A Common Data Manipulation Language for
Nested Data in Heterogeneous Environments

Jodo Costa Seco
NOVA LINCS - Universidade Nova de Lisboa, Portugal

Abstract

One key aspect of data-centric applications is the manipulation of
persistent data repositories, which is moving fast from querying a
centralized relational database to the ad-hoc combination of con-
stellations of data sources.

Query languages are being typefuly integrated in host, general
purpose, languages in order to increase reasoning and optimizing
capabilities of interpreters and compilers. However, not much is be-
ing done to integrate and orchestrate different and separate sources
of data.

We present a common data manipulation language, that ab-
stracts the nature and localization of the data-sources. We define its
semantics and a type directed compilation, query optimization, and
query orchestration mechanism to be used in development tools for
heterogeneous environments. We provide type safety and language
integration.

Our approach is also suitable for an interactive query construc-
tion environment by rich user interfaces that provide immediate
feedback on data manipulation operations. This approach is cur-
rently the base for the data layer of a development platform for
mobile and web applications.

Categories and Subject Descriptors H.2.3 [Database Manage-
ment]: Languages—Query languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures

Keywords programming languages, data query languages, dis-
tributed and heterogeneous queries, type systems

1. Introduction

The state of the art on development of data-centric web, cloud,
and mobile applications, is highly based on the use of frameworks,
tools, languages and abstractions, specially designed to hide many
development and runtime details. One of the key aspects is the
safe and easy manipulation of persistent data repositories, usually
performed with the help of abstractions like object mappings (e.g.
Java JPA), or specialized query languages like Microsoft LINQ.
Obvious benefits are obtained by typefuly integrating query
languages in the host programming languages, thus increasing the

Hugo Lourengo Paulo Ferreira

OutSystems SA, Portugal

validation and optimizing power of interpreters and compilers [6,
9, 11, 20]. However, the data manipulation paradigm is moving fast
from querying a single data repository, to combining data coming
from a constellation of data sources. Heterogeneous queries are
pervasive, in scenarios like medical databases and search engines,
web service orchestrations, mobile applications, and web or cloud
applications that enrich their interfaces with remote web services.
Such queries are usually accomplished with ad-hoc code, that is
many times inefficient and error prone.

An urgent need arises for development platforms that integrate
and query different and separate data sources, in a typeful and
seamless way. The wide range of skills needed to query a rela-
tional database, efficiently combine the results with a web-service
response, and then produce a map-reduce algorithm to join and fil-
ter the results in a NoSQL database, is not part of the skill-set of the
average developer. Moreover, such an approach contrasts with the
data integration efforts of hiding different sources behind a com-
mon interface in a very expressive, but predefined way (cf. [13]).
This paper introduces a model for a common data manipulation
language for heterogeneous data-centric environments, and a com-
pilation method based on type and localization information of data-
sources. We define a model to generate specialized and distributed
querying code for each (remote) data source, and the corresponding
in-memory post-processing code. We model each kind of database
system (relational or NoSQL), parameterized data repository (web
services), or in-memory data, by a set of capabilities (e.g. to join
collections, group by arbitrary expressions, nest results, filter), that
guide the way operations are split between locations. Languages
like Microsoft LINQ do allow for several kinds of data sources to
be involved in a query, but, in this case, the default execution in-
cludes fetching all data first and then combine the pieces in mem-
ory. Our model decentralizes parts of a query, and is extensible with
optimizing execution strategies like [12].

Our model supports the construction and combination of nested
collections [5, 8], it is designed from first principles, targeting a
general model of data sources, from relational data to nested col-
lections. We introduce a novel language operation whose seman-
tics is the in-place modification of nested data (given a tree-like
path, cf. XPath [5, 7]). This operation can either be applied as a
in-memory step or be re-written during the code generation pro-
cess, and incorporated into the target query code, to be executed
remotely. This operation is particularly useful in supporting the vi-
sual counterpart of this model, that supports the incremental and
interactive construction of nested queries with immediate feedback
on results. Our approach is the base for an industrial grade devel-
opment platform for mobile and web applications, the OutSystems
Platform [17], where different kinds of data-sources can be used in
a typed way, and where the data manipulation language provides
type safety and language integration.

Expressions

eWe

execxr =c¢€eine
q

num

bool

string

date

Paths p == .ap|/ap|e]|/
= db(t,€)
foreach.{T+ €} e

Query Expressions q =
\
| groupby; = { z < e }
\
|

do e p{e}
return e

Figure 1: Language Syntax

In the remainder of the paper we introduce the language by
means of a running example (Section 3), that we then use to illus-
trate the compilation (Section 7) and simplification process (Sec-
tion 7.1). We formalize the operational semantics of language Acpr,
and its type system in Sections 4 and 5. The localization mechanism
is introduced in Section 6, which we prove sound with relation to
the language semantics.

Section 7 presents the typed directed compilation and optimiza-
tion algorithm. Section 7.2 illustrates the code that is actually ob-
tained when querying several different locations, and the glue code
that post-processes the results.

2. Syntax

We introduce our common data manipulation language (Acpr), de-
fined by the syntax given in Figure 1. Its core is a lambda calculus,
with records and multisets, equipped with a data manipulation lan-
guage fragment, capable of querying nested structured data reposi-
tories (cf. relational databases, structured JSON data objects, etc.),
similar to works using NRC [4, 5]. Our language is based on a set of
predefined named data sources ¢, variables x, y, z, and record labels
a, b, ¢, d. We use the list notation [7] to denote the bag construction

[1] W [v2] ... W [vy]. For the sake of simplicity, conditionals and
logic operators are omitted from the syntax, but freely used in the
examples.

We introduce a language fragment with expressions that repre-
sent queries over parameterized data sources (db(¢, €)). There is a
general iteration operation, of the form (foreach. { 7+¢ } ¢'),
over a set of joined inner queries (€), with cursors (x), and fil-
tered by a condition (c). We introduce an operation, of the form
(groupby;=°{ = < e }), that groups the results of an inner query
(e) by a set of computed criteria (@ = €) where the label to access
the details of each group is also given (b). This operation corre-
sponds to the specification of nested query results, regardless of the
underlying support. Cursor z is bound in expressions €.

In order to manipulate and transform structured nested data we
introduce a general purpose operation that operates deep in the
nested query results. The operation, of the form (do ¢, {e’}), ap-
plies the abstraction denoted by expression e to the fragments of
the resulting values of query ¢’ identified by path p. This opera-

tion allows in-place modification of parts of nested results, by it-
erating or filtering them, joining them with other data-sources, or
grouping them with local criteria. We define queries as logically
separated values, that can be gradually composed (cf. staged com-
putations [10]) by query operations, and whose base constructor
has the form return e, and expression exec £ = ¢ in ¢’ represents
the execution of the query denoted by e and binds its results to = in
e’. We write run e to abbreviate exec x = e in x.

3. Example

To illustrate and motivate the language semantics, we use the run-
ning example below. Consider a mobile app that organizes the
daily tasks of field technicians in a telecom company. It relies on a
cloud based system that stores its core data in a relational database,
named SALESDB, with the sample data sources (relational tables)
depicted in Figure 2, and whose schema is as follows:

— Team : (¢d: Num, name: String)”
— Client : (id: Num, name: String, address: String)*
— Task : (id: Num, title: String, teamId: Num,
clild: Num, date: Date, start: Num, end: Num)*

Realtime information about the location of technicians is stored in
a MongoDB instance, TRACKER, in a collection named Techs. A
sample record in the database is

{ "team": "1", "tech": "Ann", "loc": [51.4, 0.01] }

The system also uses a geolocation web service, named GEO, to
obtain the GPS coordinates for a given street address, which is
specified by the following function type:

— Coords : String — (lat: Num, Ing: Num)

A developer needs to know the tasks assigned to a team in a
given date, e.g., May 8. So, she gradually builds a query. The first
step is to join tables Team and Task, Figure 7a, using a foreach
expression, a basic filter, and record constructs.

e < teams,
t < tasks

work = foreaCheAid:t.teamId/\t4date:8/5 {
(team = e, task = t)

Next, the developer groups the results by team’s name, with a
groupby operation, Figure 7b. The results are a nested collection
of records, each containing a team’s name, and a list of records
(task and team).

name=z.team.name
details

workByTeam = groupby {z+ work }
The developer adds a new column to the query, yielding the tasks’
duration, by means of a in-place modification given the path
/details. See Figure 8. The in-place operations can easily be de-
fined using a UL, by pointing to the displayed data. A developer
using a textual query language would naturally modify the initial
query to include the new column.

addDuration = Ax.foreach { y + = }
(y @ (dur = y.task.end — y.task.start))

workDur = do addDuration, jgetqis{workByTeam}

Our approach is better suited to a scenario of a visual manipulation
language, or even when the original data is already nested. More-
over, we envisage an automatic simplification process, introduced
in section 7.1, that rewrites in-place operations, compacting them
as much as possible. The full developments of the simplification
are left to future work.

teams = db(Team) clients = db(Client)

tasks = db(Task)

id | name id name address id title teamId cliIld date start end
1 Alpha 1 Helen | 75 Globe Road, London 1 Check WiFi 1 2 8/5 10 11
2 Bravo 2 Ive 58 Pitfold Road, London 2 Replace phone | 1 3 8/5 11 12
3 Charlie 3 James | 4 Dean’s Court, London 3 Setup TV 2 1 8/5 10 11
4 Lewis | 25 Ebury Bridge Road, London 4 Install router 1 4 8/5 14 16
5 Replace cable 3 4 10/5 9 10
(a) Teams (b) Clients) (c) Tasks
Figure 2: Data sources
Values u,v = Azee|{@=wy |0|] |vyv (v) =v
| num | bool | string | date | r (e ey = (e"{"/x}) where (e) = Az.e”
!
Query values 7,5 == db(t,v) |foreach. {T+ T} e () =v

| groupby;=*{ z + r }
| do (Az.e) ,{r} | return v

Figure 3: Language Values

In our example, we still miss information about the client that
each team should visit. So, we modify the current query with an
in-place operation using path /details. See Figure 9.

y<x,
¢ < clients
(y ® (client = c))

withClient = do addClient, jgeqis{workDur}

To obtain the GPS coordinate of each client, we call the Coords
web-service for each one of the addresses (see Figure 10), and
modify the query in-place. Finally, using the MongoDB data source
that tracks technicians, we obtain the nearest technician to each one
of the clients (Figure 11).

Given this last query, we want to dispatch the join between the
three tables to the database server running SQL, while the web-
service should be called in-memory. Moreover, information about
a concrete usage for the data, for instance, not using duration in a
given app Ul can be used to discard the expression that computes
the duration (which indeed could have impact). In the same way, if
it is not important to know the coordinates (e.g. in the back-office),
then the call to the web service can be eliminated.

In the following sections we show the semantics of the lan-
guage, and the corresponding typing relation.

addClient = \z.foreachy task.clird=c.id

4. Semantics of \¢p;,

The operational semantics for Acpy is defined by a big-step re-
lation on expressions with relation to a state (S), representing re-
ferred data repositories. We write {e) to denote the computed value
of an expression e, defined by the grammar in Figure 3, and define it
using the cases in Figures 4 and 5. The evaluation of query expres-
sions corresponds to staging queries, that are afterwards executed
with relation to the given state, by means of an exec expression.
In our scenario, this corresponds to executing queries in remote
database systems. We use sets ({€}) and multi-sets ([€]), with list
comprehension notation, as the basis to define the semantics of ex-
ecuting query values r, by the relation [r], defined in Figure 6 (cf.
[3-5, 14]).

The call-by-value semantics of most expressions is straightfor-
wardly defined in the structure of the expressions, hence we omit
any further explanation. The non-standard construct, exec x =
e in ¢, first stages the query value denoted by e, and proceeds with
the evaluation of €’ binding x to the results of the query (cf. [10]).
This is the extension point that we use, later on in this paper, to
extend the semantics with the typed compilation procedure, that
transforms the queries before actually executing them.

Figure 4: Operational semantics for expressions

db(t,)) = db(t, {¢))

foreach. { T+ ¢ } ¢’) = foreach, {1:<— }e

groupby;—“{ = < €' }) = groupby;={ = < (¢’) }
do ejp{e'}) =do ey, {(e)}

(return e) = return (e)

(
(
(
<<

Figure 5: Operational semantics for query expressions
[db(t, 0)] = (S(t))(v)
[foreach. { 7+ } €] = [{e{"/z}) | u € [], {c{"/z})]

[k & (b = detailsy) | k € keys]

[groupby;=“{ = +~ 7 }] =

where
keys = {{a = (ea{"/x})) | v € [r]}

detailsy, = [u | u € [r], (a = (ea{%})) = K|
[do e {r}] = (e (return [r]))
[do e /{r}] = [{e (return w)) [uw € [r]]
[do elWﬁgr{eT}]] = (a = [do ep{return u}],b = v)

[r] = {a=

[[do eJ,/ap{r}]] = _
[(a = [do ep{return u}],b =) | (a =

u,b=v)

u, b =) € [r]]

Figure 6: Operational semantics for query values

Query expressions are interpreted at the top-level as to evalu-
ate their inner expressions that represent queries, producing query
values (Figure 5). The semantics of executing query values (Fig-
ure 6), states that a data source invocation (db(t,v)) is represented
by directly accessing state S, and calling the data source end point
with the given parameters. This general model using sources with

work = foreach, jq—¢ tcamIdnt.date=s/5 { € < teams,t < tasks }
(team = e, task = t)

team task
id | name id | title clild | start end
1 Alpha | 1 Check WiFi 2 10 11
1 Alpha | 2 Replace phone | 3 11 12
2 Bravo | 3 Setup TV 1 10 11
1 Alpha | 4 Install router 4 14 16

(a) Teams and tasks for May 8

workByTeam = groupbylne=e-team-name f o« york }

details
name team task
id title clild start end
1 Check WiFi 2 10 11
Alpha 2 Replace phone | 3 11 12
4 Install router 4 14 16
Bravo 3 Setup TV 1 10 11

(b) Group by team’s name

Figure 7: Join and group

workDur = do addDuration qetqs1s{workByTeam} where

addDuration = Ax.foreach { y < z } (y ® (dur = y.task.end — y.task.start)))

details
name team task dur
i title clild | start end
1 Check WiFi 2 10 11 1
Alpha 2 Replace phone | 3 11 12 1
4 Install router 4 14 16 2
Bravo 3 Setup TV 1 10 11 1

Figure 8: Task duration

withClient = do addClient, /ge;qi1s{workDur} where

addClient = Ax.foreachy tosk.clitd=c.id { Y < @, c < clients } (y @ (client = c)))

details
name team task dur client
cliIld name address
2 1 Ive 58 Pitfold Road, London
Alpha 3 1 James | 4 Dean’s Court, London
4 2 Lewis | 25 Ebury Bridge Road, London
Bravo 1 1 Helen | 75 Globe Road, London

Figure 9: Join with Clients

withLoc = do addLocy j gesqits {withClient} where
addLoc = Az.foreach { y +— z } (y ® (loc = run db(Coords, y.client.address)))

details
name team task dur client loc
cliIld name address lat Ing
2 1 Ive 58 Pitfold Road, London 51.45 | 0.02
Alpha 3 1 James | 4 Dean’s Court, London 51.52 | -0.15
4 2 Lewis | 25 Ebury Bridge Road, London | 51.50 | -0.15
Bravo 1 1 Helen | 75 Globe Road, London 51.52 | -0.05

Figure 10: Get address coordinates

parameters allows the representation of both web-services requir-
ing parameters, and database tables which do not. The execution of
an iteration includes joining the results of inner queries, producing
and filtering a value for each tuple. Group operations compute the
unique values given by the grouping criteria (i.e. the keys), and use
them to produce a nested structure, which pairs each key with a de-
tails field containing all the original values that are grouped under
1t.

The semantics of operations of the form do ¢ ,{r}, is defined
by case analysis of the path given. In the case of the empty path, it
is mapped onto applying the abstraction denoted by expression e to
the results of query e’. The case where the path is /, corresponds to
a map operation, applying the abstraction for each of the elements
in the collection. The remaining cases of .ap and /ap navigate in
the structure of the target value, and apply the operation.

5. Typing

We define the type language for Acpy, as follows,

T,0 Num | Bool | String | Date | (@=7) | 7" |7 — 0o

| Q)

and define a typing relation, expressed by the judgment A e : 7,
and defined by the rules in Figure 12. We use basic types for integer
numbers, strings, and dates, to match our running example. We
follow standard lines to type abstractions, records, and multisets,
and therefore omit these rules for the sake of saving space, please
refer to [15] to find a complete definition. The notable feature of
the type system is that query expressions returning a value of type
T are typed with a special type Q(7), whose resulting data can be
obtained by expression exec, rule (EXEC).

withTech = do addTechy ;getqirs {withLoc} where
addTech = Ax.foreach { y <~z } (y & (tech = (run getTech(y.team.id, y.loc))[0]))

getTeCh =)‘t)‘l'foreaChz.team]d:t/\near(l.lat,l.lng,:c.loc[()],mloc[l],lo) { T < db(TeChs)} z

details
name team task dur client loc tech
id | .. name lat Ing team | tech loc
1 1 Ive 51.45 | 0.02 1 Ann [51.4,0.01]
Alpha 1 1 James 5152 | -0.15 | 1 Bob [51.5,-0.1]
1 2 Lewis 51.50 | -0.15 1 Bob [51.5,-0.1]
Bravo 2 1 Helen 5152 | -0.05 | 2 David | [51.5,-0.03]

Figure 11: Get technician information near client information

Rule (AT) types an operation that is applied, in-place, deep in
the structure of a query. The following definition, follows the struc-
ture of the type, matches the type at the end of a path, and applies
the given type transformation. The operation applies a query trans-
formation operation, of type Q(7') — Q(c¢’), and the operation
on types T“,{"//T/ }, validates and transforms the necessary “deep”
transformation of the target query.

Definition 1 (Type at).
el /o }
s ,
({(a:7)® U)i.up{ﬂ—//a’} = ((a: Tip{T//a'}> ®o)
(a:7)@0)} apl /or} (a:mp{" /o }) B 0)"

This typing relation is sound with relation to the language seman-
tics as expressed by the standard Theorem 1.

g
*
g

Theorem 1 (Type preservation).

1. IfAFe:Tand(e) =vthen A+ v:T.
22IfAbFr:Q(r)and[r] =vithen A v :T.

This result is proven by the usual induction strategy on the typing
and type transformation definitions, and supports the usual proper-
ties of absence of runtime errors for terminating expressions. Proofs
and intermediate lemmas are available in the companion technical
report [15].

6. Localization

Optimizations are a well-known problem in relational databases,
with many variants [21] that shape the execution plan in order to
optimize the usage of memory and CPU time. In a distributed and
heterogeneous setting, the criteria to optimize a query’s execution
plan are somewhat different. The way different data sources are in-
terplayed can shorten the execution time of a query in a significant
way because the determining factor is no longer memory usage and
CPU time, but the amount of data that is interchanged through the
network, the number of locations visited, and the native capabilities
used on each database system or data repository.

We next extend the data manipulation language introduced in
section 2 with a location and type based transformation process for
queries. Queries are transformed in such a way that subexpressions
are grouped to be shipped to remote locations, and executed in the
most efficient way possible. We use knowledge about the capabil-
ities of each remote site [18], in order to place the operations as
close as possible to the origin of the data. The parts of a query that
can be computed remotely are grouped and dispatched, and an in-
memory post-processing phase is generated to complete the job, in
the starter location. We leverage not only on the locations of data
sources, but also on the actual usage of data, which is expressed
as type information. The transformation process prunes the query
tree, to avoid fetching unnecessary data, and eliminates all remote

invocations that have impact on the processing time but not in the
output data. We divide the compilation process into the eager local-
ization of the query components, and in the use of type information
to prune parts of the query. For an optimized distributed execution
we foresee that we can use orthogonal strategies to efficiently exe-
cute it (e.g. [12]).

6.1 Typed Localization

Consider a global mapping I" from data source names to a set of
locations ¢ € L, and assume that there is a location T that rep-
resents the starting location, where all computations are explicitly
performed in memory. We consider also a set of predefined pred-
icates to specify capabilities of locations. The truth value of the
predicates is predetermined and immutable. The selection of predi-
cates used here is inspired on the concrete experience of developing
a DSL [17] for data manipulation, and is adapted to the set of op-
erations that is included in the language. We say that proposition
can_group(¢) holds if the database engine running at location ¢
is able to execute a groupby operation with aggregation of results,
as in relational databases. Predicate can_nestgroups(¢) holds for
locations (¢) running database engines which support for the nested
grouping operations, i.e. return a query together with the details of
its groups. This is the case of some NoSQL databases such as Mon-
goDB. Predicate can_join(¢) states that the database repository at
location ¢ supports the joining of two (or more) sources given a con-
dition, and can_iterate(¢) indicates that it supports the iteration
of a list and the computing of a given expression on all elements of
a query. As an example, consider a classic REST interface, yield-
ing a JSON object. None of the above predicates holds since the
interface’s only capability is to return the data.

To express such localization relation, we define a type directed
relation that states that an expression e can be remotely evaluated
at location ¢, to produce data of type 7, with relation to a location
environment I, and a typing environment A, which is written as
follows

ATkFe:T~1¢

and is defined by the rules in Figure 13. Initial typing and location
environments, Ao and ['g, are set as to contain references to pre-
defined and localized data sources. Predefined localized functions
can also be assumed to exist in the typing and localizing environ-
ments. For instance, SQL databases provide function NOW() and
MongoDB provides specialized operators such as $near to com-
pare GPS coordinates.

Notice in rule (L-1p) that all well typed and localized identi-
fiers are both assigned a type (in A) and a location (in I'). Syn-
tax forces data-source identifiers () to be separated from variables
(), rule (L-ID) is not applicable to data sources. We assume that
numbers can be trivially used in all query languages across all lo-
cations, rule (L-Num). The definition of anonymous functions is
dependent on the location and its host query language (premise
can_lambda(¥) in rule (L-FUN)). As an example, anonymous func-

Atei:m i=1..n

(SOURCE) At:T—oThH db(t:E) 1 Q(7)

Ate;: Q(T;) i=1l..n

(Group)

A, 277 F e :Bool

Ate: Q(T") i=1.n
A F groupby?=*{x <+ e} : Q@ a,b: 7%)*)

Ax:The:o;

ANz TR 1o AkFe:T

(RETURN) A& return e : Q(71)

AbFe:Q(c) Ajz:obke:T

AbFexecx=eine : 71

(SeLECT) A+ foreach, {ZT+€ } e’ : Q(o*)
Ate:Q(1)— Q') Are:09(r)
(Ar) ; (EXEC)
Ak doepfe’} : Qrip{7/r})
Figure 12: Typing relation (partial)
(L-MEm) Afeir (L-Num) A;T F num : Num ~ £

A;THe:7~~T

Ayz:7;T,z:lFe:o~ € can_lambda(f)
AT e: 7o~/

(L-Fun)

AiTkFeiimi L i=1.n
(L-RECORD)

(L-APP)

AT H(@=e):

(@r7) ~ ¢

AiThe:(@rr)~£€ ATHe :{(b:0o)~

(L-Ip) Ayz:m Dz lbx:T~ 4

AThe :7~4 AThe:T >0~/
A;T'Fee 1o~ 4

can_call(¥)

A;The:{a:7,b:0) ~ 4L

(L-FiELD) A;TFea:T ~ ¢

can_createlists({)

(L-Concar)

A;THe:7~ (¢ can_createlists({)
AT e] 7%~

(L-SINGLETON)

A;T'hHe i1~ L i=1.n

A;ThHede :(@ir,b:io)~ ¢

(APPEND)

0 -
a#b (L-EMPTY) ATFO -

AThe:m"~{l A;THe :7°~ € can_createlists({)
A;THeWe: 7~ L

A;THe:T~ ¢

L- R
(L-Source) At:T o7t L db(t,e) : Q1) ~ £ (RETURN) A;T Freturn e Q(7) ~ £
(L-Group) AsThe: Q") ~ L Az :i‘,x :lkei:0;~ L j=1., can_group({)
A;T + groupbyf={z +e}: Q((@o)*) ~ ¢
(L-DETAILS) AsThe: Q") ~ L Az T_;l", x:fkei:0;~ L j=1.., can_nestgroups({)
A;T Fgroupbyy={ z e} : Q((aza,b: 7*)*) ~ £
AT ke Q(rf) » € i=1.n (can_join(f) Vn =1)
Az 7Tz :0Fe :Bool~fl AzimT,x:lke” 10~ L can_iterate(/)
(L-SELECT)

A;T Fforeach {TF€ } ¢’ : Q(o*) ~ £

Figure 13: Type directed localization

tions are supported in locations running MongoDB with Javascript,
or even in (imaginary) locations accepting LINQ queries containing
C't lambda expressions, but, is not accepted in locations based on
SQL. Calling functions (e €’) is also location dependent, that holds
for SQL locations if the called function (e) refers to a predefined
SQL function of the appropriate type.

Besides the predefinition of localized constants, the support
for localizing expressions is axiom (L-SOURCE), which assigns
a location and a type to a data source. Rule (L-GROUP) asserts
that a groupby operation can be computed at a certain location ¢,
depending on its sub-expressions and the capability of grouping of
the given location. Rule (L-Group) is focused on the so-called top-
level attributes of a groupby operation (the grouping criteria), if
the intended type refers to the details of the groups, then rule (L-
DETAILS) requires a different capability from the location. Notice
type Q((@ta,b : 7)), referring to label b, and the different
predicate can_nestgroups(/).

Not all database source locations are capable of iterating and
filtering data sources. For instance, a web-service API, may not

include services for filtering or iterating its provided data. Rule (L-
SELECT) localizes expressions based on iteration and filtering capa-
bilities (predicate can_iterate(?)). Locations with iteration ca-
pabilities may, nonetheless, lack the ability of joining two indepen-
dent sources (e.g. MongoDB if the used adapter does not allow it,
or indexedDB if special indexes are not used), which is reflected in
rule (L-SELECT)’s premise can_join(¢). Note also that subqueries
must be located at the same location as the select and condition ex-
pressions. So far, we limit the delegation of subqueries to arbitrary
locations only to the T location (through rule (L-MEM)). A lattice
of locations, with a delegation relation, can be used to establish
a more flexible localization relation, which would model database
engines supporting mechanisms similar to linked servers [2]. Capa-
bility can_join(¢) is only considered when more than one source
is used.

Notice that we assume that all well-typed expressions may be
computed in memory, as expressed in rule (L-MEgMm). This means
that, the localizing relation compositionally assigns a location to
each subexpression of a query and falls-back to assigning the mem-

ory location (T) when it is no longer possible to locate a query in
a single place, either because data-sources from different locations
are used, or because some capability is simply not available at a
given location. As shown in section 3, a query may be transformed
to localize groupby operations directly into one target database en-
gine, or it may be forced to collect all remote data and explicitly
group it locally (in the application server or client application). This
may happen when referring to details data in a relational database,
using a given function to filter that is not known in the target loca-
tion, or when the location does not have grouping capabilities with
the given criteria.

To the best of our knowledge there are no database engines
that perform in-place operations as defined in Acpr. Thus, in-place
operations are localized at T (in-memory).

We also consider the structural subtyping relation

/ /
<7 s T<7

(@rr,b:o) < <ﬁ> Q(r) < Q(7)

<1t o<o 7<o
T—>0c<7 >0 71*<o0o*

which we use in the following soundness lemma.

Lemma 2 (Soundness of Localization).
ATkFe: T~ /LiffAFe:oando < T.

This lemma holds trivially in all cases but rule (L-DETAILS). In
this case the type is coerced to not contain the details, which is
obviously a supertype. We prove the “if” part of this lemma by
induction on the size of the type derivations and by analysis of the
last case used. Notice that subtyping is not introduced initially in
the language as an universal law, instead we are introducing explicit
type coercions (projections) in the query transformation process
that follows. The “only if”” part of the lemma is proven by the fact
that all expressions can be localized in memory (T).

7. Location Based Compilation

We now define a query transformation algorithm that identifies
where each part of a query should be executed, guided by a lo-
calization mapping of data-sources. The algorithm identifies and
isolates parts of a query that should be remotely executed, it sep-
arates the code that aggregates and prepares the query results (if
possible), or generates new glue code to be executed in the starter
location (if necessary).

We define a typed localization relation for all kinds of expres-
sions with relation to the capabilities of locations to execute them
(e.g. a SQL location cannot execute function YearOfDate (), and
therefore a filter using that kind of function should be made in
memory). The compilation algorithm, written (r |7, is defined
on query values, with relation to a type 7, that represents the ac-
tual usage of the query results, and a starter location £. It yields
a localized expression, where its sub-expressions are tagged to be
remotely executed whenever possible, and transformed to execute
locally if needed. To represent the output of the algorithm, we ex-
tend the language with a new expression [e], whose semantics is
to execute expression e at location ¢. Formally, the semantics of a
localized expression is the same as the enclosed expression:

([ele) = (e

We also introduce a projection operation (7 (¢e)) that coerces the
value of expression e from type o to type 7. The type based projec-
tion is defined on expressions, and either recursively changes the
denoted value of the expression, or rewrites the record construction
expressions to contain less labeled fields. Proper placement of pro-
jection operations can largely improve the efficiency of a query, by

[z (e)), T+ ¢€]|w, B

B if can_join(¢')
(z+eB [)‘Z"S =

< (e)i,[z+=¢lw, B’

otherwise

where(]B[)?:[m(—e]g,,B'
andTFe:7~ ¢

Figure 14: Binder compilation

7117, (e) = if £ = ¢ then
if r=octhene
else if 7 < o then
if can_project () then 7} (e)
else undefined
else undefined
elseif T =octhen|e],
else if 7 < o then
if can_project(£’) then [75 (e) o
else if can_project({) then 7 ([e]¢)
else undefined
else undefined

Figure 15: Projection and localization function

pruning several fields, and avoiding the remote invocation of sub-
queries. The full definition, in [15], of 77 (e) is straightforward.

In order to define the compilation algorithm, we introduce in
Figure 15 an auxiliary projection and localization function on ex-
pressions to define a localized projection of a query expression.
We write 7117, (e) to denote a projection from type o to type T,
and from an inner location ¢’ to an outer location £. This operation
is always defined for well-typed and localized expressions, where
o < 7 and can_project(£). The compilation algorithm, in Fig-
ure 16, is inductively defined on the structure of a query expression,
satisfying the precondition above. It ensures that, either the starting
location can apply projections, or the expected type does not re-
quire any projection. We express the soundness of the projection
and localization function as follows

Lemma 3 (Soundness of projection).
7119, (e) is defined if o < T and can_project(L).

In all cases, of Figure 16, the resulting projection is directed
to the location given by the typed localization relation (¢'), and the
inner queries are also compiled with the target location £’ as starting
point. The required usage type for the inner expression depends on
the capability of the target location to make projections. Notice
that the typing relation can be used to determine the minimum
usage type, the greatest supertype of all partial usages of the free
variables of an expression. In practice, this corresponds to a simple
inference typing algorithm, that starts with an expected type and
assigns the usage types to the intermediate steps. In the case of a
foreach expression, we use the minimum usage type of each cursor
variable, to compile each inner-query, thus either the inner query is
compiled with a projection, or the projection is placed together with
the foreach expression. In the case of a groupby expression, we use
the minimum usage of the cursor in the group criteria expressions
in a similar way. In summary, the invariant of the algorithm leads
to correct placement of projections, possibly several query layers
above the source and usages of the data.

In the case of a foreach expression, the list of inner queries
(binders) of the query is compiled according to the definition of

(db(t,D))7 £ 7115, (db(t,v)) where
(foreach. {Z=T} e)j 2 7 I3 (foreach.
Ag;T +foreach. {ZT+=T } e: Q(c*) ~ ¢
Voes Do; T 1y 0 8 ~ £

Ap,x:0Fe:T

Ao; T+ db(t, D) :

(z+=7)

Q(0) ~ £ with T(t) = ¢/

57
5 } e) where

Ag,x :dF c:bool where d, is the minimum usage of each cursor x to type expression e with 7

V,ez if can_project(¢') then &), = 4, else 0, = dy,
(groupby;=“{z+r}); £
Ao; T+ groupbyi=¢{ z <1 }: Q(c) ~ ¢
Vocg Do,z : 0 Feq:7q ~ 0
Vaca Do, T 0q Feq i T

7115, (groupby{=¢{ = «+ (r [);?,” }) where

where ¢, represents the minimum usage of cursor x to type each expression e, with 7,

JsVaecz 0 < J4 is the meet of all types d, in the subtyping relation

if can_project(¢') then 8" = § else 6" = &'

(do ep{r} D7 = 715 (do e, {(DZ,'}) where Ag;T Fdo e,{r}: Q(a) ~ ¢
Ale:Q(8) — Q)
3o 0" = 7,{° /5}

(return v)7 = 7119 (return v) where

Ag;T Freturn v : Q(o) ~ ¢

Figure 16: Compilation and localization algorithm

Figure 14. We use meta-variables B and B’ to represent sets of
binders. The algorithm works by compiling sets of commonly lo-
calized binders, depending on the capability of the location to join
several data sources. The compilation of the binders of a foreach
expression, as in Figure 16:

foreach, { (z+=7 D?T } e
and given that the compilation of the binders has the form

"

Qx<—7’Dgz =a' [z 1"]e,...

the expanded version of the foreach expression is as follows

foreach. {x’ < 1!,z foreach { " =" e, .. }
(e{" o H/ D)
The different binders are grouped according to their possible loca-
tions, and some are not localized at all.

One aspect that we left out of this paper, for the sake of sim-
plicity, but has a high potential impact, is the separation of the
conditions among the several binders of a foreach expression. The
compilation strategy is similar to the compilation of query binders,
based on the free names of each expression, where an expression

foreache, ncon... { 1 < €1,22 < €2,... } €

can be transformed into

foreach.{ z1 < [foreach., { y +e1 } y]¢,
z < foreache, { z2 <—e2,...} ..., ... }e

The compilation algorithm is designed to interpolate the execu-
tion of queries in an extended language semantics, where a usage
type, introduced here as a type annotation, is used to guide it

(execx:7=cine) = ('{"%}) wherer = (e) -

‘We enunciate the soundness of the definition above as follows

Theorem 4 (Soundness of compilation process).
IfAobr:Q(0)then (7)5] = [75(r)] witho < 7.

We prove this by case analysis of the compilation function [15].
In summary, the compilation algorithm that we present above pro-

duces the query in Figure 17, when applied to the query of our
running example in Figure 11.

7.1 Query Simplification

Our running example (Figures 2 to 11) follows a particular se-
quence of steps, as it mimics the actions of a developer using an
interactive query construction tool. Notice that the resulting query
(Figure 17) can be simplified to produce another query that’s sim-
pler, but equivalent (Figure 18). In this case, the new attribute dur
was added after the application of operation groupby, using path
/details. An equivalent query can be written with the computed
attribute being expressed together with the join of Team and Task
data sources. The addition of attribute client, by joining data source
Client, can also be computed together with the first join. Adding
the attribute loc, however, cannot be simplified, as it requires call-
ing a web-service, a capability that relational databases do not have.
Also, joining technician data involves querying a remote location,
which cannot be performed by a relational database, and hence is
not included in the inner query.

7.2 Code Generation

When compiling a query we take advantage of the way its results
are being used. As an example, consider the query with Loc from
Figure 11, that when is localized using the complete type as possi-
ble usage, results in the query in Figure 17. If we compile it using
T = (name : String)™ as usage target, then the calls to the GEO
and TRACKER locations can be safely ignored, resulting in the (ab-
breviated) query:

(do addTechy jgerais{. ..})iremestrina” —

name=x.team.name
[groupby e/ {3 garsson

Notice that all in-place operations are eliminated by checking if the
given path exists in the target type, and that the groupby operation
is compiled and localized in the SALESDB database, since the usage
does not refer to group details. This query can then be used to
produce the C# code shown in Figure 19. If we instead compile
it with relation to type

[dO addT@Chl/deta“S{ do addLocJ,/Lietails {dO addClienti/demils{do addDurationl/demﬂs{

e=xz.team.name

name:
groupbydetails
where

{‘T «— [foreaCheAid:t.teamld/\tdate:8/]&{ay { €< db(Tea-m)yt ~ db(TaSk) } <team = e7ta5k = t>]SALESDB }}}}] T

addTech = Az.foreach { y < = } (y @ (tech = (run [getTech(y.team.id,y.loc) Jtracker)[0]))
getTech = XtAL[foreachy scamid=tancar(i.lat,l.ing,z.loc[0],z.loc[1],10) { T ¢ db(T'echs)} T |tracker
addLoc = Az.foreach { y < = } (y & (loc = run [db(Coords, y.client.address) |gen)))

addClient = Ax.foreachy, 1qsk.clitd=c.id { ¥ < @, ¢ [db(Client) |sacesps } (y ® (client = c)))
addDuration = Az.foreach { y < z } (y @ (dur = y.task.end — y.task.start)))

Figure 17: Full localized query

ezm.team.name{ T

do addTechi/dEmils{do addLoci/details{groupby’;ggg{l

s

foreaChe.id:t.tea'mId/\t.date:S/]\/Iay/\t.cliId:c.id { €< db(Tea'm)v t— db(TaSk)7 C < db(C]‘ient)}
(team = e, task = t,client = ¢, dur = t.end — t.start) }}}

Figure 18: Simplified query (not localized)

class DBData { public string Name; }

return ExecuteQuery<DBData>(
Q@"SELECT Team.Name FROM Team
INNER JOIN Task ON Team.Id = Task.TeamId
INNER JOIN Client ON Task.CliId = Client.Id
WHERE Task.Date = ’8/5’ GROUP BY Team.Name");

Figure 19: Code for Figure 11, using only top level data.

7 = (name : String,
details : (task : (title : String),
client : (name : String),
coords : (lat : Num,Ing : Num))™)

*

then we no longer can omit the call to the GEQ service. Furthermore,
the groupby operation needs to be performed in memory. The
resulting code is shown in Figure 20.

Note that even though the client’s address is not present in the
output, it still needs to be fetched from the database because it is
needed to invoke the Coords service. The algorithm accounts for
data mentioned in arguments of data-sources, filters, join conditions
and paths of in-place operations, and discards only the unnecessary
parts.

8. Related Work

Unlike many DSLs for the development of complete applica-
tions [9, 11], we focus on the problem of typeful integration of
data sources, as in [16], but dealing with the particular aspect of
distributing and optimizing code given a usage.

Our proposal provides a flexible nesting base model (as [4]),

that fits several variants of data repositories, from relational databases,

to NoSQL document based repositories, to parameterizable web
services. An approach like [5] may be used to complement our ap-
proach. Additionally, we naturally deal with raw nested data [8],
by means of our in-place modification operation.

Our work is related to the composition of higher order queries,
and higher order manipulation of XML data [1, 19]. We use the
uniform and compositional mechanism of in-place modifications,
that applies to all kinds of repositories, and is suitable to query
simplification.

Capabilities of data repositories are captured using description
logics, in systems that solve the problem of answering queries by
combining existing repositories [22]. Our goal is different, as we
limit the capabilities to the language operations, and do not use the
semantics of the schema.

Related work includes systems that integrate, behind a single
interface, several data based systems (e.g. [13]). We address a sim-

pler, and yet relevant scenario, that is how to integrate data sources
via a programming tool for applications, that typically are already
capable of orchestrating several data sources. This approach lets the
developer seamlessly access and combine data sources of different
natures.

9. Final Remarks

We introduced a common data manipulation language for nested
collections that allows the orchestration of several data sources re-
motely located. Our language abstracts the capabilities of each data
repository, and the type based compilation and optimization algo-
rithm we presented allows for the generation of specific code for
each kind of database engine, eagerly aggregating the operations as
close to the data sources as possible, and falling back to in-memory
processing when needed.

Our model is the base for a new visual data manipulation lan-
guage in the OutSystems platform, one that allows the gradual con-
struction of queries with immediate feedback to developers. Future
work includes the definition of the query rewriting mechanism that
simplifies the deep data manipulation operations on nested data,
and the corresponding integration with the localization algorithm.

References

[1] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-centric
General-purpose Language. In Proc. Int. Conference on Functional
Programming, 2003.

[2] J. A. Blakeley, C. Cunningham, N. Ellis, B. Rathakrishnan, and M.-
C. Wu. Distributed/heterogeneous query processing in microsoft sql
server. In Proceedings of the 21st International Conference on Data
Engineering, ICDE ’05, 2005.

[3] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Compre-
hension Syntax. SIGMOD RECORD, 23, 1994.

[4] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of Pro-
gramming with Complex Objects and Collection Types. Theor. Com-
put. Sci., 149(1), Sept. 1995.

[5] J. Cheney, S. Lindley, and P. Wadler. Query Shredding: Efficient
Relational Evaluation of Queries over Nested Multisets. In Proc. of
Int. Conference on Management of Data, 2014.

[6] A. Chlipala. Ur/Web: A Simple Model for Programming the Web.
In Proceedings of the 42nd Annual Symposium on Principles of Pro-
gramming Languages, 2015.

[7] J. Clark and S. J. DeRose. XML Path Language (XPath) Version 1.0,
1999. URL www.w3.org/TR/XPath.

[8] L. S. Colby. A Recursive Algebra and Query Optimization for Nested
Relations. In Proc. of Int. Conference on Management of Data, 1989.

class Coordinate {
public float Lat;
public float Lng;

class Client {
public string Address;
public string Name;
} }
class Team {
public string Name; class Detail {
X public Client Client;
class Task { public Task Task;
public string Title; public Coordinate Loc;
} }
class DBData {
public Team Team;
public Task Task;
public Client Client;
} }

class MemData {

public string Name;

public IEnumerable<Detail> Details;

return ExecuteQuery<DBData>(
Q@"SELECT Team.Name, Task.Title,
Client.Address, Client.Name FROM Team
INNER JOIN Task ON Team.Id = Task.TeamId
INNER JOIN Client ON Task.CliId = Client.Id
WHERE Task.Date = ’8/5°")
.GroupBy (
elem => new { Name = elem.Team.Name },
elem => elem,
(key, elems) => new MemData() {
Name = key.Name,
Details = elems.Select(a => new Detail() {
Client = a.Client,
Task = a.Task,
Loc = GEO.Coords(a.Client.Address)
1))
B

Figure 20: Generated code for query in Figure 11, using task’s title, the client’s name and the address’ coordinates.

[9] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web Program-
ming Without Tiers. In Proc. Int. Conference on Formal Methods for
Components and Objects, 2007.

[10] R. Davies and F. Pfenning. A modal analysis of staged computation.
J.ACM, 2001.

[11] Y. Fu, K. W. Ong, and Y. Papakonstantinou. Declarative Ajax Web
Applications through SQL++ on a Unified Application State. In Pro-
ceedings of Intern. Symposium on Database Programming Languages,
2013.

[12] N. Grade, L. Ferrdo, and J. C. Seco. Optimizing Data Queries Over
Heterogeneous Sources. In Proceedings of the 5th Simpdsio de Infor-
mdtica, Evora, Portugal, 2013.

[13] A.Halevy, A. Rajaraman, and J. Ordille. Data integration: the teenage
years. In Proc. of int. conference on Very large data bases, pages 9-16.
VLDB Endowment, 2006.

[14] S. P. Jones and P. Wadler. Comprehensive Comprehensions. In Proc.
Haskell Workshop, Haskell *07, 2007.

[15] Jodo Costa Seco and Hugo Lourengo and Paulo Ferreira. A
common data manipulation language. Technical report, Universi-
dade Nova de Lisboa, 2015. URL ctp.di.fct.unl.pt/~jcs/
techreport-dbpl.pdf.

[16] S. Lindley and J. Cheney. Row-based Effect Types for Database
Integration. In Proc. Workshop on Types in Language Design and
Implementation, pages 91-102, 2012.

[17] OutSystems. Using Aggregates - Fetching Data from the Database.
Tech. Documentation, 2015. URL www.outsystems.com.

[18] Y. Papakonstantinou, A. Gupta, and L. M. Haas. Capabilities-
based query rewriting in mediator systems. Distributed and Parallel
Databases, 6(1), 1998.

[19] J. Robie et al. XQuery 3.0: An XML Query Language, 2014. URL
www.w3.org/TR/xquery-30/.

[20] M. Serrano, E. Gallesio, and F. Loitsch. Hop: a language for pro-
gramming the web 2.0. In Companion to the 21th Annual Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions, 2006.

[21] A. Silberschatz, H. Korth, and S. Sudarshan. Database Systems Con-
cepts. McGraw-Hill, Inc., 5 edition, 2006.

[22] V. Vassalos and Y. Papakonstantinou. Expressive capabilities descrip-
tion languages and query rewriting algorithms. The Journal of Logic
Programming, 43(1):75 — 122, 2000.

