.2.

To validate our approach, we performed tests resorting to the expertise of
several OutSystems developers. We have setup a simple scenario and asked de-



0..1

0..1

WScourt
CName
Fax
GetAllCourts()
GetCourtByName(name)
rows=152

WSjudge
JudgeName
CName
GetAllJudges()
GetJudgesByCourt(CName)
rows=1200

DBcourt
CName
Status
rows=1677

0..n

1

Fig. 1. UML Class diagram of the example scenario.

from wsCourt in WScourt

join dbCourt in DBcourt on wsCourt.CName equals dbCourt.CName

join wsJudge in WSjudge on dbCourt.CName equals wsJudge.CName

where wsCourt.CName == "T. de Contas"

select wsJudge.JudgeName, wsCourt.Fax, dbCourt.Status;

Fig. 2. A LINQ query on the example scenario (Figure 1).

velopers to design some queries to filter and join a combined set of local tables
and remote APIs. We then compared code size and performance of the resulting
queries, which demonstrated in the tested cases that all developers significantly
underperformed in at least one of the queries, and the execution plans produced
by our algorithm was comparable to the best results for each query.

The remainder of the paper is structured as follows: we start by explaining
our general approach to optimizing heterogeneous queries in section 2. Section 3
explains how this model was implemented on top of .NET LINQ, and section 4
briefly depicts our validation procedure and obtained results. We conclude in
sections 5 and 6 by presenting some related work and concluding remarks.

2 Heterogeneous queries

Consider the example scenario, whose datamodel is depicted in Figure 1, and
a sample query with the LINQ code in Figure 2. Assume all attributes are
mandatory, and rows = x represents the estimated number of rows for each
virtual entity.

In this scenario we are fetching court data from a local database table
DBcourt and performing a join with two remote web-services. The web-services
complement the information about courts (WScourt) and about judges work-
ing on courts (WSjudge). Results are filtered by a condition on attribute CName

of web-service WScourt. The web-service WScourt data can be obtained either by



FROM E0

JOIN E1 ON J1

JOIN E2 ON J2,

...,

JOIN Em ON Jm

WHERE F1 AND ... AND Fn

SELECT A1, ..., Ak

Fig. 3. Simplified syntax for generic queries

API GetAllCourts() that retrieves all the courts or API GetCourtByName(CName)
that only retrieves a single court info given a court name (see Figure 1). Similarly
data from web-service WSjudge can be obtained either by API GetAllJudges()
or API GetJudgesByCourt(CName). Intuitively, in the query of Figure 2 where
there is a filter on a single court, and since the number of courts and judges in the
external web-services can be high, the APIs GetCourtByName and GetJudges-

ByCourt, that are more selective, are more adequate than the more general ones
(GetAllCourts and GetAllJudges), and will allow for a more efficient query
execution.

2.1 Query Optimization

For the sake of simplicity we focused our analysis on a subset of queries with
the form described in Figure 3, where names E0, . . . , Em denote virtual entities
(database tables, or core entities available through web-service remote calls),
that are joined through the corresponding inner join conditions J1, . . . , Jm, and
filtered by the filtering conditions F1, . . . , Fn. Finally A1, . . . , Ak represent the
set of selected attributes.

The algorithm proceeds in two phases, the preparation phase, and the ex-
ecution phase. In the preparation phase the query is transformed into a graph
with the form described in Figure 4. In this graph, virtual entities E0, . . . , Em

are represented as rectangular nodes, join conditions J1, . . . , Jm are represented
by arcs between the virtual entities involved in the join conditions, and finally
the filtering conditions F1,. . . ,Fn are represented as dashed arcs that connect
the virtual entity referred by the filter condition and a special node that rep-
resents the execution of the filter expression. Each virtual entity node has one
of three states: pending, executing (marked to be resolved in the current cycle),
and resolved. Each arc has one of two states: pending, and resolved.

The preparation phase involves the following steps:

1. Build the graph by iterating each virtual entity, join condition, and filter.
2. Flood the graph with extra filtering and join conditions by making use of

the transitive properties for equalities in the join and filtering conditions. For
each pair of conditions of the form (E1.A1=E2.A1, E1.A1=X) we generate
and insert in the graph E2.A1=X. This is an optimization step that can be
safely ignored.



E0 E1

E2Em

J1

J2Jm J3

F1

Fn F3

F2

Fig. 4. Generic (sample) graph of a generic query.

3. Mark all the virtual entity nodes and all arcs as pending.
4. Populate all the virtual entity nodes with the estimated rows for each entity,

starting with the total number of rows for each entity.
5. Populates all the arcs with the estimated resulting number of rows for each

arc based on the number of rows of each connected node. In order to estimate
the number of rows of a join condition in the form E1.A1 = E2.A2 the
algorithm uses the expression:

min

(
C(E1.A1) × C(E2.A2)

distinct(E1.A1)
,
C(E1.A1) × C(E2.A2)

distinct(E2.A2)

)
where

– T (Ei) = Number of rows for entity Ei

– null(Ei.Ai) = Number of rows with null values for attribute Ei.Ai

– C(Ei.Ai) = T (Ei) – nulls(Ei.Ai)
– distinct(Ei.Ai) = Number of distinct values for Ai in Ei

In order to estimate the number rows for a filter condition with the form
Ei.Ai = k we use:

C(Ei.Ai)

distinct(Ei.Ai)

Both expressions capture the basic optimization mechanisms used by existing
database systems as described in [16].

To illustrate the building of a graph, consider the query described in Fig. 2.
Fig. 5 represents the same query in the end of the preparation. In this graph,
the condition for F1,F2,F3 is CName="T. de Contas". In these conditions the
virtual entity prefix in the condition is omitted as each filter applies to a sin-
gle entity. The condition for J1 is wsCourt.CName=dbCourt.CName, the con-
dition for J2 is dbCourt.CName=wsJudge.CName, and the condition for J3 is
wsCourt.CName=wsJudge.CName. In this graph, J3, F2, and F3 arcs were only
created in step 2 exploring the transitive properties of J1, J2, and F1. Assuming
we know distinct(wsCourt.CName) = T (wsCourt), distinct(dbCourt.CName) =
T (dbCourt), distinct(wsJudge.CName) = T (wsJudge)/6, and that all attributes
are mandatory, we have enough information to populate the estimated number
of rows for each arc.



WScourt
rows=152

DBcourt
rows=1677

WSjudge
rows=1200

J1

rows=152

J2

rows=1200

J3

rows=912

F1

rows=1

F3

rows=6

F2

rows=1

Fig. 5. Graph representation

The execution phase takes the graph as input and repeats the following steps
until there are no more pending arcs in the graph:

1. Build priority queue of arcs that represent the minimum spanning tree based
on the Kruskal’s algorithm applied to query graphs [9]. The resulting priority
queue contains pending arcs ordered by the minimum number of estimated
rows.

2. Identify a number of arcs, starting from the head of the priority queue in-
volving a single database source. If the first arc from the head of the priority
queue involves more than one data source or an API based virtual entity,
just pick (identify) the first arc from the queue.
Mark as executing any pending virtual entity node that is directly connected
to the identified arcs.

3. Resolve all the virtual entity nodes marked as executing using the procedure
in section 2.2. The result of this procedure is a dataset kept in memory.

4. Apply any pending filters (arcs) connected to executing nodes by filtering the
target dataset with the respective condition. Mark those arcs as resolved.

5. Execute any pending joins that connect two executing or resolved nodes by
explicitly joining the two datasets in memory. Mark those arcs as resolved.

6. Update all executing nodes in this iteration with new estimated row count
with the effective row counts in the resulting data set.

7. Update the estimated row count for the pending arcs that are connected to
executing nodes using the estimation expressions of the building phase.

8. Mark as resolved all the executing nodes in this iteration, repeat from step
1 until there are no more pending nodes.

When this cycle ends, the graph contains no mode pending arcs, and all the
nodes were resolved. Notice the algorithm is adaptive in the sense that it uses
information from the previous cycles to find the best path for each cycle. Also
notice that Kruskal’s algorithm from step 1 only selects a minimum spanning
tree for the given graph, but since all the arcs need to be resolved, we execute
the remaining arcs in step 4 and step 5.

2.2 Fetching Data for a Virtual Entity

Given a set of executing nodes that can be fetched from a single database, we
first pick all the associated filter conditions, and all the join conditions that can



be immediately sent to the database – join conditions that do not involve pending
nodes. Filter and join conditions are used to retrieve the minimum amount of
data from the database, using a single query. In this step, join conditions that
involve nodes that were previously resolved are translated to conditions using
literals from previously fetched data. Whenever filter and join conditions are
sent to the database, they are marked as resolved in the graph.

To resolve a node that represents a remote APIs, we pick the existing API
set and select the ones that can be used in the current execution step (e.g. using
a GetEntityByName(name) can only be used if the value for parameter name

is already known at this time). Then, for each available API we compute the
number of times it needs to be called. This is based on the number of distinct
values from the rows previously fetched that are being joined to the current
node, i.e. an API GetEntityById(id) needs to be called as many times as the
number of distinct id values. Finally, the chosen API is the one that gives the
minimal total execution time, where the total time is obtained using the average
execution time and the number of calls needed at the given step.

2.3 Execution Phase Example

To illustrate the execution phase, consider the graph depicted in figure 5. Exe-
cuting this graph involves the following steps:

1. Build the priority queue with the following order: F1, F2, F3, J1, J3.
2. Select a single arc F1 and mark node wsCourt as executing.
3. Resolve node wsCourt using the API GetCourtByName to retrieve the min-

imum required data for wsCourt as invoking GetCourtByName once. It is
faster than invoking GetAllCourts. Mark F1 as resolved as it was ensured
by the GetCourtByName API.

4. Update node wsCourt with rows=1.
5. Update the estimated rows for J1 and J3, resulting in ”(J1) rows=1” and

”(J3) rows=6”.
6. Mark node wsCourt as resolved.
7. Build a new priority queue with the following order: J1, F2, J3, F3.
8. Pick a single arc J1 and mark node dbCourt as executing.
9. Resolve node dbCourt using the query

SELECT * FROM dbCourt WHERE CName=@CName

to retrieve the minimum required data. Join the data obtained in the previous
iteration with the data obtained in this step. Mark arc J1 as resolved.

10. Resolve filter F2 and mark it as resolved.
Note: this step could be optimized as F2 is redundant with F1. This kind of
optimization was left as future work.

11. Update node dbCourt with rows=1.
12. Update the estimated rows for J2, resulting in ”(J2) rows=6”.
13. Mark node dbCourt as resolved.
14. Build a new priority queue with the following order: J2, F3.
15. Pick a single arc J2 and mark wsJudge as executing.



16. Resolve wsJudge using the API GetJudgesByCourt once to retrieve the min-
imum required data. Join the data obtained in the previous iteration with
the data obtained in this step. Mark arc J2 as resolved.

17. Resolve filter F3 and mark it as resolved.
18. Resolve join J3 and mark it as resolved.
19. Mark node wsJudge as resolved.

At this point, no more pending arcs are present in the graph. The algorithm
stops and returns the selected attributes from the current dataset in memory.
When compared with ad-hoc carefully crafted implementations by experienced
developers, the execution plans defined by our approach do not introduce a sig-
nificant overhead in practice. A more careful evaluation is presented in section 4,
and a similar, but more illustrated example can be found in [7].

3 Implementation

The most widely used language to query databases is SQL [6], and one of its
most interesting integration extensions for .NET is LINQ [2], which enables .NET
developers to express queries in an integrated and type safe way. The standard
LINQ framework supports the writing of heterogeneous queries, however, the
default execution plan is a straightforward in-memory based interpretation of the
join and filtering commands, which many times results in sub-optimal network
and memory consumption, with significant impact on scalability and efficiency.

In order to intercept, and change LINQ execution pipeline, we used a frame-
work called Re-LINQ [14]. Re-LINQ parses a LINQ query and produces an ab-
stract representation of it, thus allowing custom adapters to manipulate the
query model. This allows a specially designed algorithm to decide and execute
the query by invoking the query executor adaptors corresponding to each data
source. Many implementation challenges we faced were drawn by the novelty
of the work itself, and the by the lack of maturity of the Re-LINQ framework.
Accomplishing basic tasks like checking whether a query involves more than a
single data source or directly passing queries to the database, are many times
filled with unanswered questions.

In the adaptation process, a developer using our approach needs to define, the
so-called Virtual Entities. Virtual entities are represented by .NET classes that
represent tabular data, stored either in a local database, or behind custom web-
service APIs. On one hand, mapping database entities, virtual entities trivially
map the exact same structure. On the other hand, mapping a set of custom
remote APIs requires assuming a simple naming convention that informs the
optimizer of the possible APIs that can be used to query a specific remote entity
by a given attribute (e.g. customers can be obtained with a GetAllCustomers()
or by a GetCustomerById(id) ).

A small performance note, the implementation of the in-memory join oper-
ations needs to use hash joins instead of nested loop joins (the näıve approach)
in order to constrain processing times under O(n) instead of O(n*n).



[EntityHint(totalRows = 150)]

public class WSjudge {

[ColumnHint(unique=true, distinctRatio=100, nullsRatio=0)]

public string JudgeName {get; private set}

[ColumnHint(unique=false, distinctRatio=35, nullsRatio=0,

foreignKeyTo=typeof(DBcourt)]

public string CourtId {get; private set}

}

Fig. 6. Hint Decorations for Virtual Entities in C Sharp

3.1 Hints

To support a minimal estimated number of rows of step 5 of the preparation
phase, hints can be added to the virtual entities. Hints are given as C# at-
tributes that developers use to decorate classes that represent virtual entities.
The following meta-information can be specified:

– estimated total number of rows of the entity
– unique attributes
– rate of distinct values for each attribute
– rate of null values for each attribute
– relation between attributes of different virtual entities (foreign-key to an-

other virtual entity’s unique attribute)

This kind of hints are enough to guide the query execution algorithm allowing for
a correct estimation of most join operations. Also, many developers are already
familiar with these concepts since they are available in traditional relational
databases query interfaces. Figure 6 depicts the way in which hints can be used
to decorate a sample virtual entity in C#. Both distinctRatio and nullRatio

represent an estimated ratio between 0% and 100%.

3.2 Statistics

Hints are used to help the optimizer avoid uninformed decisions. To complement
that static information provided by developers, the query optimizer also keeps
track of statistical information based on effective retrieved data, specially when
retrieving all data from virtual entities. The optimizer always gives priority to
statistics over hints when they exist.

Statistics are specially important when retrieving data from remote APIs.
For each remote API, we keep track of:

– average execution time
– average of number of rows returned



These measures are used by optimizer in order to pick the most efficient remote
API on each execution step. The choice of the API at each execution step is
based on the estimated execution time for the same step – the execution time
multiplied by necessary number of calls. To capture the average execution time
for each API, a fixed sliding window of execution times is kept in the model.

4 Results and validation

The optimizer results were tested against a small set of experienced developers
inside OutSystems R&D team. Each developer was presented the model from
Fig. 1 containing one database entity and two remote entities as well as the
number of rows for each entity. The remote entity had an API used to fetch all
results for the given remote entity, and more specific APIs to retrieve filtered
data. Each API had their average times annotated and visible to the developers.
We simulated a loaded environment by artificially inflating the execution time
of the remote APIs to 400ms for the APIs that retrieve all the results for a given
remote entity and to 50ms for the more specific APIs.

Developers were asked to write the pseudo-code to execute three queries. The
first two are a simple join between two entities, and the last one required to join
three entities. The pseudo-code was manually converted to C# by the authors,
and the resulting execution times were measured several times in order to reduce
the testing infrastructure errors to less than 5%.

All the developers reached a correct solution. The average execution time for
each query is presented in Table 1. We marked in bold the results that were
significantly slower than the fastest alternative. With these tests we found that
the algorithm was relatively close to the best human alternatives, and it was
frequent for developers to code using näıve approaches even when they were
asked to be careful with the execution time.

The two most relevant patterns we observed in the näıve approaches are:
using nested loops to join two previously fetched data sets, and fetching data
inside a loop even when data is repeated for multiple instances. Such näıve
approaches have a significant impact in the execution time, in this case, up to
10 times slower than the results obtained by the optimizer.

Although the sample’s size is small, it is significant that all developers un-
derperformed in at least one query when compared to our algorithm.

5 Related Work

There is a quite extensive and stable literature on query optimization [1, 15,
16] that focuses on the two key components of a query evaluation: the query
optimizer and the query execution engine. Optimization is heavily based on
meta-information provided by the database catalog, that keeps statistics about
the database structure, its contents, and data arrangement (e.g. disk sectors).
At the database level, the main focus is on ordering of joins, selecting indexes
to apply, and rapidly reducing the number of records. On an heterogeneous



Query1 Query2 Query3

Optimizer 0.62 0.55 0.70

Developer1 0.57 0.51 4.56
Developer2 1.00 0.50 7.00
Developer3 0.56 0.50 1.26
Developer4 0.98 0.51 0.72

Table 1. Average Execution Times in Seconds.

context, other factors arise. The response time of a web-service, the amount of
data transfered, and the kind of API used, became the most critical factors.

Approaches like [9, 13] represent database queries using graphs where rela-
tions are nodes, and join operators and predicates are represented as well (as
arcs). In the domain of heterogeneous queries, [17] considers query plans over
databases and web services, also represented as graphs.

The uniform concept of selectivity [4, 17], which we use, appears as a measure
to estimate the cost of an operation. The more selective an operation is, the less
records it produces and therefore the better it is for future operations in the
execution plan. The general concept can be applied to both database tables and
to remote APIs. Call selectivity [17] is based on the number of retrieved rows,
per given input. As for column selectivity [4] it is computed from number of
distinct values in a column divided by the total number of rows in that entity.

Selectivity is used in [17] to compute the optimal order of web service invo-
cations in a query plan, for queries concerning database and web service entities.
Nonetheless, their approach groups database and webservices into two separate
groups. Unlike this, we implement an adaptive mix, inspired in [9], that allows
for extra optimization oportunities.

We extend all the above approaches by repeating the optimization analysis
every time the algorithm switches the kind of data sources. This allows us to
maximize the information available at each step. This works well if the number
of different data sources is kept small, and the cost of transporting information
represents the significant overhead.

6 Concluding remarks

We presented an adaptive optimizing query execution engine that deals with het-
erogeneous data-sources. It takes into account both developer hints and statistics
to find the best execution plan. We assume that in this context, the latency and
data transference time represent the bigger query overhead, and hence explore
all the available information to minimize the transmission time. We also batch
as much as possible database join operations. Our work enable developers to
write heterogeneous queries as such, instead of being forced to design complex
memory based join operations.



The ultimate goal of this work is to inspire and improve the integrated Out-
Systems Platform using a consistent query language to fetch data from both a
database and remote APIs. The preliminary results give us confidence that there
is a simple and effective solution that covers the most common scenarios.

References

1. Surajit Chaudhuri. An overview of query optimization in relational systems. In
Proceedings of the 17th ACM Symposium on Principles of database systems, PODS
’98, pages 34–43, New York, NY, USA, 1998. ACM.

2. Suzanne W. Dietrich and Mahesh Chaudhari. The LINQ between XML and
databases: a gentle introduction. J. Comput. Sci. Coll., 25(4):158–164, April 2010.

3. Weimin Du, Ming-Chien Shan, and Umeshwar Dayal. Reducing multidatabase
query response time by tree balancing. SIGMOD Rec., 24(2):293–303, May 1995.

4. Nigel R. Ellis and Rodger N. Kline. Automatic database statistics creation. US
Patent 2002/0087518 A1, July 2002.

5. Cem Evrendilek, Asuman Dogac, Sena Nural, and Fatma Ozcan. Multidatabase
query optimization. Distrib. Parallel Databases, 5(1):77–114, January 1997.

6. Int. Organization for Standardization, Int. Electrotechnical Commission, and Joint
ISO IEC Technical Committee Information Technology. Information Technology -
Database Languages - SQL: ISO/IEC 9075. Int. standard. ISO, IEC, 1992.

7. Nuno Grade. Data Queries Over Heterogeneous Sources. Master’s thesis, Faculdade
de Ciências e Tecnologia, Universidade Nova de Lisboa, 2013.

8. R. Guravannavar and S. Sudarshan. Reducing Order Enforcement Cost in Complex
Query Plans. In 23rd Int. Conference on Data Engineering, pages 856 –865, 2007.

9. P.B. Guttoski, M.S. Sunye, and F. Silva. Kruskal’s algorithm for query tree opti-
mization. In 11th Int. Database Engineering and Applications Symposium, 2007.

10. Donald Kossmann. The state of the art in distributed query processing. ACM
Comput. Surv., 32(4):422–469, December 2000.

11. Quanzhong Li, Minglong Sha, V. Markl, K. Beyer, L. Colby, and G. Lohman.
Adaptively reordering joins during query execution. In 23rd Int. Conference on
Data Engineering, pages 26 –35, 2007.

12. C. Mishra and N. Koudas. Join reordering by join simulation. In IEEE 25th
International Conference on Data Engineering, pages 493 –504, 2009.

13. Arnon Rosenthal and Cesar Galindo-Legaria. Query graphs, implementing trees,
and freely-reorderable outerjoins. SIGMOD Rec., 19(2):291–299, May 1990.

14. Fabian Schmied. re-linq: A general purpose linq foundation. https://www.re-
motion.org/download/re-linq.pdf, 2009.

15. D.E. Shasha, P. Bonnet, and P. Bonnet. Database Tuning: Principles, Experiments,
and Troubleshooting Techniques. Morgan Kaufmann Publishers, 2003.

16. A. Silberschatz, H.F. Korth, and S. Sudarshan. Database System Concepts.
McGraw-Hill, 2010.

17. Utkarsh Srivastava, Kamesh Munagala, Jennifer Widom, and Rajeev Motwani.
Query optimization over web services. In Proceedings of the 32nd international
conference on Very large data bases, VLDB ’06, 2006.

18. D.D. Straube and M.T. Ozsu. Query optimization and execution plan generation
in object-oriented data management systems. Knowledge and Data Engineering,
IEEE Transactions on, 7(2):210 –227, apr 1995.


