Electron impact ionization of atomic target inner-shells

Citation:
Guerra, M., F. Parente, and J. P. Santos. "Electron impact ionization of atomic target inner-shells." Journal of Physics: Conference Series 194 (2009): 042047.

Abstract:

There is a need for reliable theoretical methods to calculate electron-impact total ionization cross sections for the large number of neutral atoms and ions with open shell structures. These cross sections are used in a wide range of scientific and industrial applications, such as astrophysical plasmas, atmospheric science, X-ray lasers, magnetic fusion, radiation physics, semiconductor fabrication, accelerator physics and tumor therapy physics. The binary-encounter-Bethe (BEB) model [1], using an analytic formula that requires only two atomic constants, the binding energy and kinetic energy of the electrons, generates direct ionization cross sections for any neutral atom (or molecule), which are reliable in intensity (15%) and shape from the ionization threshold to a few keV in the incident energy [3], or to thousands keV if we consider its relativistic version(RBEB) [2]. In this work we present K- and L-shell ionization cross sections calculations for heavy atoms.

Related External Link