Santos, J. P., and F. Parente. "
Ionisation of phosphorus, arsenic, antimony, and bismuth by electron impact."
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 47 (2008): 339-350.
AbstractAbstract. Total ionization cross sections of neutral phosphorus, arsenic, antimony, and bismuth atoms by electron impact are reported and compared to the only available experimental results by Freund et al. [Phys. Rev. A 41, 3575 (1990)]. These calculations take into account the possibilities that some target atoms used in the experiments were in metastable states close to the ground state, the excitation-autoionization of nsnp4 excited states may be substantial, and the ions produced in experiments may be in excited, low-lying metastable states. The cross sections for direct ionization calculations are based on the BEB model by Kim and Rudd [Phys. Rev. A 50, 3954 (1994)]. Plane-wave Born cross sections scaled by the method developed by Kim [Phys. Rev. A 64, 3954 032713 (2001)] are used to determine the contributions from excitation-autoionization. The combination of the BEB model and the scaled Born cross sections is in agreement with the experimental data by Freund et al. These theoretical data are useful to experimentalists and can be used to complete data tables needed for plasma or astrophysical studies.
Palma, M. L., and J. P. Santos. "
Spin-rotation and nuclear shielding constants of sulfur hexafluoride."
Molecular Physics 106 (2008): 1241-1247.
AbstractWe present a first theoretical determination of the hyperfine coupling constants of a spherical top molecule using ab initio methods. The scalar and tensorial contributions to the spin-rotation constants and the diamagnetic and paramagnetic contributions to the nuclear shielding constant are calculated for the 32SF6 molecule. The corrections to the spin-rotation constants due to nuclear Thomas precession are evaluated and discussed. Our results are compared with previously reported experimental values.
Santos, J. P., M. C. Martins, A. M. Costa, P. Indelicato, and F. Parente. "
X-ray spectra emitted by Cl14+ ions in ECRIS plasmas."
Vacuum 82 (2008): 1522-1524.
AbstractWe study the contribution of the most important processes leading to the creation of excited states of Cl14+ ions from the ground configurations of Cl ions in an Electron Cyclotron Resonance Ion Source (ECRIS), which lead to the emission of K X-ray lines. Theoretical values for inner-shell excitation, K and KL ionization cross-sections, and energies and transition probabilities for the de-excitation processes are calculated in the framework of the Multi-Configuration Dirac-Fock (MCDF) method. With reasonable assumptions about the electron energy distribution, a theoretical K[alpha] X-ray spectrum is obtained, which reproduces closely a recent experimental result.