The two-photon $1{s}^{2}2s2p\phantom{\rule{0.16em}{0ex}}{}^{3}{P}_{0}\ensuremath{\rightarrow}1{s}^{2}{s}^{2}\phantom{\rule{0.16em}{0ex}}{}^{1}{S}_{0}$ transition in berylliumlike ions is investigated theoretically within a fully relativistic framework and a second-order perturbation theory. We focus our analysis on how electron correlation, as well as the negative-energy spectrum, can affect the forbidden $E1M1$ decay rate. For this purpose, we include the electronic correlation via an effective local potential and within a single-configuration-state model. Due to its experimental interest, evaluations of decay rates are performed for berylliumlike xenon and uranium. We find that the negative-energy contribution can be neglected at the present level of accuracy in the evaluation of the decay rate. On the other hand, if contributions of electronic correlation are not carefully taken into account, it may change the lifetime of the metastable state by up to 20%. By performing a fully relativistic $jj$-coupling calculation, we find a decrease of the decay rate by two orders of magnitude compared to nonrelativistic $LS$-coupling calculations, for the selected heavy ions.
In this study, we investigate the capability of energy dispersive X-ray fluorescence (EDXF) spectrometry in a triaxial geometry apparatus as a fast and nondestructive determination method of both dominant and contaminant elements in pharmaceutical iron supplements. The following iron supplements brands with their respective active ingredients were analyzed: Neutrofer fólico (iron gylcinate), Anemifer (iron(II) sulfate monohydrate), Noripurum (iron(III)-hydroxide polymaltose complex), Sulferbel (iron(II) sulfate monohydrate), and Combiron Fólico (carbonyl iron). Although we observe a good agreement between the iron content obtained by the present method and that indicated in the supplement's prescribed dose, we observe contamination by manganese and nickel of up to 180 μg and 36 μg, respectively. These contents correspond to 7.2% and 14.4% of the permitted daily exposure of manganese and nickel, respectively, for an average adult individual as determined by the European Medicine Agency (EMEA). The method was successfully validated against the concentrations of several certified reference materials of biological light matrices with similar concentrations of contaminants. Moreover, we also validated our method by comparing the concentrations with those obtained with the inductively coupled plasma-atomic emission technique.
Land\'e $g$ factors for the fine-structure $1{s}^{2}2{s}^{2}2p\phantom{\rule{0.16em}{0ex}}^{2}P_{1/2}$ and $^{2}P_{3/2}$ levels in the boron isoelectronic sequence for selected $Z$ values have been calculated using the multiconfiguration Dirac-Fock method with both quantum-electrodynamic and electronic correlation corrections included. All-order Breit and vacuum polarization corrections were included in the calculation, with a fully optimized active set wave function. The results are compared with the available theoretical data, showing a very good agreement.