Recent Publications

Export 87 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
S
Safari, L., P. Amaro, S. Fritzsche, J. P. Santos, and F. Fratini. "Relativistic total cross section and angular distribution for Rayleigh scattering by atomic hydrogen." Phys. Rev. A 85 (2012): 043406. AbstractWebsite

We study the total cross section and angular distribution in Rayleigh scattering by hydrogen atom in the ground state, within the framework of Dirac relativistic equation and second-order perturbation theory. The relativistic states used for the calculations are obtained by making use of the finite basis-set method and expressed in terms of B splines and B polynomials. We pay particular attention to the effects that arise from higher (nondipole) terms in the expansion of the electron-photon interaction. It is shown that the angular distribution of scattered photons, while symmetric with respect to the scattering angle θ=90∘ within the electric dipole approximation, becomes asymmetric when higher multipoles are taken into account. The analytical expression of the angular distribution is parametrized in terms of Legendre polynomials. Detailed calculations are performed for photons in the energy range 0.5 to 10 keV. When possible, results are compared with previous calculations.

Safari, L., P. Amaro, S. Fritzsche, J. P. Santos, S. Tashenov, and F. Fratini. "Relativistic polarization analysis of Rayleigh scattering by atomic hydrogen." Phys. Rev. A 86 (2012): 043405. AbstractWebsite

A relativistic analysis of the polarization properties of light elastically scattered by atomic hydrogen is performed, based on the Dirac equation and second-order perturbation theory. The relativistic atomic states used for the calculations are obtained by making use of the finite basis set method and are expressed in terms of B splines and B polynomials. We introduce two experimental scenarios in which the light is circularly and linearly polarized, respectively. For each of these scenarios, the polarization-dependent angular distribution and the degrees of circular and linear polarization of the scattered light are investigated as a function of scattering angle and photon energy. Analytical expressions are derived for the polarization-dependent angular distribution which can be used for scattering by both hydrogenic as well as many-electron systems. Detailed computations are performed for Rayleigh scattering by atomic hydrogen within the incident photon energy range 0.5 to 5 keV. Particular attention is paid to the effects that arise from higher (nondipole) terms in the expansion of the electron-photon interaction.

Safari, L., P. Amaro, S. Fritzsche, J. P. Santos, and F. Fratini. "Relativistic total cross section and angular distribution for Rayleigh scattering by atomic hydrogen." Physical Review A 85 (2012): 043406. AbstractWebsite

We study the total cross section and angular distribution in Rayleigh scattering by hydrogen atom in the ground state, within the framework of Dirac relativistic equation and second-order perturbation theory. The relativistic states used for the calculations are obtained by making use of the finite basis-set method and expressed in terms of B splines and B polynomials. We pay particular attention to the effects that arise from higher (nondipole) terms in the expansion of the electron-photon interaction. It is shown that the angular distribution of scattered photons, while symmetric with respect to the scattering angle θ=90∘ within the electric dipole approximation, becomes asymmetric when higher multipoles are taken into account. The analytical expression of the angular distribution is parametrized in terms of Legendre polynomials. Detailed calculations are performed for photons in the energy range 0.5 to 10 keV. When possible, results are compared with previous calculations.

Safari, L., P. Amaro, S. Fritzsche, J. P. Santos, S. Tashenov, and F. Fratini. "Relativistic polarization analysis of Rayleigh scattering by atomic hydrogen." Physical Review A 86 (2012): 043405. AbstractWebsite

A relativistic analysis of the polarization properties of light elastically scattered by atomic hydrogen is performed, based on the Dirac equation and second-order perturbation theory. The relativistic atomic states used for the calculations are obtained by making use of the finite basis set method and are expressed in terms of B splines and B polynomials. We introduce two experimental scenarios in which the light is circularly and linearly polarized, respectively. For each of these scenarios, the polarization-dependent angular distribution and the degrees of circular and linear polarization of the scattered light are investigated as a function of scattering angle and photon energy. Analytical expressions are derived for the polarization-dependent angular distribution which can be used for scattering by both hydrogenic as well as many-electron systems. Detailed computations are performed for Rayleigh scattering by atomic hydrogen within the incident photon energy range 0.5 to 5 keV. Particular attention is paid to the effects that arise from higher (nondipole) terms in the expansion of the electron-photon interaction.

Safari, L., J. P. Santos, P. Amaro, K. Jankala, and F. Fratini. "Analytical evaluation of atomic form factors: Application to Rayleigh scattering." Journal of Mathematical Physics 56 (2015): 052105-9. AbstractWebsite
n/a
Safari, L., P. Amaro, J. P. Santos, and F. Fratini. "Angular and polarization analysis for two-photon decay of <span class="aps-inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2</mn><mi>s</mi></mrow></math>&." Physical Review A 90 (2014): 014502. AbstractWebsite

The amplitude of two-photon transitions between hyperfine states in hydrogenlike ions is derived based on the relativistic Dirac equation and second-order perturbation theory. We study angular and linear polarization properties of the photon pair emitted in the decay of $2s$ states, where spin-flip and non-spin-flip transitions are highlighted. We pay particular attention to hydrogenlike uranium, since it is an ideal candidate for investigating relativistic and high-multipole effects, such as spin-flip transitions. Two types of emission patterns are identified: (i) non-spin-flip transitions are found to be characterized by an angular distribution of the type $W($\theta${})$\sim${}1+{cos}^{2}$\theta${}$ while the polarizations of the emitted photons are parallel; and (ii) spin-flip transitions have somewhat smaller decay rates and are found to be characterized by an angular distribution of the type $W($\theta${})$\sim${}1$-${}1/3{cos}^{2}$\theta${}$ while the polarizations of the emitted photons are orthogonal, where $$\theta${}$ is the angle between photons directions. Deviations due to nondipole and relativistic contributions are evaluated for both types of transitions. This work is the first step toward exploring the effect of the nucleus over the angular and polarization properties of the photon pairs emitted by two-photon transitions.

Safari, L., P. Amaro, J. P. Santos, and F. Fratini. "Angular and polarization analysis for two-photon decay of <span class="aps-inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2</mn><mi>s</mi></mrow></math>&." Physical Review A 90 (2014): 014502. AbstractWebsite

The amplitude of two-photon transitions between hyperfine states in hydrogenlike ions is derived based on the relativistic Dirac equation and second-order perturbation theory. We study angular and linear polarization properties of the photon pair emitted in the decay of $2s$ states, where spin-flip and non-spin-flip transitions are highlighted. We pay particular attention to hydrogenlike uranium, since it is an ideal candidate for investigating relativistic and high-multipole effects, such as spin-flip transitions. Two types of emission patterns are identified: (i) non-spin-flip transitions are found to be characterized by an angular distribution of the type $W($\theta${})$\sim${}1+{cos}^{2}$\theta${}$ while the polarizations of the emitted photons are parallel; and (ii) spin-flip transitions have somewhat smaller decay rates and are found to be characterized by an angular distribution of the type $W($\theta${})$\sim${}1$-${}1/3{cos}^{2}$\theta${}$ while the polarizations of the emitted photons are orthogonal, where $$\theta${}$ is the angle between photons directions. Deviations due to nondipole and relativistic contributions are evaluated for both types of transitions. This work is the first step toward exploring the effect of the nucleus over the angular and polarization properties of the photon pairs emitted by two-photon transitions.

Sampaio, J. M., M. Guerra, T. I. Madeira, F. Parente, P. Indelicato, J. P. Santos, and J. P. Marques. "Relativistic calculations of atomic parameters in Ununoctium." Journal of Physics: Conference Series 635 (2015): 092095-2. AbstractWebsite
n/a
Sampaio, J. M., T. I. Madeira, J. P. Marques, F. Parente, A. M. Costa, P. Indelicato, J. P. Santos, M. - C. Lépy, and Y. Ménesguen. "Approaches for theoretical and experimental determinations of K-shell decay rates and fluorescence yields in Ge." Physical Review A 89 (2014): 012512. AbstractWebsite
n/a
Sampaio, J. M., T. I. Madeira, M. Guerra, F. Parente, J. P. Santos, P. Indelicato, and J. P. Marques. "Dirac-Fock calculations of K−, L−, and M-shell fluorescence and Coster-Kronig yields for Ne, Ar, Kr, Xe, Rn, and Uuo." Physical Review A 91 (2015): 052507. AbstractWebsite
n/a
Sampaio, J. M., T. I. Madeira, M. Guerra, F. Parente, P. Indelicato, J. P. Santos, and J. P. Marques. "Relativistic calculations of K-, L- and M-shell X-ray production cross-sections by electron impact for Ne, Ar, Kr, Xe, Rn and Uuo." Journal of Quantitative Spectroscopy and Radiative Transfer 182 (2016): 87-93. AbstractWebsite

Journal of Quantitative Spectroscopy and Radiative Transfer, 182 + (2016) 87-93. doi:10.1016/j.jqsrt.2016.05.012

Sampaio, J. M., T. I. Madeira, J. P. Marques, F. Parente, A. M. Costa, P. Indelicato, J. P. Santos, M. - C. Lépy, and Y. Ménesguen. "Approaches for theoretical and experimental determinations of K-shell decay rates and fluorescence yields in Ge." Physical Review A 89 (2014): 012512. AbstractWebsite
n/a
Sampaio, J. M., T. I. Madeira, F. Parente, P. Indelicato, J. P. Santos, and J. P. Marques. "Relativistic calculations of M-shell photoionization and X-ray production cross-sections for Hg at 5.96 keV excitation energy." Radiation Physics and Chemistry 107 (2014): 36. AbstractWebsite

In this work we calculate photoionization and X-ray production cross-sections (XPCS) of M-shell vacancies in Hg at incident photon energy of 5.96 keV (low.

Sampaio, J. M., T. I. Madeira, F. Parente, P. Indelicato, J. P. Santos, and J. P. Marques. "Relativistic calculations of M-shell photoionization and X-ray production cross-sections for Hg at 5.96 keV excitation energy." Radiation Physics and Chemistry 107 (2015): 36. AbstractWebsite

In this work we calculate photoionization and X-ray production cross-sections (XPCS) of M-shell vacancies in Hg at incident photon energy of 5.96 keV (low.

Sampaio, J. M., M. Guerra, F. Parente, T. I. Madeira, P. Indelicato, J. P. Santos, and J. P. Marques. "Calculations of photo-induced X-ray production cross-sections in the energy range 1–150 keV and average fluorescence yields for Zn, Cd and Hg." Atomic Data and Nuclear Data Tables 111-112 (2016): 67-86. AbstractWebsite

Atomic Data and Nuclear Data Tables, 111-112 (2016) 67-86. doi:10.1016/j.adt.2016.02.001

Santos, J. P., and F. Parente. "Ionisation of phosphorus, arsenic, antimony, and bismuth by electron impact." The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 47 (2008): 339-350. AbstractWebsite

Abstract.&nbsp;&nbsp;Total ionization cross sections of neutral phosphorus, arsenic, antimony, and bismuth atoms by electron impact are reported and compared to the only available experimental results by Freund et&nbsp;al. [Phys. Rev. A 41, 3575 (1990)]. These calculations take into account the possibilities that some target atoms used in the experiments were in metastable states close to the ground state, the excitation-autoionization of nsnp4 excited states may be substantial, and the ions produced in experiments may be in excited, low-lying metastable states. The cross sections for direct ionization calculations are based on the BEB model by Kim and Rudd [Phys. Rev. A 50, 3954 (1994)]. Plane-wave Born cross sections scaled by the method developed by Kim [Phys. Rev. A 64, 3954 032713 (2001)] are used to determine the contributions from excitation-autoionization. The combination of the BEB model and the scaled Born cross sections is in agreement with the experimental data by Freund et&nbsp;al. These theoretical data are useful to experimentalists and can be used to complete data tables needed for plasma or astrophysical studies.

Santos, J. P., M. F. Laranjeira, and F. Parente. "Calculation of the triple to double ionization cross-section ratio of Li in the suddem approximation." Europhysics Letters 55 (2001): 479. Abstract

The triple-to-double ionization cross-section ratio of Li in the high-energy limit was computed in the sudden approximation with relativistic wave functions. Together with the calculated value of Dalgarno and Sadeghpour (Phys. Rev. A, 46 (1992) R3591), for the Li double-to-single ionization cross-section ratio, the value of 6.263x10-5 was obtained for the triple-to-single ionization cross-section ratio. This value is in full agreement with Wehlitz et al. experimental value of (6.38+-2.40)x10-5 obtained recently with synchrotron radiation (Phys. Rev. Lett., 81 (1998) 1813).

Santos, J. P., J. P. Marques, F. Parente, E. Lindroth, S. Boucard, and P. Indelicato. "Multiconfiguration Dirac-Fock calculation of 2s1/2-2p3/2 transition energies in highly ionized bismuth, thorium, and uranium." The European Physical Journal D 1 (1998): 149-163. Abstract

Structure and QED effects for 2s1/2 and 2p3/2 levels are calculated for lithiumlike U89+ trough neonlike U82+, lithiumlike Th87+ trough neonlike Th80+ and lithiumlike Bi80+ trough neonlike Bi73+. The results of the first two sets are compared with recent measurements of the 2s1/2-2p3/2 transition energy in 3 to 10-electron ions. Good agreement with experiment is found for most of the observed lines. Forty-one possible transitions are calculated for each ion in the eight ionization states, in the experimental energy range. Twenty-eight of these transitions have not been observed, nor calculated previously. We also calculate transition rates, branching ratios, excitation and ionization cross sections and confirm that the thirteen experimental observed transitions correspond to the ones with highest relative intensities. However, we find nineteen more transitions that could be measured in a more sensitive experiment.X

Santos, J. P. "HCI 2018." X-Ray Spectrometry (2020). AbstractWebsite
n/a
Santos, J. P., A. M. Costa, M. C. Martins, P. Indelicato, and F. Parente. "K X-Ray Energies and Transition Probabilities for He-, Li- and Be-like Praseodymium ions." J. Phys.: Conf. Ser. 388 (2012): 152018. AbstractWebsite

Theoretical transition energies and probabilities for He-, Li and Be-like Praseodymium ions are calcu- lated in the framework of the multi-configuration Dirac-Fock method (MCDF), including QED corrections. These calculated values are compared to recent experimental data obtained in the Livermore SuperEBIT electron beam ion trap facility [1].

Santos, J. P., F. Mota-Furtado, M. F. Laranjeira, and F. Parente. "Rydberg states of atoms in parallel electric and magnetic fields." Physical Review A 59 (1999): 1703-1706. AbstractWebsite

We present theoretical results for the photoabsorption spectrum of an atom in parallel electric and magnetic fields, using the R-matrix method combined with quantum-defect theory. We introduce a radial basis set which is complete and orthonormal over a semi-infinite interval [r0,(infinity)), to allow calculations to be performed for high Rydberg states in nonhydrogenic atoms without encountering problems due to linear dependence of the basis set. The nonhydrogenic character of the spectra is analyzed for Li and Rb, and a comparison is made with previous high-precision experiments which shows that the theoretical results agree very well with experiment.

Santos, J. P., F. Parente, S. Boucard, and J. P. Desclaux. "X-ray energies of circular transitions and electron screening in kaonic atoms." Physical Review A 71 (2005): 032501 EP -. AbstractWebsite

The QED contribution to the energies of the circular (n, = n–1), 2n13, transitions have been calculated for several kaonic atoms throughout the periodic table, using the current world-average kaon mass. Calculations were done in the framework of the Klein-Gordon equation, with finite nuclear size, finite particle size, and all-order Uelhing vacuum polarization corrections, as well as Källén and Sabry and Wichmann and Kroll corrections. These energy level values are compared with other computed values. The circular transition energies are compared with available measured and theoretical transition energies. Electron screening is evaluated using a Dirac-Fock model for the electronic part of the wave function. The effect of electronic wave-function correlation is evaluated.Exo

Santos, J. P., G. C. Rodrigues, J. P. Marques, F. Parente, J. P. Desclaux, and P. Indelicato. "Relativistic correlation correction to the binding energies of the ground configuration of beryllium-like, neon-like, magnesium-like and argon-like ions." The European Physical Journal D 37 (2006): 201-207. AbstractWebsite

Total electronic correlation corrections to the binding energies of the isoelectronic series of beryllium, neon, magnesium and argon, are calculated in the framework of relativistic multiconfiguration Dirac-Fock method. Convergence of the correlation energies is studied as the active set of orbitals is increased. The Breit interaction is treated fully self-consistently. The final results can be used in the accurately determination of atomic masses from highly charged ions data obtained in Penning-trap experiments.

Santos, Jose Paulo, Maria Conceição Martins, Ana Maria Costa, José Pires Marques, Paul Indelicato, and Fernando Parente. "Theoretical determination of K X-ray transition energy and probability values for highly charged ions of lanthanum and cerium." The European Physical Journal D 68 (2014): 244. AbstractWebsite
n/a