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Abstract Software Transactional Memory algorithms associate metadata with the
memory locations accessed during a transaction’s lifetime. This metadata may be
stored in an external table and accessed by way of a function that maps the ad-
dress of each memory location with the table entry that keeps its metadata (this is
the out-place or external scheme); or alternatively may be stored adjacent to the
associated memory cell by wrapping them together (the in-place scheme). In trans-
actional memory multi-version algorithms, several versions of the same memory
location may exist. The efficient implementation of these algorithms requires a one-
to-one correspondence between each memory location and its list of past versions,
which is stored as metadata. In this chapter we address the matter of the efficient
implementation of multi-version algorithms in Java by proposing and evaluating a
novel in-place metadata scheme for the Deuce framework. This new scheme is based
in Java Bytecode transformation techniques and its use requires no changes to the
application code. Experimentation indicates that multi-versioning STM algorithms
implemented using our new in-place scheme are in average 6× faster than when
implemented with the out-place scheme.

1 Introduction

Software Transactional Memory (STM) algorithms differ in the properties and in the
guarantees they provide. Among other differences, one can refer distinct strategies
used to read (visible or invisible) and update memory (direct or deferred), the consis-
tency (opacity or snapshot isolation) and progress guarantees (solo, global and local
progress), the policies applied to conflict resolution (contention management), and
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the sensitivity to interactions with non-transactional code (weak or strong atomic-
ity). Some STM frameworks, e.g., DSTM2 [10] and Deuce [11], address the need of
experimenting with new algorithms and their comparative evaluation by providing
a single transactional interface over which the STM algorithms are built. However,
the internal architecture each STM framework tends to favor the performance of
some classes of STM algorithms and disfavor others. For instance, the Deuce frame-
work stores the metadata in an external table and favors algorithms like TL2 [6] and
LSA [15], which are resilient to the false sharing of transactional metadata (such
as ownership records), and disfavor multi-version algorithms, which require unique
metadata per memory location.

STM algorithms manage information per transaction (frequently referred to as
the transaction descriptor), and per memory location (or object reference) accessed
within that transaction. The transaction descriptor is typically stored in a thread-
local memory space and keeps the information required to validate and commit the
transaction, e.g., the read- and write-sets. The per memory location information,
henceforth be referred as metadata, depends on the nature of the STM algorithm
and may contain locks, timestamps, version lists. Metadata is stored either adjacent
to each memory location (in-place scheme), or in an external table (out-place or
external scheme). STM libraries for imperative languages, such as C, frequently
use the out-place scheme, while those addressing object-oriented languages bias
towards the in-place scheme.

The out-place scheme is implemented by using a table-like data structure that
efficiently maps memory references to its metadata. Storing the metadata in such
a pre-allocated table avoids the overhead of dynamic memory allocation, but in-
curs in the overhead for evaluating the location-to-metadata mapping function. The
bounded size of the external table also induces a false sharing situation, where mul-
tiple memory locations share the same table entry and hence the same metadata, in
a many-to-one relation between memory locations and metadata units. The in-place
scheme is usually implemented using the decorator design pattern [8], by extending
the functionality of an original class by wrapping it in a decorator class that con-
tains the required metadata. This scheme implements a one-to-one relation between
memory locations and metadata units, thus no false sharing occurs. It allows the di-
rect access to the object metadata without significant overhead, but is very intrusive
to the application code, which must be heavily rewritten to use the decorator classes
instead of the original ones. The decorator pattern based technique bears two other
problems: additional overhead for non-transactional code, and multiple difficulties
while working with primitive and array types. Riegel et al. [14] briefly describe the
trade-offs of using in-place versus out-place strategies.

Deuce is among the most efficient STM frameworks for the Java programming
language and provides a well defined interface that is used to implement several
STM algorithms. On the application developer’s side, a memory transaction is de-
fined by adding the annotation @Atomic to a Java method, and the framework au-
tomatically instruments the application’s bytecode to intercept the read and write
memory accesses by injecting call-backs to the STM algorithm. These call-backs
receive the referenced memory address as argument, hence limiting the range of
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viable STM algorithms to be implemented by forcing an out-place scheme. Imple-
menting in Deuce an algorithm that requires a one-to-one relation between metadata
and memory locations, such as a multi-version algorithm, requires the use of an ex-
ternal table to handles collisions, which significantly degrades the throughput of the
algorithm.

In the remaining of this Chapter we present a novel approach to support the in-
place metadata scheme that does not use the decorator pattern, and thoroughly evalu-
ate its implementation in Deuce. This extension allows the efficient implementation
of multi-version algorithms, which require a one-to-one relation between metadata
and memory locations. The developed extension has the following properties:

Efficiency The extension fully supports primitive types, even in transactional
code. Transactional code does not require the extra memory dereference imposed
by the decorator pattern. Non-transactional code is in general oblivious to the
presence of metadata in objects, hence no significant performance overhead is in-
troduced. And we propose a solution for supporting transactional n-dimensional
arrays with a negligible overhead for non-transactional code.

Flexibility The extension supports both the original out-place and the new in-
place strategies simultaneously, hence it is fully backwards compatible and im-
poses no restrictions on the nature of the STM algorithms to be used, nor on their
implementation strategies.

Transparency The extension automatically identifies, creates and initializes all
the necessary additional metadata fields in objects. No source code changes are
required, although we apply some light transformations to the non-transactional
bytecode.

Compatibility Our extension is fully backwards compatible and the already exist-
ing implementations of STM algorithms are executed with no changes, and with
zero or negligible performance overhead.

Compliance The extension and bytecode transformations are fully-compliant with
the Java specification, hence supported by standard Java compilers and JVMs.

The Deuce framework assumes a weak atomicity model, i.e., transactions are atomic
only with respect to other transactions, and hence their execution may be interleaved
with non-transactional code. Multi-version algorithms update objects (memory lo-
cations) by writing the new value to the object (memory cell) metadata (which con-
tain the lists or past values), and therefore transactional accesses cannot see non-
transactional updates, and vice-versa. We tackle this problem by proposing an algo-
rithmic adaptation for multi-version algorithms that enables the support of a weak
atomicity model for multi-version algorithms with meaningless impact in the overall
performance.

This chapter follows with a description of the Deuce framework and its out-place
scheme in Section 2. Section 3 describes properties of the in-place scheme, its im-
plementation, and its limitations as an extension to Deuce. We present an evaluation
of the extension’s implementation using several metrics in Section 4. Section 5 de-
scribes the implementation of several state-of-the-art STM multi-version algorithms
using our proposed extension. In Section 6 we show how to adapt the multi-version
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algorithms to support a weak-atomicity model. Finally, we present a comparison
between different single- and multi-version algorithms using standard benchmarks
in Section 7.

2 The Deuce Framework

Deuce supplies a single @Atomic Java annotation, and relies heavily on bytecode
instrumentation to provide a transparent transactional interface to application devel-
opers, which are unaware of how the STM algorithms are implemented and which
strategies they use to store the transactional metadata. Algorithms such as TL2 [6]
or LSA [15] use an out-place scheme by resorting to a very fast hashing function
and storing a single lock in each table entry. Due to performance issues, the map-
ping table does not avoid hash collisions and thus two memory locations may be
mapped to the same table entry, resulting in the false sharing of a lock by two dif-
ferent memory locations. In these algorithms, false sharing may have some impact
in the performance but does not affect the correctness. To implement multi-version
algorithms with the out-place scheme, one has to manage collision lists in the table,
which significantly degrades performance.

To support the out-place scheme, Deuce identifies an object’s field by the object
reference and the field’s logical offset. This logical offset is computed at compile
time, and for every field f in every class C an extra static field f o is added to that
class, whose value represents the logical offset of f in class C. No extra fields are
added for array cells, as the logical offset of each cell corresponds to its index.
Within a memory transaction, when there is a read or write memory access to a field
f of an object O, or to the array element A[i], the runtime passes the pair (O, f o)
or (A, i) respectively as the argument to the call-back function. The STM algorithm
shall not differentiate between field and array accesses. If an algorithm wants to,
e.g., associate a lock with a field, it has to store the lock in an external table indexed
by the hash value of the pair (O, f o) or (A, i). STM algorithm implementations must
comply with a well defined Java interface, as depicted in Figure 1. The methods
specified in the interface are the call-back functions that are injected by the instru-
mentation process in the application code. For each read and write of a field of an
object, the methods onReadAccess and onWriteAccess, are invoked respectively.
The method beforeReadAccess is called before the actual read of an object’s field.

3 Supporting the In-Place Scheme in Deuce

In our approach to extend Deuce to support the in-place scheme, we replace the
previous pair of arguments to call-back functions (O, f o) with a new metadata object
f m, whose class is specified by the STM algorithm’s programmer. We guarantee that
there is a unique metadata object f m for each field f of each object O, and hence
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public interface Context {
void init(int atomicBlockId, String metainf);
boolean commit();
void rollback();
void beforeReadAccess(Object obj, long field);
int onReadAccess(Object obj, int value, long field);
// ... onReadAccess for the remaining types
void onWriteAccess(Object obj, int value, long field);
// ... onWriteAccess for the remaining types

}

Fig. 1 Context interface for implementing an STM algorithm.

TxField

TxArrIntField TxArrObjectField...
...

User Defined
Class Fields

User Defined
Array Elem

User Defined
Array Elem

Fig. 2 Metadata classes hierarchy.

the use of f m to identify an object’s field is equivalent to the pair (O, f o). The same
applies to arrays, where we ensure that there is a unique metadata object am for each
position of any array A.

3.1 Implementation

Although the implementation of the support for in-place metadata objects differs
considerably for class fields and array elements, a common interface is used to in-
teract with the STM algorithm implementation. This common interface is supported
by a well defined hierarchy of metadata classes, illustrated in Figure 2, where the
rounded rectangle classes are defined by the STM algorithm developer.

All metadata classes associated with class fields extend directly from the top
class TxField (see Figure 3). The constructor of TxField class receives the object
reference and the logical offset of the field. All subclasses must call this constructor.
For array elements, we created specialized metadata classes for each primitive type
in Java, the TxArr*Field classes, where * ranges over the Java primitive types1.
All the TxArr*Field classes extend from TxField, providing the STM algorithm
with a simple and uniform interface for call-back functions.

We defined a new interface for the call-back methods (see Figure 4). In this new
interface, the read and write call-back functions (onReadAccess and onWriteAcess
respectively) receive only the metadata TxField object, not the object reference and

1 int, long, float, double, short, char, byte, boolean, and Object.
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public class TxField {
public Object ref;
public final long offset;
public TxField(Object ref, long offset) {

this.ref = ref;
this.offset = offset;

}
}

Fig. 3 TxField class.

public interface ContextMetadata {
void init(int atomicBlockId, String metainf);
boolean commit();
void rollback();
void beforeReadAccess(TxField field);
int onReadAccess(int value, TxField field);
// ... onReadAccess for the remaining types
void onWriteAccess(int value, TxField field);
// ... onWriteAccess for the remaining types

}

Fig. 4 Context interface for implementing an STM algorithm supporting in-place metadata.

logical offset of the Context interface. This new interface coexists with the original
one in Deuce, allowing new STM algorithms to access the in-place metadata while
ensuring backward compatibility.

The TxField class can be extended by the STM algorithm programmer to in-
clude additional information required by the algorithm for, e.g., locks, timestamps,
or version lists. The newly defined metadata classes need to be registered in our
framework to enable its use by the instrumentation process, using a Java annotation
in the class that implements the STM algorithm, as exemplified in Figure 5. The pro-
grammer may register a different metadata class for each kind of data type, either
for class field types or array types. As shown in the example of Figure 5, the pro-
grammer registers the metadata implementation class TL2IntField for the fields
of int type, by assigning the name of the class to the fieldIntClass annotation
property.

The STM algorithm must implement the ContextMetadata interface (Figure 4)
that includes a call-back function for the read and write operations on each Java
type. These functions always receive an instance of the super class TxField, but
no confusion arises from there, as each algorithm knows precisely which metadata
subclass was actually used to instantiate the metadata object.

Lets now see where and how the metadata objects are stored, and how they are
used on the invocation of the call-back functions. We will explain separately the
management of metadata objects for class fields and for array elements.
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@InPlaceMetadata(
fieldObjectClass="TL2ObjField",
fieldIntClass="TL2IntField",
...
arrayObjectClass="TL2ArrObjectField",
arrayIntClass="TL2ArrIntField",
...

)
public class TL2Context implements ContextMetadata {
...

}

Fig. 5 Declaration of the STM algorithm specific metadata.

class C {
int a;
Object b;

}
=⇒

class C {
int a;
Object b;
final TxField a_metadata;
final TxField b_metadata;

}

Fig. 6 Example transformation of a class with the in-place scheme.

3.1.1 Adding Metadata to Class Fields

During the execution of a transaction, there must be a metadata object f m for each
accessed field f of object O. Ideally, this metadata object f m is accessible by a single
dereference operation from object O, which can be achieved by adding a new meta-
data field (of the corresponding type) for each field declared in a class C. The general
rule for this process can be described as: given a class C that has a set of declared
fields F = { f1, . . . , fn}, for each field fi ∈ F we add a new metadata object field f m

i+n
to C, such that the class ends with the set of fields Fm = { f1, . . . , fn, f m

1+n, . . . , f m
n+n},

where each field fi is associated with the metadata field f m
i+n for any i ≤ n. In Fig-

ure 6 we show a concrete example of the transformation of a class with two fields.
Instance and static fields are expected to have instance and static metadata fields,

respectively. Thus, instance metadata fields are initialized in the class constructor,
while static metadata fields are initialized in the static initializer (static { ... }).
This ensures that whenever a new instance of a class is created, the corresponding
metadata objects are also new and unique, while static metadata objects are the same
in all instances. Since a class can declare multiple constructors that can call each
other, using the telescoping constructor pattern [1], blindly instantiating the meta-
data fields in all constructors would be redundant and impose unnecessary stress
on the garbage collector. Therefore, the creation and initialization of metadata ob-
jects only takes place in the constructors that do not rely in another constructor to
initialize its target.

Opposed to the transformation approach based in the decorator pattern, where
primitive types must be replaced with their object equivalents (e.g., in Java an int
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field is replaced by an Integer object), our transformation approach keeps the prim-
itive type fields untouched, simplifying the interaction with non-transactional code,
limiting the code instrumentation and avoiding auto-boxing and its overhead.

3.1.2 Adding Metadata to Array Elements

The structure of an array is very strict. Each array cell contains a single value of a
well defined type and no other information can be added to those cells. The common
approach to overcome this limitation, and add some more information to each cell,
is to change the original array to an array of objects that wrap the original value
and also contain the additional information. This straight forward transformation
has many implications in the application code, as statements accessing the original
array, or array elements, will now have to be rewritten to use the new array type, or
wrapping class, respectively. This problem is even more complex if the new arrays
with wrapped elements are to be manipulated by non-instrumented libraries, such
as the JDK libraries, which are unaware of the new array types.

We address this matter by changing the type of the array to be manipulated by
the instrumented application code, but with minimal impact on the performance
of non-instrumented code. We keep all the values in the original array, and have
a sibling second array, only manipulated by the instrumented code, that contains
the additional information and references to the original array. The type in the dec-
laration of the base array is changed to the type of the corresponding sibling ar-
ray (TxArr*Field), as shown in Figure 7. This Figure also illustrates the general
structure of the sibling TxArr*Field arrays (in this case, a TxArrIntField array).
Each cell of the sibling array has the metadata information required by the STM
algorithm, its own position/index in the array, and a reference to the original array
where the data is stored (i.e., where the reads and updates take place). This scheme
allows the sibling array to keep a metadata object for each element of the origi-
nal array, while maintaining the original array always updated and compatible with
non-instrumented legacy code. With this approach, the original array can still be
retrieved with a minimal overhead by dereferencing twice the sibling TxArr*Field

array. Since the original array serves as the backing store, no memory allocation
or copies need to be performed, even when array elements are changed by non-
instrumented code.

Non-transactional methods that have arrays as parameters are also instrumented
to replace the array type by the corresponding sibling TxArr*Field. For non-
instrumented methods, the method signature does not provide information enough
to know if there is the need to revert to primitive arrays. Take, for example, the
System.arraycopy(Object, int, Object, int, int) method from the Java
platform. The signature refers Object but it actually receives arrays as arguments.
We identify these situations by inspecting the type of the arguments on a virtual
stack2 and if an array is found, despite the method’s signature, we revert to prim-

2 During the instrumentation process we keep the type information of the operand stack.
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class D {
int[] a; //base array

}

  

2

3
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TxArrIntField[3] int[3]

index=2
array

2

0

1

2

0
index=0
array

1
index=1
array

=⇒
class D {
TxArrIntField[] a;
TxField a_metadata;

}
class TxArrIntField {
int[] array; //base array
int index;

}

Fig. 7 Memory structure of a TxArrIntField array.

void foo(int[] a) {
// ...
t = a[i];

}

=⇒
void foo(TxArrIntField[] a) {
// ...
t = a[0].array[i];

}

Fig. 8 Example transformation of array access in the in-place scheme.

itive arrays. The value of an array element is then obtained by dereferencing the
pointer to the original array kept in the sibling, as illustrated in Figure 8. When
passing an array as argument to an non-instrumented method (e.g., from the JDK
library), we can just pass the original array instance. Although the instrumentation
of non-transactional code adds an extra dereference operation when accessing an
array, we still do avoid the auto-boxing of primitive types, which would impose a
much higher overhead.

3.1.3 Adding Metadata to Multi-Dimensional Arrays

The special case of multi-dimensional arrays is tackled using the TxArrObjectField
class, which has a different implementation from the other specialized metadata ar-
ray classes. This class has an additional field, nextDim, which may be null in the
case of a unidimensional reference type array, or may hold the reference of the next
array dimension by pointing to another array of type TxArr*Field. Once again, the
original multi-dimensional array is always up to date and can be safely used by non-
instrumented code. Figure 9 depicts the memory structure of a bi-dimensional array
of integers. Each element of the first dimension of the sibling array has a reference
to the original integer matrix. The elements of the second dimension of the sibling
array have a reference to the second dimension of the matrix array.
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TxArrObjectField[2]
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nextDim
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Fig. 9 Memory structure of a multi-dimensional TxArrIntField array.

The limitations of our support for in-place metadata for single- and multi-
dimensional arrays in Deuce are discussed with further detail in [5].

4 Evaluation of the In-Place Scheme

The implementation of the proposed Deuce extension, described in the previous sec-
tions, introduces more complexity to the transactional processing when comparing
with the original Deuce implementation. This complexity, in the form of additional
memory operations and allocations, may slowdown the performance in some cases.
In our first step to assess the extension implementation performance, we evaluate
the overhead of the new implementation by comparing it with the original Deuce
implementation.

In a second step we evaluate the performance speedup of using our extension to
implement a multi-version STM algorithm, against an implementation of the same
algorithm using the original Deuce interface. We chose a well known multi-version
STM algorithm, JVSTM, described in [3], and implemented two versions of the al-
gorithm, one using the original Deuce interface and an out-place scheme (referred to
as jvstm-outplace), and another using our new interface and extension supporting
an in-place scheme (referred to as jvstm-inplace).

Both the overhead and speedup evaluations are preformed using several micro-
and macro-benchmarks. Micro-benchmarks are composed by the Linked List, Red-
Black Tree, and Skip-List data structures. Macro-benchmarks are composed by the
STAMP [4] benchmark suite and the STMBench7 [9] benchmark. All these bench-
marks were executed in our extension of Deuce with in-place metadata with no
changes whatsoever, as all the necessary bytecode transformations were performed
automatically by our instrumentation process. The benchmarks were executed on
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Fig. 10 Performance overhead measure of the usage of metadata objects relative to out-place TL2.

a computer with four AMD Opteron 6272 16-Core processors @2.1GHz with
8×2MB of L2 cache, 16 MB of L3 cache, and 64GB of RAM, running Debian
Linux 3.2.41 x86 64, and Java 1.7.0 21.

In the following sections we describe in detail, and present the results, of the
overhead evaluation as well as the speedup evaluation.

4.1 Overhead Evaluation

To evaluate the overhead introduced by the management of the metadata object
fields and sibling arrays as required by our extension, we measured and compared
the performance of two very similar implementations of the TL2 algorithm, which
only differ in which API (context interface) is used to implement the algorithm:
one uses the original API as provided by the Deuce distribution, and another (named
tl2-overhead) uses the new interface of our modified Deuce (as described in
Figure 4 in page 6). The change of API requires the additional management of meta-
data objects (allocation, and array manipulation), and two additional dereferences
on the metadata object to obtain the field’s object reference and the field offset, for
each read and write operation.

Figure 10 depicts the average overhead introduced by the tl2-overhead im-
plementation with respect to the original Deuce TL2 implementation. The Figure
reports on several benchmarks, with each benchmark aggregating results from exe-
cutions ranging form 1 to 64 threads. The overhead of the additional management
of metadata objects and sibling arrays is in average about 20%. The benchmarks
that use metadata arrays (SkipList, Kmeans, Genome, Labyrinth, SSCA2) have in
general a higher overhead than those that only use metadata objects for class fields
(RBTree, STMBench7, Vacation, Intruder). The micro-benchmarks (Linked List,
Red-Black Tree and Skip-List) were all tested in four scenarios: with a read-only
workload (0% of updates), and read-write workloads with 10%, 50%, and 90% of
updates. These micro-benchmarks are composed of small transactions which only
perform read and write accesses to shared memory, and thus, the overhead is more
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visible. The higher overhead in the LinkedList micro-benchmark is due to the long
running transactions that perform a very large number of read operations, and our
extension requires an external table lookup and an additional object dereference to
retrieve the metadata object for each memory read operation.

The STAMP benchmarks, show relatively low overhead,except for the SSCA2+
benchmark. These benchmarks have medium sized transactions which perform
some computations with the data read from the shared memory. The SSCA2+
benchmark only preforms read and write operations over arrays, and may be con-
sidered the worst-case scenario for our extension. The STMBench7 benchmark was
executed with a read-dominant workload, without long-traversals, and with struc-
tural modifications activated. In this benchmarks transactions are computationally
much heavier, which hides the small overhead introduced by the management of
in-place metadata.

From this results we can conclude that out new in-place scheme introduces a
small overhead due to the management of in-place metadata, but it also enables the
efficient implementation of single- and multi-version STM algorithms in a single
STM framework. In the next sections we show the comparison of the performance of
the same multi-version algorithm implemented using the original Deuce framework
and our extension.

4.2 Implementing a Multi-Versioning Algorithm: JVSTM

The JVSTM algorithm defines the notion of version box (vbox), which maintains a
pointer to the head of an unbounded list of versions, where each version is composed
by a timestamp and the data value. Each version box represents a distinct memory
location. The timestamp in each version corresponds to the timestamp of the trans-
action that created that version, and the head of the version list always points to
the most recent version. During the execution of a transaction, the read and write
operations are done in versioned boxes, which hold the data values. For each write
operation a new version is created and tagged with the transaction timestamp. For
read operations, the version box returns the version with the highest timestamp less
than or equal to the transaction’s timestamp. A particularity of this algorithm is that
read-only transactions never abort. To commit a transaction, a global lock must be
acquired to ensure mutual exclusion with all other concurrent transactions. Once the
global lock is acquired, the transaction validates the read-set, and in case of success,
creates the new version for each memory location that was written, and finally re-
leases the global lock. To prevent version lists from growing indefinitely, versions
that are no more necessary are cleaned up by a vbox garbage collector.

To implement the JVSTM algorithm, we need to associate a vbox with each field
of each object. For the sake of the correctness of the algorithm, this association must
guarantee a relation of one-to-one between the vbox and the object’s field. We will
detail the implementation of this association for both, the out-place and the in-place
strategies.
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4.2.1 Out-Place Scheme

To implement JVSTM algorithm in the original Deuce framework, which only sup-
ports the out-place scheme, the vboxes must be stored in an external table3. The
vboxes are indexed by a unique identifier for the object’s field, composed by the
object reference and the field’s logical offset. Whenever a transaction performs a
read or write operation on an object’s field, the respective vbox must be retrieved
from the table. In the case where the vbox does not exists, we must create one and
add it into the table. These two steps, verifying if a vbox is present in the table and
creating and inserting a new one if not, must be performed atomically, otherwise
we would incur in the case where two different vboxes may be created for the same
object’s field. Once the vbox is retrieved from the table, either it is a read operation
and we look for the appropriate version using the transaction’s timestamp and return
the version’s value, or it is a write operation and we add an entry to the transaction’s
write-set.

We use weak references in the table indices to reference the vbox objects and
not hamper the garbage collector from collecting old objects. Whenever an object is
collected our algorithm is notified in order to remove the respective entry from the
table.

Despite using a concurrent hash map, this implementation suffers from a high
overhead penalty when accessing the table, since it is a point of synchronization for
all the transactions running concurrently. This implementation (jvstm-outplace)
will be used as a base reference when comparing with the implementation of the
same JVSTM algorithm using the in-place scheme (jvstm-inplace).

4.2.2 In-Place Scheme

The in-place version of JVSTM algorithm makes use of the metadata classes to hold
the same information as the vbox in the out-place variant. This will allow direct
access to the version list whenever a transaction is reading or writing.

We extend the vbox class from the TxField class as shown in Figure 11. The
actual implementation creates a VBox class for each Java type in order to prevent the
boxing and unboxing of primitive types. When the constructor is executed, a new
version with timestamp zero is created, containing the current value of the field
identified by object ref and logical offset offset. The value is retrieved using the
private method read(). The code to create these VBox objects during the execution
of the application is inserted automatically by our bytecode instrumentation process.
The lifetime of an instance of the class VBox is the same as the lifetime of the object
ref. When the garbage collector decides to collect the object ref, all metadata
objects of class VBox associated with each field of the object ref, are also collected.

Our comparison evaluation shows that the direct access to the version list allowed
by the in-place scheme will greatly benefit the performance of the algorithm. We

3 We opted to use a concurrent hash table from the java.util.concurrent package.
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public class VBox extends TxField {
protected VBoxBody body;
public VBox(Object ref, long offset) {

super(ref, offset);
body = new VBoxBody(read(), 0, null);

}
// ... methods to access and commit versions

}

Fig. 11 VBox in-place implementation.
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Fig. 12 In-place over Out-place scheme speedup: the case of JVSTM.

present the comparison results in the next section by presenting the speedup of the
in-place version with respect to the out-place version.

4.3 Speedup Evaluation

From the evaluation of the in-place management overhead, we concluded that this
scheme is a viable option for implementing algorithms biased to in-place transac-
tional metadata. Hence, we implemented and evaluated two versions of the JVSTM
algorithm as proposed in [3], one in the original Deuce using the native out-place
scheme (jvstm-outplace), and another in the extended Deuce using our in-place
scheme (jvstm-inplace), as described in the previous Section.

Figure 12 depicts the average speedup of our two implementations of the JVSTM
algorithm: one In-Place (jvstm-inplace) and another Out-Place (jvstm-outplace).
We used the same set of benchmarks and configuration that was used for the over-
head evaluation in Section 4.1. In The in-place version of the JVSTM algorithm is
in average 7 times faster than its dual out-place version. The speedup observed for
the micro-benchmarks, where transactions are small and contention is low, shows
that the multi-versioning algorithms greatly benefit from our in-place support. In the
case of the STAMP benchmarks, where transactions are submitted to workloads of
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Fig. 13 Performance and transaction aborts of JVSTM-Inplace/Outplace for the Intruder and
KMeans benchmarks.

intensive contention, the in-place version is much faster than the out-place approach
as it avoids completely the use of a shared external table, which becomes a serious
bottleneck in the presence of high contention. In the special case of KMeans and
Intruder benchmarks, the overhead of managing a shared external table drastically
increases the probability of transaction aborts as depicted in Figure 13, which in turn
makes the transactional throughput to decrease. The STMBench7 macro-benchmark
has many long-running transactions and the overall throughput for both algorithms
is relatively low. Even so, the in-place algorithm is in average 6× faster.

5 State-of-the-art Multi-version Algorithm’s Implementations

Our main purpose for extending Deuce with support for in-place metadata was to
allow the efficient implementation of a class of STM algorithms that require a one-
to-one relation between memory locations and their metadata. Multi-version based
algorithms fit into that class, as they associate a list of versions (holding past val-
ues) with each memory location. With the support for in-place metadata we can
implement and compare the state-of-the-art multi-version algorithms, both between
themselves and with single-version algorithms.

To support this fact, we implemented two state-of-the-art multi-version algo-
rithms: SMV [12] and JVSTM-LockFree [7]. These algorithms are significantly
different, although both are MV-permissive [13]. They differ on the progress guaran-
tees, e.g., JVSTM-LockFree implements a commit algorithm that is lock-free, while
SMV uses write-set locking, and also differ on the technique used to garbage collect
unnecessary versions, where JVSTM-LockFree uses a custom parallel garbage col-
lector, while SMV resorts to the JVM garbage collector by using weak-references. In
the following sections we describe the implementation details of each of the above
algorithms.
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public class SMVObjAdapter extends TxField {
public volatile Object latest;
public int creatorTxnId;
public final AtomicInteger version = new AtomicInteger(1);
public volatile WeakReference<VersionHolder> prev =

new WeakReference<VersionHolder>(null);
// ... public methods

}

Fig. 14 SMV transactional metadata class.

5.1 SMV – Selective Multi-versioning STM

The SMV algorithm described in [12] is an MV-permissive multi-version algorithm,
which uses the JVM garbage collector to automatically collect unreachable ver-
sions. The implementation of this algorithm in our extension of Deuce was based
on the original source code released by the authors4. The original algorithm is
object-based, opposite to Deuce, and our extension, which only supports word-based
STMs, and hence we adapted the SMV algorithm to work as a word-base STM.

The transactional metadata required by SMV can be depicted in Figure 14. This is
a direct adaptation of the SMVAdapterLight class provided by the original source
code. Also, we used the same source code that implements the behavior of read-
and update-transactions with minimal changes. We did this by implementing our
extension’s interface ContextMetadata as an adapter of the original source code,
each transactional operation (read, write, commit, abort) is forward to the original
implementation.

The change from an object-based to a word-based approach only required min-
imal changes on the read and write procedures. In the case of a read operation,
instead of returning an object, is returned a field’s value. And in the case of a write
operation, instead of cloning the object to be written and storing in the transaction’s
write-set, the tentative value of a field is stored in the write-set. The overall adap-
tation of the original source code to our framework was very easy and fast, which
proves the flexibility of our support for implementing different STM algorithms.

5.2 JVSTM Lock Free

The JVSTM-LockFree [7] is an adaptation of the original JVSTM algorithm [3],
which enhances the commit procedure using a lock-free algorithm, instead of using
a global lock, and also improves the garbage collector algorithm by the use of a par-

4 http://tx.technion.ac.il/˜dima39/sourcecode/SMVLib-29-06-11.zip



Framework Support for the Efficient Implementation of Multi-Version Algorithms 17

public class VBoxAdapter extends TxField {
protected VBox<Object> vbox;
// ... public methods

}

Fig. 15 JVSTM-LockFree transactional metadata class.

allel collecting approach. Once again, we based our implementation in the original
source code5.

We created a metadata object containing a reference to a vbox, as implemented
originally by the JVSTM-LockFree algorithm. We show the object metadata im-
plementation in Figure 15. The context class was implemented as an adapter to
the original implementation of the read-only and update transactions. Actually, we
used the JVSTM-LockFree implementation as an external library (JAR file), and
the Deuce context class only forwards the transactional calls to the external library.
This approach was possible because there was no need to make any changes to the
JVSTM-LockFree algorithm, for it to work in our framework extension.

6 Supporting Efficient Non-Transactional code

Multi-version algorithms read and write the data values from and into the list of ver-
sions. This implies that all accesses to fields in shared objects must be done inside
a memory transaction, and thus multi-version algorithms require a strong atomicity
model [2]. Deuce does not provide a strong atomicity model as memory accesses
done outside of transactions are not instrumented, and hence it is possible to have
non-transactional accesses to fields of objects that were also accessed inside mem-
ory transactions. This hinders the usage of multi-version algorithms in Deuce. This
problem can be circumvented by rewriting the existing benchmarks to wrap all ac-
cesses to shared objects inside an atomic method, but such code changes are always
a cumbersome and error prone process. We addressed this problem by proposing
an adaptation to the multi-version algorithms that makes them compatible with the
weak atomicity model.

When using a weak atomicity model with a multi-version scheme, updates made
by non-transactional code to object fields are not seen by transactional code and,
on the other way around, updates made by transactional code are not seen by non-
transactional code. The key idea for our solution is to store the value of the latest
version in the object’s field instead of in the node at the head of the version list.
When a transaction needs to read a field of an object, it requests the version corre-
sponding to the transaction timestamp. If it receives the head version, then it reads

5 https://github.com/inesc-id-esw/jvstm
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the value directly from the object’s field, otherwise it reads the value from the ver-
sion node.

The main issue with this approach is how to guarantee the atomicity of the com-
mit of a new version, because now we have two steps: adding a new version node to
the head of the list and updating the field’s value. These two steps must be atomic
with respect to the other concurrent transactions. Our solution is to create a tem-
porary new version with an infinite timestamp, making it unreachable for other
concurrent transactions, until we update the value and then change the timestamp
to its proper value. The algorithmic adaptation that we propose is not intended to
support a workload of intertwined non-transactional and transactional accesses, but
rather a phased workload where non-transactional code does not execute concur-
rently with transactional code. Many of the transactional benchmarks we used ex-
hibit such a phased workload, because the data structures are initialized in the pro-
gram startup using non-transactional code. After this initialization, the transactional
code can now operate over the data previously installed by non-transactional code.
After the transactional processing, non-transactional code may also post-process the
data, such as in a case of a validation procedure.

6.1 Read Access Adaptation

In a multi-version scheme, read-only transactions always search for a correct version
to return its value. Each version container holds the timestamp (or version number)
and the respective value. When the transaction finds the correct version, it returns
the value contained in the version.

To support non-transactional accesses mixed with a multi-version scheme, the
latest value of an object’s field is stored in-place, and therefore the head version
might not have the correct value because of a previous non-transactional update.
The read procedure of a multi-version transaction must be adapted to reflect the new
location of the latest value. When a transaction queries for a version, and receives
the head version, corresponding to the latest value, it has to return the value directly
from the object’s field. The pseudo-code of this adaptation is presented below, where
the additional operations are denoted in underline.

1. val := read()
2. ver := find version()

3. return

{
val if is head version(ver)
ver.val otherwise

The read() function returns the value from the object’s field, the find version func-
tion retrieves the corresponding version according to the transaction timestamp, and
the is head version function asserts if version ver is the head version. This small
change introduces the additional shared memory access performed in step 1. The
correctness of this adaptation can only be assessed with the explanation of the com-
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mit adaptation, which guarantees that whenever the is head version function returns
true the value val is correct.

6.2 Commit Adaptation

The commit operation is typical composed by a validation phase and write-back
phase. In the write-back phase, for each new value present in the write-set, a new
version is created and is stored as the head version. The write-back phase must be
atomic, and this can be achieved using a global lock (JVSTM), a write-set entry
locking (SMV), or even a lock-free algorithm (JVSTM-LockFree).

Our adaptation only makes changes to the write-back phase. In each iteration of
the write-back phase, a new version is installed as the head version of the version
list associated with the object’s field being written. The version contains the commit
timestamp, which defines the commit ordering, and the new value. Additionally,
to support the weak-atomicity model, we also need to write the new value directly
to the object’s field. The problem that arises with this additional operation is that
concurrent transactions need to see the update on the version list, and the update
of the object’s value as a single operation. The key idea to solve this problem is to
create a version with a temporary infinite timestamp, which will prevent concurrent
transactions from accessing the head version, and consequently the object’s field
value.

Below we present the pseudo-code of the adaptation to the commit of a new
version, where tc is the timestamp of the transaction that is performing the commit,
t∞ is the highest timestamp, val is the value to be written, and verh is the pointer
to the head version. For the sake of simplicity, we assume that these steps execute
in mutual exclusion with respect to other concurrent commits (in Section 6.2.3 we
explain how to apply these steps to a lock-free context as in the JVSTM-LockFree
algorithm).

1. verh.value := read()
2. vern := create version(new val, t∞,verh)
3. verh := vern
4. write(new val)
5. verh.timestamp := tc

Once again, the additional changes are denoted in underline. The first step is to
update the value of the head version with the current value of the object’s field. This
update is safe because until this point transactions that retrieve the head version read
the value directly from the object’s field, as described in the previous section. Then
we create a new version with an infinite timestamp and the new value to be written
in the object’s field, and the pointer to the current head version. In the third step,
we make the new version vern the current head version and it becomes visible to
all concurrent transactions. This version will never be accessed by any concurrent
transaction because of the infinite timestamp. Then we can safely update the object’s
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Fig. 16 Performance comparison between original JVSTM and adapted JVSTM.

field value in the fourth step because no concurrent transaction gets the head version
(the head version still has an infinite timestamp up to this point). In the last step
we change the timestamp of the current head version to its proper value making
accessible to concurrent transactions.

The adaptation of the commit operation introduces three new shared memory ac-
cesses, where two of them are write accesses. Thus, this adaptation is expected to
slightly lower the throughput of the multi-version algorithm. We applied this adapta-
tion to the multi-version algorithms that we described previously, and compared the
performance of both versions of each. In the next section we report the experience
of adapting each algorithm.

6.2.1 JVSTM

The JVSTM algorithms preform the commit operation in mutual exclusion with
other concurrent committing transactions. The adaptation of these algorithms to sup-
port a weak-atomicity model is straightforward. The changes that we presented in
the previous section to modify the read and commit operation can be applied di-
rectly to both implementations. Moreover, the Deuce framework already provides
the memory value when a read access is issued (see Figure 4 in page 6), which
simplifies the first step of the read procedure described in Section 6.1.

Figure 16 depicts the performance comparison between the original and adapted
versions of JVSTM. The comparison is done by showing the relative performance of
the adapted version over the original version. The adapted version of JVSTM shows
a performance very similar to the original versions. Sometimes, the adapted version
can even outperform the original version. This is due to the specificity of the Deuce
framework that already provides the memory value for each read access callback.
In the case of the adapted version, most of the times that value is used, opposed to
the original version where the value is always obtained by dereferencing a version
container.
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Fig. 17 Performance comparison between original SMV and adapted SMV.

6.2.2 SMV

The SMV algorithm defines a different memory layout for the version list. In SMV,
the value of the latest version is stored outside of the version list, which reassembles
our adaptation proposal of storing the latest value directly on the memory location.
To apply the support for a weak-atomicity model, we simply moved the value of
the latest version from an auxiliary variable (used in SMV original implementation)
directly to the associated memory location.

This modification has consequences in the commit operation, which must also
be adapted to atomically update the latest version information and the memory lo-
cation value. The first step in the SMV commit operation is to move the latest value
and timestamp to a newly created version container and add it to the head of the
version list. We change this step by using the latest value stored in memory. In the
last step of the SMV commit operation the variable containing the latest value is
updated with the new tentative value. We changed this step by writing the tentative
value directly to memory. The changes made to the SMV algorithm are minimal
and thus we expect that the performance differences between the two versions to be
also minimal. The results depicted in Figure 17 confirm our expectations, showing
minimal differences between the original version and adapted version.

6.2.3 JVSTM-LockFree

The JVSTM-LockFree implements a lock free commit operation. The assumption to
apply the adaptation for the commit procedure, presented in Section 6.2, is that the
commit should be done in mutual exclusion. This assumption is true for the previous
algorithms but not for the JVSTM-LockFree. In this algorithm, the commit of a
single version can be done by more than one thread at the same time by resorting to
atomic primitives such as compare-and-swap.

The adaptation of the read procedure is straightforward as in the JVSTM al-
gorithm. The adaptation of the commit procedure is rather complex and requires
additional atomic operations to ensure the correctness of the algorithm. Figure 18
depicts a simplified version of the original commit. The method commit preforms
a compare-and-swap to install the new version. Other threads may be executing the
same method for the same vbox, but only one of them will install the new version.
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public void commit(Object newValue, int txNumber) {
Version currHead = this.head;
Version existingVersion = currHead.getVersion(txNumber);
if (existingBody.version < txNumber) {

Version newVer = new Version(newValue, txNumber, currHead);
compare_and_swap(this.head, currHead, newVer);

}
}

Fig. 18 JVSTM-LockFree original commit operation.

Further details on how the JVSTM-LockFree commit algorithm works can be found
in [7].

Figure 19 depicts the adapted version of the JVSTM-LockFree commit algorithm
to support a weak-atomicity model. The new algorithm has roughly three times more
operations than the original one. We explain this adapted version by describing how
each step of the adaptation described in Section 6.2 is related to the code listed in
the Figure 19. The first step verh.value := read() is preformed by lines 5 and 7-9.
The update of the head version’s value (line 8) is done inside a conditional statement
because other concurrent thread may had already preformed the same update. The
creation of a new version in the second step vern := create version(new val, t∞,verh)
is preformed in line 10. The publication of the new version in the third step
verh := vern is preformed in lines 11-19. In this step we preform a compare-and-
swap, as in the original algorithm, to publicize the new version, but if other con-
current thread already publicize the new version, then we need to get a pointer to
the new version. This is done in lines 14 to 18. Using this pointer we can preform
the final fourth and fifth steps write(new val) and verh.timestamp := tc, which are
done in lines 20-23. The writing of the new value directly to memory (line 21) is
done using a compare-and-swap atomic operation to prevent lost updates. The up-
date of the version number (line 23) is safe because we always have a pointer to the
correct version container. These last two steps are also preformed in lines 28-31, in
the case when a thread attempting to commit finds out, in line 6, that other concur-
rent thread already publicized the new version, and therefore it helps finishing the
commit. Another source of overhead is caused by a limitation of the compare-and-
swap operation, which can only be preformed for reference and integer types. Thus,
for other primitive type such as float, or byte, the compare-and-swap operations
preformed in lines 21 and 29, must be substituted by some mutual exclusion block.
Fortunately the use of compare-and-swap non-supported types in the benchmarks is
rare.

Figure 20 presents the results of comparing the adapted version over the original
version of JVSTM-LockFree. In the case of the LinkedList micro-benchmark, the
transactions generate small write-sets (the add and remove operations only write to
a single object), and typically the commit rate is low due to the long duration of
the lookup of a node, which is linear with the size of the list. As so, the adapted
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1 public void commit(Object newValue, int txNumber) {
2 Version currHead = this.head;
3 Version existingVersion = currHead.getVersion(txNumber);
4

5 Object latest = read(memory_location);
6 if (existingVersion == currHead
7 && existingVersion.version < txNumber) {
8 if (this.head == existingVersion) {
9 currHead.value = latest;

10 }
11 Version newVer = new Version(newValue, Integer.MAX_VALUE,
12 currHead);
13 if (compare_and_swap(this.head, currHead, newVer)) {
14 existingVersion = newVer
15 } else {
16 existingVersion = this.head;
17 Version tmpVer = existingVersion.getVersion(txNumber);
18 if (tmpVer.version == txNumber) {
19 existingVersion = tmpVer;
20 }
21 }
22 if (existingVersion.version == Integer.MAX_VALUE) {
23 compare_and_swap(memory_location, latest, newValue);
24 }
25 existingVersion.version = txNumber;
26 }
27 else {
28 if (existingVersion.version < txNumber) {
29 existingVersion = currHead;
30 if (existingVersion.version == Integer.MAX_VALUE)
31 compare_and_swap(memory_location, latest, newValue);
32 existingVersion.version = txNumber;
33 }
34 }
35 }

Fig. 19 JVSTM-LockFree adapted commit operation.
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Fig. 20 Performance comparison between original JVSTM-LockFree and adapted JVSTM-
LockFree.
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version outperforms the original version, due to the read accesses that use value di-
rectly from memory and are immediately provided by the Deuce framework. In the
case of the SkipList and RBTree micro-benchmarks, the adapted commit overhead
is more notorious when the contention increases with the number of threads. These
benchmarks generate a high rate of commit operations, although still with small
write-sets per transaction. In the STMBench7 benchmark, known to generate very
large read- and write-sets, the adapted version can only achieve half the performance
of the original version. The results confirm our performance expectations, and also
confirm that the overhead introduced by adapting a multi-version algorithm to sup-
port a weak-atomicity model is almost nil for algorithms that preform the commit
of versions in mutual exclusion, and has a considerable cost otherwise.

7 Performance Comparison of STM Algorithms

In this chapter we presented an extension of the Deuce framework to support the
efficient implementation of STM algorithms that require a one-to-one relation be-
tween memory locations and transactional metadata, being multi-version algorithms
an instance of this class of algorithms. We evaluated the extension considering the
implications in both performance and memory consumption. The results were very
satisfactory and thus we implemented two state-of-the-art multi-version algorithms
(SMV and JVSTM-LockFree).

Given this support for very different classes of STM algorithms, we may now
aim at a fair comparison of their performance, i.e., compare the algorithms im-
plemented in the same framework and with the same benchmarks. In this section
we show the direct comparison between several out-place and in-place STM al-
gorithms. The list of STM algorithms chosen for comparison are TL2, JVSTM,
JVSTM-LockFree, and SMV. In the case of TL2 we use two versions: the out-
place version (TL2-Outplace) which is distributed with Deuce, and an in-place ver-
sion (TL2-Inplace) which we implemented in our extension. The in-place version
moves the locks from the external lock table to the transactional metadata, and com-
pletely avoids the false-sharing on locks. In the case of multi-version algorithms
our measurements were conducted under two settings. The first setup consisted on
executing the (unmodified) benchmarks combined with the weak-atomicity-adapted
multi-version algorithms. In the second setup, we executed a modified version of
the micro-benchmarks and STMBench7 combined with the original multi-version
algorithms that do not support weak-atomicity. In the comparison results, we will
only use the best of the results of the original and the adapted versions of each
multi-version algorithm. As in the extension evaluation, the benchmarks were exe-
cuted on a computer with four AMD Opteron 6272 16-Core processors @2.1GHz
with 8×2MB of L2 cache, 16 MB of L3 cache, and 64GB of RAM, running Debian
Linux 3.2.41 x86 64, and Java 1.7.0 21.

Figure 21 shows the results of the execution of the micro-benchmarks Linked
List, Red-Black Tree, and Skip List. The Linked List benchmark is character-



Framework Support for the Efficient Implementation of Multi-Version Algorithms 25

1 2 4 8 16 32 64
0

4K

8K

12K

16K

20K

LinkedList w10%

1 2 4 8 16 32 64
0

1M
2M
3M
4M
5M
6M

RBTree w10%

1 2 4 8 16 32 64
0

0.9M

1.8M

2.7M

3.6M

4.5M

SkipList w10%

1 2 4 8 16 32 64
0

0.9K

1.8K

2.7K

3.6K

4.5K

LinkedList w50%

1 2 4 8 16 32 64
0

0.6M

1.2M

1.8M

2.4M

3M

Threads

RBTree w50%

1 2 4 8 16 32 64
0

0.3M

0.6M

0.9M

1.2M

1.5M

SkipList w50%

tl2-outplace tl2-inplace jvstm-inplace smv-inplace jvstm-lf-inplace

T
hr

ou
gh

pu
t(

tx
n/

se
c)

Fig. 21 Micro-benchmarks comparison.

ized by transactions with large read-sets and by a high abort rate. In this bench-
mark the algorithms do not scale well with the increase in the number of threads.
The single-version algorithms TL2-Outplace and TL2-Inplace exhibit better perfor-
mance. These algorithms have very efficient implementations and the read accesses
are very lightweight. Additionally, in the case of read-only transactions, each read
access is checked for consistency but the transaction can safely commit without
further verification. To support multiple versions per memory location, the multi-
version algorithms add a high number of extra computations when reading a value
from a memory location, with the benefit of avoiding spurious transaction aborts and
hence avoid the re-execution of transactions. Although, in the micro-benchmarks
this possible benefit is not observed. In the Red-Black Tree and Skip List bench-
marks, transactions are very small and fast, and have a low conflict probability,
except in the Red-Black Tree when tree rotations are preformed. These benchmarks
hide even more the advantages of multi-version algorithms when compared with
single-version algorithms. The poor performance of SMV when compared to the
other multi-version algorithms is due to the strain imposed on the Java garbage
collector: the micro-benchmarks generate millions of transactions per second, gen-
erating a lot of activity of the Java garbage collector.

The comparison results for the STAMP benchmarking suite are depicted in Fig-
ure 22. In these results the y-axis represents execution time and therefore lower
values are better. The benchmarks in this suite exhibit very different workloads,
some of them even generate such high contention that hinders the scaling for all of
the tested algorithms. The benchmarks KMeans, Genome, and Intruder, exposes the
corner cases of the adapted JVSTM-LockFree algorithm, hence its performance is
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Fig. 22 STAMP benchmarks comparison.
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Fig. 23 STMBench7 comparison.

strongly penalized. We believe that the original JVSTM-LockFree algorithm would
perform much better than the adapted version in these particular benchmarks. The
TL2 based algorithms overall exhibit a very good performance. In the Labyrinth
benchmark the multi-version algorithm JVSTM-LockFree presents a very good re-
sult. This algorithm has a low abort rate when compared with the other algorithms,
which allows it to not waist so much work in transaction restarts. In the SSCA2
benchmark all the in-place algorithms suffer from the high overhead of transactional
metadata management shown in Figure 10 of Section 4.1.

In Figure 23 we show the results for the STMBench7 benchmarks. This bench-
mark generate CPU-intensive transactions with large read-sets and write-sets. This
benchmarks allows to exploit the benefits of multi-version algorithms which can
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avoid spurious aborts and thus achieve better performance than single-version algo-
rithms. The JVSTM-Lockfree algorithm achieves a good performance, higher than
the remaining algorithms, confirming the advantages of using an MV-permissive
algorithm in this kind of workload. In this benchmark, there is a significant per-
formance difference between the out-place and in-place versions of TL2 algorithm.
The out-place version does not even scale with the number of threads. The reason of
this behavior may be due to cache locality issues. The in-place version is much more
cache-friendly than the out-place version. The in-place version has a high probabil-
ity of having the metadata in the same cache line as the memory location. This does
not happen in the out-place version, and in the special case of STMBench7, where
transactions perform a large number of reads and writes, the out-place version must
read many entries from the external lock table, which may not fit in the cache and
requiring much more page transfers from main memory to the cache. In the write-
dominated workload of STMBench7, all algorithms have similar performance with
the exception of TL2-Outplace. Although almost all transactions are read-write, the
multi-version algorithms can still compete with the single-version TL2-Inplace al-
gorithm, and JVSTM-LockFree almost always exhibit the best performance.

8 Concluding Remarks

In this chapter we presented an extension of Deuce that provides a performance-
wise support for implementing STM multi-version algorithms. This is achieved by
a transformation process of the program Java bytecode that adds new metadata ob-
jects for each class field, and that includes a customized solution for N-dimensional
arrays that is fully backwards compatible with primitive type arrays.

We evaluated the proposed system by measuring the overhead introduced by the
new in-place scheme with respect to the original Deuce implementation. Although
we can observe a light slowdown caused by the in-place metadata management, the
slowdown is quickly absorbed by the performance gains achieved when using the
in-place scheme to store the STM algorithms metadata.

The new efficient implementation support for STM multi-version algorithms al-
lowed to implement two state-of-the-art multi-version algorithms SMV and JVSTM-
LockFree. Moreover, we present the first performance comparison between the two.

Finally, we proposed an algorithmic adaptation for multi-version algorithms to
support the weak-atomicity model as provided in the Deuce framework. We re-
ported the experience of adapting several state-of-the-art multi-version algorithms
and evaluate their performance. In general, multi-version algorithms can be adapted
to support the weak-atomicity model without a performance penalty, except the case
of the algorithms that implement a lock-free commit operation.
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