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Abstract
We introduce the concept of behavioral separation as a general prin-
ciple for disciplining interference in higher-order imperative con-
current programs, and present a type-based approach that system-
atically develops the concept in the context of an ML-like language
extended with concurrency and synchronization primitives. Behav-
ioral separation builds on notions originally introduced for behav-
ioral type systems and separation logics, but shifts the focus from
the separation of static program state properties towards the sep-
aration of dynamic usage behaviors of runtime values. Behavioral
separation types specify how values may be safely used by client
code, and can enforce fine-grained interference control disciplines
while preserving compositionality, information hiding, and flexi-
bility. We illustrate how our type system, even if based on a small
set of general primitives, is already able to tackle fairly challenging
program idioms, involving aliasing at various types, concurrency
with first-class threads, manipulation of linked data structures, be-
havioral borrowing, and invariant-based separation.

1. Introduction
The purpose of this work is to introduce and develop the concept
of behavioral separation as a general principle for disciplining
interference in higher-order imperative concurrent programs.

Statically verifying that higher-order imperative programs do
not go wrong in the presence of possible interference has proven
to be a challenging task, and a fertile ground for research since the
seminal work of Reynolds [32]. In general, two program fragments
interfere when the effects generated by one fragment may change
the state visible to the other, typically due to aliasing or to concur-
rency. Some forms of interference are “bad”, and may cause catas-
trophic failure, such as read/write races when accessing the same
memory cell. Other forms of interference are “good” and even re-
quired, such as the interference between producer and consumer
running concurrently, and sharing a thread-safe stateful queue, or
the interference between the head and tail references of a linked
list data structure. “Interference is the essence of concurrency”, as
Cliff Jones has frequently written [24].

An ongoing challenge to overcome is then to find techniques
for disciplining interference between different usages of the same
objects, so to ensure safety while being able to address increasingly
sophisticated programming idioms.

[Copyright notice will appear here once ’preprint’ option is removed.]

Significant advances have been achieved recently towards ap-
proaching these general goals, in particular by the separation logics
of O’Hearn and Reynolds [33, 30] and by substructural type and ef-
fect systems, e.g., [1, 8, 3]. In particular, separation logic supports
expressive forms of local reasoning, based on the use of the separat-
ing conjunction in combination with fractional permissions [9, 5]
to characterize the fine structure of program states. Extending such
state-based techniques to tackle the sophisticated program idioms
arising in modern higher-order imperative concurrent programming
is thus both promising and challenging [36].

In this work, we radically depart from a state-based view to-
wards a behavioral view of program assertions, by introducing a
notion of behavioral separation type structure. Behavioral separa-
tion builds on notions originally introduced for behavioral type sys-
tems and separation logics, but shifts the focus from the separation
of static program state properties towards the separation of dynamic
usage behaviors of runtime values. We thus introduce a type-based
approach that systematically develops the concept of behavioral
separation to enforce safety of programs, ruling out “bad” interfer-
ences in the presence of aliasing and concurrency. Our presentation
is grounded on a core ML-like language, with higher-order func-
tions, heap allocated variables, tuples, variants, and concurrency,
which we pick as a convenient abstraction for other languages sup-
porting higher-order imperative concurrent programming.

Behavioral types [19, 14, 22] based on process algebras, have
been introduced with the aim of characterizing the interface of a
process not just as a specification of the static type of exchanged
messages, but also as specification of its dynamic behavior. Like-
wise, our behavioral separation types specify how program values
may be safely used by client code, but are able to enforce fine-
grained interference control disciplines. A key novelty of our ap-
proach consists in uniformly combining in the same type structure
“temporal” operations, such as sequential separation, important to
capture trace constraints, with “spatial” operations, such as parallel
separation and isolation, important to capture aliasing and concur-
rency. Remarkably, we carry out our development in the context of
a clean substructural type theory, in which all type operators satisfy
natural algebraic properties, and is based on a λ-calculus extended
with imperative references and concurrency constructs.

Behavioral separation types also promote information hiding,
compositionality, and flexibility, since type assertions talk about
separation constraints on usage behaviors as externally perceived
by the programs which use them, rather than about the internal
structure of program state or program code. As will be clear from
our examples, behavioral separation types are also expressive and
flexible enough for proving safety of programs combining features
still challenging for (and even out of reach of) existing proof meth-
ods, including general higher-order store, aliasing / sharing at all
types, linked data structures, borrowing of local behavior, first-class
threads, and even invariant-based separation, based on typed syn-
chronization constructs.
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2. Overview
In this section, we motivate the general concept of behavioral sep-
aration, informally introducing on the way our core programming
language and explaining the various behavioral separation type op-
erators. We proceed by going through a sequence of examples.
Consider the following implementation of a collection abstract data
type, where we assume the list elements to be natural numbers, and
the representation data structure to be a linked list.

let newNode = λ[].var next , elt in
[ setElt = λe.(elt := e),

getElt = elt ,
setNext = λp.(next := p),
getNext = next ] in

let newColl =
λ[].var hd , id in

[ init = λi.(hd := NULL; id := i)
getId = id ,
add = λe.let n = (newNode nil) in

((n.setElt e); (n.setNext hd);hd:=NODE(n)),
scan = var s in (

s := hd;
rec L.case s of

NULL→ nil
NODE(n)→ (s := n.getNext ;L))]

We define four operations on collections: the initializer init ,
which sets the collection identifier (a string); the getId operation,
which returns the collection identifier; the add operation, which
adds a new element to the collection; and the scan operation, which
traverses the linked list, visiting each node in sequence. We model
ADT “objects” by tuples of closures sharing memory locations, and
“classes” by object generating functions, along standard lines. In
our language, tuple fields are bound to expressions (quoted code),
to be evaluated only after field selection (as e.g. in [35]). The
var x in e block creates a ML-style heap allocated variable, where
the created cell can survive the lifetime of the body e, embedded in
the value returned (cf. let x = ref(nil) in e in ML).

In the code shown above, the private hd variable refers to the
head of the linked list, and is shared by the add and scan oper-
ations. We represent references to list elements by variant values,
with options NULL(nil) abbreviated NULL and representing the null
reference, and NODE(n), representing a list node. In NODE(n), n is a
tuple with fields setElt , getElt , setNext , and getNext . Notice that
the latter two fields access the heap variable next , which references
the next node, if any, and is local to the given node.

Using standard functional and product types we would assign
to newColl a type as 0→SC , where 0 is a “unit” type, and SC
a record type representing the collection ADT “objects”. Such a
record type would essentially specify a flat interface, listing the
operations available, each one modeled as a typed record field.
In our system, types specify (fine grained) value usage behaviors,
rather than value structure. As a first example consider the type

SC , init :str|→0 ;(getId :strN add :nat|→0N scan:0)∗

The type SC specifies a possible usage behavior offered by a
collection. Intuitively, the type SC says that collections may be
used by first calling the init “method”, and then the getId , add ,
and scan “methods”, in iterated choice. First, it offers a label
selection usage, denoted by the label selection type init :str|→0.
The usage consists in selecting the init label to get a value of type
str |→ 0. The stop type 0 specifies that no usage is available.

The operator (−)|→(−) is our primitive functional type.U |→V
is a type for functions which do not interfere unsafely with their
argument, and specifies a single usage of a value as a function, at
the appropriate argument U and return type V . TheU |→V does not

correspond to a standard function type U→V , which can neverthe-
less be encoded in our system as will become clear later. It does
neither correspond to the linear arrow, nor to the arrows of separa-
tion [33, 30] or bunched logic [29], even if it is closely connected
to all of these. In a stateful, concurrent programming world, there
are too many ways of using a function object. In conjugation with
other type constructors, the functional type U |→V allows much of
such variety to be modularly approached.

Sequencing of behaviors is expressed by the sequential separa-
tion type constructor (−) ;(−). A value typed by U ;V first offers
to clients the usage behavior U and only after V . In our exam-
ple, after the init :str|→0 usage behavior, the collection value of-
fers a usage (getId :strN add :nat|→0N scan:0)∗. This last type
specifies the iterated choice between the selection of fields getId ,
add , and scan , each one yielding a value of respectively type str,
nat |→ 0, and 0. Choice between alternative behaviors is expressed
using intersection types. A value typed by U NV offers to clients
the choice between behaviors U and V , since it can provide both
U and V , alternatively. The star type U∗ denotes the iteration of U ,
defined by U∗ , rec(X)(0 N(U ;X)).

Clearly, the type operators just described may express rich se-
quential protocols for program values. Still, they are not expressive
enough to address aliased or concurrent usages, due to the strict
linearity they enforce. A more flexible specification would allow,
after initialization, the getId operation to be always available for
execution, concurrently with a add or a scan operation. On the
other hand, a concurrent execution of the add and scan operations
may lead to unsafe interference, due to a read/write race on hd . To
express this behavioral usage we use the parallel separation type
constructor (−) |(−).

In general, a U |V type asserts that behaviors U and V may be
safely used by causally independent clients, either due to aliasing or
concurrency, without incurring in unsafe interference. Such a paral-
lel usage only completes when both behaviors U and V complete.
Exploring the parallel type, we may assign to function newColl the
more flexible type 0|→CC where

CC , (init :str|→0) ;(!getId :str |(!scan:0 ; add:nat|→0)∗)

The type CC asserts that, after initialization, a collection provides
two independently usable behaviors, one of type !getId :str and
other of type (!scan:0 ; add:nat|→0)∗, composed using the paral-
lel separation type constructor (−) |(−).

The type constructor !(−), used in !getId :str and !scan:0,
specifies an unbounded number, possibly zero, of separated par-
allel usages (parallel in the same sense of (−) |(−)). In particu-
lar, the type !getId :str allows an unbounded number of (possibly
concurrent) aliases to access the field getId :str. Then, the type
(!scan:0 ; add:nat|→0)∗ specifies a usage consisting of the inter-
leaved repetition of some parallel usages of the scan:0 behavior
followed by the add:nat|→0 behavior. Only after all the scan op-
erations selected in the !scan:0 phase conclude, will add:nat|→0
become again available. Since there is no obligation to select some
scan:0 operation in the !scan:0 phase, the type CC also allows any
number of add:nat|→0 operations to be sequentially performed.

Notice that the behavior of a newly created collection c is com-
pletely separated, or isolated, from context: no behavioral depen-
dencies exist between c:CC and the behavior of other values in a
running program using the collection. We denote isolation by a type
operator ◦(−), which also plays an important role in our frame-
work. We thus assign to the function newColl the type 0 |→◦CC .

Let us now consider some code snippets using the collection
type just defined, and discuss valid (and invalid) typings.

let c = newColl [] in (c.init “my”); c.scan; (c.add 1)

let c = newColl [] in (c.init “my”); (c.add 1); c.getId ; c.scan
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Both code fragments are validated by our type system. In the
first one, it is clear that the usage of c follows the intended type.
In the second one, the intended usage type of c is also not vio-
lated, even if behaviors that appear parallel separated in the type
(e.g., c:getId :str and c:scan:0) are sequentially used in the code.
Clearly, if a value may be safely used according to U |V , it may
also be safely used according to U ;V . Subsumption principles as
this one are captured by subtyping, a pre-order on types written
U <: V . In particular, subtyping satisfies the exchange law [17]

(A ;C) | (B ;D) <: (A |B) ; (C |D)

of which U |V <: U ;V is a special case.
The next examples illustrates behavioral “borrowing”, where

fragments of the behavior of c are temporarily used by some func-
tion, before being given back to the caller context.

let c = newColl [] in
let f = λx.(x.init “your”) in (f c); (c.add 2)

let c = newColl [] in
let g = λx.(x.scan) in

(c.init “my”); (g c); c.scan; (c.add 2); (g c)

In the second case the borrowing function is used twice, at different
places of the global behavior. The borrowed type is declared in the
function domain, e.g., f :(init :str |→ 0) |→ 0. On the other hand

let c = newColl [] in
let h = λx.(x.init “your”) in (c.add 2); (h c)

attempts to use add before init , and is rejected by our type system.
More interesting examples illustrate borrowing of behavior

through the store, which our type system is able to handle in a
natural way, even in a higher-order setting. Consider the following
code snippet. It respects the expected behavioral constraints on the
value c and the heap allocated variable a, even if the behavior of c
is temporarily accessible at a, and is in fact typable in our system.

let c = newColl [] in var a in
(a := c; (a.init “my”); (a.add 1); (a.add 1); c.scan))

Heap variables are assigned behavioral separation types expressed
in terms of use use, read rd(U) and write wr(U) capabilities, and
related by subtyping axioms. We show some of them here

var <: use ; var use <: wr(U) ; rd(U) rd(!U) <: !rd(U)

rd(U ;V ) <: rd(U) ; rd(V ) rd(U |V ) <: rd(U) | rd(V )

The first two axioms say that a single use of a variable consists
in writing on it a value of type U , followed by a matching read
phase. The following axioms specify how the reading phase may be
behaviorally separated, depending on the type of the stored value.

The next example illustrates higher-order borrowing through
the store, the function attached to the add field is itself stored in
memory, before being called.

let c = newColl [] in ((c.init “my”);
var a in (a := c.add ; (a 1); c.scan))

This code does not violate any constraints imposed by the type of
c, even if a collection “method” (a functional value) is extracted by
selecting c.add and stored in the temporary heap variable a.

These last two examples get past our typing discipline, because
the type system keeps track of global separation constraints be-
tween all the values in the scope, and relies on sequential and paral-
lel frame reasoning to locally replace behaviors in behavioral sep-
aration type assertions. In the last example, the function of type
nat |→ 0 is required to be used (exactly once) before scan is se-
lected in c, even if its behavior is temporarily stored in the vari-
able a, respecting the initial footprint of c.add of in the global be-
havioral separation type. The type pre-condition of a := c.add is

a:use |(c:add :nat |→ 0 ; c:scan:0 ; · · · ), and the post-condition is
a:rd(add :nat |→ 0) ; c:scan:0 ; · · · . Notice that this last type se-
quentially constrains the behaviors of a and c, forcing a to be read
before using c. The ability to specify global separation constraints,
involving several values, seems essential for the expressiveness of
our system. As a further illustration of this point, consider

let c = newColl [] in let m = c.init in c.scan

Here, the init qualifier is selected, but since the associated func-
tional behavior (bound to m) is not actually exercised, the initial-
ization of the local hd variable is not performed, causing the scan
operation to “crash” in the case expression. Of course, this code
does not typecheck under our current assumptions, since it does
not preserve the frame conditions imposed by the intended behav-
ioral separation protocols. Indeed, c.scan would need to be typed
under the pre-condition (m:str |→ 0) ; c:scan:0 ; · · · , which states
that m must be used (as a function) before progressing with the
continuation behavior of collection c, which is not possible.

The type system systematically uses local reasoning and frame
principles on behavioral separation assertions to compute the ef-
fects of program fragments in a modular way. As a further example,
consider a case of function application, as in

var s in (s := “hi”;
let F = λx.(let c = newColl [] in (c.init x; c)) in
(let u = (F s) in (u.add 1)))

Function F returns an initialized collection. Before typing (F s)
the type assertion is s:rd(str) ; var |F :(str |→◦CC ). We as-
sume that the type of strings str is shareable ( str <: !str), so
that reading from s does not “empty” the variable. To type func-
tion application, we collect the footprints of argument and function
as (s:rd(str) |F :(str |→◦CC )) ; s:rd(str) ; var. After typing
let u = (F s), the type assertion is u:◦CC ; s:rd(str); var.
Apparently, this says that u must be fully used as ◦CC before
the variable s can be read again, which is not sensible. However,
since the behavior ◦CC is isolated, as expressed by ◦(−), any use
of s cannot causally depend upon it: by the subtyping principle
(◦U) ;V <: (◦U) |V , we actually reach u:◦CC | s:rd(str); var.
Isolated types offer a safe escape from the strict locality disci-
pline, allowing isolated behaviors to be fully (and soundly) sepa-
rated from a global type in which they might appear embedded.
As a further illustration, the following code is typable by assigning
◦CC |→ 0 to f so that it captures the argument full behavior (and
stores it in heap variable a) rather than borrowing it.

let c = newColl [] in
var a in let f = λx.a := x in ((f c); (a.init “y”))

We now consider some examples with concurrency. The parallel
expression (e1‖e2) clearly brings up the possibility of interference.
The next couple of examples are safe, and type-check in our system

let c = newColl [] in
((c.init “my”); (c.add 1); (c.scan‖c.scan))

let c = newColl [] in let f = λx.(x.scan) in
((c.init “my”); ((f c)‖c.scan); (c.getId‖(c.add 2)); (f c))

On the other hand, the code snippets

let c = newColl [] in ((c.init “my”); ((c.add 1)‖(c.scan))

let c = newColl [] in
let f = λx.((x.add 0)‖(c.add 1)) in ((c.init “my”); (f c))

violate the intended behavioral separation constraints, and are re-
jected by the type system. In the last case, although the function f
may be given type (add:nat |→ 0) |→ 0, the application (f c) is not
typable, since the type CC cannot provide footprints for separately
typing function and argument (no parallel separated add capabil-
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ities are available on c). On the other hand, the following similar
looking code is safe and well-typed.

let c = newColl [] in
let f = λx.(x.scan‖c.scan) in ((c.init “my”); (f c))

The form (e1‖e2) is actually derived from primitive fork and wait
thread-based concurrency constructs. Thread references are first-
class values in our language, created by the fork(e) expression. The
interesting operation on threads is to wait for their return value. Let

let c = newColl [] in ((c.init “my”);
var a in (a := fork(c.scan); c.scan;wait(a); (c.add 1)))

This code is well-typed under the current typing assumptions for
c, as enforced by the parallel and sequential frame conditions,
since the footprints of the fork and wait expressions match the
expectations of the global behavioral type. On the other hand,

let c = newColl [] in ((c.init “my”);
var a in (a := fork(c.scan); (c.add 1);wait(a)))

is not well-typed under the same assumptions: it breaks the sep-
aration constraints required by the type of c. Such type requires
c.scan and (c.add 1) to be sequentially separated, but overlapping
may occur at runtime, causing unsafe interference.

As noticed before, it is not sound to assign to our collection
a type allowing the add operation to be used concurrently with
scan operations. That would violate the intended usage protocol of
the internal state, causing a write/read race on heap variable hd.
However, our language allows “critical regions” in the code to be
sequentialized, and eventually typed by invariant-based separation.
Invariant-based separation allows isolated behaviors to be repeat-
edly interleaved in the global behavior, as far as the associated in-
variant conditions, expressed by a conveniently chosen type asser-
tion, are preserved. In our example, this could be achieved, e.g., by
adding a new local heap variable inv to collection, and wrapping
the uses of hd in add and scan as follows

add = λe.sync(inv)(. . .)
scan = var s in (sync(inv)s := hd; rec L.case s of · · · )

To type this code, we associate an assertion hd :rd(!◦PNode) ; var
to the heap variable inv , which expresses an invariant condition
protecting its footprint. Our type system is then able to assign to
the concurrent collection the following type, which allows, after
initialization, operations getId , add and scan to be unboundedly
aliased, or shared by several active threads.

C , (init :str|→0) ;(!getId :str | !scan:0 | !add:nat|→0)

Of course, the main novelty to highlight here is not the familiar rea-
soning technique for lock invariants, but the way our type discipline
elegantly captures it. Even if based on a few fairly general princi-
ples, it can be effectively used to reason about safety properties
of higher-order concurrent programs involving difficult to handle
scenarios of aliasing and concurrency. We are not aware of related
proposals, able to address the same set of (realistic) programming
idioms, and based on a a similarly general foundation, as we have
achieved here. This paper makes the following contributions:

• We motivate and introduce the concept of behavioral separation
as a general principle for disciplining interference in higher-
order imperative concurrent programs.

• We present a behavioral separation type system for a λ-calculus
with imperative and concurrency constructs. We show sound-
ness of the system, proving type preservation under reduction
(Theorems 4.3 and 4.5) and progress (Theorem 4.4).

• We illustrate, by means of many examples, how our type sys-
tem, even if based on a small set of very general primitives, is
already able to tackle fairly challenging program idioms.

m,n, t . . . ∈ Λ (Names)
x, y, z . . . ∈ V (Variables)
a, b, c . . . ∈ Λ ∪ V (Identifiers)
l, s . . . ∈ L (Labels)

X,Y . . . ∈ χ (Expression Vars)

e, f ::= x (Variable)
| λx.e (Abstraction)
| e1e2 (Application)
| let x = e1 in e2 (Definition)
| var a in e (Heap variable decl)
| a := v (Assignment)
| a (Dereference)
| [l1 = e1, . . .] (Tupling)
| e.l (Selection)
| l(e) (Variant)
| case e of li(xi)→ ei (Conditional)
| rec(X)e (Recursion)
| X (Recursion variable)
| fork e (New thread)
| wait e (Wait)
| sync(a)e (Synchronized block)
| sy(a)e (inSynchronized block)

Figure 1. Programming Language.

3. Programming Language
Our programming language, presented in Figure 1, is a λ-calculus
with mutable heap allocated variables, tuples, variants, and concur-
rency primitives. To keep it close to familiar high-level languages
such as Java, we consider unstructured (fork/join) thread-oriented
concurrency primitives, and a synchronization construct. Our lan-
guage is fairly simple yet expressive enough to support challenging
imperative higher-order concurrent programming idioms.

To formally define it, we assume given an infinite set of names
Λ, an infinite set of variables V , and an infinite set of method labels
L. Names in Λ are used to identify threads and heap locations. For
simplicity sake, we omit basic values, and literals for booleans or
integers, their addition as primitives is straightforward.

The functional core includes abstraction λx.e and application
e1e2, following call-by-value evaluation. The tuple expression
[l1 = e1, . . .] denotes a record collecting expressions ei, each one
qualified by the label li. As in [34], and without any loss of gen-
erality, we consider lazy tuples, where the expression ei is only
evaluated after selection of the label li. Lazy tuples allow different
qualifications of the same entity to be subject to different interfer-
ence constraints, both along the time and space dimensions, and
are convenient for encoding objects as tuples of ”methods”. The
empty tuple [] is abbreviated by nil.

The let expression represents local definition and sequential
composition: in let x = e1 in e2, the subexpression e1 is executed
first, its result bound to x, and only after e2 gets evaluated. We
abbreviate let x = e1 in e2 by (e1; e2) if x is not free in e2.

The construct l(e) injects the value of expression e into the vari-
ant label l. The case construct corresponds to a standard destructor
for labeled sum types. The expression case e of li(xi)→ ei first
evaluates e to a variant value li(v) (if this is not the case, execution
will get stuck). Then, v is bound to xi, ei evaluated and its value
returned as the result of the whole case expression.

Variable declaration var a in e, variable access v, and assign-
ment a := x are interpreted as usual. We adopt a simple form of
assignment a := v where v must be a value, and often use a := e
as an abbreviation of let x = e in a := x.
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The expression fork e spawns a new thread dedicated to the
evaluation of expression e, and immediately returns the new thread
identifier to the caller. Both the calling thread and the newly cre-
ated one proceed execution concurrently. The expression wait e
suspends the caller until the thread resulting from evaluating e ter-
minates with some result (if ever). Such result will then be returned
as the result of the wait expression.

Our language includes a simple synchronization primitive. The
primitive relies on endowing each heap variable with a lock. Such
locks are available for flexible use in programs, pretty much as
object locks are used, e.g., in Java programs (either to lock the
variable itself, or to protect any other relevant region of the state).
At each moment, a lock may be either taken or free. The expression
sync(n)e evaluates the expression e in exclusion, using the lock
associated to heap variable n (cf. the Java synchronized block);
only one thread may acquire the lock of n in linear (“write”) mode.

To track entry and exit of synchronization blocks in the opera-
tional semantics, we use the auxiliary construct sy(n)e. No occur-
rences of this construct, or of location or thread names are expected
to appear in source programs, these elements belong to the runtime
syntax of the full language, as shown in Figure 1.

The operational semantics of our programming language is de-
fined by a reduction system using evaluation contexts. A state con-
sists of a pair h; T , where h is a heap and T is a multiset of threads.
A reduction step has the form

h; T → h′; T ′ (h; T reduces to h′; T ′)

expressing a computation step from state h; T to state h′; T ′. In
any such step, new heap cells may be allocated, threads may be
created, evolve, or terminate. Each thread in T is represented by an
element of the form t〈e〉, where t is the thread name (from Λ), and
e is the runtime expression under execution by the thread. We write
t〈e〉 ·T for the multiset union of T and t〈e〉. A heap h is a mapping
from heap locations (names) to values. Each heap binding nk 7→ v
also has an integer-valued counter k associated, to be used as a
semaphore, important to support the synchronization primitives.
We write h(nk 7→ v) to denote a heap such that nk 7→ v ∈ h,
and h[nk 7→ v] to denote the heap obtained from h after storing v
at location n, with lock value k. We now introduce values V and
evaluation contexts E , given by

v, u ∈ V ::= λx.e
∣∣ [ l1 = e1, . . . ]

∣∣ l(v)
∣∣ t ∣∣ x

E ::= �
∣∣ let x = E in e

∣∣ E .l ∣∣ Ee ∣∣ vE ∣∣ l(E)∣∣ wait(E)
∣∣ sy(n)E

∣∣ case E of li(xi)→ ei

A value in our language is either an abstraction, a tuple (including
the empty tuple nil), a variant value, a thread name, or a variable.
The rules defining the reduction relation are presented in Figure 2.
We write {v/x} for the capture avoiding substitution of v for x,
defined as expected. In all reduction rules, we denote by t〈e〉 · T a
multiset that contains a thread t〈e〉 and a rest T . Notice that there is
no order assumed between elements in the thread multiset, so any
thread may be (non-deterministically) scheduled at each reduction
step. Most reduction rules are easy to interpret, and do not deserve
much explanation. In rules (Red var) and (Red fork) the conditions
(νn) and (νs) state that names n and s must be fresh in the
respective left hand side.

Rules (Red sync*) rely on the integer-valued lock associated to
the each heap location n. When the lock is zero, the lock is free.
Rule (Red syncin) checks that the lock k associated to v is free,
before decrementing it to −1, and allowing execution to enter the
critical region e: the expression sy(n)e signals that the execution
of e is taking place inside a critical region protected by the lock of
n. The lock is released after the body of the sy(n)e block reduces
to a value u, in rule (Red syncout).

(Red rec)
h; t〈E [ rec(X)e ]〉 · T → h; t〈E [ e{rec(X)e/X} ]〉 · T
(Red let)
h; t〈E [ let x = v in e ]〉 · T → h; t〈E [ e{v/x} ]〉 · T
(Red beta)
h; t〈E [ (λx.e)v ]〉 · T → h; t〈E [ e{v/x} ]〉 · T
(Red sel)
h; t〈E [ [ l = e ].li ]〉 · T → h; t〈E [ ei ]〉 · T
(Red case)

h; t〈E [ case li(v) of l(x)→ e ]〉 · T → h; t〈E [ ei{v/xi} ]〉 · T
(Red var)
h; t〈E [ var a in e ]〉 · T → h[n 7→nil]; t〈E [ e{n/a} ]〉 · T (νn)
(Red assign)
h(nk 7→v); t〈E [n := u]〉 · T → h[nk 7→u]; t〈E [nil]〉 · T
(Red deref)
h(nk 7→v); t〈E [n]〉 · T → h(nk 7→v); t〈E [v]〉 · T
(Red fork)
h; t〈E [fork e]〉 · T → h; t〈E [s]〉 · s〈e〉 · T (νs)
(Red wait)
h; t〈E [wait s]〉 · s〈v〉 · T → h; t〈E [v]〉 · T
(Red syncin)
h(n0 7→v); t〈E [sync(n)e]〉 · T → h[n−1 7→v]; t〈E [sy(n)e]〉 · T
(Red syncout)
h(n−1 7→u); t〈E [sy(n)v]〉 · T → h[n0 7→u]; t〈E [v]〉 · T

Figure 2. Reduction.

4. Type System
In this section, we technically present our type system. As already
discussed, types describe behavioral usages of values. We start by
systematically introduce each type operator, discussing on the way
their basic algebraic properties and related subsumption laws.

DEFINITION 4.1 (Types). Type operators are given by

T,U ::= 0 (stop) | T |→V (function)
| T ;U (sequential) | T |U (parallel)
| T NU (intersection) | l:T (qualification)
| ⊕l∈I l:Tl (sum) | !T (shared)
| ◦T (isolated) | τ(T ) (thread)
| rec(X)T (recursion) | X (recursion var)

We assume given some primitive type constructors c, c(U), such
as str, nat, to represent basic data types, and var, rd(U), etc, to
represent behavioral separation types for heap allocated variables.
The stop type 0 types any value exposing no behavioral capabil-
ity, in particular it types nil. The sequential type T ;U asserts of a
value that it can be safely used first according to type T , and only
afterwards according to type U . The sequential type expresses be-
havioral separation along the temporal dimension. Sequential types
induce a monoid with identity 0 in the type structure, expressed by

U ;(V ;T ) <:> (U ;V ) ;T U ; 0 <:> U 0 ;U <:> U

The parallel type T |U asserts of a value that it can be subject
to two safe independent parallel usages, specified by type T and
type U respectively. By “independent parallel usage” of a value we
mean any form of sharing, arising not just in concurrent programs,
but also in sequential programs, due to aliasing. The parallel type
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thus expresses behavioral separation along the spatial dimension. It
builds on the fundamental idea of separation (cf. separation logic
[33]), but focusing on the independence of usage behaviors, as
perceived from a “client” viewpoint , rather than on the disjointness
of underlying resources. To highlight this understanding of T |U ,
we refrain from using the notation T ∗U . A key insight on (− |−)
is that behaviors typed by parallel separation do not interfere in
unsafe ways, even if they rely on shared underlying resources.

An usage of typeU |V only concludes when bothU and V con-
clude. In a type such as (U |V ) ;T , the usage T is only available
when (U |V ) conclude. So our type language provides an abstract
way of splitting “permissions”, without using explicit fractions (cf.
[9]). Parallel types induce a commutative monoid with identity 0

U |(V |T ) <:> (U |V ) |T U |V <:> V |U U | 0 <:> U

Sequential and parallel composition are related by the exchange
law [4, 17], the following causality preserving distribution principle

(A ;C) | (B ;D) <: (A |B) ; (C |D)

A special case is the familiar interleaving law U |V <: V ;U .
The recursive type rec(X).A, where X must occur guarded in

A, is interpreted in a standard (co-inductive) sense.
The shared type !T asserts of a value that it can be safely subject

to an unbounded number of parallel separated usages (cf. (− |−) ),
each one specified by type T . In particular, it may be unboundedly
aliased at type T . The following laws hold for the type !T

!U <: U !U <: !!U 0 <: !0 !U | !V <: !(U | V )

!U <: 0 !U <: !U | !U

Notice that !(−) satisfies the fundamental co-monadic laws for the
linear logic exponential; so our notation highlights the connection.

The function type T |→V asserts of a value that it can be safely
used (once) as a function that when given as argument a value of
type T , exercises on it a usage of type T , and returns a result of type
V . Type U |→V is adjoint to U |V , so that the behavioral separation
interpretation ensures the intended safety property: no unsafe in-
terference can arise even if function and argument share state-full
resources, since they are behaviorally separated. SoU |→V is a type
for functions that do not unsafely interfere with their arguments, as
aimed in the sharing interpretation of−? in [29], but does not com-
pletely forbid sharing to enforce safety of interference. Moreover,
unlike in the linear logic interpretation of the arrow (U−◦V ), a
function of type U |→V can use its parameter more than once, as
long as it globally respects the behavioral type U .

The isolated type ◦T asserts of a value that it may be used as
specified by the type T , but, more crucially, that such usage is fully
isolated, not subject to any external (global) constraints. A value
of type ◦T is completely separated (in terms of behavior) from the
rest of the “world”. In particular, ◦T says that the usage T is not
borrowed from some larger computation. We may see a value of
type ◦T as offering a self-contained suspended behavior of type T ,
that may be used at any future step in the computation. No liveness
commitments are imposed on client code to use a value of type
◦T , unless it actually starts to use it at type T . In particular, a
value of type ◦T may be safely dropped out, since nothing causally
depends on it: a safe use for a value of type ◦T is not to use it at
all. Moreover, since nothing can causally depend on a value of type
◦T , we expect the law (◦U) ;V <: (◦U) |V to hold. We also have

0 <: ◦0 ◦A | ◦B <: ◦(A |B) ◦A <:A ◦A <: ◦◦A
◦A <: 0 !◦A <: ◦!A (◦A |B) ;C <: ◦A |(B ;C)

The first five laws express familiar algebraic principles (cf. the ba-
sic laws for !(−)). The last two laws are proper to ◦(−). In partic-
ular, the last one expresses the key property of ◦(−), global behav-
ioral isolation: a behavior of type ◦T is isolated, and can be freely

used anytime, concurrently with anything. No other behavior can
causally depend from a behavior of type ◦T . By the exchange law,
we may derive the “postponing” principle (◦A) ;B <:B ;(◦A).

The (linear) intersection type U NV asserts of a value that it
may be safely used according to type U and according to type V .
The client code using such a value can therefore freely decide to
pick either the U or the V behavior (but not both, since we exploit
a linear interpretation of N). The following basic laws hold.

U NV <: U U NV <: V U <: U NU

The qualified type l:T asserts of a value that it offers a usage of
type T under the label l. It describes a label selection capability of
a tuple, classifying the usage type of the value in field l. Following
[35], general tuple types may be defined by combining qualified
types with other type constructors, e.g. l1:T1 N . . .N ln:Tn.

The sum type ⊕l∈ili:Ti asserts of a value that it is a labeled
value that can be used according to type Ti if it is labeled with li.
Client code using such a value must branch on the possible labels,
before actually using the selected behavior. The sum type thus
corresponds to a standard labeled disjoint union, useful to describe
variants or options. We do not assume specific subtyping principles
for sum types. We abbreviate (NULL:0⊕ NODE:U) by Opt(U).

The thread type τ(T ) asserts of a value that it references a
running thread that upon termination returns a value of type T .

Types for heap allocated variables are conveniently described in
our system by specific primitives, expressing usage, write and read
capabilities. The type of a freshly allocated heap variable is var.
The type var denotes the generic heap variable usage protocol, and
is axiomatized by several subtyping laws, presented in Section 4.1.

As previously discussed, a type classifies a single value. In or-
der to type program expressions, which may use in general sev-
eral different values, we introduce a notion of type assertion. A
type assertion corresponds to the usual notion of type environment,
assigning types to the various free identifiers in a program. How-
ever, our type assertions finely describe behavioral dependencies
between the several identifiers in its domain, by placing basic type
assignments of the form x:T embedded in a larger global type.

DEFINITION 4.2. Type assertions are given by

A,B ::= x:T
∣∣ A ;B

∣∣ A|B ∣∣ ANB
∣∣ !A

∣∣ ◦A ∣∣ X ∣∣ rec(X)A

For an example, under the assumptions expressed by the type asser-
tion (f :U |→V ; y:U) | z:U , the function f can be applied to z but
not to y, so (f z) is well typed but (f y) is not, since the behavior
y:U is only available after f :U |→V is used.

We denote by Dom(A) the (finite) set of variables appearing in
a type assertion A. If A has a singleton domain {x} (that is, refers
to a single variable x), we implicitly identify it with the singular
assertion x:(A)x where the type (A)x is given by

(x:T )x = T (A ;B)x = (A)x ;(B)x
(A |B)x = (A)x |(B)x (ANB)x = (A)x N(B)x
(!A)x = !(A)x (◦A)x = ◦(A)x
(X)x = X (rec(X)A)x = rec(X)(A)x

Therefore, we identify, e.g., x:(up ; dn) with (x:up) ;(x:dn), and
rec(X)((x:up |x:dn) ;X) with x:rec(X)((up | dn) ;X).

We define type assertion contextsA[−], E [−] to be the one hole
syntactic contexts associated to type assertions. We also consider
active assertion contexts, where the hole occurs unguarded, defined

E [−] ::= �
∣∣ E [−] ;A

∣∣ E [−] |A
∣∣ A | E [−]

4.1 Subtyping
Type assertions are related by a subtyping relation. We writeA <:B
to state that A is a subtype of B, meaning that the usage behavior
B is subsumed by usage behaviorA. Intuitively,A <:B means that
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A <:> A | 0 A |B <:B |A A |(B |C) <:> (A |B) |C

A <:> A ; 0 A <:> 0 ;A A ;(B ;C) <:> (A ;B) ;C

(A ;C) |(B ;D) <: (A |B) ;(C |D)

ANB <:A ANB <:B A <:ANA

0 <: ◦0 ◦A <: 0 ◦A <:A ◦A <: ◦◦A ◦A | ◦B <: ◦(A |B)

!◦A <: ◦!A (◦A |B) ;C <: ◦A |(B ;C) !A | !B <: !(A |B)

0 <: !0 !A <: 0 !A <:A !A <: !!A !A <: !A | !A

rec(X)A <:> A{rec(X)A/X} var <: use ; var

use <: use ; use use <: wr(U) ; rd(U) wr(0) <: 0 rd(0) <: 0

rd(U ;V ) <: rd(U); rd(V ) rd(U |V ) <: rd(U) | rd(V )

rd(!U) <: !rd(!U) rd(◦U) ; var <: ◦(rd(◦U) ; var)

Figure 3. Subtyping.

if some value may be safely used according to A then it may also
be safely used according to B.

A <:B (A is a subtype of B)

Notice that subtyping also apply to types by letting U <: V if and
only if x:U <:x:V . Subtyping axioms, defined in Figure 3, express
the basic algebraic laws of the type operators discussed above. We
abbreviate by A <:> B the fact that A <: B and B <: A. To save
space, we abbreviate rules of the form x:U <: x:V by U <: V ,
and omit subtyping congruence rules. All type operators satisfy the
expected (covariant) subtyping congruence principles, with some
exceptions, e.g., the arrow U |→V , which is contravariant in the
domainU , and wr(V ), which is contravariant on V (see Appendix).

Particularly interesting are the axioms defining the var behav-
ior. We may derive var <: ◦var: clearly a fresh heap allocated
variable offers an isolated behavior. The first axioms state that a
variable can be subject to an unbounded number of uses, each use
composed by a write and a read phase. Other axioms specify how
the reading phase may be behaviorally separated, depending on the
type of the stored value. For example, the axiom for rd(U |V ) says
that if a value of type U |V can be read from the variable, then the
variable can also be subject to independent reading at types U and
V . This point is extremely important: e.g., a heap variable may be
shared or aliased, only if the stored value also may be. Notice that
the axiom for use, allowing a different type U to be picked at dif-
ferent unfoldings of var, naturally support strong updates [2] (up-
dating a heap allocated variable to hold values of unrelated types at
different points in time).

4.2 Typing
Type judgments of our system have the form

A `z e :: B (e types from A to z in B)

whereA andB are type assertions, e is an expression, and the index
z is a variable. We refer to A as the pre-condition, and to B as the
post-condition of the typing judgment. The behavioral type of (the
value of) e, as determined by the type system, appears embedded
in assertion B. The variable z stands for such a value, and can only
occur free inB (not inA or e). This idea of scoping the return value
z over the post-condition already appears in the Hoare triple type
of [28], although here the type of z cannot be given apart from B.

For an example, consider

a:use `z (λx.a := x) :: z:◦U |→0 ; a:rd(◦U)

This judgment asserts that evaluating the expression (λx.a := x)
in a state providing a:use returns a functional value (identified
by z in the post-condition) that must be used exactly once before
the heap variable a can be read. We now progressively present the
several rules of our type system, discussing each one on the way.

4.2.1 Structural Rules
The identity axiom

x:U `z x :: z:U (Id)

asserts that access to the identifier x simply returns the associated
value, usable according to the type in the pre-condition (N.B: (Id)
has the proviso that U is not an heap variable type: typing rules
for heap variable dereference are given below). The type system
includes four other structural rules. A crucial one is subtyping
(Sub), which embeds into typing the basic subsumption principles.
It allows assertions in type rules to be considered up to <:> , and
plays a role similar to the consequence rule in Hoare logics.

A <:A′ A′ `x e :: B′ B′ <:B

A `x e :: B
(Sub)

The rule for let corresponds to cut (x not free in the conclusion)
A `x e1 :: B B `y e2 :: C

A `y let x = e1 in e2 :: C
(Let)

The following parallel and sequential structural rules express basic
“frame” principles. Rule (Par) allows the footprint of an expres-
sion to be enlarged along the spatial dimension, while rule (Seq)
allows the footprint to be enlarged along the temporal dimension.

A `x e :: B

A |C `x e :: B |C (Par)
A `x e :: B

A ;C `x e :: B ;C
(Seq)

Given these two rules, the following “deep” frame rule is admissi-
ble for any active type assertion context E [−].

A `x e :: B

E [A] `x e :: E [B]
(Frame)

4.2.2 Functional Type
We have the following typing rules for the λ-calculus core.

A|x:U `y e :: y:T

A `z λx.e :: z:U |→T (VAbs)

A `z e1 :: z:U |→T B `x e2 :: x:U

A |B `y e1e2 :: y:T
(App)

These rules are similar to the arrow rules in linear or bunched [29]
type systems, even if our semantics for |→ is different. Given the
interpretation of A |B, (App) ensures that functions do not inter-
fere with their arguments unsafely upon application. Notice that the
type of the argument x is left 0 in the postcondition of the premise
of (VAbs), forcing the function body to fully exercise the behavior
U of its parameter, consistently with the ”argument-borrowing”
semantics of our functional type. The type of an “argument-
capturing” function may be rendered (◦U) |→V , and the type of
a function that can safely share the behavior of its argument with
its own behavior may specified (!U) |→V . Behavioral separation
types allow many fine-grained variations of functional behavior to
be specified (e.g., !(U |→V ) - a shareable function; (U |→V )∗ - a
non shareable but repeatedly usable function, etc). Notice that in
our typed language (as, e.g., in the monadic λ-calculus) one cannot
encode the let by application and abstraction.

4.2.3 Tuple Type
The rules for tuples and field selection have the expected form.

A `x e :: x:U

A `z [. . . l = e . . .] :: z:l:U
(Tuple)

A `z e :: z:l:T

A `x e.l :: x:T
(Sel)
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Recall that field contents of tuples are evaluated lazily, as in [34],
so (Tuple) allows a single field to be type checked. As explained
above, richer behavioral separation types for multi-field records
may be expressed using the various type constructors available.

4.2.4 Intersection Type
We include as primitive the introduction rule And .

A `y e :: B A `y e :: C

A `y e :: B N C
(And)

A `y e :: B1 N B2

A `y e :: Bi
(AndE)

Technically, we choose to absorb the elimination principles for
intersection in the subtyping relation (e.g., ANB <:A). However,
familiar elimination rules AndE are admissible (using (Sub)).

4.2.5 Behavioral-Separation Types
Structured behavioral-separation usages are assigned to basic val-
ues (abstractions, tuples) by the following type rules:

0 `y v :: 0 (VStop)
A `y v :: C B `y v :: D

A ;B `y v :: C ;D
(VSeq)

!A1 | . . . | !An `x v::B

!A1 | . . . | !An `x v::!B
(VShr)

A `y v::C B `y v::D

A |B `y v :: C |D (VPar)

Rule (VShr) expresses that a value can be subject to any number
of shared usages, if it only relies on resources which may also be
safely used by any number of shared usages. Interestingly, these
rules allow values to satisfy crisper frame principles than the struc-
tural rules in Section 4.2.1, which apply to general expressions.
For example, the following “fat” identity axiom and left-sequential
frame rule turn out to be admissible for values, even if the corre-
sponding principles are not sound for arbitrary expressions.

A `y v :: A (VId)
B `y v :: C

A ;B `y v :: A ;C
(VLPar)

4.2.6 Isolated Type
The rule (Iso) assigns to the postcondition of an expression an
isolated type if it only depends on values of isolated type.

◦A1 | . . . | ◦An `x e :: B

◦A1 | . . . | ◦An `x e :: ◦B (Iso)

The type rules for !A and ◦A are therefore similar, and express the
basic comonadic principle associated to these type constructors (cf.
the introduction rule for ! in intuitionistic linear logic), even if their
meaning is quite different (sharing versus isolation).

A remarkable property of any type T of the form !◦U is that
T <:> T |T and T <:> ◦T , so that T is both shared and isolated.

4.2.7 Sum Type
Sum types are also handled by familiar looking typing rules.

A `y ec :: y : ⊕l∈I l:Tl xi:Ti |B `z ei :: C

A |B `z case ec of l(x)→ e :: C
(Case)

A `z e :: z:Ti
A `z li(e) :: z:⊕l∈I l:Tl

(Option)

As for function application, the type rule for case ensures that the
matched value is separated from the corresponding case branch, so
to avoid unsafe interference.

4.2.8 Heap Variable Types
We have already explained how heap allocated variables are mod-
eled in our system as special values, subject to a specific usage
protocol defined by certain subtyping axioms. The type rule for a

variable declaration types the body under the assumption of a sep-
arated complete protocol for the new variable, specified by var.

a:var |A `x e :: C

A `x var a in e :: C
(Var)

Rules for dereference and assignment are more interesting. We
consider two typing rules for dereference, and two typing rules
for assignment. The alternative typings express boundary cases on
usage of the variable protocol, which are not naturally captured by
a single typing rule. We distinguish between reading just a “piece”
of the behavior stored in the variable (RdVB), from reading the
whole remaining stored behavior (RdVF ).

a:rd(U) `x a :: x:U (RdVB)

a:rd(U); use `x a :: x:U | a:use (RdVF )

Rule (RdVF ) states that even if the precondition states that the
next use of variable a is guarded by a read usage rd(U), the
variable content x:U is separated of the residual variable behavior
a:use, specifying an “empty” variable. Rule (RdVF ) expresses an
important invariant ensured by the type system: the behavior stored
in any heap variable is always separated from the continuation
behavior of the variable object itself (after all of its content gets
read off). So the postcondition in the conclusion of (RdVF ) always
holds, even if the type of the heap variable content is not explicitly
declared as isolated (not of the form ◦U ).

We also have two rules for assignment, depending on weather
the behavior stored in the heap variable is isolated or borrowed.

A `z v :: z:◦U | a:wr(◦U)

A `z a := v :: 0
(WrVF )

A `z v :: z:U | a:use

A `z a := v :: a:rd(U)
(WrVB)

In both rules, the stored value is required to be parallel separated
from the heap variable, which must be in a ready-for-write state.
Rule (WrVF) handles the case in which the value behavior to be
stored is isolated. Here, we only require the write capability, as
the stored value may be used anytime later. Rule (WrVB) handles
the case in which the value behavior to be stored may be not
isolated. In this case, one must ensure that all associated reads will
happen before any sequential continuation of z:U , so a whole use
is required in the premise, leaving the associated read usage active
in the post-condition. It is interesting to see why a rule as (WrVF ),
but considering a non-isolated type for the stored value, would not
be sound. Let us consider a simple counterexample.

r:U | a:wr(U) `x r :: x:U | a:wr(U)
r:U | a:wr(U) `x a := r :: 0
r:U ;V | a:wr(U) `x a := r :: r:V
r:U ;V | a:wr(U); rd(U) `x a := r :: r:V ; a:rd(U)
r:U ;V | a:use `x a := r :: r:V ; a:rd(U)

This candidate derivation states that after executing a := r the be-
havior r:V is available before reading the variable a, thus violating
the requirement that r must be used as U ;V . A correct typing is:

r:U | a:use `x r :: x:U | a:use
r:U | a:use `x a := r :: a:rd(U)
r:U ;V | a:use `x a := r :: a:rd(U) ; r:V

Typing rules for assignment require separation between heap vari-
able and stored value. This may suggest that typing of circular
chains of references through the heap may be difficult, if not im-
possible. Although it is clear that linear behaviors cannot refer cir-
cularly to themselves, that is not the case for general behavioral
separation types: some safe circular chains may still support sep-
arated behaviors, due to the presence of qualified tuples, or just
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because of sharing (including invariant based separation). We illus-
trate this point in Section 4.5, by typing a version of Landin’s knot.
The following rules are admissible (using the abbreviation a := e
for let x = e in a := x, assuming E [−] an active type context).

A `z e :: z:◦U | a:wr(◦U)

A `x a := e :: 0

A `z e :: E [z:U ] | a:use

A `x a := e :: E [a:rd(U)]

The rules of the basic type system are shown in Figure 4. We avoid
introducing here rules for recursion and recursive types whose
treatment require the addition of extra information to typing judg-
ments; details may be found in the Appendix. For clarity’s sake, we
present the type system in two steps, first without synchronization
constructs, which is extended in Section 4.5 to the full language.

4.3 Typing the Collection Implementation
We get back to the running example in the Introduction. We have
intuitively argued that a collection value may be assigned the type
◦CC , and the function newColl the type 0 |→◦CC . We now
discuss how such type is actually validated by our type system. We
first type the list nodes. Consider the following abbreviations

InitNode , setElt :(nat |→ 0) ; setNext :(!◦PNode |→ 0)

INode , !getNext :PNode | !getElt :nat

Node , InitNode ; !◦INode PNode , !Opt(INode)

The type PNode defines the behavior of a pointer to a list of
(initialized) nodes, as created by the function newNode . We use
option types to type list pointers: either the “null” pointer, tagged
NULL(−) or a value of type INode , tagged by NODE(−).

Directed by rules VSeq , VShr and Tuple , the system assigns
type Node to the tuple [setElt = · · · ] by checking that it can
be subject to the given behavioral separation usage, while safely
using its local resources (the variables next and elt). The vari-
able elt gets assigned type wr(nat) ; !rd(nat): it is written just
once (in the operation setElt), and available for shared read-
ing from then on. Notice that var <: wr(nat) ; !rd(nat), since
nat is assumed shared (nat <: !nat). Variable next is typed
wr(◦PNode) ; !rd(PNode) ; var. After initialization (execution
of the behavior InitNode), the node type evolves to !◦INode;
only operations getNext and getElt are available, usable by an
unbounded number of aliases or concurrent clients. The shared be-
havior INode of the list nodes supports sharing of the linked list
and allows the type !scan:0 to be assigned within CC. Recall

CC , (init :str|→0) ;(!getId :str |(!scan:0 ; add:nat|→0)∗)

Checking newCollection against type 0 |→◦CC , involves ver-
ifying that the “object” tuple [init = · · · ] representing a col-
lection can be safely subject to the behavioral separation usage
specified by CC . After init , the variable hd is assigned type
rd(◦PNode) ; var. This type is kept invariant between iterated ex-
ecutions of the add and scan operations.

It is particularly interesting to see how the scan operation is
typed. A sequentially separated prefix PNode is borrowed from
hd to the local heap variable s, (◦PNode <: PNode ; ◦PNode).
After typing the assignment s := hd, the type assertion is

s:(rd(PNode) ; var) ; hd :(rd(◦PNode) ; var)

which by subtyping (var <: ◦var and postponing) leads to

s:rd(PNode) ;(hd :(rd(◦PNode) ; var) | s:var)

where PNode is the behavior of s actually used up by the various
loop iterations. After typing the whole loop, the type assertion is

hd :(rd(◦PNode) ; var) | s:var
which after closing the scope of s (removing s:var), gets us back
to the invariant hd :rd(◦PNode) ; var.

4.4 Type Preservation and Progress
We now state the main correctness results for the basic type sys-
tem, namely the subject reduction property and progress for well-
typed programs. Type preservation and progress ensure that in a
well typed program all values are properly used according to their
assigned behavioral-separation types. In particular, given the struc-
ture of types assigned to variables, no write/write or read/write
races while writing to heap variables are possible (it is not the case
that use <: (wr(U) | wr(V )) ;T or use <: (rd(U) | wr(V )) ;T ).

We first introduce a notion of typing for runtime configurations
h ; S defined by the following rules

∅ ; ∅ . 0 (E)
h ; S . E [C] C `x e :: x:T

h ; S · t〈e〉 . E [t:τ(T )]
(T )

h ; S . A A <:B

h ; S . B
(S)

h ; S . A A `x v :: B

h, n 7→ v ; S . B{x/n:var} (H )

In rule (T ), E is an active type assertion context. The notation
B{x/n:var} (with n fresh in B) represents an update to assertion
B in which the behavior pieces assigned to x ∈ Dom(B) are
substituted in place by reads to a new heap variable n: essentially,
all occurrences of the form x:U in typeB are replaced by n:rd(U)
and a n:var is inserted in sequential and linear position relative to
all n:rd(U)’s. We can state our type preservation result.

THEOREM 4.3. If h ; S .A and h ; S → h′;S′ then h′;S′ .A.

An expression e is live, noted live(e), if it is not a value. A set S of
threads is live, noted live(S) if there is some thread t〈e〉 in S such
that live(e). We can then prove

THEOREM 4.4. If h ; S . A and live(S) then h ; S → h′;S′.

Detailed proofs and definitions are given in the Appendix.

4.5 Invariant-based Separation
We now extend the basic type system to cover the full core language
with sync(a)e blocks, and invariant-based reasoning. As explained
in Section 3, each heap variable is equipped with an associated
lock (pretty much like a Java object is). To each lock, a resource
invariant, expressed by an isolated typing assertion, is associated
for verification purposes. We only accept for lock invariant a heap
assertionR such thatR <:◦R (let us call “heap assertion” any type
assertion that just refers to heap variable types - var, use, etc).
Handling lock invariants requires some additional structure in our
type system: we add to typing judgments an invariant mapping ι,
that associates to heap location locks their invariants:

A `ιz e :: B (e types from A to z in B under ι)

The invariant mapping is propagated untouched by all typing rules,
except in the new rule for variable declaration, which may intro-
duce a lock invariant, and in the rules for sync(n)e and sy(n)e,
which make use the lock invariant associated to heap location n:

ι(a) |A `ι\ax e :: ι(a) |B
A `ιx sync(a)e :: B

(Sync)
A `ι\ax e :: ι(a) |B
A `ιx sy(a)e :: B

(Sy)

A <:B |R a:var | B `ι{R/a}x e :: C

A `ιx var a in e :: C
(Var)

Without loss of generality, we assume that the invariant associated
to some heap variable’s lock does not talk about the variable itself,
but only about other heap variables in scope. Consider the code
snippet describing an “atomic” variable.

let atomic = λv.
var s in s := v;
var lock in [ set = λx.sync(lock)s := x,

get = sync(lock)s ] in . . .
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0 `y v :: 0 (VStop) x:U `y x :: y:U (Id)
◦A1 | . . . | ◦An `x e :: B

◦A1 | . . . | ◦An `x e :: ◦B (Iso)
!A1 | . . . | !An `x v :: B

!A1 | . . . | !An `x v :: !B
(VShr)

A <:A′ A′ `x e :: B′ B′ <:B

A `x e :: B
(Sub)

A `y e :: B A `y e :: C

A `y e :: B N C
(And)

A `x e1 :: B B `y e2 :: C

A `y let x = e1 in e2 :: C
(Let)

A `x e :: B

A ; C `x e :: B ; C
(Seq)

A `x e :: B

A | C `x e :: B | C (Par)
A `x e1 :: x:U |→T B `y e2 :: y:U

A | B `z e1e2 :: z:T
(App)

A `x e :: x:U

A `x [. . . l = e . . .] :: x:l:U
(Tuple)

A `x e :: x:l:T

A `x e.l :: x:T
(Sel)

A | x:U `z e :: z:T

A `z λx.e :: z:U |→T
(VAbs)

A `y e :: (y:⊕l∈I l:Tl) xl:Tl |B `z el :: C

A |B `z case e of l(~x)→ e :: C
(Case)

A `z e :: z:Tm (m ∈ I)

A `z lm(e) :: z:⊕l∈I l:Tl
(Option)

A `y v :: C B `y v :: D

A ; B `y v :: C ; D
(VSeq)

A `y v :: C B `y v :: D

A | B `y v :: C | D (VPar)

a:var | A `x e :: C

A `x var a in e :: C
(Var)

A `z v :: z:U | a:use

A `z a := v :: a:rd(U)
(WrVB) a:rd(U); use `x a :: x:U | a:use (RdVF )

A `z v :: z:◦U | a:wr(◦U)

A `z a := v :: 0
(WrVF ) a:rd(U) `x a :: x:U (RdVB)

A `x e :: x:T

A `x fork e :: x:τ(T )
(Fork)

A `x e :: x:τ(T )

A `x wait e :: x:T
(Wait)

Figure 4. Typing Rules.

Let U be some shared isolated type (e.g. a type such that U <:!◦U ).
We can then derive the typing

atomic:U |→(!set :(U 7→ 0) | !get :U)

by associating to lock the invariant s:rd(U) ; var. This type states
that atomic is a function that returns a stateful variable “object”
that can be safely used concurrently by an arbitrary number of
setters and getters. Notice that if any of the two sync blocks is
removed, atomic would only be typed by a behavioral-separation
type that sequentializes the get and set operations somehow. For
example, if both sync blocks are removed, a possible typing is

atomic:U |→(!get :U ; set :(U 7→ 0))∗

which would still allow sharing (aliasing, or concurrent usage) of
the get “method” but not of the set “method”.

This example illustrates how the monitor construction can be
explained as a type coercion operation in our type structure, e.g.,
coercingA ;B toA |B, or even (A ;B) N(B ;A) toA |B. Recall
that by the exchange law we can deriveA |B <: (A ;B) N(B ;A),
expressing the basic interleaving principle that a value of typeA |B
can be used according to (A ;B) N(B ;A). Conversely, given a
value providing the behavior (A ;B) N(B ;A), we may in general
coerce it to the behavior A |B, by wrapping within a monitor that
enforces the appropriate usage protocol by means of locking. The
monitored object then exports two behaviorally parallel separated
interfacesA andB, even if there is potentially sharing / interference
between the implementations of A and B. Our type system natu-
rally assigns A |B to the monitored object, relying on the modular
type rules for locking and on standard invariant-based reasoning.

Invariant based reasoning is also useful in a non-concurrent set-
ting, in which case we may consider the sync operator essentially
as a typing device for potentially shared (aliased) usages. We elab-
orate on this point using a simple, yet non-trivial example: a FIFO
queue implemented with a linked list data structure with head and
tail pointers (code is presented in Figure 5). We describe the type
Node assigned to node value in the list. Let

Node , HeadT |TailT SHeadT , Opt(HeadT )

HeadT , ◦unlink :◦SHeadT TailT , ◦link :◦SHeadT |→ 0

Our type system assigns to function new the type !(0 |→Node).

SQueue ,
let new =
λ[].var next in

next := NULL;
var lock in

[ unLink = sync(lock)let x = next
in (next := NULL;x)

link = λx.sync(lock)next := x ]
in var head , tail in (

head := NULL; tail := NULL;
[ enq = let n = (new nil) in

case tail of
NULL→ (head := NODE(n);

tail := NODE(n))
NODE(y)→ (y.link NODE(n));

tail := NODE(n)),
deq = case head of

NULL→ head := NULL
NODE(y)→ (head := y.unLink ;

case head of
NULL→ tail := NULL; head := NULL
NODE(y)→ head := NODE(y)) ]

Figure 5. A FIFO Queue Implemented with a Linked List

Node is a parallel separation type, exposing, on the one hand,
the behavior to be assigned to the head pointer or to the previous
node in the list, and, on the other hand, the behavior to be assigned
to the tail pointer. The safe separation of behaviors is here enforced
by the use of invariant based separation, associating to lock the
invariant next :rd(◦SHeadT ) ; var.

We can then derive `q SQueue :: SQueueI where

SQueueI , (q:enq :0N q:deq :0)∗

This type says that the declared behavioral separation protocols are
enforced, even in the presence of possible interference between
the state accessible from head and tail . Additionally, type Node
clearly says that both link and unlink operation are used exactly
once in each list node, the first through the tail alias, the other by
the head alias, and that this describes the full behavior of a node.
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Type SQueueI above declares a sequential behavior for the queue,
where enq and deq operations cannot be selected concurrently. A
simple typable concurrent queue can be defined by guarding the
sequential implementation described with appropriate sync blocks:

letCQueue = var head , tail in (
head := NULL; tail := NULL;

var qinv in
[ enq = sync(qinv)(. . .)

deq = sync(qinv)(. . .) ]

For type checking this code we associate to qinv the invariant
head :rd(◦SHeadT ) ; var | tail :rd(◦STailT ) ; var. We then de-
rive `q CQueue :: QueueCI for QueueCI , !enq :0 | !q:deq :0.
The QueueCI interface type explicitly says that the queue can be
safely used by many concurrent clients, as in. e.g.,

let q = CQueue in (q .enq ; q .enq‖q .deq ; q .deq)

Notice that in the assertion typing SQueue only sequential
types appear, that is, no (− |−) or !(−). So only a single thread
may be visiting the code of SQueue. This means (informal claim)
that the lock lock associated to each list node will always be free.
So, the sync blocks in Node are operationally irrelevant, and may
be seen as an auxiliary device for bracketing code regions subject
to invariant-based type checking of separation. On the other hand,
sync blocks are essential to CQueue , if it is to be actually used
according to the more permissive type QueueCI .

As a further example, we present a code fragment tying a
Landin’s knot, thus creating a circular chain of references in
the higher-order store. We may verify that it can be typed by
assigning to the (operationally useless) lock linv the invariant
a:rd(!◦(0 |→ 0)) ; var, and to the function f the type !◦(0 |→ 0).

var a in ( a := λx.x;
var linv in let f = λy.(sync(linv)(a) y)

in (sync(linv)(a := f); (f nil)) )

In principle, our type system could be refined to distinguish be-
tween two different scenarios for invariant based reasoning, one
already useful to handle interference in sequential code, another
one to handle interference in truly concurrent code, only the latter
would require real locks to be introduced in the code. We leave this
discussion for future consideration, for the issue seems orthogonal
to the main purpose of this paper. A key point to highlight here is
that our typing principles for the sync construct seem to capture a
useful and general form of invariant reasoning about safe interfer-
ence in the context of a behavioral separation type system.

We can now state the type preservation result for the full core
language. To that end, typing for runtime configurations is gener-
alized to consider the declaration of invariants. This is achieved by
a global invariant mapping ι, which assigns lock invariants to loca-
tions: essentially, the rule (H) of Section 4.4 is replaced by the fol-
lowing rules, covering the two possible lock states (see Appendix).

h ; S .ι A |R A `ιx v :: B

h, n0 7→ v ; S .ι{R/n} B{x/n:var} (HU)

h ; S .ι A A `ιx v :: B

h, n−1 7→ v ; S .ι{R/n} B{x/n:var} (HL)

THEOREM 4.5. If h ; S .ιA and h ; S → h′;S′ then h′;S′ .ιA.

A progress property also holds for the full core language with con-
currency and synchronization primitives, but in a restricted sense,
due to the possibility of deadlock on sync blocks (see Appendix).

5. Related Work
The concept of separation results from a research stream whose
origins can be traced back to the seminal works of Reynolds on

syntactic control of interference [32, 34]. Separation logics extend
classical Hoare logic with new connectives, in particular the separa-
tion conjunction, which allows to specify the fine-grained structure
of states in programs manipulating references, and enables local
reasoning to successfully tackle programs with references [33] and
concurrency [30]. More recently, separation logic has motivated the
introduction of Hoare Type Theory [28], and has been extended to
languages with higher-order store [36]. These works focus on the
identification of higher-order frame principles for state-based local
reasoning. The idea of assigning a parallel separation type to some
value, even when there is (safe) interference between the imple-
mentations of the separated behaviors, is reminiscent of concepts
explored in fictional separation [23] and concurrent abstract pred-
icates [15]. In our case, we consider such usage behaviors as truly
separate, as they can be safely used by independent clients. The
focus of behavioral separation is on externally usable protocols of
program entities, rather than on the internal state of programs. Al-
though it is clear that the fundamental notion of separation applies
to many kinds of computational structures [11, 13, 18], the idea of
combining separation with behavioral types to discipline interfer-
ence in a realistic programming language, as we do here, does not
seem to have been considered before.

Various forms of behavioral types has been independently intro-
duced by several authors with the intent of classifying usage pat-
terns of computational objects [19, 14, 22]. Some of these works
have motivated more refined verification techniques, for example,
to check resource usage disciplines [21] in functional programs. A
particular case of behavioral types are the so-called session types,
intended to discipline message exchanges between partners in dis-
tributed systems. Although initially proposed for systems with in-
teraction between exactly two partners [19], session types have
been extended to systems with an arbitrary number of partici-
pants [20]. Our notion of type assertion is loosely related with the
notion of global type introduced in [20], in the sense that it needs
to talk about the joint behavior of several entities. A version of ses-
sion types to discipline interactions between concurrent objects was
developed in [16], but does not attempt to deal with interference or
aliasing. More recently, we have developed an interpretation of ses-
sion types in linear logic [12], which also inspired some aspects of
the theory presented here. Connections between session types and
separation logic have also been investigated in [37], but focusing
on disciplining the transference of resources in process communi-
cations. In prior work, we attempted a very preliminary approach
to the concept of behavioral separation [10]. However, the develop-
ments in this paper clarify the notion of behavioral separation type
in the context of a clean substructural type theory, based on a λ-
calculus with imperative and concurrency constructs, and are much
more general and expressive.

Several works have proposed type-based approaches to disci-
pline aliasing and concurrency control in various programming lan-
guages, usually exploiting type and effect systems [1, 8]. Owner-
ship types have also been studied to discipline aliasing and concur-
rency [7, 6]. Some of these works have led to the development of
powerful programming tools [25]. Typically, these works do not fo-
cus on capturing the dynamic behavior resources at a deeper level,
as we attempt in our work, but on tracking occurrences of identi-
fiers, locks, permissions, regions, and data dependencies, usually
resorting to linearity. An important exception is typestate, which
uses a state-based approach to specify resource usage protocols in
object oriented languages [3]. A key ingredient of the typestate ap-
proach is the use of primitive permissions to capture usage idioms,
rather than resource behavior. In parallel research we are investi-
gating combinations of separation with typestate [26]. Techniques
to support expressive borrowing idioms in the context of typestate
have been recently proposed in [27].
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6. Conclusions
We have introduced behavioral separation as a general principle for
disciplining interference, either due to aliasing or concurrency, by
combining concepts from separation logic and behavioral type sys-
tems. We have designed a behavioral separation type system that il-
lustrates the concept using a higher-order imperative functional lan-
guage extended with concurrency and synchronization primitives.
Our type system is proven sound using proof theoretic techniques.

We have also shown that the expressiveness of our approach
goes beyond the state of the art for type-based verification of alias-
ing and concurrency, and provided several challenging examples
involving fine-grained state manipulation, thread based concur-
rency, and synchronization constructs. Further examples, including
the implementation of a concurrent queue based on a double linked
list can be found in the Appendix. In ongoing work, we are study-
ing algorithmic aspects of our type system; in fact, we have already
designed an algorithm that can effectively typecheck programs in
our core language with a reasonable annotation burden, these re-
sults will be reported elsewhere. We are also investigating general-
izations to invariant-based separation, along the lines suggested in
Section 4.5.
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A. Appendix
A.1 Recursion
To accommodate recursion (in both programs and types) in the type
system, we add to typing judgements a recursion variable environ-
ment η, which maps expression variables Z to type judgments and
type variablesX to type assertions. This technique allows recursion
to be interpreted coinductively; our use of a recursion environment
is inspired in familiar techniques (e.g., [31]). We include two pair
of rules, one pair for recursive expression and expression variable,
and other pair for recursive type and type variable.

η(X) = A

A `ηx v :: X
(VRecVar)

A `η{X/A}x v :: B

A `ηx v :: rec(X)B
(VRec)

η(Z) = (A `x B)

A `ηx Z :: B
(RecVar)

A `η{Z/(A`xB)}
x e :: B

A `ηx rec(Z)e :: B
(Rec)

We have elided the recursion environment in typing judgments in
most of our presentation in the paper main body. For the sake of
clarity, we have also stated our technical results for the recursion
free language and type system, since recursion is treated along stan-
dard lines, and fairly orthogonal to the new aspects of our develop-
ment. Both the recursion environment η and the invariant mapping
ι should be propagated without modification from premises to con-
clusion of all typing rules in Figure 4. Nevertheless, for complete-
ness of our presentation, we collect in Figure 8 the full set of rules
of our type system, based on the complete judgment form

A `ι,ηz e :: B (e types from A to z in B under ι, η)

A.2 Runtime Configuration Typing
We summarize the runtime configuration typing rules for the full
language with synchronization primitives.

∅ ; ∅ .∅ 0 (E)

h ; S .ι E [C] C `ι,∅x e :: x:T

h ; S · t〈e〉 .ι E [t:τ(T )]
(T)

h ; S .ι A |R A `ι,∅x v :: B

h, n0 7→ v ; S .ι{R/n} B{x/n:var} (HU)

h ; S .ι A A `ι,∅x v :: B

h, n−1 7→ v ; S .ι{R/n} B{x/n:var} (HL)

h ; S .ι A A <:B

h ; S .ι B
(S)

N.B. In (HU ),R is a lock invariant (see (Section 4.5). The notation
B{x/n:var} (with n fresh in B) represents the transformation of
type B where the behavior at x ∈ Dom(B) becomes provided
through a new heap cell n. We formally define A{x/n:var} using
the auxiliary substitution form A[x/n:var]:

(A ;B){x/n:var} = A{x/n:var} ;B (x 6∈ Dom(B))
(A ;B){x/n:var} = A[x/n:var] ;(B{x/n:var}) (x ∈ Dom(B))
(A |B){x/n:var} = A{x/n:var} |B (x 6∈ Dom(B))
(ANB){x/n:var} = A{x/n:var}NB (x 6∈ Dom(B))
(◦A){x/n:var} = ◦(A{x/n:var})
A{x/n:var} = A[x/n:var] ;n:var (otherwise)

(x:U)[x/n:var] = n:rd(U)
(y:U)[x/n:var] = y:U (x 6= y)
(A ;B)[x/n:var] = A[x/n:var] ;(B[x/n:var])
(A |B)[x/n:var] = A[x/n:var] |(B[x/n:var])
(ANB)[x/n:var] = A[x/n:var] N(B[x/n:var])
(!A)[x/n:var] = !(A[x/n:var])
(◦A)[x/n:var] = ◦(A[x/n:var])

(We omit the symmetric cases of | and N). Notice thatB{x/n:var}
preserves the standard variable protocol for n, and correctly inserts
the terminal behavior n:var at the earliest possible position after
all the n:rd(−) declarations. If B = (x:U | z:T ) ; a:V with x 6= z
then B{x/n:var} = (n:(rd(U) ; var) | z:T ) ;(a:V ), but if B =
(x:U |x:T ) ; a:V thenB{x/n:var} = n:(rd(U |T ) ; var) ; a:V .

It should be clear that if h ;S . A then the type A only talks
about the usage of heap variables in h and threads in S.

A.3 Further Remarks on Type Safety
By Theorems 4.3, 4.4, and 4.5, well typed programs satisfy all the
declared behavioral separation protocols, and the progress property
holds even in the presence of strong updates (changing types) of
heap variables. We expand on the remark in Section 4.4:

PROPOSITION A.1 (Race absence). Runtime configurations of the
following forms cannot be typed.

1. (write/read race) h ; S · t1〈F1[n := u]〉 · t2〈F2[n]〉 .ι A.
2. (write/write race) h ; S · t1〈F1[n := u]〉 · t2〈F2[n := v]〉.ιA.

Proof. By induction on typing derivations, using the key fact that
for the post-condition type B of a well-typed configuration typ-
ing h ;S .ι B we cannot have B <: (n:rd(V ) |n:wr(U)) ;B′ or
B <: (n:wr(V ) |n:wr(U)) ;B′, given the subtyping axiomatiza-
tion of var (Section 4.1), and runtime configuration typing.

A.4 A double linked List with Concurrent Iterator
We discuss types for the implementation of a FIFO queue over a
double linked list, thus refining the development in Section 4.5.
This example complements the discussion in Section 4.2.8, and il-
lustrates how behavioral separation and the typing constraints on
heap allocated variables do not forbid all circular chains of refer-
ences in the heap. It also demonstrates how behavioral separation
types precisely capture the safe usage discipline of the queue itera-
tor “method”, which in our example supports concurrent transver-
sals of the linked list. The code is shown in Figure 6. Consider first
the code for the list nodes, generated by the function DNode , and
which expose operations setNext , getNext , setPrev , getPrev . We
propose some type declarations that may be used to check our im-
plementation. These are not the most expressive ones one might
consider for the code at hand, but sufficient to make several inter-
esting points.

G , getNext :!ON ON , Opt(G)

OH , Opt(◦H ) H , (G ; ◦H ) N(P ;!◦G)

OT , Opt(◦T ) P , setPrev :(◦OT |→ 0)

T , getPrev :◦OT N , ◦T |(setNext :(!◦ON |→ 0) ; ◦H )

We can derive 0 `z DNode :: z:0 |→N , where N is the behav-
ioral separation type of a single list node. To typecheck the synchro-
nized blocks in operations getPrev and setPrev the lock invariant
assertion associated to inv is rd(◦OT ) ; var.

The queue provides three operations: enq (enqueue an element),
deq (dequeue the oldest element, if any), and iter . The operation
iter returns an iterator “object”, which can be used concurrently
by an arbitrary number of clients (each one invoking a scan oper-
ation), before being released (by means of a done operation). The
iterator object is assigned the following interface type

IT , SOME(!scan:0 ; done:0)⊕ NONE

The option NONE signals that the queue is empty, SOME(−) that
there are indeed some elements to scan.

We set QT , (enq :0N deq :0N iter :IT )∗ as the behavioral
separation type describing the safe usage protocol of the queue
code. We can derive 0 `q DList :: q:QT .
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DNode ,
λ[].var next , prev in

prev := NULL;
var inv in

[ getNext = next
setNext = λx.(next := x)
getPrev = sync(inv)let x = prev

in (prev := NULL;x)
setPrev = λx.sync(inv)(prev := x) ]

DList ,
var head , tail in (

head := NULL; tail := NULL;
[ enq = let n = (DNode nil) in

case head of
NULL→ ((n.setNext NULL);

head := NODE(n);
tail := NODE(n))

NODE(y)→ ((y.setPrev NODE(n));
(n.setNext NODE(y));
head := NODE(n)),

deq = case tail of
NULL→ tail := NULL
NODE(y)→ (tail := y.getPrev ;

case tail of
NULL→ tail := NULL; head := NULL
NODE(z)→ tail := NODE(z)),

iter = case head of
NULL→ head := NULL; NONE
NODE(n)→ head := nil;

let s = n.getNext in
let io = [
scan =
var a in (a := s;
rec(L).case a of

NULL→ nil
NODE(r)→

(a := r.getNext ;L)),
done = (head := NODE(n) ]
in SOME(io)

]

Figure 6. Queue over a double linked list, and iterator

After the two initial assignments (of NULL) to head and tail,
these heap variables keep as invariant (between “method” invoca-
tions) the types rd(◦OH ) ; var and rd(◦OT ) ; var, respectively.

Consider the client code snippet P1 in Figure 7. We have
q:QT `x P1 :: 0, so 0 `x let q = DList in P1 :: 0.

Thus the composition of the queue and client code typechecks,
and thus free from protocol violations, including races on heap
variable access. On the other hand, consider the code snippet P2:
it enqueues an element in the queue after requesting an iterator
(i = q.iter ), but before using the iterator i. Due to aliasing, the
s.done operation may erroneously interfere with the mentioned
enqueue operation, thus breaking the invariant that head should
always refer to the first element and tail to the last element of the
queue. Defensively, we have safeguarded against such misusage by
setting head to nil at iterator construction time (line head := nil ).

So, in fact, P2 “crashes” during evaluation of the last q.enq
expression, since the code for enq expects head to hold a value
of sum type ◦OH (such a “crash” is signaled in our semantics by
the fact that the case head of · · · expression will get stuck).

P1 ,
q.enq ; q.enq ; q.deq ;
let i = q.iter in (

case i of
NONE→ nil
| SOME(s)→

letf = fork(s.scan) in
(s.scan;wait(f); s.done))

P2 ,
q.enq ; q.enq ; q.deq ;
let i = q.iter in (
q.enq ;
case i of
NONE→ nil
| SOME(s)→

letf = fork(s.scan) in
(s.scan;wait(f); s.done))

Figure 7. Some Client Code

Obviously, P2 does not typecheck under the assumption q:QT !
The pre-condition of the body of expression (let i = q.iter in · · · )
is (i:IT ; q:QT ), thus forcing the behavior i:IT to be exercised
before q:QT (sequential separation). Likewise, in P1 the type pre-
condition of expression (let f in · · · ) right after SOME(s)→ is

(s:!scan:0 ; s:done:0 ; q:QT )

thus allowing multiple threads to perform scan concurrently (par-
allel separation), but forcing s:done to be executed (exactly once)
before proceeding with further queue operations, as shown.

Notice that the concurrent usages of the scan operation, ex-
pressed by the type !scan:0 do not require locks in the imple-
mentation, since they only rely on read capabilities of shared re-
sources (the cursor variable a is typed a:!ON ). On the other hand,
the synchronized blocks in DNode have been introduced to allow
invariant-based reasoning justify the safe sharing of list nodes by
head and tail , and do not play an essential role in operational
terms, as discussed in Section 4.5.

A.5 Proofs of Main Results
We present proofs for the main (and some auxiliary) results in
the paper. For clarity, we prove type preservation and progress for
the basic type system, and afterwards address the full system with
synchronization primitives.

We start by stating a few basic inversion principles for the typing
relation (which only apply to values v).

LEMMA A.2 (Inversions). We have

1. If A `x v::B and x 6∈ Dom(B) then A <:B and B `x v::B.
2. IfA `x v::B1 |B2 then there areA1, A2 such thatA <:A1 |A2

and A1 ` v::B1 and A2 ` v::B2.
3. IfA `x v::B1 ;B2 then there areA1, A2 such thatA <:A1 ;A2

and A1 ` v::B1 and A2 ` v::B2.
4. If A `x v::!B then there are Ai such that A <: !A1 | · · · |!An

and !A1 | · · · |!An ` v::B.
5. If A `x v::◦B then there are Ai such that A <: ◦A1 | · · · | ◦An

and ◦A1 | · · · | ◦An ` v::B.

Proof. By induction on typing derivations.

A generalized substitution lemma holds for the type system,
which corresponds essentially to a natural cut principle in the
behavioral separation type structure.
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LEMMA A.3. If A `x v::B and B `z e::C then there is D such
that A `z e{v/x}::D and D `x v :: C.

Proof. By induction on the derivation of B `z e::C. Notice that
x may occur in B, but not in A. In the statement conclusion, the
judgment D `x v :: C expresses the usage of v that remains
after the use of x actually performed by e; this stronger property
is particularly useful to handle the let expression case.

(Case (Id))
B = y:U , C = z:U and e = y.
(Case y = x) e{v/x} = v.
A `x v :: x:U , by assumption
A `z v :: C, by conversion
C `x v :: C, by (VId)
(Case y 6= x) e{v/x} = e = y and x 6∈ Dom(B)
A <:B and B `x v :: B by Lemma A.2(1)
A `x v :: B by (Sub)
A `z y :: C, by conversion
C `x v :: C, by (VId)

(Case (Sub))
B′ `z e :: C′, B <:B′, C′ <: C, by inversion
A `x v::B′, from assumption, by (Sub)
A `z e{v/x}::C′′, and C′′ `x v :: C′, by ih.
C′′ `x v :: C, by (Sub)

(Case (Par))
B = B1 |B2, C = C1 |B2, B1 `z e :: C1, by inversion
A1 `x v :: B1, A2 `x v :: B2 and A <:A1 |A2

by Lemma A.2(2)
A1 `z e{v/x} :: C′1, and C′1 `x v :: C1, by ih.
A1 |A2 `z e{v/x} :: C′1 |A2, by (Par)
A `z e{v/x} :: C′1 |A2, by (Sub)
C′1 |A2 `x v :: C1 |A2, by (Par)
x 6∈ B2 so A2 <:B2 by Lemma A.2(1)
C′1 |A2 `x v :: C, by (Sub)

(Case (Seq))
B = B1 ;B2, C = C1 ;B2, B1 `z e :: C1, by inversion
A1 `x v :: B1, A2 `x v :: B2 and A <:A1 ;A2

by Lemma A.2(3)
A1 `z e{v/x} :: C′1, and C′1 `x v :: C1, by ih.
A1 ;A2 `z e{v/x} :: C′1 ;A2, by (Seq)
A `z e{v/x} :: C′1 ;A2, by (Sub)
C′1 ;A2 `x v :: C1 ;A2, by (Seq)
x 6∈ B2 so A2 <:B2 by Lemma A.2(1)
C′1 ;A2 `x v :: C, by (Sub)

(Case (VAbs))
e = λu.e′, C = z:U |→T , B |u:U `y e′ :: y:T , by inversion
A |u:U `x v :: B |u:U , by (Par)
A |u:U `y e′{v/x} :: y:T ′, and y:T ′ `x v :: y:T , by ih.
x 6∈ y:T so T ′ <: T by Lemma A.2(1)
A |u:U `y e′{v/x} :: y:T , by (Sub)
A `z e{v/x} :: C, by (VAbs)
C `x v :: C, by (VId)

(Case (App))
e = e1e2, C = z:T , B = B1 |B2,
B1 `z e1 :: z:U |→T , B2 `z e2 :: z:U , by inversion
A1 `x v :: B1, A2 `x v :: B2 and A <:A1 |A2,
by Lemma A.2(2)
A1 `z e1{v/x} :: z:U |→T , tby ih.
A2 `z e2{v/x} :: z:U , by ih.
A `z e{v/x} :: C, by (App)
C `x v :: C, by (VId)

(Case (VStop))
e = v′, C = B = 0
A <: 0 and 0 `x v :: 0 by Lemma A.2(1)
A `x v′{v/x} :: C by (VStop) and (Sub)
C `x v :: C, by (VId)

(Case (VPar))
e = v′, B = B1 |B2, C = C1 |C2,
B1 `z v′ :: C1, B2 `z v′ :: C2, by inversion
A1 `x v :: B1, A2 `x v :: B2 and A <:A1 |A2,
by Lemma A.2(2)
A1 `z v′{v/x} :: C′1, and C′1 `x v :: C1, by ih.
A2 `z v′{v/x} :: C′2, and C′2 `x v :: C2, by ih.
A1 |A2 `z v′{v/x} :: C′1 |C′2, by (VPar)
A `z e{v/x} :: C′1 |C′2, by (Sub)
C′1 |C′2 `x v :: C, by (VPar)

(Case (VSeq))
e = v′, B = B1 ;B2, C = C1 ;C2,
B1 `z v′ :: C1, B2 `z v′ :: C2, by inversion
A1 `x v :: B1, A2 `x v :: B2 and A <:A1 ;A2,
by Lemma A.2(3)
A1 `z v′{v/x} :: C1, and C′1 `x v :: C1, by ih.
A2 `z v′{v/x} :: C2, and C′2 `x v :: C2, by ih.
A1 ;A2 `z v′{v/x} :: C′1 ;C

′
2, by (VSeq)

A `z e{v/x} :: C′1 ;C
′
2, by (Sub)

C′1 ;C
′
2 `x v :: C, by (VSeq)

(Case (VShr))
e = v′, B = !B1 | · · · , C = !C′, and B `z v′ :: C′, by inversion
A <: !A1 | · · · and !A1 | · · · `x v :: B,
by Lemma A.2(4)
!A1 | · · · `z v′{v/x} :: C′′, and C′′ `x v :: C′, by ih.
A `z v′{v/x} ::!C′′, by (VShr) and (Sub)
!C′′ `x v :: C, by (Sub) and (VShr)

(Case (Let))
e = let u = e1 in e2, and B `u e1 :: B′,
and B′ `z e2 :: C, by inversion
A `u e1{v/x} :: B′′, and B′′ `x v :: B′, by ih.
B′′ `z e2{v/x} :: B′′′, and B′′′ `x v :: C, by ih.
A ` e{v/x} :: B′′′, by (Let)

(Case (Iso))
B = ◦B1 | · · · , C = ◦C′, and B `z e :: C′, by inversion
A <: ◦A1 | · · · and ◦A1 | · · · `x v :: B, by Lemma A.2(5)
◦A1 | · · · `z e{v/x} :: C′′, and C′′ `x v :: C′, by ih.
A `z v{v/x} :: ◦C′′, by (Iso) and (Sub)
◦C′′ `x v :: C, by (Sub) and (Iso)

(Case (Option))
e = li(e

′), C = z:⊕l∈I l:Tl, B `z e′ :: z:Ti, by inversion
A `y e′{v/x} :: z:Ti, by ih.
A `z e{v/x} :: C, by (Option)
C `x v :: C, by (VId)

(Case (Tuple))
e = [. . . l = e′ . . . ], C = z:l:U ,
B `z e′ :: z:U , by inversion
A `z e′{v/x} :: z:U , by ih.
A `z e{v/x} :: C, by (Tuple)
C `x v :: C, by (VId)

(Case (Sel))
e = e′.l, C = z:T , B `z e′ :: z:l:T , by inversion
A `z e′{v/x} :: z:l:T , by ih.
A `z e{v/x} :: C, by (Sel)
C `x v :: C, by (VId)

(Case (And))
C = C1 NC2, B `z e :: z:C1,
and B `z e :: z:C2, by inversion
A `y e{v/x} :: C′1, and C′1 `x v :: C1, by ih.
A `y e{v/x} :: C′2, and C′2 `x v :: C2, by ih.
A `z e{v/x} :: C′1 NC′2, by (And)
C′1 NC′2 `x v :: C, by (Sub) and (And)

(Case (Case))
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e = case ec of l(x)→ e′, B = B1 |B2,
B1 `y ec :: y : ⊕l∈I l:Tl, xi:Ti |B2 `z e′i :: C, by inversion
A1 `x v :: B1, A2 `x v :: B2 and A <:A1 |A2

by Lemma A.2(2)
A1 `y ec{v/x} :: y : ⊕l∈I l:Tl, by ih.
xi:Ti |A2 `y e′i{v/x} :: C′, and C′ ` v :: C, by ih.
A `z e{v/x} :: C, by (Case) and (Sub)

(Case (Var))
e = var a in e′, B | a:var `z e′ :: C, by inversion
A | a:var `x v :: B | a:var, by (Par)
A | a:var `z e′{v/x} :: y : C′ and C′ `x v :: C, by ih.
A `z e{v/x} :: C′ by (Var)

(Case (RdVB))
e = a, B = a:rd(U) and C = z:U , by inversion
Since x 6∈ B, A <:B and B `x v :: B, by Lemma A.2(1).
A `z e{v/x} :: C, by (Sub)
C `x v :: C, by (VId)

(Case (RdVF ))
e = a, B = a:rd(U) ; use, C = z:U | a:use, by inversion
Since x 6∈ B, A <:B and B `x v :: B, by Lemma A.2(1).
A `z e{v/x} :: C, by (Sub)
C `x v :: C, by (VId)

(Case (WrVF ))
e is a := u and C = 0 and
B `w u :: w:◦U | a:wr(◦U), by inversion
Let D = w:◦U | a:wr(◦U)
A `w u{v/x} :: C′ and C′ `x v :: D, by ih.
Since x 6∈ C, C′ <:D, and D `x v :: D by Lemma A.2(1).
A `w u{v/x} :: D, by (Sub)
A `w e{v/x} :: C, by (WrVF )
C `x v :: C, by (VId)

(Case (WrVB))
e is a := u and C = a:rd(U) and
B `w u :: w:U | a:use, by inversion
Let D = w:◦U | a:use
A `w u{v/x} :: C′ and C′ `x v :: D, by ih.
Since x 6∈ C, C′ <:D and D `x v :: D, by Lemma A.2(1).
A `w e{v/x} :: C, by (Sub)
A `z e{v/x} :: C, by (WrVB)
C `x v :: C, by (VId)

By the previous result, it is straightforward to state and proof
the following specialized substitution lemma, useful, for example,
to show type preservation of beta reduction.

LEMMA A.4. If A `x v :: x:U and B |x:U `z e :: C where
x 6∈ Dom(C) then B |A `z e{v/x} :: C.

Proof. Assume A `x v :: x:U .
B |A `x v :: B |x:U , by (Par)
There is D such that B |A `z e{v/x} :: D
and D `x v :: C, by Lemma A.3
D <: C by Lemma A.2(1), hence
B |A `z e{v/x} :: C by (Sub).

The next lemma covers critical cases of the preservation theo-
rem. We recall that we use a similar notation for evaluation contexts
and type assertion contexts (E , F), without confusion arising.

LEMMA A.5. Let F [−] be an evaluation context. We have,

1. If A `x F [ let z = v in e ]::B then A `x F [ e{v/z} ]::B ;
2. If A `x F [ (λz.e)v ]::B then A `x F [ e{v/z} ]::B ;
3. If A `x F [ [l = e].li ]::B then A `x F [ ei ]::B ;
4. If A `x F [ case li(v) of l(x)→ e ]::B then
A `x F [ ei{v/xi} ]::B ;

5. IfA `x F [ var a in e ]::B thenA |n:var `x F [ e{n/a} ]::B;

6. If A `x F [ n := v ]::B then there is C such that either
(a) A <: E [ n:use | C ] and E [ n:rd(U) ] `x F [ nil ]::B and

C `z v :: z:U .
(b) A <: E [ n:wr(◦U) | C ] and E [ 0 ] `x F [ nil ]::B and

C `z v :: z:◦U .
7. If A `x F [ n ]::B then either

(a) A <: E [ n:rd(U) ] and
for all C `z v :: z:U we have E [C] `x F [ v ]::B ;

(b) A <: E [ n:rd(U); use ] and
for all C `z v :: z:U we have E [ n:use |C ] `x F [v]::B ;

8. If A `x F [ fork(e) ]::B then A <: E [C] and C `z e :: z:U
and E [t:τ(U)] `x F [ t ]::B, for fresh t ;

9. If A `x F [ wait(t) ]::B then A <: E [t:τ(U)] and for all
C `z v :: z:U we have E [C] `x F [ v ]::B ;

Proof. Induction on the typing derivations. We detail some cases
of 2, induction on the derivation of A `x F [ (λz.e)v ]::B.

(Case (Par))
A = A1 |C, B = B1 |C
A1 `x F [(λz.e)v] :: B1, by inversion
A1 `x F [e{z/v}] :: B1, by i.h.
A ` F [e{v/z}] :: B by (Par)

(Case (Let))
F [−] = let y = G[−] in e2
A `y G[(λz.e)v] :: C, C `x e2 :: B, by inversion
A `y G[e{z/v}] :: C, by i.h.
A ` F [e{v/z}] :: B by (Let)

(Case (App))
F [(λz.e)v] = e1e2, B = x:T , A = A1 |A2,
A1 `y e1 :: y:U |→T , A2 `w e2 :: w:U , by inversion
(Case F [−] = �)
e1 = λz.e, e2 = v
A1 | z:U `y e :: y:T , by inversion
A2 `z v :: z:U by (Par)
A1 |A2 `y e{v/z} :: y:T by Lemma A.4
A `x e{v/z} :: x:T , by renaming
(Case F [−] = G[−]e2, with G[(λz.e)v] = e1)
A1 `y G[(λz.e)v] :: y:U |→T .
A1 `y G[e{v/z}] :: y:U |→T , by i.h.
A ` G[e{v/z}]e2 :: B, A ` F [e{v/z}] :: B by (App)
(Case F [−] = v1G[−], with e1 = v1, and G[(λz.e)v] = e2)
A2 `w G[(λz.e)v] :: w:U
A2 `w G[e{v/z}] :: w:U , by i.h.
A ` e1G[e{v/z}] :: B, A ` F [e{v/z}] :: B by (App)

The following technical properties are related to the propagation
of footprints from the post-condition to pre-condition of typing
judgments of a certain form, often useful to prove results below.
In all the four next statements E , F and G are assumed to be active
type assertion contexts. The proof is in all cases a simple induction
on typing derivations, we also give some useful justifications.

LEMMA A.6. Let A `x v :: E [x:U ]. Then there is C such that
C `x v :: x:U and A `x v :: E [C].

LEMMA A.7. Let D `y v :: B and B <: F [n:rd(U)]. Then there
is E [] such that D <: E [n:rd(U)] and for all C, E [C] `y v::F [C].

Intuitively, Lemma A.7 holds as a consequence of F being active:
n:rd(U) is available at the front of the post-condition, and thus
cannot be a residual of an usage of the value v, which would need to
be either in the front of the context hole (contradiction), or isolated,
but then the variable residual n could not have escaped.

LEMMA A.8. Let A <: E [n:rd(U)]. Then there are F , G such
that A = F [n:rd(V )], n:rd(V ) <: G[n:rd(U)] and for all C,
F [G[C]]]<: E [C].
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This last lemma, states that an active a:rd(U) capability in a
type assertion selected by subsumption from A must result from
some active a:rd(V ) capability in A, such that U is active in V .
This results from the distributing subtyping axioms for rd(U),
e.g., rd(U1 |U2) <: rd(U1) | rd(U2), and so on. The next lemma
expresses a basic inversion principle for B{x/n:var}.

LEMMA A.9. Let B{y/n:var} <: E [n:rd(U)] with n fresh in B.
Then there are G, F and V such thatB = G[y:V ], y:V <:F [y:U ],
and for all C, G[F [C]]{y/n:var} <: E [C].

The next lemma states several key inversion principles for the
basic typing relation for configurations.

LEMMA A.10 (Configuration Typing Inversions). Let E [−] be an
active context. We have

1. Let h ; S . A and A <: E [ n:rd(U) ]. Then h(n) = v and
there is C such that C `x v :: x:U and h ; S . E [ C ].

2. Let h ; S .A andA <:E [ n:rd(U); use ]. Then h(n) = v and
is C s.t. C `x v :: x:U and h, n 7→ v ; S . E [ n:use |C ].

3. Let h ; S .A andA <:E [ C | n:use ]. Then h = h′[n 7→ u],
and C `x v :: x:U implies h′[n 7→ v] ; S . E [ n:rd(U) ].

4. Let h ; S .A andA <:E [ n:wr(◦U) | C ]. Then h = h′, n 7→
u, and C `x v :: x:◦U implies h′, n 7→ v ; S . E [ 0 ].

5. Let h ; S . A and A <: E [ t:τ(U) ]. Then S = S′ · t〈e〉 and
there is C such that C `x e :: x:U and h ; S . E [ C ].

Proof. In all cases, the proof is by induction on the derivation of
h ; S . A. We detail item 1.

1. Induction on the derivation of h ; S . A. We use two hole
active contexts (e.g. F [−][−]), defined as expected.
(Case (E)) not possible.
(Case (T ))
A = E ′[t:τ(T )] <: E [n:rd(U)], S = S′ · t〈e〉, h ; S′ . E ′[C],
and C `y e :: y:T , by inversion (for some E ′, S′, etc).
E ′[t:τ(T )] = F [t:τ(T )][n:rd(V )] <: E [n:rd(U)], for some F
E [n:rd(U)] = E ′′[t:τ(T )][n:rd(U)]
E ′[C] = F [C][n:rd(V )] <: E ′′[C][n:rd(U)]
n:rd(V ) <: G[n:rd(U)] and
F [C][G[−]] <: E ′′[C][−], for some G
E ′[C] = F [C][n:rd(V )] <: F [C][G[n:rd(U)]]
h = h′, n 7→ v and exists D such that D `x v :: x:U
and h ; S′ . F [C][G[D]], by i.h.
h ; S . E ′′[C][D], by above, and h ; S . E ′′[t:τ(T )][D], by (T )
h ; S . E [D]

(Case (H ))
h = h′′,m 7→ u and h′′ ; S . D and D `y u :: B and
A = B{y/m:var} <: E [n:rd(U)], by inversion.
(Subcase m = n)
B = B[y:V ], y:V <: F [y:U ], and B[F [ ]]{y/n:var} <: E [ ],
by Lemma A.9.
Hence D `y u :: B[F [y:U ]].
D′′ `y u :: y:U , D `y u :: B[F [D′′]], by Lemma A.6(1)
Set h′′ = h′, u = v. So h = h′, n 7→ v and D′′ `x v :: x:U
and D `y v :: B[F [D′′]] and h′ ; S . D
Let A′ = B[F [D′′]]{y/n:var}, so h ; S . A′, by (H )
We have A′ <: E [D′′], so h ; S . E [D′′], by (S)
(Subcase m 6= n)
B <: F [n:rd(U)] where F [−]{y/m:var} = E [−]
D <: E ′[n:rd(U)] and E ′[C] `y u :: F [C] by Lemma A.8.
h′′ = h′′′, n 7→ v and exists C such that C `x v :: x:U
and h′′ ; S′ . E ′[C], by i.h.
h, S . F [C]{y/n:var}, by (H )
h, S . E [C], by identity above

(Case (S)) By i.h.

We prove the basic type preservation and progress Theorems.

THEOREM 4.3. If h ; S .A and h ; S → h′;S′ then h′;S′ . A.

Proof. By induction on the derivation of h ; S . A.
(Case (E)) not possible.
(Case (S)) We have
h ; S . A
h ; S . B and B <:A, by inversion
h′ ; S′ . B, by ih.
h′ ; S′ . A, by (S)

(Case (H )) We have
hp, n 7→ v ; S . C{x/n:var}
hp ; S . B and B `x v :: C, by inversion
h′p ; S′ . B, by ih.
h′p, n 7→ v ; S′ . C{x/n:var}, by (H )

(Case (T ))
h ; R · t〈e〉 . E [t:τ(T )]
h ; R . E [C] and C `x e :: x:T , by inversion
There are two subcases:
(Subcase a) h ; R · t〈e〉 → h′ ; R′ · t〈e〉
h′ ; R′ . B, by ih.
h′ ; R′ · t〈e〉 . E [t:τ(T )], by (T )
(Subcase b) h ; R · t〈e〉 → h′ ; R′ · t〈e′〉.
We consider all possible cases for this reduction step.

(SubCase (Red let)) We have
e = F [let z = v in e1] and e′ = F [e1{v/z}]
h′ = h and R′ = R
C `x F [e1{v/z}] :: x:T , by Lemma A.5(1)
h′ ; R′ · t〈e′〉 . E [t:τ(T )], by (T )

(SubCase (Red beta)) We have
e = F [(λz.e1)v] and e′ = F [e1{v/z}]
h′ = h and R′ = R
C `x F [e1{v/z}] :: x:T , by Lemma A.5(2)
h′ ; R′ · t〈e′〉 . E [t:τ(T )], by (T )

(SubCase (Red sel)) We have
e = F [l = e].li] and e′ = F [ei]
h′ = h and R′ = R
C `x F [ei] :: x:T , by Lemma A.5(3)
h′ ; R′ · t〈e′〉 . E [t:τ(T )], by (T )

(SubCase (Red case)) We have
e = F [ case li(v) of l(x)→ e] and e′ = F [ei{v/xi}]
h′ = h and R′ = R
C `x F [ei{v/xi}] :: x:T , by Lemma A.5(3)
h′ ; R′ · t〈e′〉 . E [t:τ(T )], by (T )

(SubCase (Red var)) We have
e = F [var a in e1] and e′ = F [e1{n/a}]
h′ = h, n 7→ nil and R′ = R
C `x F [var a in e1] :: x:T , from above
C | n:var `x F [e1{n/a}] :: x:T , by Lemma A.5(5)
C `w nil :: w:0 ;C, by (VId)
h′, R′ . C | n:var, by (H )
h′;R′ · t〈e′〉 . E [t:τ(T )], by (T )

(SubCase (Red deref)) We have
e = F [a] and e′ = F [v], h′ = h and h(a) = v and R′ = R
C `x F [a] :: x:T , from above
(subcase (a)) C <: G[a:rd(U)], by Lemma A.5(7a)
h;R′ . E [G[D]] and D `z v :: z:U , by Lemma A.10(1)
G[D] `x F [v] :: x:T , by Lemma A.5(7a)
h′;R′ · t〈e′〉 . E [t:τ(T )], by (T )
(subcase (b)) C <: G[a:rd(U) ; use], by Lemma A.5(7b)
h;R′ . G[D | a:use] and D `z v :: z:U , by Lemma A.10(2)
G[D | a:use] `x F [v] :: x:T , by Lemma A.5(7b)
h′;R′ · t〈e′〉 . E [t:τ(T )], by (T )
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(SubCase (Red assign))
e = F [a := v] and e′ = F [nil]
h = hp, a 7→ u and h′ = hp, a 7→ v and R′ = R
C `x F [a := v] :: x:T , from above
(subcase (a)) C <: G[a : use |D],
G[a : rd(U)] `x F [nil] :: x:T ,
D `y v :: y:U , by Lemma A.5(6a)
h′;R′ . E [G[a : rd(U)]], by Lemma A.10(3)
h′;R′ · t〈e′〉 . E [t:τ(T )], by (T )
(subcase (b)) C <: G[a : wr(◦U) |D],
G[0] `x F [nil] :: x:T ,
D `y v :: y:◦U , by Lemma A.5(6b)
h′;R′ . E [G[0]], by Lemma A.10(4)
h′;R′ · t〈e′〉 . E [t:τ(T )], by (T )

(SubCase (Red fork)) We have
e = F [fork(e1)] and e′ = F [k], with fresh k
h′ = h and R′ = R · k〈e〉
C <: G[D], D `y e1 :: y:U ,
G[k:τ(U)] `x F [k]::x:T , by Lemma A.5(8)
h′ ; R · k〈e1〉 . E [G[k:τ(U)]], by (T )
h′ ; R′ · t〈e′〉 . E [t:τ(T )], by (T )

(SubCase (Red wait)) We have
e = F [wait(k)] and e′ = F [v]
h′ = h and R = R′ · k〈v〉
C <: G[k:τ(U)], by Lemma A.5(9)
D `y v :: y:U , and
h ; R′ . E [G[D]], by Lemma A.10(5)
G[D] `x F [v] :: x:T , by Lemma A.5(9)
h′ ; R′ · t〈e′〉 . E [t:τ(T )], by (T )

Progress, Theorem 4.4, is a consequence of the following.

PROPOSITION A.11. If h ; S . E [C] and C `x e :: D and
live(e) then h ; S · t〈e〉 → h′;S · t〈e′〉.

Proof. By induction on the derivation ofC `x e :: D. (Cases (Id),
(VStop), (VAbs), (VPar), (VSeq), (VShr)) Not possible.

(Case (Sub))
C′ `x e :: D′, C <: C′, D′ <:D, by inversion
h ; S . E [C′] by (S)
h ; S · t〈e〉 → h′;S · t〈e′〉. by ih.

(Case (Par))
C = C1 |C2, D = D1 |C2, C1 `x e :: D1, by inversion
h ; S . G[C1] where G[−] = E [− |C2] by (S)
h ; S · t〈e〉 → h′;S · t〈e′〉. by ih.

(Case (Seq))
C = C1 ;C2, D = D1 ;C2, C1 `x e :: D1, by inversion
h ; S . G[C1] where G[−] = E [− ;C2] by (S)
h ; S · t〈e〉 → h′;S · t〈e′〉. by ih.

(Case (App))
e = e1e2, D = x:V , C = C1 |C2,
C1 `x e1 :: z:U |→V , C2 `x e2 :: z:U , by inversion
(Subcase (live(e1)))
h ; S . G[C1] where G[−] = E [− |C2] by (S)
h ; S · t〈e1〉 → h′;S · t〈e′1〉, by i.h.
h ; S · t〈e1e2〉 → h′;S · t〈e′1e2〉 for evaluation context �e
(Subcase (live(e2), e1 = v)
h ; S . G[C2] where G[−] = E [C1 |−] by (S)
h ; S · t〈e2〉 → h′;S · t〈e′2〉, by i.h.
h ; S · t〈ve2〉 → h′;S · t〈ve′2〉 for evaluation context v�
(Subcase (e1, e2 values)) e1 = λz.e′1 and e2 = v
h; t〈(λz.e′1)v〉 → h; t〈e′1{v/z}〉 by (Red beta)

(Case (Iso))
C = ◦C1 | · · · , D = ◦D′, and C `z e :: D′, by inversion
h ; S · t〈e〉 → h′;S · t〈e′〉. by ih.

(Case (And))

D = D1 ND2, and C `z e :: D1, and C `z e :: D2, by inversion
h ; S · t〈e〉 → h′;S · t〈e′〉. by ih.

(Case (Sel))
e is es.l, D = z : l : T , and C `z es :: z : T , by inversion
(Subcase (live(es)))
h ; S · t〈es〉 → h′;S · t〈e′s〉. by ih.
h ; S · t〈es.l)〉 → h′;S · t〈e′s.l〉 for evaluation context �.l
(Subcase (es = v))
v = [ . . . l = el . . .]
h ; S · t〈[ . . . l = el . . .].l〉 → h′;S · t〈el〉 by (Red del)

(Case (Case))
e = case ec of l(x)→ e′, C = C1 |C2,
C1 `y ec :: y : ⊕l∈I l:Tl and xi:Ti |C2 `z e′i :: C, by inversion
(Subcase (live(ec)))
h ; S . G[C1] where G[−] = E [− |C1] by (S)
h ; S · t〈ec〉 → h′;S · t〈e′c〉. by ih.
h; t〈case ec of l(x)→ e′〉 → h′; t〈case e′c of l(x)→ e′〉
for evaluation context case � of l(x)→ e′

(Subcase (ec = v))
ec = li(v

′)
h; t〈case li(v′) of l(x)〉 → t〈e′ → h′; e′i{v′/xi}〉
by (Red case)

(Case (Option))
e = li(ec), D = ⊕l∈I l:Tl, C `z e′ :: Ti, by inversion
live(ec)
h ; S · t〈ec〉 → h′;S · t〈e′c〉. by ih.
h; S · t〈l(ec)〉 → h′; S · t〈l(e′c)〉 for evaluation context l(�)

(Case (Let))
e is let y = e1 in e2, and C `y e1 :: C′

and C′ `x e2 :: D, by inversion
(Subcase live(e1))
h ; S · t〈e1〉 → h′;S · t〈e′1〉, by ih.
h; S · t〈let y = e1 in e2〉 → h′; S · t〈let y = e′1 in e2〉
for evaluation context let y = � in e2
(Subcase e1 = v)
h; S · t〈let y = v in e2〉 → h′; S · t〈e2{x/y}〉 by (Red let)

(Case (Var))
e is var a in ev , by inversion
h; S · t〈e〉 → h′; S · t〈e′〉 by (Red var)

(Case (RdVB))
e = a, C = a:rd(U) and D = z:U , by inversion
h(a) = w, by A.10 Lemma (1)
h; S · t〈e〉 → h′; S · t〈e′〉 by (Red deref)

(Case (RdVF ))
e = a, C = a:rd(U) ; use, D = z:U | a:use, by inversion
h(a) = w, by Lemma A.10 (2)
h; S · t〈e〉 → h′; S · t〈e′〉 by (Red deref)

(Case (WrVF ))
e is a := u and C `w u :: w:◦U | a:wr(◦U), by inversion
C <: F [a:wr(◦U)]
h(a) = w, by Lemma A.10(4)
h; S · t〈e〉 → h′; S · t〈e′〉 by (Red assign)

(Case (WrVB))
e is a := u and C `w u :: w:U | a:use, by inversion
C <: F [a:use], h(a) = w, by Lemma A.10(3)
h; S · t〈e〉 → h′; S · t〈e′〉 by (Red assign)

THEOREM 4.4. If h ; S . A and live(S) then h ; S → h′;S′.

Proof. By induction on the derivation of h ; S . A we can show
that there is h′ ; S′ . E [C] (with S = S′ · S′′ and h = h′, h′′) and
C `x e :: D where live(e). We conclude by Proposition A.11.

We now extend our results to the full language with synchro-
nization constructs and invariant-based separation. The reduction
cases of Lemma A.5 are extended to the appropriate judgment form
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A `ιx e :: B as stated in Lemma A.13 below. Recall that a lock in-
variant is a heap assertion R such that R <: ◦R (Section 4.5). An
useful commutation property is the following:

LEMMA A.12. Let R be a lock invariant. If A `ιx v :: R |B then
there is C such that A <: C |R and C `ιx v :: B.

LEMMA A.13. Let F be an evaluation context. Then

1. If A `ιx F [ let z = v in e ]::B then A `ιx F [ e{v/z} ]::B ;
2. If A `ιx F [ (λz.e)v ]::B then A `ιx F [ e{v/z} ]::B ;
3. If A `ιx F [ [l = e].li ]::B then A `ιx F [ ei ]::B ;
4. If A `ιx F [ case li(v) of l(x)→ e ]::B then
A `ιx F [ ei{v/xi} ]::B ;

5. If A `ιx F [ var a in e ]::B then exists C and lock invariant R
such that A <: C |R and C |n:var `ι{R/n}x F [ e{n/a} ]::B;

6. If A `ιx F [ n := v ]::B then there is C such that either
(a) A <: E [ n:use | C ] and E [ n:rd(U) ] `ιx F [ nil ]::B and

C `ιz v :: z:U .
(b) A <: E [ n:wr(◦U) | C ] and E [ 0 ] `ιx F [ nil ]::B and

C `ιz v :: z:◦U .
7. If A `ιx F [ n ]::B then either

(a) A <: E [ n:rd(U) ] and
for all C `ιz v :: z:U we have E [C] `ιx F [ v ]::B ;

(b) A <: E [ n:rd(U); use ] and
for all C `ιz v :: z:U we have E [ n:use |C ] `ιx F [v]::B ;

8. If A `ιx F [ fork(e) ]::B then A <: E [C] and C `ιz e :: z:U
and E [t:τ(U)] `ιx F [ t ]::B, for fresh t

9. If A `ιx F [ wait(t) ]::B then A <: E [t:τ(U)] and for all
C `ιz v :: z:U we have E [C] `ιx F [ v ]::B ;

10. If A `ιx F [ sync(n)e ]::B then A | ι(n) `ιx F [sy(n)e]::B.
11. IfA `ιx F [ sy(n)v ]::B thenA <:C | ι(n) and C `ιx F [v]::B.

Proof. By induction on the typing derivations. We detail some
cases of 5 and 11.
5. Induction on the derivation of A `ιx F [ var a in e ]::B.

(Case (Par))
A = A1 |D, B = B1 |D
A1 `ιx F [var a in e] :: B1, by inversion
Exists C and lock invariant R such that A1 <: C |R
and C |n:var `ι{R/n}x F [ e{n/a} ]::B1, by i.h.
A <: C |R |D
D |C |n:var `ι{R/n}x F [ e{n/a} ] :: B, by (Par)

(Case (Var))
A <:A1 |R, with lock invariant R
A1 |n:var `ι{R/a}x F [ e{n/a} ] :: B
by inversion, and fresh renaming

(Case (Seq))
A = A1 ;D, B = B1 ;D
A1 `ιx F [var a in e] :: B1, by inversion
Exists C and lock invariant R such that A1 <: C |R
and C |n:var `ι{R/n}x F [ e{n/a} ]::B1, by i.h.
(C |n:var) ;D `ι{R/n}x F [ e{n/a} ] :: B, by (Seq)

C |n:var |D `ι{R/n}x F [ e{n/a} ] :: B, by (Sub)
A <: (C |R) ;D <: C |D |R (since R <: ◦R)

11. Induction on the derivation of A `ιx F [ sy(n)v ]::B.
(Case (Par))
A = A1 |C, B = B1 |C
A1 `ιx F [sy(n)v] :: B1, by inversion
A1 <:D | ι(n) and D `ιx F [v] :: B1, by i.h.
A <:D |C | ι(n)
D |C `ιx F [v] :: B, by (Par)

(Case (Let))

F [−] = let y = G[−] in e2
A `y G[sy(n)v] :: C, C `x e2 :: B, by inversion
A <:D | ι(n) and D `y G[v] :: C, by i.h.
D ` F [v] :: B by (Let)

(Case (App))
F [sy(n)v] = e1e2, B = x:T , A = A1 |A2,
A1 `y e1 :: y:U |→T , A2 `w e2 :: w:U , by inversion
(Case F [−] = G[−]e2, with G[sy(n)v] = e1)
A1 `y G[sy(n)v] :: y:U |→T .
A1 <:D | ι(n) and D `y G[v] :: y:U |→T , by i.h.
A <:D |A2 | ι(n)
D |A2 ` G[v]e2 :: B, D |A2 ` F [v] :: B by (App)
(Case F [−] = v1G[−], with e1 = v1, and G[sy(n)v] = e2)
A2 `w G[sy(n)v] :: w:U
A2 <:D | ι(n) and D `w G[v] :: w:U , by i.h.
A <:A1 |D | ι(n)
A1 |D ` e1G[v] :: B, A1 |D ` F [v] :: B by (App)

(Case (Sy))
F [−] = sy(a)e1
(Case F [−] = �, a = n, e1 = v)
A `ι\ny v :: ι(n) |B, by inversion
A <:D | ι(n) and D `ι\ny v :: B by Lemma A.12
D `ιy F [v] :: B
(Case F [−] = sy(a)G[−], e1 = G[sy(n)v])

A `ι\ay G[sy(n)v] :: ι(a) |B, by inversion
A <:D | ι(n) and D `ι\ay G[v] :: ι(a) |B, by i.h.
D `ιy sy(a)G[v] :: B, D `ιy F [v] :: B by (Sy)

All properties listed in Lemma A.5 also hold of the configura-
tion typing h ; S .ι A (see Section A.2).

Lemma A.14 pinpoints the interplay between the state of vari-
able n lock and its invariant assertion ι(n) at the level of typing.
Acquiring the lock transfers ownership of the invariant from the
lock to post-condition (1), and releasing the lock transfers owner-
ship of the invariant back to the lock (2).

LEMMA A.14. Let h ; S .ι A, nk 7→ v ∈ h, and no thread in S
holds lock n (no thread in S has an active sy(n)e subexpression).

1. If k = 0 then h[n−1] ; S .ι A | ι(n).
2. If A <: C | ι(n), and k = −1 then h[n0] ; S .ι C.

Proof. Induction on the configuration typing derivation, the base
case being the step that introduces n in the heap h. In (1), we simply
replace (HU ) by (HL) in such step. In (2) we move ι(n) back over
all heap cells in h (using Lemma A.12), and over all threads in S
(using the assumption), until the step where n is introduced (base
case), where we replace the instance of rule (HL) by (HU ).

We now state and prove our final main result, the type preserva-
tion property for the full language with synchronization primitives
and invariant-based reasoning.

THEOREM 4.5. If h;S .ι A and h;S → h′;S′ then h′;S′ .ι A.

Proof. By induction on the derivation of h ; S .ι A. We detail
some key cases.

(Case (HU )) We have
hp, n0 7→ v ; S .ι{R/n} C{x/n:var}
hp ; S .ι B |R and B `ιx v :: C, by inversion
h′p ; S′ .ι B |R, by ih.
h′p, n0 7→ v ; S′ .ι{R/n} C{x/n:var}, by (HU )

(Case (HL)) We have
hp, n−1 7→ v ; S .ι{R/n} C{x/n:var}
hp ; S .ι B and B `ιx v :: C, by inversion
h′p ; S′ .ι B, by ih.
h′p, n−1 7→ v ; S′ .ι{R/n} C{x/n:var}, by (HL)
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(Case (T ))
h ; R · t〈e〉 .ι E [t:τ(T )]
h ; R .ι E [C] and C `ιx e :: x:T , by inversion
There are two subcases:
(Subcase a) h ; R · t〈e〉 → h′ ; R′ · t〈e〉
h′ ; R′ .ι B, by ih.
h′ ; R′ · t〈e〉 .ι E [t:τ(T )], by (T )
(Subcase b) h ; R · t〈e〉 → h′ ; R′ · t〈e′〉.
We consider some cases for this reduction step.

(SubCase (Red var)) We have
e = F [var a in e1] and e′ = F [e1{n/a}]
h′ = h, n0 7→ nil and R′ = R
C `ιx F [var a in e1] :: x:T , from above
There are B and R such that C <:B |S and S <: ◦S
B | n:var `ι{S/n}x F [e1{n/a}] :: x:T
by Lemma A.13(1)
B `w nil :: w:0 ;B, by (VId)
We have E [C] <: E [B |S] <: E [B] |S
h′, R′ .ι{S/n} E [B] | n:var, by (HU )
h′, R′ .ι{S/n} E [B | n:var], by (S)
h′;R′ · t〈e′〉 . E [t:τ(T )], by (T )

(SubCase (Red syncin)) We have
e = F [sync(n)e1] and e′ = F [sy(n)e1], h = h1(n0 → u)
and h′ = h1[n−1 → u] and R′ = R
We have C | ι(n) `ιx F [sy(n)e1] :: x:T
by Lemma A.13(2)
h′ ; R .ι E [C] | ι(n), by Lemma A.14(1)
h′ ; R .ι E [C | ι(n)], by (S)
h′ ; R′ · t〈e′〉 .ι E ′[t:τ(T )], by (T )

(SubCase (Red syncout)) We have
e = F [sy(n)v] and e′ = F [v], h = h1(n−1 → u)
and h′ = h1[n0 → u] and R′ = R
We have C <: G[n:v] | ι(n) and G[n:v] `ιx F [v] :: x:T
by Lemma A.13(3)
h′ ; R .ι G[n:v], by Lemma A.14(2)
h′ ; R′ · t〈e′〉 .ι E [t:τ(T )], by (T )

A.6 Progress up to locking
A progress property can be stated and proved for the full type sys-
tem with synchronization primitives, by filtering out the situations
where progress is hindered by the impossibility of acquiring a lock.
Apart from this, well-typed programs are stuck free, and absent of
races in the sense explained in Sections 4.4 and A.3.

We say that an expression e is live up to locking in heap h, noted
liveh(e, h), if it is neither a value, nor of the form F [sync(a)e1]
and a−1 7→ v ∈ h for some evaluation context F .

A multiset S of threads is live up to locking in heap h, noted
liveh(S, h) if there is some thread t〈e〉 in S such that liveh(e, h).
We can then prove the following “progress up to locking property”.

THEOREM A.15. If h;S .ιA and liveh(S, h) then h;S → h′;S′.

THEOREM A.16. If h;S .ιE [C] andC `ιx e :: D and liveh(e, h)
then h;S · t〈e〉 → h′;S · t〈e′〉.

Proof. Identical to proof of Theorem 4.4, by induction on the
typing derivation C `ιx e :: D. We show a few interesting cases.

(Case (Sync))
e = sync(a)e1, ι(a) |C `ι\ax e1 :: ι(a) |D, by inversion
Since liveh(e, h), we have a0 7→ u ∈ h.
h; t〈sync(a)e1〉 → h[a−1]; t〈sy(a)e1〉 by (Red syncin)

(Case (Sy))
e = sy(a)e1, C `ι\ax e1 :: ι(a) |D, by inversion
(Subcase (liveh(e1, h)))
h ; S · t〈e1〉 → h′;S · t〈e′1〉, by i.h.

h ; S · t〈sy(a)e1〉 → h′;S · t〈sy(a)e′1〉
for evaluation context sy(a)�
(Subcase (e1 value))
e1 = v
h; t〈sy(a)v〉 → h[a0]; t〈v〉
where a−1 7→ u ∈ h, by (Red syncout)

A.7 Subtyping congruences
As discussed in Section 4.1, we have omitted in Figure 3 the
rules expressing subtyping congruences. All type operators satisfy
the expected covariant subtyping congruence principles, except
(−) |→(−) and wr(−) which are contravariant, e.g.,

A <:A′ B <:B′

A ;B <:A′ ;B′
U <: V

rd(U) <: rd(V )

A′ <:A B <:B′

A |→B <:A′ |→B′
V <: U

wr(U) <: wr(V )

A.8 Some Detailed Typing Derivations
We complement the presentation in Section 4.3 and show in detail
(decomposed in Figures 9, 10, 11, 12, and 13) the complete typ-
ing derivation for the motivating collection example presented in
Section 2. The derivation for the atomic cell is shown in Figure 14.
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0 `ι,ηy v :: 0 (VStop) x:U `ι,ηy x :: y:U (Id)
◦A1 | . . . | ◦An `ι,ηx e :: B

◦A1 | . . . | ◦An `ι,ηx e :: ◦B (Iso)
!A1 | . . . | !An `ι,ηx v :: B

!A1 | . . . | !An `ι,ηx v :: !B
(VShr)

A <:A′ A′ `ι,ηx e :: B′ B′ <:B

A `ι,ηx e :: B
(Sub)

A `ι,ηy e :: B A `ι,ηy e :: C

A `ι,ηy e :: B N C
(And)

A `ι,ηx e1 :: B B `ι,ηy e2 :: C

A `ι,ηy let x = e1 in e2 :: C
(Let)

A `ι,ηx e :: B

A ; C `ι,ηx e :: B ; C
(Seq)

A `ι,ηx e :: B

A | C `ι,ηx e :: B | C (Par)
A `ι,ηx e1 :: x:U |→T B `ι,ηy e2 :: y:U

A | B `ι,ηz e1e2 :: z:T
(App)

A `ι,ηx e :: x:U

A `ι,ηx [. . . l = e . . .] :: x:l:U
(Tuple)

A `ι,ηx e :: x:l:T

A `ι,ηx e.l :: x:T
(Sel)

A | x:U `ι,ηz e :: z:T

A `ι,ηz λx.e :: z:U |→T
(VAbs)

A `ι,ηy e :: (y:⊕l∈I l:Tl) xl:Tl |B `ι,ηz el :: C

A |B `ι,ηz case e of l(~x)→ e :: C
(Case)

A `ι,ηz e :: z:Tm (m ∈ I)

A `ι,ηz lm(e) :: z:⊕l∈I l:Tl
(Option)

A `ι,ηy v :: C B `ι,ηy v :: D

A ; B `ι,ηy v :: C ; D
(VSeq)

A `ι,ηy v :: C B `ι,ηy v :: D

A | B `ι,ηy v :: C | D (VPar)

A <:B |R a:var | B `ι{R/a},ηx e :: C

A `ι,ηx var a in e :: C
(Var)

ι(a) |A `ι\a,ηx e :: ι(a) |B
A `ι,ηx sync(a)e :: B

(Sync)
A `ι\a,ηx e :: ι(a) |B
A `ι,ηx sy(a)e :: B

(Sy)

A `ι,ηz v :: z:U | a:use

A `ι,ηz a := v :: a:rd(U)
(WrVB)

A `ι,ηz v :: z:◦U | a:wr(◦U)

A `ι,ηz a := v :: 0
(WrVF )

a:rd(U) `ι,ηx a :: x:U (RdVB) a:rd(U); use `ι,ηx a :: x:U | a:use (RdVF )

A `ι,ηx e :: x:T

A `ι,ηx fork e :: x:τ(T )
(Fork)

A `ι,ηx e :: x:τ(T )

A `ι,ηx wait e :: x:T
(Wait)

η(X) = A

A `ι,ηx v :: X
(VRecVar)

A `ι,η{X/A}x v :: B

A `ι,ηx v :: rec(X)B
(VRec)

η(Z) = (A `x B)

A `ι,ηx Z :: B
(RecVar)

A `ι,η{Z/(A`xB)}
x e :: B

A `ι,ηx rec(Z)e :: B
(Rec)

Figure 8. Typing Rules (Summary).
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1. next :rd(!◦PNode) `x next :: x:PNode by (RdVB) and (Sub)
2. next :rd(!◦PNode) `x [. . .] :: x:getNext :PNode by (Tuple) on 1.
3. !next :rd(!◦PNode) `x [. . .] :: x:!getNext :PNode by (Sub) on 2. and (VShr)
4. next :rd(!◦PNode) `x [. . .] :: x:!getNext :PNode by (Sub) on 3.
5. next :rd(!◦PNode) ; var `x [. . .] :: x:!getNext :PNode by (Sub) on 4.

6. elt :rd(nat) `x elt :: x:nat by (RdVB)
7. elt :rd(nat) `x [. . .] :: x:getElt :nat by (Tuple) on 6.
8. !elt :rd(nat) `x [. . .] :: x:!getElt :nat by (Sub) on 7. and (VShr)
9. elt :rd(nat) `x [. . .] :: x:!getElt :nat by (Sub) on 8.
10. elt :rd(nat) ; var `x [. . .] :: x:!getElt :nat by (Sub) on 9.

11. next :rd(!◦PNode) ; var | elt :rd(nat) ; var `x [. . .] :: x:(!getNext :PNode | !getElt :nat) by (Par) on 10. and 5.
12. ◦(next :rd(!◦PNode) ; var) | ◦(elt :rd(nat) ; var) `x [. . .] :: x:INode by (Sub) on 11.
13. ◦(next :rd(!◦PNode) ; var) | ◦(elt :rd(nat) ; var) `x [. . .] :: x:◦INode by (Iso) on 12.
14. next :rd(!◦PNode) ; var | elt :rd(nat) ; var `x [. . .] :: x:◦INode by (Sub) on 13.

15. p:!◦PNode |next :wr(!◦PNode) `z p :: z:!◦PNode |next :wr(!◦PNode) by (Id) and (Par)
16. p:!◦PNode |next :wr(!◦PNode) `x next := p :: 0 by (WrVF) on 15.
17. next :wr(!◦PNode) `x λp.(next := p) :: x:!◦PNode |→ 0 by (VAbs) on 16.
18. next :wr(!◦PNode) `x [. . .] :: x:setNext :(!◦PNode |→ 0) by (Tuple) on 17.

19. e:nat | elt :wr(nat) `z e :: z:nat | elt :wr(nat) by (Id) and (Par)
20. e:nat | elt :wr(nat) `x elt := e :: 0 by (WrVF) on 19.
21. elt :wr(nat) `x λe.(elt := e) :: x:(nat |→ 0) by (VAbs) on 20.
22. elt :wr(nat) `x [. . .] :: x:setElt :(nat |→ 0) by (Tuple) on 21.

23. next :wr(!◦PNode) | elt :wr(nat) `x [. . .] :: x:setElt :(nat |→ 0) ; setNext :(!◦PNode |→ 0) by (VSeq) on 22. and 18., and (Sub)

24. elt :var |next:var `x [. . .] :: x:InitNode ; ◦INode by (VSeq) on 23. and 14., and (Sub)
25. 0 `x var next , elt in . . . :: x:Node by (Var) on 24.
26. 0 `x λ[].var . . . :: x : (0 |→Node) by (VAbs) on 25.
27. 0 `x λ[].var . . . :: x : ◦(0 |→Node) by (Iso) on 26.
28. 0 `x λ[].var . . . :: x : !◦(0 |→Node) by (VShr) on 27.

N.B. nat is a shared isolated type, so nat <: !◦nat, so that nat <: nat | nat and nat <: ◦nat.

Figure 9. Typing derivation for newNode function
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n1. hd :wr(!◦PNode) | id :wr(str) `∅x [. . .] :: x:(init :str |→ 0) see Figure 13

n3. id :rd(str) `ηx id :: x:str by (RdVB)
n4. id :rd(str) `ηx [ getId = id . . . ] :: x:getId :str by (Tuple) on n3.
n5. !id :rd(str) `ηx [ getId = id . . . ] :: x:!getId :str by (Sub) and (VShr) on n4.
n6. id :rd(str) ; var `ηx [ getId = id . . . ] :: x:!getId :str by (Sub) on n5.

n7. 0 `ηx [. . .] :: 0 by (VStop)
n8. newNode:!◦(0 |→Node) | hd :rd(!◦PNode) ; var `ηx [. . .] :: 0 by (Sub) on n7.

n9. newNode:!◦(0 |→Node) | hd :rd(!◦PNode) ; var `ηx [. . .] :: X by (VRecVar)
since η(X) = hd :rd(!◦PNode) ; var

n10. newNode:!◦(0 |→Node) | hd :rd(!◦PNode) ; wr(!◦PNode) `ηx [. . .] :: x:add:nat|→0 see Figure 11

n11. newNode:!◦(0 |→Node) | hd :rd(!◦PNode) ; var `ηx [. . .] :: x:add:nat|→0;X by (VSeq) on n10. and n9. and (Sub)

n12. hd :rd(!◦PNode) `ηx [scan = . . .] :: x:scan:0 see Figure 12
n13. !hd :rd(!◦PNode) `ηx [scan = . . .] :: x:!scan:0 by (Sub) and (VShr) on n12.
n14. hd :rd(!◦PNode) `ηx [scan = . . .] :: x:!scan:0 by (Sub) on n13.

n15. newNode:!◦(0 |→Node) | hd :rd(!◦PNode) ; var `ηx [. . .] :: x:!scan:0 ;(add:nat|→0;X) by (VSeq) on n14., n11. and (Sub)

n16. newNode:!◦(0 |→Node) | hd :rd(!◦PNode) ; var `ηx [. . .] :: x:0&(!scan:0 ; add:nat|→0);X by (And) on n8. and n15.
with
η = {X/newNode : . . . | hd :rd(!◦PNode) ; var}

n17. newNode:!◦(0 |→Node) | hd :rd(!◦PNode) ; var `∅x
[. . .] :: x:(rec(X)(0&(!scan:0 ; add:nat|→0);X) by (VRec) on n16.

n18. newNode:!◦(0 |→Node) | hd :rd(!◦PNode) ; var | id :rd(str) ; var `∅x
[. . .] :: x:(!getId :str |(!scan:0 ; add:nat|→0)∗) by (VPar) on n6. and n17.

n19. newNode:!◦(0 |→Node) | hd :var | id :var `∅x [. . .] :: x:(init :str |→ 0 ;(. . .)) by (VSeq) on n1. and n18.
n20. newNode:◦!◦(0 |→Node) | ◦(hd :var) | ◦(id :var) `∅x [. . .] :: x:◦CC by (Sub) and (Iso) on n19.
n21. newNode:!◦(0 |→Node) | hd :var | id :var `∅x [. . .] :: x:◦CC by (Sub) on n20.
n22. newNode:!◦(0 |→Node) `∅x var hd , id in . . . :: x:◦CC by (Sub) on n21.
n23. newNode:!◦(0 |→Node) `∅x λ[].var . . . :: x:0 |→◦CC by (VAbs) on n22.

Figure 10. Typing derivation for function newColl
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a1. 0 `x nil :: x : 0 by (VStop)
a2. newNode:!◦(0 |→Node) `x newNode :: x:0 |→Node by (Id) and (Sub)
a3. newNode:!◦(0 |→Node) `x newNode nil :: x:Node by (App) on a1. and a2.
a4. newNode:!◦(0 |→Node) | hd : . . . | e:nat `n newNode nil :: n:Node | hd : . . . | e:nat by (Par) on a3.

a5. n:setElt :(nat |→ 0) `x n :: x:setElt :(nat |→ 0) by (Id)
a6. n:setElt :(nat |→ 0) `x n.setElt :: x:(nat |→ 0) by (Sel) on a5
a7. e:nat `x e :: x:nat by (Id)
a8. n:setElt :(nat |→ 0) | e:nat `x n.setElt e :: 0 by (App) on a6. and a7.
a9. n:setElt :(nat |→ 0) ; setNext :(!◦PNode |→ 0) ; !◦INode | e:nat | hd : . . . `x

(n.setElt e) :: n:setNext :(!◦PNode |→ 0) ; !◦INode | hd : . . . by (Seq) and (Par) on a8.

a10. hd :rd(!◦PNode) `x hd :: x :!◦PNode by (RdVB)
a11. n:setNext :(!◦PNode |→ 0) `x n :: x:setNext :(!◦PNode |→ 0) by (Id)
a12. n:setNext :(!◦PNode |→ 0) `x n.setNext :: x:(!◦PNode |→ 0) by (Sel) on a11.
a13. n:setNext :(!◦PNode |→ 0) | hd :rd(!◦PNode) `x n.setNext hd :: 0 by (App) on a10. and a12.
a14. n:setNext :(!◦PNode |→ 0) ; !◦INode | hd :rd(!◦PNode) ; wr(!◦PNode) `x

(n.setNext hd) :: n:!◦INode | hd :wr(!◦PNode) by (Seq), (Par), and (Sub) on a13.

a15. n:Node | hd :rd(!◦PNode) ; wr(!◦PNode) | e:nat `x
(n.setElt e) ;(n.setNext hd) :: n:!◦INode | hd :wr(!◦PNode) by (Let) on a9. and a14.

a16. n:INode `y n :: y:INode by (Id)
a17. n:!◦INode `y NODE(n) :: y:!◦PNode by (Option), (Sub), (Iso), and (VShr) on a16.
a18. n:!◦INode | hd :wr(!◦PNode) `y NODE(n) :: y:!◦PNode | hd :wr(!◦PNode) by (Par) on a17.
a19. y:!◦PNode | hd :wr(!◦PNode) `z y :: z:!◦PNode | hd :wr(!◦PNode) by (Id) and (Par)
a20. y:!◦PNode | hd :wr(!◦PNode) `x hd:=y :: 0 by (WrVF) on a19.
a21. n:!◦INode | hd :wr(!◦PNode) `x let y = NODE(n) in hd:=y :: 0 by (Let) on a18. and a20.

a22. n:Node | hd :rd(!◦PNode) ; wr(!◦PNode) | e:nat `x
((n.setElt e) ;(n.setNext hd)) ;(hd:=NODE(n)) :: 0 by (Let) on a15.and a21.

a23. newNode:!◦(0 |→Node) | hd :rd(!◦PNode) ; wr(!◦PNode) | e:nat `x
let n = (newNode nil) in . . . :: 0 by (Let) on a4. and a22.

a24. newNode:!◦(0 |→Node) | hd :rd(!◦PNode) ; wr(!◦PNode) `x λe.let n = . . . :: x:nat|→0 by (Abs) on a23.
a25. newNode:!◦(0 |→Node) | hd :rd(!◦PNode) ; wr(!◦PNode) `x [. . .] :: x:add:nat|→0 by (Tuple) on a24.

Figure 11. Typing derivation for “method” add
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s1. hd :rd(!◦PNode) `∅y hd :: y:!◦PNode by (RdVB)
s2. hd :rd(!◦PNode) `∅y hd :: y:PNode by (Sub) on s1.
s3. hd :rd(!◦PNode) | s : var `∅y hd :: y:PNode | s : var by (Par) on s2.

s4. y:PNode | s : use `∅z y :: z:PNode | s:use by (Id) and (Par)
s5. y:PNode | s : use `∅x s := y :: s:rd(PNode) by (WrVB) on s4.
s6. y:PNode | s : var `∅x s := y :: s:rd(PNode) ; var by (Seq) and (Sub) on s5.

s7. hd :rd(!◦PNode) | s : var `∅x let y = hd in s := y :: s:rd(PNode) ; var by (Let) on s3. and s6.

s8. s:use `ηx nil :: s:use by (VId)

s9a. n:getNext:PNode `ηy n :: y:getNext :PNode by (Id)
s9b. n:getNext:PNode `ηy n.getNext :: y:PNode by (Sel) and (Sub)
s9. n:INode `ηy n.getNext :: y:PNode by (Sub)
s10. n:INode | s:use `ηy n.getNext :: y:PNode | s:use by (Par) on s9.

s11. y:PNode | s:use `ηx y :: x:PNode | s:use by (Id) and (Par)
s12. y:PNode | s:use `ηx s := y :: s:rd(PNode) ; use by (WrVB) on s11. and (Seq) and (Sub)

s13. n:INode | s:use `ηx let y = n.getNext in s := y :: s:rd(PNode) ; use by (Let) on s10. and s12.

s14. s:rd(PNode) ; use `ηx L :: s:use by (RecVar)
since η(L) = s:rd(PNode) ; use `x s:use

s15. n:INode | s:use `ηx let = s := n.getNext in L :: s:use by (Let) on s13. and s14.

s16. y:PNode | s:use `ηx case y of . . . :: s:use by (Case) on s8. and s15. and (Sub)

s17. s:rd(PNode) ; use `ηy s :: y:PNode | s:use by (RdVF)

s18. s:rd(PNode) ; use `ηx let y = s in case y of . . . :: s:use by (Let) on s17. and s16.
with η = {L/(s:rd(PNode) ; use `x s:use)}

s19. s:rd(PNode) ; use `∅x rec L.case . . . :: s:use by (Rec) on s18.

s20. s:rd(PNode) ; var `∅x rec L.case . . . :: s:var by (VSeq) on s19. and (Sub)

s21. hd :rd(!◦PNode) | s : var `∅x let = s := hd in . . . :: 0 by (Let) on s7. and s20. and (Sub)
s22. hd :rd(!◦PNode) `∅x var s in . . . :: 0 by (Var) on s21.
s23. hd :rd(!◦PNode) `∅x [scan = . . .] :: x:scan:0 by (Tuple) on s22.

Figure 12. Typing derivation for “method” scan

i1. 0 `y nil :: 0 by (VStop)
i2. 0 `y NULL(nil) :: y:!Opt(INode) by (Option) on i1. and (VShr)
i3. 0 `y NULL(nil) :: y:◦PNode by (Iso) on i2.
i4. 0 `y NULL(nil) :: y:!◦PNode by (VShr) on i3.
i5. hd :wr(. . .) | id :wr(str) | i:str `y NULL :: y:!◦PNode | hd :wr(. . .) | id :wr(str) | i:str by (Par) on i4.

i6. y:!◦PNode | hd :wr(!◦PNode) `x y :: x:!◦PNode | hd :wr(!◦PNode) by (Id) and (Par)
i7. y:!◦PNode | hd :wr(!◦PNode) `x hd := y :: 0 by (WrVF) on i6.
i8. y:!◦PNode | hd :wr(!◦PNode) | id :wr(str) | i:str `x hd := y :: id :wr(str) | i:str by (Par) on i7.

i9. hd :wr(!◦PNode) | id :wr(str) | i:str `x let y = NULL in hd := y :: id :wr(str) | i:str by (Let) on i5. and i8.

i9a. id :wr(str) | i:str `x i :: id :wr(str) |x:str by (Id) and (Par)
i10. id :wr(str) | i:str `x id := i :: 0 by (WrVF) on i9a.

i11. hd :wr(!◦PNode) | id :wr(str) | i:str `x (hd := NULL); (id := i) :: 0 by (Let) on i9. and i10.
i12. hd :wr(!◦PNode) | id :wr(str) `x λi.(hd := NULL; id := i) :: x:str |→ 0 by (Abs) on i11.
i13. hd :wr(!◦PNode) | id :wr(str) `x [. . .] :: x:(init :str |→ 0) by (Tuple) on i12.

Figure 13. Typing derivation for “method” init
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t1. v :nat | s:use `y v :: y :nat | s:use by (Id) and (Par)
t1a. v :nat | s:use `y s := v :: s:rd(nat) by (WrVB) on t1.
t2. (v :nat | s:use); var `y s := v :: s:rd(nat) ; var by (Seq) on t1a.
t3. v :nat | s:var `y s := v :: s:rd(nat) ; var by (Sub) on t2.

t3a. x :nat | s:use `y x :: y :nat | s:use by (Id) and (Par)
t4. x :nat | s:use `y s := x :: s:rd(nat) by (WrVB) on t3a.
t5. (x :nat | s:use) ; var `y s := x :: s:rd(nat) ; var by (Seq) on t4.
t6. x :nat | s:rd(nat) ; var `y s := x :: s:rd(nat) ; var by (Sub) on t5.
t7. x :nat `y sync(lock)(s := x ) :: 0 by (Sub) on t6.
t8. 0 `y λx.sync(lock)(s := x ) :: y : nat |→ 0 by (Sub) on t7.
t9. 0 `x [set = ...] :: set :(nat |→ 0) by (Tuple) on t8.
t10. 0 `x [set = ...] :: !set : (nat |→ 0) by (VShr) on t9.

t11. s:rd(nat) `x s :: x :nat by (RdVb)
t12. s:rd(nat) | s:rd(nat) `x s :: x :nat | s:rd(nat) by (Par) on t11.
t13. s:rd(nat) `x s :: x :nat | s:rd(nat) by (Sub) on t12.
t14. s:rd(nat) ; var `x s :: x :nat | s:rd(nat) ; var by (Seq) and (Sub) on t13.
t15. 0 `x sync(lock)(s) :: x : nat by (Sync) on t14.
t16. 0 `x [set = . . .] :: x :get :nat by (Tuple) on t15.
t17. 0 `x [set = . . .] :: x :!get :nat by (VShr) on t16.

t18. 0 `x [set = . . .] :: x :(!set :(nat |→ 0) | !get :nat) by (VPar) on t10,t17.
t19. s : rd(nat) ; var `x var lock in . . . :: !set : (nat |→ 0) | !get : nat by (Var) on t18 with invariant (s:(rd(nat) ; var))
t20. v :nat | s:var `x s := v ; var lock in . . . :: !set : (nat |→ 0) | !get :nat by (Let) on t3,t19.
t21. v :nat `x var s in . . . :: !set : (nat |→ 0) | !get : nat by (Var) on t20.
t22. 0 `x λv .var s in . . . :: nat |→(!set : (nat |→ 0) | !get : nat) by (Abs) on t21.

Figure 14. Typing derivation for function atomic
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