José Paulo Santos

Surzhykov, A., P. Indelicato, J. P. Santos, P. Amaro, Th Stöhlker, and S. Fritzsche. "Two-photon absorption of few-electron heavy ions." Physical Review A 84 (2011): 022511. AbstractWebsite

The two-photon absorption of few-electron ions has been studied by using second-order perturbation theory and Dirac's relativistic equation. Within this framework, the general expressions for the excitation cross sections and rates are derived including a full account of the higher-order multipole terms in the expansion of the electron-photon interaction. While these expressions can be applied to any ion, independent of its particular shell structure, detailed computations are carried out for the two-photon absorption of hydrogen-, helium-, and berylliumlike ions and are compared with the available theoretical and experimental data. The importance of relativistic and nondipole effects in the analysis and computation of induced two-photon transitions is pointed out. Moreover, we discuss the potential of these transitions for atomic parity-violation studies in the high-Z domain.

Santos, J. P., M. C. Martins, A. M. Costa, J. P. Marques, P. Indelicato, and F. Parente. "Production and decay of chlorine ion excited species in an electron cyclotron resonance ion source plasma." Physica Scripta T144 (2011): 014005. AbstractWebsite

The most important processes for the creation of chlorine ion excited states from the ground configurations of Cl 10+ to Cl 15+ ions in an electron cyclotron resonance ion source, leading to the emission of K x-ray lines, were studied. Theoretical values for inner-shell excitation and ionization cross-sections, including double KL and triple KLL ionization, transition probabilities and energies for the de-excitation processes, were calculated in the framework of the multi-configuration Dirac–Fock method. With reasonable assumptions about the electron energy distribution, a theoretical Kα x-ray spectrum was obtained, which was then compared with recent experimental data.

Santos, J., A. Costa, C. Madruga, F. Parente, and P. Indelicato. "Relativistic transition wavelenghts and probabilities for spectral lines of Ne II." The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 63 (2011): 89-96. AbstractWebsite

Transition wavelengths and probabilities for several 2 p 4 3 p -2 p 4 3 s and 2 p 4 3 d -2 p 4 3 p lines in fluorine-like neon ion (NeII) have been calculated within the multiconfiguration Dirac-Fock (MCDF) method with quantum electrodynamics (QED) corrections. The results are compared with all existing experimental and theoretical data.

Guimarães, D., M. L. Carvalho, V. Geraldes, I. Rocha, and J. P. Santos. "Study of lead accumulation in bones of Wistar rats by X-ray fluorescence analysis: aging effect." Metallomics In Press (2011): DOI: 10.1039/c1mt00149c. AbstractWebsite

The accumulation of lead in several bones of Wistar rats with time was determined and comparedQ3 for the different types of bones. Two groups were studied: a control group (n = 20), not exposedto lead and a contaminated group (n = 30), exposed to lead from birth, first indirectly throughmother’s milk, and then directly through a diet containing lead acetate in drinking water (0.2%).Rats age ranged from 1 to 11 months, with approximately 1 month intervals and each of thecollections had 3 contaminated rats and 2 control rats. Iliac, femur, tibia–fibula and skull havebeen analysed by energy dispersive X-ray fluorescence technique (EDXRF). Samples offormaldehyde used to preserve the bone tissues were also analysed by Electrothermal AtomicAbsorption (ETAAS), showing that there was no significant loss of lead from the tissue to thepreservative. The bones mean lead concentration of exposed rats range from 100 to 300 mg g 1while control rats never exceeded 10 mg g 1. Mean bone lead concentrations were compared andthe concentrations were higher in iliac, femur and tibia–fibula and after that skull. However, ofall the concentrations in the different collections, only those in the skull were statisticallyQ4 significantly different (p o 0.05) from the other types of bones. Analysis of a radar chart alsoallowed us to say that these differences tend to diminish with age. The Spearman correlation testapplied to mean lead concentrations showed strong and very strong positive correlations betweenall different types of bones. This test also showed that mean lead concentrations in bones arenegatively correlated with the age of the animals. This correlation is strong in iliac and femur andvery strong in tibia–fibula and skull. It was also shown that the decrease of lead accumulationwith age is made by three plateaus of accumulation,

Guimarães, D., J. P. Santos, M. L. Carvalho, G. Vale, H. M. Santos, V. Geraldes, I. Rocha, and J. L. Capelo. "Ultrasonic energy as a tool to overcome some drawbacks in the determination of lead in brain tissue and urine of rats." Talanta 86 (2011): 442-446 . AbstractWebsite

An ultrasonic assisted solid‚Äìliquid extraction method was developed to determine the level of lead in the brain and urine of rats. Lead was determined by electrothermal atomic absorption spectrometry with longitudinal-Zeeman background correction. Several analytical drawbacks were addressed and overcome, namely small brain sample mass and the formation of precipitate in the urine samples. Utrasonication provided by an ultrasonic probe succeeded in extracting lead from brain samples. Furthermore, it was demonstrated that the formation of a precipitate lowered the lead content in the liquid phase of the urine. Lead was back extracted from the precipitate to the liquid phase with the aid of ultrasonic energy and acidifying the urine with 10% v/v nitric acid. A microwave-assisted acid digestion protocol was used to check the completeness of the lead extraction. The within bath and between bath precision was 5% (n = 9) and 7% (n = 3) respectively. The limit of quantification was 1.05 Œºg g‚àí1 for brain samples and 2.1 Œºg L‚àí1 for urine samples. A total of 6 samples of urine and 12 samples of brain from control rats and another 6 samples of urine and 12 samples of brain from rats fed with tap water rich in lead acetate were used in this research. Lead levels in brain and urine from exposed rats ranged from1.9 ¬± 0.2 Œºg g‚àí1 to 3.5 ¬± 0.2 Œºg g‚àí1 and from 752 ¬± 56 Œºg L‚àí1 to 60.9 ¬± 1.2 mg L‚àí1 respectively. Statistically significant differences of levels of lead in brain and urine were found between exposed and non exposed rats.

Guimarães, D., M. L. Carvalho, M. Becker, A. von Bohlen, V. Geraldes, I. Rocha, and J. P. Santos. "Lead concentration in feces and urine of exposed rats by X-ray Fluorescence and Electrothermal Atomic Absorption Spectrometry." X-Ray Spectrometry In press (2011). Abstract
n/a
Pinto, R. M., A. A. Dias, M. Coreno, M. de Simone, B. M. Giuliano, J. P. Santos, and M. L. Costa. "Tautomerism in 5-methyltetrazole investigated by core-level photoelectron spectroscopy and ΔSCF calculations." Chemical Physics Letters 516 (2011): 149-153. AbstractWebsite

The relative populations of the 1H- and 2H-tautomer of gas-phase 5-methyltetrazole (5MTZ) have been assessed through core-level photoelectron spectroscopy, and compared with the results obtained from Gaussian-n (Gn, n = 1, 2 and 3) and Complete Basis Set methods (CBS-4M and CBS-Q). The C 1s and N 1s core‚Äìelectron binding energies (CEBEs) for each ionization site of both tautomers have been computed using the Œîself-consistent-field (ŒîSCF) approach. The C 1s and N 1s XPS spectra, obtained at 313 K, yield a 1H/2H tautomer ratio of ca. 0.16/0.84 and 0.21/0.79, respectively.

Santos, J. P., A. M. Costa, M. C. Martins, P. Indelicato, and F. Parente. "K X-Ray Energies and Transition Probabilities for He-, Li- and Be-like Praseodymium ions." Journal of Physics: Conference Series Accepted (2011).
Santos, J. P., M. Guerra, and F. Parente. "New expression for the K-shell ionization." Journal of Physics: Conference Series Accepted (2011).

SPARC 2011, 8th International Topical SPARC Workshop

Date: 
Wednesday, September 7, 2011, 12:00am - Saturday, September 10, 2011, 12:00am

This Workshop is organized by the Stored Particles Atomic Physics Research Collaboration (SPARC), the Institute of Spectroscopy of the Russian Academy of Sciences, and the Scientific Council on Spectroscopy of the RAS with the assistance of the Institute of Theoretical and Experimental Physics and the P.N. Lebedev Physical Institute of the RAS.

Contacts

Departamento de Física
Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa
Quinta da Torre,
Edifício I, Ala Sul, 2º Piso, Gab. 207,
2825-114 CAPARICA
Portugal

E-mail: jps[at]fct.unl.pt
Tel: +351 212 947 864
Fax: +351 212 948 549

Address: 
DF - FCT NOVA, Quinta da Torre, 2829 -516 MONTE DA CAPARICA , PORTUGAL