
Supporting Multiple Data Replication Models in Distributed
Transactional Memory

João A. Silva, Tiago M. Vale, Ricardo J. Dias, Hervé Paulino, and João M. Lourenço
NOVA LINCS/CITI – Departamento de Informática

Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
{jaa.silva,t.vale}@campus.fct.unl.pt {rdias,herve.paulino,joao.lourenco}@fct.unl.pt

ABSTRACT
Distributed transactional memory (DTM) presents itself as
a highly expressive and programmer friendly model for con-
currency control in distributed programming. Current DTM
systems make use of both data distribution and replication
as a way of providing scalability and fault tolerance, but
both techniques have advantages and drawbacks. As such,
each one is suitable for different target applications, and
deployment environments. In this paper we address the
support of different data replication models in DTM. To
that end we propose ReDstm, a modular and non-intrusive
framework for DTM, that supports multiple data replication
models in a general purpose programming language (Java).
We show its application in the implementation of distributed
software transactional memories with different replication
models, and evaluate the framework via a set of well-known
benchmarks, analysing the impact of the different replica-
tion models on memory usage and transaction throughput.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distri-
buted Systems; D.1.3 [Programming Techniques]: Con-
current Programming—Distributed Programming

General Terms
Design, Experimentation, Performance

Keywords
Data Replication; Distributed Transactional Memory; Con-
currency Control; Distributed Systems

1. INTRODUCTION
Cloud computing has democratized the access to distri-

buted computing infrastructures, popularizing the use of
distributed systems to meet the ever-growing scalability, avail-
ability, and low latency requirements of modern Internet ser-
vices. Many of these distributed software systems require
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ICDCN ’15, January 04 - 07 2015, Goa, India
Copyright 2015 ACM 978-1-4503-2928-6/15/01 ...$15.00.
http://dx.doi.org/10.1145/2684464.2684481.

the sharing of data among their (distributed) processes, a
fact that increases the systems’ overall design complexity
and hinders their performance. In this context, distributed
transactional memory (DTM) presents itself as a highly ex-
pressive and programmer friendly alternative for concur-
rency control in such software systems. It extends the scope
of the software transactional memory (STM) model [18] to
distributed environments, combining it with data replica-
tion and distribution. The result is a high-level concurrency
control mechanism that offers transactional semantics over
a distributed shared memory addressing space.

Despite being initially studied in the context of chip-level
multiprocessing, the benefits of STM over traditional con-
currency control may also be harvested in distributed envi-
ronments. To that end, recent research has led to the devel-
opment of multiple DTM frameworks [4, 11, 15, 20]. The
majority of these have grown from existing STM frame-
works, by adding communication layers, schedulers, mecha-
nisms for replication and contention management, and ob-
ject lookup. Moreover, these frameworks offer intrusive pro-
gramming models, demanding the rewriting of the appli-
cation code in order to comply to their specificities. This
makes the decision of using a specific framework a rather
serious commitment as new applications become tied to the
provided APIs, and later porting of existing applications to
another framework is a tedious and error prone job.

Naturally, each data replication strategy has its advan-
tages and drawbacks, hence being suitable for different tar-
get applications, and deployment environments. This raises
another issue: the bulk of DTM frameworks are tailored for
a concrete data replication strategy, not allowing the unbi-
ased evaluation of different strategies under the same cir-
cumstances. In the control-flow model [15,20] data is immo-
bile and transactions access data through remote procedure
calls (RPCs). Contrary, in the data-flow model [15,20] trans-
actions are immobile and data moves through the network
to requesting transactions. In what regards data replication,
the full replication model [4] replicates all data items in all
the system’s nodes. This strategy provides the best possible
tolerance to data loss but limits the system’s total storage
capacity and requires coordination between all the nodes,
which raises scalability issues [17]. Conversely, the partial
replication model replicates each data item in only a subset
of the system’s nodes, i.e., data items are partially repli-
cated. This model provides a reasonable tolerance to data
loss but requires nodes to perform remote read operations
searching for data items that are not locally replicated.

In this paper we present ReDstm, a modular, flexible and

non-intrusive framework for DTM. ReDstm’s modularity
allows for different implementations of the local STM algo-
rithm, of the transaction validation protocol, of the commu-
nication system, among others. It also intrinsically provides
support for multiple data replication models, ranging from
no replication to partial and full replication. Another dis-
tinctive feature of ReDstm is its non-intrusive, annotation-
based, programming model. The choice of a particular repli-
cation strategy for a data structure may have a considerable
impact of the system’s performance, and hence should de-
rive from a careful analysis. Therefore, despite the high-level
nature of the programming model, the task of choosing the
appropriate replication strategy may not be trivial. Hence,
we present guidelines for combining full and partial repli-
cation when faced with the choice of different replication
strategies for a data structure.

Thus, the contributions of this paper are as follows: (i) we
draft a modular Java DTM framework supporting different
data replication models; (ii) we propose a highly expressive
and non-intrusive programming model for defining the cor-
responding data replication strategy, along with guidelines
for when combining full and partial replication in ReDstm;
and (iii) we evaluate the impact of applying different re-
plication strategies to well-know transactional benchmarks
running on top of ReDstm.

The remainder of this paper is organized as follows: §2
presents ReDstm; §3 elaborates on how to implement distri-
buted STMs, with different data replication models, on top
of ReDstm; §4 proposes guidelines for when combining full
and partial replication in ReDstm; §5 presents and analy-
ses experimental results; §6 discusses related work; and §7
concludes this paper.

2. A MODULAR FRAMEWORK FOR DTM
ReDstm builds upon the TribuSTM framework [5] to of-

fer a generic framework for DTM. It extends TribuSTM with
support for (i) distributed objects, including data placement
and data replication strategies; and (ii) the distributed com-
mit of transactions accessing these objects.

2.1 TribuSTM & Deuce
All STM algorithms associate some information to each

managed memory location (metadata), whose nature varies
depending on the algorithm itself, e.g., locks, timestamps,
version lists. Such metadata can be stored either in an ex-
ternal table (out-place strategy) or adjacent to each memory
location (in-place strategy).

The out-place strategy is implemented using a table-like
data structure that efficiently maps memory locations to
metadata. Storing metadata in such a pre-allocated table
avoids the overhead of dynamic memory allocation, but in-
curs in the overhead of evaluating the mapping function.
Additionally, the bounded size of the external table induces
a false sharing situation where multiple memory locations
share the same table entry and hence the same metadata,
resulting in a many-to-one relation between memory loca-
tions and metadata. This approach suits STM algorithms
with weak ties between the metadata and the associated
memory locations, e.g., the TL2 algorithm [6] whose meta-
data are locks. However, it falls short when these ties grow
stronger, e.g., the version list associated with each memory
location in JVSTM [3]. A direct dependency relationship
between the metadata and the associated memory locations

Application

Group Communication System

Distribution Manager
TribuSTM

API

Object
Serializer

Distribution
Metadata

Distributed
Transactions

Group
Partitioner

Data
Partitioner

Object
Cache

STM Algorithm

Figure 1: ReDstm’s architecture overview.

requires them to be mapped by a one-to-one relation.
The in-place strategy provides such one-to-one relation,

preventing the occurrence of false sharing situations. This
strategy is usually implemented by using the decorator de-
sign pattern [7], where the functionality of an original class
is wrapped in a decorator class that contains the required
metadata. This allows direct access to the metadata but
is very intrusive to the application’s code, which must be
rewritten to use the decorator classes.

Deuce [10] is a Java STM framework that allows for the
implementation of various STM algorithms, standing out for
its non-intrusion to the application programmer. However,
its applicability is bound to STM algorithms that can use the
out-place strategy. TribuSTM [5] extends the Deuce STM
framework with support for the in-place metadata placement
strategy, without making use of the decorator pattern.

2.2 Supporting Distribution and Replication
Supporting DTM on top of TribuSTM raises some chal-

lenges that drive the organization of this subsection, namely:
(i) how to design a modular DTM framework; (ii) where
to store distributed data and metadata and how to access
them, and; (iii) how to validate and apply transactions in a
distributed context.

2.2.1 Architecture Overview
The architecture of ReDstm comprises several modules,

organized in three layers (see Figure 1). From a bottom-up
perspective, the group communication system (GCS) pro-
vides inter-node communication, the distribution manager
(DM) is responsible for all the distribution-related issues,
and the TribuSTM layer is in charge of the concurrency con-
trol at each node. Being modular, ReDstm allows different
implementations of all the modules that will be described.

Directing our attention to the first two layers, the pur-
pose of the DM is twofold: implement a distributed (shared)
memory space that installs the desired data replication mo-
del (distribution, full or partial replication), and implement
protocols to support the execution of distributed transac-
tions. To that end, it is comprised by the following modules:

Object serializer (ObS) Implements the serialization logic
for the remote communication of objects;

Distribution metadata (DMd) Each data replication mo-
del requires its own distribution metadata, where it
stores information on the data’s whereabouts. To-
gether with the ObS, they establish the logic for ob-
jects’ distribution.

Distributed transactions (DT) Regulates the implemen-
tation of distributed transaction validation protocols,
embedding all the interaction with TribuSTM.

Group partitioner (GP) Divides the system’s nodes into
well defined groups. This module is particularly rele-
vant in the context of partial replication. A group de-
fines the system’s unit of replication, i.e., given a group
of nodes G and a distributed object O, if ∃ N ∈ G : O
is replicated in N ⇒ ∀N ′ ∈ G, O is replicated in N ′.

Data partitioner (DP) It is also a module tailored for
partial replication environments. It establishes a map-
ping function between the objects that comprise the
distributed shared memory space and the groups on
which they must be replicated on.

Object cache (ObC) Provides a generic caching service
for distributed objects. It defines a mapping between
distributed metadata and generic objects (see §2.2.5).

The GCS layer encapsulates the communication primi-
tives required to implement the DM (e.g., atomic multicast,
reliable unicast/multicast) providing an uniform interface
regardless of the concrete communication system being used.

2.2.2 Metadata & Distributed and Shared Memory
ReDstm supports object distribution by combining meta-

data with the Java serialization support. As highlighted in
§2.1, STM algorithms associate metadata to managed mem-
ory locations. Similarly, the implementation of different
data replication models may also grow from the metadata
associated to each managed memory location. For instance,
in a full replication scenario one may associate a unique
identifier to each memory location, allowing the system to
recognize that location in the local replica. In turn, in a
purely distributed context, the metadata may contain the
information necessary for the execution of a RPC targeted
to the owner of the corresponding memory location.

Note that we are referring to two different kinds of meta-
data. STM algorithms associate metadata to each field of an
object, in order to manage concurrency. Plus, the support
for distributed objects builds from object-level metadata to
implement the desired data replication strategy. These are
clearly two distinct kinds of metadata, thus, to disambiguate
whenever necessary, we shall refer to them as transactional
and distribution metadata, respectively.
Metadata. Regardless of the data replication strategy in
place, the framework requires the association of distribu-
tion metadata to objects. As such, in order to be ReDstm-
compliant, an object must implement the DistributedObject

interface, with methods getMetadata and setMetadata. This
interface provides the means for the framework to access the
object’s metadata (a subclass of DistMetadata).
Serialization. A ReDstm distributed object is serialized in
function of its distribution metadata, so that different imple-
mentations of the DM may serialize objects differently, ac-
cording to their replication model. For this purpose, objects
have to implement methods writeReplace and readResolve

(from the java.io.Serializable interface).
In order for ReDstm to be both flexible and non-intrusive,

instead of requiring the application programmer to explicitly
implement the DistributedObject interface, the framework
features an instrumentation agent that automatically injects
such code into the application.

Table 1: Operations provided by the reflexive API.

Operation Description

onStart(T) Start of transaction T .
onRead(T , m) Read on transactional metadata m by

transaction T .
onWrite(T , m, v) Write of value v on transactional metadata

m by transaction T .
onCommit(T) Commit request issued from transaction T .
onAbort(T) Abort of transaction T .

Table 2: Operations provided by the actuator API.

Operation Description

createState(T) : S Returns a representation of transaction’s
T state.

recreateTx(S) : T Returns a transaction T recreated from
state S.

validate(T) : bool Validates transaction T .
applyWS(T) Applies all updates by transaction T on

the local STM.

The instrumentation is automatically applied to every load-
ed class, transforming each class’ implementation into one
that is ReDstm-compliant (via Java bytecode rewriting).
Let CI = {f1, . . . , fn,m1, . . . ,mk} denote a class C that im-
plements the set of interfaces I and where fi and mj , with
i ≤ n and j ≤ k, represent the fields and methods of the
class, respectively. The transformations applied upon C aim
at turning it into a subtype of the DistributedObject inter-
face, to insert a new field fdm of type DistMetadata, and to
add methods writeReplace and readResolve. Namely:

CI∪{DistributedObject} =

fdm,

f1, . . . , fn, m1, . . . ,mk,
getMetadata, setMetadata,
writeReplace, readResolve

2.2.3 Distributed Transactions

To allow the flexible integration of various realizations of
the DM layer with TribuSTM, the DM and TribuSTM in-
teract through two distinct and well defined interfaces. Fur-
thermore, in order to support distributed transactions, the
DM is aware of some of the events triggered by the applica-
tion on TribuSTM, such as transactional accesses and com-
mit requests, and may also query or modify the state of the
local STM, e.g., to apply updates made by a remote transac-
tion.

With the first interface, the reflexive API (see Table 1),
the DM is able to react to certain events from TribuSTM.
It registers callbacks for transactional-related events such as
transaction start (onStart), transactional accesses (onRead,
onWrite), and commit and abort (onCommit, onAbort).

The second interface, the actuator API (see Table 2), en-
ables the DM to inspect the state of the local STM and
act upon it. It can acquire an opaque representation of a
transaction’s state (createState) which can then be used
to recreate the transaction (recreateTx). It can also ex-
plicitly trigger the validation (validate) and apply the up-
dates (applyWs) of a transaction.

The reaction of the DM to an event may trigger syn-
chronous request-reply communication with remote nodes.
Accordingly, the execution of the DM blocks until one of
the callback methods (startProcessed, readProcessed,
writeProcessed, commitProcessed, and abortProcess-
ed) notifies the reception of the corresponding response.

Table 3: Operations provided by the communication API.

Operation Description

ABcast(m) Atomically broadcasts message m.
RBcast(m) Reliably broadcasts message m.
AMcast(m, g) Atomically multicasts message m to group g.
RUcast(m, dst) Reliably unicasts message m to node dst.
RMcast(m, g) Reliably multicasts message m to group g.
self(s) : bool Returns true if s is the local node, false oth-

erwise.

2.2.4 Communication System
Different implementations of the DM can have specific re-

quirements for the GCS. For instance, a certification scheme
running on a fully replicated environment requires a GCS
with support for an atomic broadcast primitive. However,
in a purely distributed context we can devise scenarios where
only point-to-point communication is necessary.

Table 3 shows the communication primitives offered by
the GCS to the DM. To be notified of incoming messages,
the DM subscribes to the deliveries using the observer pat-
tern [7] (the on*Deliver(m, src) operations notify of the
delivery of message m from sender src).

2.2.5 Cache Support
With the exception of full replication, read operations over

objects in the distributed shared memory space may imply
remote communication. This raises performance problems
that may even cancel out other benefits. To reduce time
variance in the access to distributed objects, ReDstm pro-
vides support for a generic caching service. This service
maps keys (distribution metadata) to generic objects and
offers a set of generic operations (the basic map operations,
e.g., contains, get, insert, remove) over the data con-
tainer. This approach promotes flexibility, allowing the de-
velopment of cache mechanisms tailored for specific repli-
cation protocols, given that only these specific implementa-
tions may efficiently answer the questions: what to cache
and for how long should the cached objects be valid.

2.3 Programming Model
Pursuing our non-intrusiveness goal, the programming mo-

del exported by ReDstm is annotation-based, so no code
rewriting is required.
Transactions. As legacy from TribuSTM, the programmer
only has to add a @Atomic annotation to the methods that
must execute as transactions. Then, in a transparent way to
the programmer, ReDstm rewrites the application’s byte-
code, intercepting and conferring control to the framework
at the beginning and end of transactions, and at memory
accesses performed in a transactional context.
Partial Data Replication. In a partial replication setting,
it is useful to be able to express what is to be fully and
partially replicated. So, we grant to the programmer the
power to express what data should be partially replicated.

In the Java virtual machine (JVM), the heap can be seen
as a directed graph, where each node represents an object
that, in turn, may have references to other objects. Fig-
ure 2 depicts an example of such graph, on which edges
represent references, leaf nodes represent values of primitive
data types, and the remainder nodes represent (composite)
objects. Nodes A and H can be seen has two references
pointing to the same memory location, i.e., aliasing.

In our approach the heap graph is replicated in all nodes,

i.e., fully replicated, by default. Exceptions must be explic-
itly conveyed by the means of a @Partial annotation to be
applied to class’ fields. The annotation expresses that ev-
erything downstream of such field, in the graph, is to be
partially replicated. Listings 1 and 2 illustrate the applica-
tion of the annotation to the simple case of a linked list.

3. ON THE IMPLEMENTATION OF DISTRI-
BUTED STMS IN REDSTM

In this section we reason on how to use the mechanisms
provided by ReDstm to implement distributed STMs with
different data replication models.

3.1 A Distributed STM
Consider that distribution metadata is comprised by a

unique identifier id, and the address of the node which owns
the object associated with the metadata, owner. Let id(O)
and owner(O) denote the id and owner of a distributed
object O, respectively. If the distributed object O is created
at node N , owner(O) is set to N . Let host(T) denote the
node where transaction T executes, and id(T) the unique
identifier of T . Let proxyN (id) denote the proxy transaction
of T on node N such that id(T) = id, and consider, for
simplicity, that every node contains a proxy transaction for
every transaction currently executing in the system.

When a transaction T issues a read access on transactional
metadata m (onRead at Table 1), if owner(m) = host(T)
the read access is a regular local access. Otherwise, host(T)
sends a message [id(T), id(m)], henceforth rd, to owner(m),
and waits response. When owner(m) receives rd, it re-
solves id(m) to m, issues a local read on m on behalf of
proxyowner(m)(id(T)), and responds to host(T) with mes-
sage [id(T), v, a] where v is the value read and a is true if
there has been a conflict. When host(T) delivers the re-
sponse message, the execution of T is resumed. Write ac-
cesses behave similarly.

When T requests to commit (onCommit at Table 1),
host(T) sends a message to all nodes to trigger the valida-
tion of proxyN (id(T)) on each node (validate at Table 2).
All nodes respond with the result of the validation. Once
host(T) has collected all validation results, if none of the
validations failed, a message is sent to all nodes instructing
the commit of each proxyN (id(T)). If at least one valida-
tion was unsuccessful, all nodes are instructed to discard
their proxies and T aborts.

This is a simple approach, thus there are various opti-
mizations to consider, such as creating transaction proxies
on demand only on strictly necessary nodes and caching to
reduce network communication.

3.2 A Fully Replicated STM
In a fully replicated environment, in which all replicas

maintain a local copy of all the objects in the system, each
object must be identifiable in the global context of the sys-
tem. In a centralized system, an object can be uniquely
identified by its memory address, but this does not apply
in a distributed context, where an object’s metadata must
contain a globally unique identifier.

Consider that a fully replicated object O can be in two
possible states: private or published. In the first case, the
serialization of a private object O consists in generating its
respective oid (metadata) and effectively serializing O. In

class Node<T> {
Node next;
int id;
@Partial
T value;

...
}

Listing 1: Class Node.

class List<T> {
Node<T> head;

public List() {
this.head = ...

}
...

}

Listing 2: Class List.

A

B

DC E

F G

H

Figure 2: Heap graph.

Algorithm 1 Transactional memory (TM) component.

1: committed← false . Commit result

2: procedure begin(T)
3: . . .
4: onStart(T)

5: function commit(T)
6: onCommit(T)
7: wait until T is processed
8: return committed

9: procedure commitProcessed(T , r)
10: committed← r
11: T was processed

Algorithm 2 Non-voting certification protocol.

1: localTxs← ∅ . Map of transaction ids to transactions

2: procedure onCommit(T)
3: localTxs← localTxs[T .id 7→ T]
4: S ← createState(T)
5: ABcast(S)

6: procedure onABDeliver(S, src)
7: if self(src) then
8: T ← localTxs(S.id)
9: localTxs← localTxs \ T
10: else
11: T ← recreateTx(S)
12: valid← validate(T)
13: if valid then
14: applyWS(T)

15: commitProcessed(T , valid)

the second case, it has already been assigned an identifier
oid, hence we just need to assign oid as its representative,
serializing oid instead of O. In this case, the de-serialization
of oid returns the object O′ such that id(O′) = oid, i.e.,
returns the object corresponding to the local replica with
identifier oid. This means that an already published ob-
ject is never sent through the network, only its identifier is,
resulting in a potentially large decrease in the size of the
exchanged messages.

Certification-based protocols [1, 8] are very interesting in
the context of a fully replicated STM because they do not
require synchronization between replicas during transaction
execution (only at commit time). In Algorithms 1 and 2
we can see the pseudo-code of the non-voting certification
protocol implemented using the interfaces provided by ReD-
stm. The protocol works as follows: an application thread
executes a transaction locally, and only when it finishes it
asks for the confirmation of the transaction to the TM com-
ponent (commit in Algorithm 1), which triggers the certifi-
cation protocol (onCommit in Algorithm 2). At this point,
the thread waits for the decision of the certification pro-

tocol (Line 7 in Algorithm 1), which will validate and ei-
ther confirm the transaction or abort it. The atomic broad-
cast performed by the certification protocol is received by
all replicas. The replica that broadcasted the message pro-
cesses the corresponding local transaction, while the other
replicas recreate the transaction using state S received in
the message. All replicas proceed to the validation of the
transaction and subsequent application in case of confirma-
tion. The process concludes with the invocation of commit-
Processed (Algorithm 1), which causes the application’s
thread to proceed its execution.

3.3 A Partially Replicated STM
In the context of full replication, a unique system-wide

identifier is sufficient to unequivocally represent a distri-
buted object. However, when addressing partial replication,
not all objects are replicated in all the system’s nodes, and
thus read operations may require inter-node communication.
Consequently, the system must be able to classify objects as
local or remote, and must hold all the necessary information
to request the given object from another node that replicates
it. To that end, an object’s metadata must complement the
aforementioned unique identifier with the identifiers of the
groups of nodes that replicate the associated object.

Being that objects have to be sent through the network,
they also have to be previously serialized, hence Algorithm 3
presents the pseudo-code for object serialization in partial
replication scenarios. The serialization process is delegated
to the Object serializer (ObS), by methods writeReplace
and readResolve to methods objectReplace and objec-
tResolve, respectively. As in full replication, a partially
replicated object O can be in two possible states: published
or private. The process is also similar to the one described
in §3.2: public objects nominate their identifier to be seri-
alized in their place, while the serialization of private ob-
jects requires the generation of the respective metadata and
the subsequent serialization of O. Additionally, partial re-
plication requires the serialization algorithm to be aware if
it was triggered in the context of a remote read operation
(isReadContext, Line 3 in Algorithm 3). This information
is required because, when in the context of a remote read op-
eration, the requesting node does not hold a local copy of O,
and thus the original object must always be transferred.

The de-serialization process also grows from the fully repli-
cated scenario. The difference lies in the need to check if
the local node should replicate the incoming object O, i.e.,
if it belongs to one of the groups identified in O’s meta-
data. If not, O is a replica of the original object and is
simply returned, otherwise there are still two scenarios to
cover: the local node holds or not a local replica of O. In
the first case, O comprises only the original object’s meta-
data, which must be used to retrieve the local replica. In the

Algorithm 3 Object Serializer component.

1: memory ← ∅ . Local memory

2: function objectReplace(O)
3: if isReadContext(O) then
4: return O
5: oid← getMetadata(O)
6: if ∃oid then
7: return oid
8: else . Object O is not published
9: oid← generate fresh metadata
10: setMetadata(O, oid)
11: group← getGroup(oid)
12: if isLocal(group) then
13: memory ← memory[oid 7→ O]

14: return O

15: function objectResolve(O)
16: oid← getMetadata(O)
17: group← getGroup(oid)
18: if isLocal(group) then
19: obj ← memory(oid)
20: if ∃obj then
21: return obj
22: else
23: memory ← memory[oid 7→ O]
24: return O
25: else
26: return O

second case, O is a replica of the original object and must
be stored in the local memory before being returned.

Unlike with full replication, in partial replication is not
easy to support transaction confirmation using certification-
based protocols, because nodes do not hold enough infor-
mation to validate all transactions by themselves. The so-
lution is to use a voting algorithm, so that all nodes may
reach the same decision about which transactions to com-
mit and abort. In fact, all the proposed partial replica-
tion protocols are based in the two phase commit protocol
(2PC) [13,14,16,17].

Some of the distribution manager (DM) modules are spe-
cific to partial replication, namely the group partitioner (GP)
and the data partitioner (DP). In a partially replicated sce-
nario, nodes are partitioned into groups which in turn repli-
cate a subset of the system’s data. This division is carried
out by the concrete implementations of the GP. With knowl-
edge of the existing nodes in the system and of the desired
objects’ replication factor, the GP returns a partitioning ac-
cording to the implemented strategy. Some strategies can
be as simple as dividing nodes in a round-robin fashion, or
as complex as trying to minimize the latency between the
nodes in a group. The decision of in which groups an ob-
ject is replicated is managed by the DP. Implementations
can range from randomly distributing objects by groups to
more complex strategies, trying to achieve load balancing or
taking into account previous access patterns.

3.4 Implementation Considerations
Using ReDstm, we implemented a fully and a partially

replicated STMs. In order to prove the framework’s flexibil-
ity and modularity we developed a few different implemen-
tations of its components.

For the fully replicated STM we implemented two STM
algorithms, namely TL2 [6] and MVSTM [5]. We also imple-
mented two different protocols for the DT module, namely
non-voting certification [1] and voting certification [8].

For the partially replicated STM we implemented a STM

algorithm as described in [13] and for the DT we imple-
mented the SCORe protocol [13]. Still in the context of
partially replicated STM and just for the sake of simplicity,
in the evaluation of our framework in §5 we adopted a simple
scheme where each data item is replicated by a single group
and groups are comprised by disjoint sets of nodes.

4. COMBINING FULL AND PARTIAL RE-
PLICATION IN REDSTM

Supporting partial replication in a DTM framework for a
general purpose programming language (GPPL) may have
as inspiration the previous application of partial replication
to databases, but programming languages are much more ex-
pressive than database query languages. As such, addressing
partial replication in the context of GPPLs raises some chal-
lenges, namely (1) what data should be partially replicated;
(2) how to express the replication strategy in a GPPL; and
(3) how to partially replicate object graphs.

Challenge (2) was addressed by the programming model
in §2.3, and challenge (3) was addressed in §2.2.2 using spe-
cific distribution metadata. This section will thus focus on
challenge (1) by reasoning on how to balance full and partial
replication in the context of DTM for a GPPL.

Fully replicated databases replicate every table and their
contents in every node in the system. But, as we look at
partially replicated databases, these still replicate every ta-
ble in every node, while is their content that is partially
replicated. In sum, partial replication is, to some extent,
combined with full replication: data structuring information
if fully replicated while hard data is partially replicated.

We defend that this premise can be used when applying
partial replication to DTM in order to reduce the communi-
cation overhead of remote read operations. Figure 3 depicts
a practical example of a partially replicated linked list, using
three possible options. Dashed rectangles represent differ-
ent groups, i.e., the data inside a rectangle is partially repli-
cated, and circles represent the data stored in each list node.
Everything outside the dashed rectangles is fully replicated.

In the case of Figure 3a, the entire nodes are partially
replicated. By choosing this option, when searching the list
for a specific node, the nodes’ traversal would require a pos-
sibly remote read operation for each traversed node.

Contrary, by adopting the option depicted in Figure 3b,
i.e., partially replicating just the hard data stored in each
node, the amount of remote read operations required for
traversing the list would be limited by the data we really
want to inspect.

Another interesting option is to partially replicate the
hard data stored in each node and take the keys associated
with the data from the hard data to the nodes themselves, as
in Figure 3c. This option is notably interesting when used in
indexed data structure (e.g., dictionaries): a search in such
a data structure traverses it looking for a specific key and
only then inspects the hard data associated with that key.
Hence, by adopting this approach, we can greatly limit the
amount of remote read operations.

4.1 Guidelines
Looking at the options depicted in Figure 3, combining full

and partial replication can bring both advantages and dis-
advantages. By partially replicating data structures, trans-
actions that modify them will only require confirmation by a

G1 G2 G3

head node1 node2 node3 . . .

id1
. . .

id2
. . .

id3
. . .

(a) Partially replicated nodes.

G1 G2 G3

head node1 node2 node3 . . .

id1
. . .

id2
. . .

id3
. . .

(b) Partially replicated data (with ids).

G1 G2 G3

head
node1
id1

node2
id2

node3
id3

. . .

.

(c) Partially replicated data (w/o ids).

Figure 3: Different partial replication options.

subset of the system’s nodes, but will most likely entail mul-
tiple remote read operations when traversing the structures.
In turn, when fully replicating the data structures, all trans-
actions that modify them will require confirmation by all the
system’s nodes, but the task of traversing the structures can
always be performed locally. Taking into account all these
trade-offs, we answer to challenge (1) by fully replicating the
(data) structures and by partially replicating only the hard
data they store. Hence, we trade performance in structure
modifying transactions (because they have to be confirmed
by all the system’s nodes) by performance due to less remote
read operations when traversing those structures.

In a generic way, small and/or frequently accessed data
should be fully replicated, and big and/or occasionally ac-
cessed data should be partially replicated. Turning this into
guidelines for when combining full and partial replication,
we have that:

• structure should be fully replicated;

• search information, e.g., keys, should be fully repli-
cated; and

• hard data should be partially replicated.

The @Partial annotation presented in §2.3 was devised
with these guidelines in mind, so it is tailored for partially
replicating just the leafs (or small sub-graphs close to the
leafs) of the heap graph. This approach provides a flexi-
ble programming model that empowers the programmer to
adjust the used replication strategy to the characteristics
of each application, while requiring the programmer to rea-
son about the impact of the replication model in the appli-
cation’s performance. However, when adapting our bench-
marking applications, we verified that the burden of apply-
ing the @Partial annotation is confined to the internal im-
plementation of the data structures. For instance, the linked
list example in Listings 1 and 2 applies the replication option
from Figure 3c, where the list structure is fully replicated
and the value object of each node is partially replicated.

G1

G2

O1

O2

O3

(a) Cascading type.

G1 G2

O1

O2 O3

(b) Tree-like type.

Figure 4: Limitation of our implementation of the program-
ming model.

When addressing composite data structures that build
from pre-existent ones, further reasoning may be required.
For instance, consider a hash map with collision lists that
builds up from the list in Listings 1 and 2. We can easily
think of two possibilities: (1) to partially replicate the en-
tire collision list of each map entry; or (2) to partially repli-
cate only the nodes of the collision lists. In option (1) our
guidelines are applied at the hash map level, since the struc-
ture and keys of the map are fully replicated, and the colli-
sion list of each map entry is partially replicated. In turn,
in option (2) the guidelines are applied at the list level, be-
cause the hash map’s implementation is left unaltered, and
the @Partial annotation is only applied in the list’s imple-
mentation, resulting in fully replicated collision lists with
partially replicated nodes.

4.2 Limitations
As is, our implementation of the programming model has

some limitations, namely: (1) cycles including both fully
and partially replicated objects; and (2) partially replicated
objects referring other partially replicated objects in a dif-
ferent replication group.

Regarding limitation (1), to ensure the semantics of the
@Partial annotation, edges that flow upstream from partially
to fully replicated objects are not allowed. In the example
in Figure 2, if node E was annotated with @Partial, the
edge between G and B could not exist, since by annotating
node E the programmer was declaring that all the objects
downstream, represented by the shaded nodes, should be
partially replicated. An edge from node G to node B would
intuitively mean that node B should be partially replicated,
but since it is upstream from node E it also means that it
should be fully replicated, creating an ambiguity.

Limitation (2)–partially replicated objects referring other
partially replicated objects in a different replication group–
results from an implementation decision, since we use weak
references in the map that associates distribution metadata
to distributed objects (e.g., memory in Algorithm 3). Be-
cause we use weak references, when an object is no longer
referenced by others in the application, the garbage collector
is free to erase that object from memory, thus precluding the
case in Figure 4a. Since objects O2 and O3 are in different
groups, O3 will not be referenced by O2 leaving object O3

at the mercy of the garbage collector. On the other hand,
the case in Figure 4b is possible since both objects O2 and
O3 are referenced by a fully replicated object.

During the adaptation of the benchmarking applications
these limitations where overcome with relative ease. In fact,
by following the recommended guidelines, the management
of the @Partial annotation is made at the data structure

level.

5. EXPERIMENTAL EVALUATION
The evaluation of the ReDstm framework addressed three

main questions: (1) what is the impact in memory con-
sumption if we switch from a full replicated to a partially
replicated system?; (2) how does the replication factor influ-
ences the throughput of both fully and partially replicated
DTM applications?; and (3) how does the ratio of structure
data vs. hard data influences the throughput in the presence
of full and partial replication?

5.1 Experimental Setup
Experimental Test-bed. All the experiments were con-
ducted in a heterogeneous cluster with 8 nodes. Five nodes
have 2 × Quad-Core AMD Opteron 2376 2.3 GHz and 16 GB
of RAM. The remainder have 1 × Quad-Core Intel Xeon
X3450 2.66 GHz (with Hyper-Threading) and 8 GB of RAM.
All machines run Linux 2.6.26-2 (Debian 5.0.10) and are
interconnected via private Gigabit Ethernet. The installed
Java platform is OpenJDK 6 (IcedTea 1.8.10).

To allow a comparison between the two implemented repli-
cated STMs, we used two configurations of ReDstm: C1, a
full replication configuration that uses MVSTM as the TM
layer and the DT implements a non-voting certification; and
C2, a partial replication configuration that uses SCORe and
its multi-version STM algorithm. Additionally, we have set
to two the replication factor of each data item [13] (if noth-
ing said on the contrary). With regard to the underlying
GCS we used JGroups [2] version 3.4.1.
Benchmarks. The Red-Black Tree (RBT) benchmark [10]
has three transactions: insertions, which add an element to
the tree (if not present); deletions, which remove an element
from the tree (if present); and searches, which search the
tree for a specific element. Insertions and deletions are write
transactions. This benchmark is characterized by very small
and fast transactions that perform little work and exhibit
low contention.

The Vacation benchmark is part of the STAMP suite [12].
It emulates a travel reservation system implemented as a set
of binary trees keeping track of customers and their reserva-
tions for various travel items. There are three transactions:
reservations, cancellations and updates. We added a new
read-only transaction that consults reservations.

The TPC-W benchmark [19] models an online book store.
Servers handle user requests such as browsing, adding prod-
ucts to a shopping cart, or placing an order. The browsing
workload consists of 95% of operations related with browsing
and 5% related with purchases.

In all benchmarks, we followed the guidelines described
in §4.1, hence the @Partial annotation was confined to the
data structures: only the values stored in the nodes of the
binary trees and hash maps used by the benchmarks were
partially replicated.

5.2 Results
Memory Consumption. The out-of-the-box RBT bench-
mark maps integers to integers, i.e., both keys and values
are integers. In this case, ReDstm using configuration C2
consumes a larger, but negligible, amount of memory when
compared to configuration C1. Here, the problem is twofold:
partially replicating an integer does not reduces memory us-
age as the memory for the integer is still reserved (this goes

for all primitive data types in Java); and the distribution
metadata for configuration C2 stores more information than
the metadata used by configuration C1.

To verify our intuition, we modified the benchmark in
order to map integers to jpeg images, each with 3 MB in size.
In this case, as expected, by decreasing the data’s replication
factor, the memory consumed by each node decreases as well,
reaching around 55% less memory at replication factor 2.
Partial & Full Data Replication. After running the
three benchmarks, namely Adapted Vacation and RBT, both
with 10% writes, and TPC-W with the browsing mix, Fig-
ure 5 shows that the performance of configuration C2 is very
low regarding its full replication counterpart. This results
are explained by the simple reason that, in all these bench-
marks, the majority of the write transactions modify the
data structures (around 90% in Adapted Vacation, 85% in
TPC-W and 100% in RBT), and those structures are fully
replicated. Thus, write transactions require a distributed
confirmation involving all the system’s nodes, which be-
comes very expensive in configuration C2 since it uses 2PC,
while configuration C1 uses a single atomic broadcast. These
results reveal a known but rather important aspect of con-
figuration C2: SCORe was not designed for environments
mixing full and partial replication.

In order to see if the protocol used by configuration C2 can
take advantage of its nature, we modified the RBT bench-
mark in order to have control over the amount of write trans-
actions that modify partially replicated data, i.e., hard data
accessed by transactions. Thus, in this version of the bench-
mark, named Adapted RBT, we have transactions that mod-
ify the tree’s structure while others modify the values stored
in the tree’s nodes. This way, configuration C2 is able to
leverage its protocol and some transactions will only require
confirmation of a subset of the system’s nodes. Figure 6 de-
picts the results of running this benchmark with 10%, 50%
and 80% of write transactions. With small amounts of hard
data accessed, configuration C2 performs poorly, but as we
increase that amount it starts to match configuration C1
and is even able to surpass it. With 10% of writes, con-
figuration C2 starts to outperform configuration C1 at 80%
of hard data accessed, and with 50% and 80% of writes, it
outperforms configuration C1 starting just at 50% of hard
data accessed. We present configuration C2 mimicking full
replication (Full with Voting) just as a baseline.

Configuration C1 is affected by the variation in the amount
of hard data accessed due to particularities of the bench-
mark. Both write transactions of RBT only perform work
in certain cases: insertions only add an element if it is not
already present, and deletions only remove an element if it is
present. Since elements are randomly chosen, write transac-
tions may become read-only (which do not need distributed
confirmation), e.g., if an element already exists when doing
an insertion. Contrary, in our adaptation all write transac-
tions choose elements that definitely exist, thus they always
perform work and need a distributed confirmation.

Figures 7 and 8 show the latency when performing remote
read operations and when committing transactions, respec-
tively. When executing a remote read, configuration C2 ex-
periences increased latency when the replication factor de-
creases due to the fact that less nodes replicate each object,
which leads to more remote accesses. In Figure 8, we can
see that configuration C1 is not influenced by the amount
of hard data accessed. But configuration C2 starts to expe-

1246810121416

4

5

6

7

8

Replication factor

E
x
ec

u
ti

o
n

ti
m

e
(s

)

(a) Adapted Vacation.

1246810121416
4

5

6

7

8

Replication factor

O
p

er
a
ti

o
n
s
×

1
0
2
/
s

Full with Cert.

Partial with Vot.

(b) TPC-W.

1246810121416

2

4

6

8

Replication factor

T
ra

n
sa

ct
io

n
s
×

1
0
3
/
s

(c) RBT.

Figure 5: Influence of the replication factor in the throughput of the Adapted Vacation and RBT benchmarks with 10%
writes, and of TPC-W with the browsing mix (16 instances).

0 20 40 60 80 100
0

5

10

Hard data (%)

T
ra

n
sa

ct
io

n
s
×

1
0
3
/
s

(a) 10% writes.

0 20 40 60 80 100
0

1

2

3

Hard data (%)

(b) 50% writes.

0 20 40 60 80 100
0

1

2

Hard data (%)

(c) 80% writes.

Full with Certification Full with Voting Partial with Voting

Figure 6: Sensitiveness of the replication strategies to the amount of hard data accessed in the Adapted RBT (8 instances).

12468
0

50

100

Replication factor

L
a
te

n
cy

(m
s)

Partial 10%

Partial 80%

Figure 7: Remote read latency on Adapted RBT with 10%
writes and 10% and 80% of hard data accessed (8 instances).

rience lower latencies when the replication factor decreases,
since transactions have to be confirmed by less nodes, mak-
ing commit operations faster.

6. RELATED WORK
Transactional Memory. With the recent thrust in DTM
research, a handful of different frameworks have been pro-
posed with the goal of facilitating the development, testing,
and evaluation of the multiple proposed memory consistency
protocols. All of the best known DTM frameworks present
a great level of intrusion, requiring a significant part of the
application code to be rewritten to comply with the specifici-
ties of each framework (as shown in Table 4). DiSTM’s [11]
objects have to implement special interfaces and are created

12468
0

200

400

Replication factor

L
a
te

n
cy

(m
s)

Full 10% Partial 10%

Full 80% Partial 80%

Figure 8: Distributed commit latency on Adapted RBT
with 10% writes and 10% and 80% of hard data accessed
(8 instances).

using transactional factory methods. Transactions have to
be executed by a special thread class. D2STM [4] is based
on JVSTM [3], hence objects have to be wrapped in boxes
and have to be accessed by special get and set methods.
Transactions are methods annotated with a @Atomic annota-
tion. HyFlow [15] has many pluggable components. Objects
have to implement a special interface and are tagged with
a unique identifier that serves as its reference in the sys-
tem. These identifiers are exchanged by their corresponding
objects using a Locator instance. Transactions are defined
as @Atomic-annotated methods. HyFlow2 [20] is written in
Scala and its programming model is very similar to one of
HyFlow, but instead it uses Scala constructs. In turn, ReD-

Table 4: Comparison between DTM frameworks.
Framework Replication Model Intrusiveness Modularity

DiSTM Master/Slave High Low
D2STM Full High High
Hyflow/Hyflow2 Control/Data-flow Moderate High
ReDstm Distribution, Partial, Full Low High

stm manages to be a modular framework, while presenting
a much lower level of intrusion to the application code (see
Table 4), requiring only the use of two annotations.

Concerning data replication, DiSTM has a master/slave
approach, D2STM supports full replication, and both HyFlow
and HyFlow2 support data-flow and control-flow approaches.
HyFlow-related research also dwells into the partial repli-
cation field [9], however the focus is on the scheduling of
memory transactions, rather than on the support of differ-
ent replication strategies in DTM. As a result, ReDstm is
more flexible, allowing the implementation of a wider range
of data replication strategies.
Databases. A great part of the work presented on this pa-
per was built upon the cumulative knowledge of the databases
research field. Solutions natively oriented to partially repli-
cated transactional systems may be divided depending on
whether they can be considered genuine, i.e., when the transac-
tion’s confirmation only involves the nodes keeping copies of
the data accessed by the transaction, and on the specific
consistency guarantees they provide. Serrano et al. [17] pro-
vide a non-genuine protocol, where the confirmation of a
transaction requires interaction with all the nodes in the
system. Compared to this approach, genuine schemes have
shown to achieve significantly higher scalability [14].

Concerning the provided consistency guarantees, in [17],
the authors identify 1-copy-serializability (1CS) as a limi-
tation when designing replicated solutions, and propose a
protocol offering 1-copy-snapshot-isolation, whereby repli-
cas run under snapshot isolation. In turn, with P-Store [16],
Schiper et al. go back to 1CS proposing the first genuine
partial replication protocol offering this kind of consistency
guarantee. But this protocol still imposes that read-only
transactions undergo a distributed confirmation phase.

7. CONCLUSIONS
In this paper we presented ReDstm, a modular and non-

intrusive Java DTM framework that provides support for
a wide range of data replication models, from full to par-
tial data replication, in a general purpose programming lan-
guage. Its modularity allows an easy integration and imple-
mentation of several of its components, and its non-intrusive-
ness enables the adaptation of pre-existent applications to
ReDstm with minimal effort.

We used ReDstm to study how different replication mod-
els can be integrated in the implementation of distributed
STMs. From our experiences we devised some guidelines
for when combining full and partial replication, and show
that ReDstm is flexible enough to accommodate data struc-
tures with different parts under different replication strate-
gies (with gains in scalability, in some cases).

We evaluated the impact of different replication models in
the execution of three known benchmarks, being able to con-
clude that (i) partial replication contributes to the system’s
scalability by reducing the amount of data stored at each
node; (ii) the impact of the replication model in transaction

throughput is sensible to the amount of transactions that
manipulate structuring and hard data; and (iii) the benefits
of partial replication are directly proportional to the amount
of transactions that manipulate only hard data.

Acknowledgements
This work was partially funded by FCT-MEC, in the context
of the research project PTDC/EIA-EIA/113613/2009, the
strategic project PEst-OE/EEI/UI0527/2014, and research
grant SFRH/BD/84497/2012.

8. REFERENCES
[1] D. Agrawal et al. Exploiting atomic broadcast in

replicated databases. In Euro-Par, 1997.

[2] Bela Ban. JGroups - A Toolkit for Reliable Multicast
Communication. http://www.jgroups.org, 2013.

[3] J. Cachopo et al. Versioned boxes as the basis for
memory transactions. Sci. Comput. Program., 2006.

[4] M. Couceiro et al. D2STM: Dependable distributed
software transactional memory. In PRDC, 2009.

[5] R. J. Dias et al. Efficient support for in-place metadata
in Java software transactional memory. Concurrency
and Computation: Practice and Experience, 2013.

[6] D. Dice et al. Transactional locking II. In DISC, 2006.

[7] E. Gamma et al. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series. 2004.

[8] B. Kemme et al. A suite of database replication
protocols based on group communication primitives.
In ICDCS, 1998.

[9] J. Kim et al. Scheduling transactions in replicated
distributed software transactional memory. In
CCGRID, 2013.

[10] G. Korland et al. Deuce: Noninvasive software
transactional memory in Java. Transactions on
HiPEAC, 2010.

[11] C. Kotselidis et al. DiSTM: A software transactional
memory framework for clusters. In ICPP, 2008.

[12] C. C. Minh et al. Stamp: Stanford transactional
applications for multiprocessing. In IISWC, 2008.

[13] S. Peluso et al. Score: A scalable one-copy serializable
partial replication protocol. In Middleware. 2012.

[14] S. Peluso et al. When scalability meets consistency:
Genuine multiversion update-serializable partial data
replication. In ICDCS, 2012.

[15] M. M. Saad et al. Hyflow: A high performance
distributed software transactional memory framework.
In HPDC, 2011.

[16] N. Schiper et al. P-store: Genuine partial replication
in wide area networks. In SRDS, 2010.

[17] D. Serrano et al. Boosting database replication
scalability through partial replication and
1-copy-snapshot-isolation. In PRDC, 2007.

[18] N. Shavit et al. Software transactional memory. In
PODC, 1995.

[19] Transaction Processing Performance Counsil. TPC
Benchmark W. http://www.tpc.org/tpcw, 2013.

[20] A. Turcu et al. Hyflow2: A high performance
distributed transactional memory framework in Scala.
In PPPJ, 2013.

http://www.jgroups.org
http://www.tpc.org/tpcw

	Introduction
	A Modular Framework for DTM
	TribuSTM & Deuce
	Supporting Distribution and Replication
	Programming Model

	On the Implementation of Distributed STMs in ReDstm
	A Distributed STM
	A Fully Replicated STM
	A Partially Replicated STM
	Implementation Considerations

	Combining Full and Partial Replication in ReDstm
	Guidelines
	Limitations

	Experimental Evaluation
	Experimental Setup
	Results

	Related Work
	Conclusions
	References

