
Software Component Replication for Improved
Fault-tolerance: Can Multicore Processors Make

It Work??

João Soares, João Lourenço and Nuno Preguiça

CITI/DI-FCT-Univ. Nova de Lisboa

Abstract. Programs increasingly rely on the use of complex component
libraries, such as in-memory databases. As any other software, these li-
braries have bugs that may lead to the application failure. In this work we
revisit the idea of software component replication for masking software
bugs in the context of multi-core systems. We propose a new abstraction:
a Macro-Component. A Macro-Component is a software component that
includes several internal replicas with diverse implementations to detect
and mask bugs. By relying on modern multicores processing capacity it is
possible to execute the same operation in multiple replicas concurrently,
thus incurring in minimal overhead. Also, by exploring the multiple ex-
istent implementations of well-known interfaces, it is possible to use the
idea without incurring in additional development cost.

1 Introduction

Despite the large number of techniques developed for detecting and correcting
software bugs during development and testing phases, software bugs remain a
major problem in production releases [13,4]. Software updates or patches, de-
signed to correct existing bugs often end up introducing new bugs - studies show
that up to 70% of patches are buggy [22].

Multicore processors have made a push for increased concurrency in applica-
tions, leading to an increase of concurrency related bugs. This problem is being
actively investigated, with a large number of works addressing the subject in the
last few years [19,14,10,16,4,23].

The increasing complexity of software has led programmers to build their
applications relying on the (re)use of third party off-the-shelf libraries and com-
ponents, such as in-memory databases and XML parsers. If some of these com-
ponents undergo systematic quality control procedures, others are provided by
communities that cannot afford such procedures. If in the former case compo-
nents already include bugs [8], we can expect the situation to be far worse in the
latter case. Thus, these components become an important source of bugs for ap-
plications. The situation is magnified by the fact that application programmers
have little or no control over these components.

? This work was partially support by FCT/MCT projects PEst-OE/E-
EI/UI0527/2011 and PTDC/EIA-EIA/108963/2008. João Soares was partially
supported by FCT/MCTES research grant # SFRH/ BD/ 62306/ 2009.

2

For dealing with faults caused by software bugs, several fault tolerance tech-
niques have been proposed [17]. Some of these techniques improve software qual-
ity by relying on replication and redundancy techniques, normally combined with
design diversity. The drawbacks of these approaches are an increase in develop-
ment time and costs, since diverse solutions need to be designed, implemented
and tested, and a compromise in application performance, due to result and
state validation.

In this work we revisit the idea of software component replication for de-
tecting and masking bugs, by proposing the Macro-Component abstraction. A
Macro-Component is a software component that includes internally several di-
verse component replicas that implement the same interface. Assuming that
different component replicas exhibit different bugs [3,6,7], by executing each op-
eration in all replicas and comparing the obtained results, it is possible for a
Macro-Component to detect and mask software bugs.

By exploring the power of multicore processors, the same operation can be
concurrently executed in multiple replicas with minimal overhead. By explor-
ing the multiple available implementations for the same standard interfaces, it
is possible to create Macro-Components without incurring in additional devel-
opment time or cost. This allows to put in practice the old idea of N-Version
Programming [3] at the component level.

Although the idea seems simple, putting it to work involves a number of tech-
nical challenges that we explore in the remaining of this paper. In particular,
we show how to minimize computational overhead by executing operations in
as few replicas as possible and by minimizing the required number of coordina-
tion points among replicas. Our preliminary results suggest that this approach
is promising, exhibiting acceptable performance. The results also show an im-
portant result for the practicality of the solution: the amount of memory used
is not directly proportional to the number of replicas. The reason for this is
that a large number of objects can be shared among the replicas - e.g. strings in
database fields.

The remainder of this paper is organized as follows. The next section dis-
cusses related work. Section 3 introduces the Macro-Component model. Section 4
presents our current prototype, the implementation of Macro-Components for
in-memory databases and presents some preliminary evaluation. Section 5 con-
cludes the paper with some final remarks.

2 Related Work

Macro-Components share an identical model with n-Version Programming (NVP)
[3,1]. Contrarily to the original NVP, Macro-Components work at the component
granularity [18], taking advantage of third party components to minimize the
impact in development time and costs. Additionally, unlike previous works, our
design addresses modern multicore processors, which seem an suitable architec-
ture to make software component replication work with minimum performance
impact.

3

Fig. 1: Macro-Component

Replication has been a highly researched topic in distributed systems [9],
with most of the proposed techniques addressing only fail stop faults. Byzantine
fault tolerance techniques [12,20,2] have been proposed for dealing with other
fault models. Some works, e.g. Eve [11], have been addressing replication in
distributed settings with multicore machines. In our design, we re-use some of
the ideas proposed in these works.

Most of the research on concurrency bugs has focused on techniques for
finding and avoiding bugs [10,13,14,4,23]. Our work share some of the goals with
these works, but differs from most of these approaches by relying on diverse
replication.

Gashi et al. [6,7] have also focused on using third party components for im-
proving fault tolerance in SQL Database Servers and Anti-Virus engines. Our
proposal differs from these works, as it provides a generic framework and runtime
support for producing fault tolerant components, based on diverse implementa-
tions of the same common interface.

3 Macro-Components

A Macro-Component is a software component implemented using a set of diverse
components (called replicas) that implement the same interface, as presented in
figure 1. Diversity allows for each replica to have its own implementation while
offering the same functionality and maintaining the same abstract state as all
other replicas. This provides the means for Macro-Components to detect buggy
behaviour of replicas, by identifying state or result divergences amongst replicas,
thus preventing these bugs from being exposed and affecting the reliability of
applications.

With this approach, an application can use a Macro-Component as it would
use any other component. The only difference is that a Macro-Component has
improved reliability. Thus, a single application may include a large number of
Macro-Components.

Next, we detail how Macro-Components can be used to address several goals.

Detecting and Masking Bugs: Macro-Components, as NVP, follows the assump-
tions that different implementations incur in different bugs, and that a divergent
result from the majority occurs due to the presence of bugs. Thus, to detect
buggy behaviour, diversity in component replicas is crucial, and detection is
achieved by comparing the results from the several replicas. Whenever a method
is invoked on a Macro-Component, the following steps (illustrated in figure 2a)

4

(a) Detecting buggy replicas (b) Returns first result

(c) Background validation (d) Resuming execution

Fig. 2: Macro-Component Method Calls

occur: i) the corresponding method is invoked on all component replicas; ii) repli-
cas execute the same method concurrently; iii) wait for f + 1, i.e., the majority,
equal results from component replicas; and iv) return the result from the major-
ity of replicas.

For keeping the overhead low, unlike solutions that validate both results
and object state [24,21], Macro-Components detect buggy behaviour primarily
by validating results, while object state is compared periodically in background.
Whenever inconsistent results are detected, the corresponding faulty replicas are
marked for recovery, and temporarily removed from the set of active replicas.
Also, if some replica is unable to produce a result within a certain time limit,
the replica is considered faulty and threads executing in the replica are aborted.
The time limit is defined by the time taken by the majority of the replicas to
reply plus an additional tolerance.

Detecting Concurrency Bugs: Macro-Components are not restricted, in any
way, to the use of diverse replicas. When using homogenous replicas, Macro-
Components can still be used for detecting and masking concurrency bugs.

To this end, the following approaches are possible. First, the imposed over-
head due to the Macro-Component runtime may result in different inter-leavings
of concurrent operations in different replicas. Second, it is possible to impose ran-
dom delays on the method execution in different replicas, thus leading to different
inter-leavings. Third, it is possible to execute method invocations sequentially
in some of the replicas (as in [5]).

5

For minimizing the overhead, the latter two solutions can be used only when
some problem is detected by running operations in the default mode. Addition-
ally, sampling can be used when the latter two approaches are being used.

4 Implementation and Runtime

We are currently building a system for supporting applications that use Macro-
Components, in Java. In this section, we present our current prototype.

A Macro-Component is composed by three main components: the manager,
responsible for coordinating method execution on the replicas, the validator, re-
sponsible for validating the results returned by the replicas, and the replicas, the
components responsible for maintaining the state. Applications remain oblivious
to the replicated nature of Macro-Components since it offers a single copy view of
the underlying state. To this end, each replica maintains an associated version,
that registers the number of updates performed on the replica. The manager
guarantees that operations execute on replicas in the same state, i.e., with the
same version. This version is kept in shared memory, as an atomic counter.

The supporting runtime guarantees that when a method call is performed
on a Macro-Component, the equivalent method is concurrently executed in all
replicas. To this end, method calls are recorded as tasks and queued for execu-
tion. These tasks represent the method to be executed, and the replica in which
the method is to be executed on. For each replica, an associated thread is re-
sponsible for dequeuing assigned tasks and execute them on that replica. Our
current prototype currently supports concurrent execution only for operations
that do not modify the state of the Macro-Component - operations that modify
the state of the Macro-Component are currently executed serially.

This decouples the execution of the callee from the method, i.e., the thread
calling the method can be different from the thread that executes it. This allows
Macro-Components to provide independent execution models, allowing methods
to execute asynchronously from the application threads.

We currently support two execution model. The first, based on non-transparent
speculation of results, provides improved performance. The second, based on a
prior verification of execution correctness, allows for transparent replacement of
components by their Macro-Components siblings.

In the speculative execution mode, a Macro-Component returns the result
from the fastest replica (figure 2b), while validating the result on background
(figure 2c). If the result is found to be incorrect, the execution must be cancelled
and re-started with the correct value (figure 2d). This approach can even im-
prove the performance over standard components, when there are no faults, by
exploring the differences in performances for the different replicas.

We currently do not support automatic transparent speculation. Thus, the
Macro-Component notifies an error on a previous call when some method is
called or when the application queries the Macro-Component for errors. This
requires the application to be modified to include support for such calls. In
general, this is not too complex as the verification calls can be added in the

6

 10000
 15000
 20000
 25000
 30000
 35000
 40000

 1 2 4 6 8 10

Th
ro

ug
hp

ut
 (t

ra
ns

/m
in

)

Clients

HSQLDB
MacroDB

Fig. 3: TPC-C results

Replicas

MacroDB 2 3 4

HSQL 1.64× 2.29× 2.46×

Fig. 4: Memory overhead

end of methods that use Macro-Components (or before some externalization of
results is done).

In the prior-verification model, the results of a method is only returned when
a majority of the replicas has returned the same result.

4.1 Database Macro-Component

We now describe the design and implementation of MacroDB, a Macro-Component
for in-memory database systems. MacroDB is composed by a set of database
replicas, each potentially supported by a different in-memory database engine.
Applications remain oblivious of the replicated nature of the system since it offers
them a standard JDBC interface, and standard transaction isolation levels.

Applications do not communicate directly with the database engines, in-
stead they communicate with the manager, a JDBC compliant front-end which
coordinates client operations in the underlying replicas. The manager receives
statements from clients and forwards them, without modification, to the repli-
cas, guaranteeing their ordered execution by the runtime support system. For
statements inside a transaction, the first result is returned to the application
while it is compared in background with the results from other replicas. Addi-
tionally, (read-only) queries execute initially only on f + 1 replicas (with f the
number of replicas that can be faulty) - the queries are only executed in other
replicas if returned results differ. When the application wants to commit a trans-
action, if there has been any error detected on the previously returned results,
the commit fails. Otherwise, the commit executes is all replicas and returns to
the application after it is confirmed. This approach combines the speculative
and prior-verification execution models in a way that is transparent to database
applications.

MacroDB is still under active development, missing the code for verifying
state divergence and the wrappers to support the small differences in multiple
database engines [20]. Even though, our solution is already operational with an
homogeneous configuration, with all replicas running the same database engine.
To provide an approximate value on the overhead that our runtime incurs for pro-
viding fault-tolerance, we ran the TPC-C benchmark on the Macro-Component,
and compared the obtained results against the standalone database version. In
all cases, the HSQLDB in-memory database was used. The results, presented on

7

figure 3, show a small overhead for MacroDB version, averaging a 4% decrease
in performance.

Although these are preliminary results, we expect that relying on multiple
database engines can improve this overhead, as the result from the fastest replica
will be returned in each case. On the other hand, the performance will be pe-
nalized by checking for the difference in the database state.

As an additional test, we also measured the memory overhead imposed by
replicating the database. Contrarily to what was expected, the memory overhead
is not proportional to the number of replicas, as presented in figure 4. This is
due to the fact that replicas share immutable Java objects, such as Strings.
The obtained results show that, a MacroDB configured with HSQL replicas,
uses at most 2.5 times more memory than the standalone engine, when using
a 4 replica configuration. This makes deploying MacroDB practical on single
machine multicores, even with large numbers of replicas.

5 Final remarks

In this paper we revisited software component replication techniques, present-
ing a new abstraction for improving software fault tolerance, called Macro-
Component. Macro-Components put in practice the old idea of N-Version Pro-
gramming [3] at the component level. Existing software products can benefit
from improved fault tolerance, simply exchanging components by their Macro-
Component siblings, preventing developers from rewriting code, and preserving
development methodologies.

We have presented the design of a system that supports the use of Macro-
Components in applications. Our design focused on keeping the overhead low, by
minimizing the overhead of computational resources by executing operations in
as few replicas as possible and by minimizing the required number of coordina-
tion points among replicas. Our preliminary results suggest that this approach
is promising, exhibiting acceptable performance. The results also show an im-
portant result for the practicality of the solution: the amount of memory used
is not directly proportional to the number of replicas.

Our current prototype still misses some important features, namely result and
state comparison, and improved recovery of replicas. We are currently conducting
additional experiments to evaluate our prototype with standard benchmarks.

References

1. A. Avizienis, The n-version approach to fault-tolerant software, IEEE Trans. Softw.
Eng. 11 (1985), no. 12, 1491–1501.

2. Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo
Sousa, Depsky: dependable and secure storage in a cloud-of-clouds, In EuroSys ’11,
2011, pp. 31–46.

3. Liming Chen and Algirdas Avizienis, N-version programming: A fault-tolerance
approach to reliability of software operation, In Proc. FTCS-8, 1978, pp. 3–9.

8

4. P. Fonseca, Cheng Li, V. Singhal, and R. Rodrigues, A study of the internal and
external effects of concurrency bugs, In DSN ’10, 2010, pp. 221 –230.

5. Pedro Fonseca, Cheng Li, and Rodrigo Rodrigues, Finding complex concurrency
bugs in large multi-threaded applications, In EuroSys ’11, 2011.

6. Ilir Gashi, Peter T. Popov, Vladimir Stankovic, and Lorenzo Strigini, On design-
ing dependable services with diverse off-the-shelf sql servers., In WADS ’03, 2003,
pp. 191–214.

7. Ilir Gashi, Vladimir Stankovic, Corrado Leita, and Olivier Thonnard, An exper-
imental study of diversity with off-the-shelf antivirus engines, In NCA ’09, 2009,
pp. 4–11.

8. Sudipto Ghosh and John L. Kelly, Bytecode fault injection for java software, Jour-
nal of Systems and Software 81 (2008), no. 11, 2034 – 2043.

9. Abdelsalam A. Helal, Bharat K. Bhargava, and Abdelsalam A. Heddaya, Replica-
tion techniques in distributed systems, Kluwer Academic Publishers, 1996.

10. Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George Candea, Deadlock
immunity: Enabling systems to defend against deadlocks, In OSDI ’08, 2008.

11. Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo Alvisi, and
Mike Dahlin, All about eve: execute-verify replication for multi-core servers, in
OSDI’12, 2012, pp. 237–250.

12. Leslie Lamport, Robert Shostak, and Marshall Pease, The byzantine generals prob-
lem, ACM Trans. Program. Lang. Syst. 4 (1982), no. 3, 382–401.

13. Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxi-
ang Zhai, Have things changed now?: an empirical study of bug characteristics in
modern open source software, in Proc. ASID ’06, 2006, pp. 25–33.

14. Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, Weihang Jiang, Zhenmin Li,
Raluca A. Popa, and Yuanyuan Zhou, Muvi: automatically inferring multi-variable
access correlations and detecting related semantic and concurrency bugs, in SOSP
’07, 2007, pp. 103–116.

15. Paulo Mariano, João Soares, and N. Preguiça, Replicated software components for
improved performance, in InForum 2010, 2010, pp. 95–98.

16. Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu, Finding and reproducing
heisenbugs in concurrent programs, in OSDI’08, 2008, pp. 267–280.

17. Laura L. Pullum, Software fault tolerance techniques and implementation, Artech
House, Inc., USA, 2001.

18. James M. Purtilo and Pankaj Jalote, An environment for developing fault-tolerant
software, IEEE Trans. Softw. Eng. 17 (1991), 153–159.

19. Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou, Rx: treating
bugs as allergies—a safe method to survive software failures, in SOSP ’05, 2005,
pp. 235–248.

20. Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov, Base: using abstraction to
improve fault tolerance, in SOSP ’01, 2001, pp. 15–28.

21. Alexander Romanovsky, Class diversity support in object-oriented languages, Jour-
nal of Systems and Software 48 (1999), no. 1, 43 – 57.

22. Stelios Sidiroglou, Sotiris Ioannidis, and Angelos D. Keromytis, Band-aid patching,
in HotDep ’07, 2007.

23. Kaushik Veeraraghavan, Peter Chen, Jason Flinn, and Satish Narayanasamy, De-
tecting and surviving data races using complementary schedules, in SOSP ’11, 2011,
pp. 369–384.

24. J. Xu, B. Randell, C. Rubira-Calsavara, and R.J. Stroud, Toward an object-oriented
approach to software fault tolerance, in Proc. FTPDS ’94, 1994, pp. 226 –233.

