
An Integrated Testing and Debugging Environment
for Parallel and Distributed Programs�

João Lourenço, José C. Cunha
Departamento de Informática
Universidade Nova de Lisboa

Portugal
fjml, jccg@di.fct.unl.pt

Henryk Krawczyk, Piotr Kuzora,
Marcin Neyman, Bogdan Wiszniewski

Technical University of Gdańsk
Poland

fhkrawk, kuzor, marcinn, bowiszg@pg.gda.pl

Abstract

To achieve a certain degree of confidence that a given
program follows its specification, a testing phase must
be included in the program development process, and
also a complementary debugging phase, to help locat-
ing the program’s bugs. This paper presents an environ-
ment which results of the composition and integration
of two basic tools: STEPS (a testing tool) and DDBG
(a debugging tool). The two tools are presented indi-
vidually as stand-alone tools, and we describe how they
were combined through the use of another intermediate
tool. We claim that the result achieved is a very effec-
tive testing and debugging environment.

1 Introduction

To achieve a certain degree of confidence that a given
program follows its specification, a testing phase must
be included in the program development process. Bugs
correspond to program behaviors that don’t comply to
the given specification, and debugging tools are used to
help in its localization.

Parallel and distributed programs pose increased dif-
ficulties to the testing and debugging activities, when
compared to sequential programs. This is due to sev-
eral reasons, namely, the presence of multiple control
and data flow paths, the interference upon program be-
havior caused by the monitoring and external control of
its execution (the so called “probe effect”), and the non-
determinism related to the presence of time-dependent
events in a parallel and distributed program.

�In Proceedings of EUROMICRO’97, 23rd Euromicro Confer-
ence, Budapest, Hungary, September 1997.

Testing approaches, for example, based on system-
atic testing of parallel programs through path examina-
tion, play a very important role in the process of as-
suring final program correctness. The development of
methods and tools to help the user in the identification
of which such paths should be generated and tested, is a
key issue in an advanced parallel software engineering
environment [13].

However, such testing tools need to be integrated
with debugging tools in order to allow a controlled ex-
ecution of the paths under test, with the guarantee of
reproducibility of the program execution, and to sup-
port program inspection and extra control during this
controlled execution. We argue that a close integration
of testing and debugging tools greatly contributes to a
better understanding of parallel and distributed program
behavior.

In this paper we discuss the design and implemen-
tation of an integrated testing and debugging environ-
ment, that is the result of the composition of two in-
dependent tools: STEPS (Structural TEsting of Parallel
Software) [9], a testing tool, and DDBG (Distributed
DeBuGger) [3], a debugging tool.

The paper is organized as follows: In the next sec-
tion, we briefly discuss the relevant issues in testing
and debugging of parallel programs that have motivated
our approach. Sections 3 and 4 present the STEPS and
DDBG tools, respectively. Section 5 discusses the inte-
gration of STEPS and DDBG, and presents the DEIPA
(Deterministic (re-)Execution and Interactive Program
Analysis) tool. Section 6 describes ongoing and future
work, and section 7 presents the conclusions.

1

2 Testing and debugging of paral-
lel programs

Testing of any program is aimed at a number of experi-
ments with its code to detect unexpected, thus possibly
erroneous, behaviors. While the main objective of test-
ing is to reasonably cover the entire set of program be-
haviors, the purpose of debugging is to run series of rel-
atively simple experiments to isolate and localize spe-
cific errors in the code. Program errors are removed
and tests run again to check on the corrected program
behavior.

The main objective of testing of parallel programs
is to find communication errors. Normally, when pro-
cesses use message passing for communication, an as-
sumption is made that structural sequential parts of the
code are then tested first by using appropriate methods
for sequential programs. The emphasis is put on de-
tecting and isolating time-dependent errors, which often
can only be observed under specific timing conditions.

Three modes of execution for testing of parallel pro-
grams should be considered:

1. Random execution.
The program is run with no control on its execu-
tion. Input data is specified by the user and the
communication sequence only depends on actual
conditions in the real system. This kind of testing
is very limited—it merely relies on a chance that
certain conditions that cause the error may possi-
bly occur. Tests have to be executed several times
for the same input data, as errors may be related
to some very specific and uncommon system state
(eg. network load, unreliable communication, pro-
cess failure, etc). Adequate monitoring has to be
applied, which in turn may result in the probe ef-
fect and make recorded data meaningless or void.

2. Controlled execution.
This approach [6] concentrates at one process at
the time in order to capture communication errors
that can be caused by races. This can be done by
analyzing all communication buffers of a single
process and determining whether different mes-
sage receiving orderings could result in different
program executions. Unfortunately this technique
also has the drawback of the probe effect.

3. Deterministic execution.
The user who is testing a program defines a set of

control flow paths through parallel processes that
specify a sequence of communication events to oc-
cur during a test. The relevant sequence of events
determines a specific testing scenario for execut-
ing a parallel program in its environment. The
program is run according to the scenario and its
behavior is logged. Recorded entries in the log se-
quence are next compared to the expected results
given by the specification. Specifically, the order
of logged communication events is verified against
the specification provided by a script. If they do
not agree, this may indicate an error. Using this
approach eliminates the probe effect, however, se-
lecting the appropriate set of paths through the pro-
gram code may require a large amount of work.

Because each of the above methods is essentially dif-
ferent, and is able to find only a certain type of errors,
the following new method has been proposed.

Testing of a parallel application can be done at two
levels. One is real execution and the other is symbolic
execution of the parallel program under test. Using
these two approaches jointly has resulted in a new, ef-
ficient way of finding time-dependent errors in parallel
programs.

Testing activities are organized in two groups: sym-
bolic and dynamic analysis activities.

1. Symbolic analysis.
These activities concentrate on specifying a set of
control flow paths determining a sequence of com-
munication events for a specific testing scenario.

The paper focuses on static analysis of parallel
programs written in C, and with interprocess com-
munication implemented with the message passing
primitives provided by the PVM system [1]. These
programs can be analyzed in two steps:

(a) Static analysis of parallelism. All potentially
possible communication events are identified
by the means of a reachability analysis. This
implies detecting all possible communication
actions in the program and all possible con-
nections between processes.

(b) Symbolic program execution. The tool steps
through all program statements of respective
processes, interacting with the user to consult
all conditions it encounters on its way. This
analysis results in determining symbolic con-
ditions for each relevant path which has to

2

WUI

IDATEG
source
code

TeSS

TESEM

LOG

binary
filesgdbSAPTE

Figure 1: The module structure of STEPS

be satisfied during the real program execu-
tion later.

The set of paths selected during symbolic execu-
tion and combined with the information on possi-
ble communication structure allows to generate the
testing scenario script for the deterministic mode
execution that follows.

2. Dynamic analysis.
These activities normally assume a random pro-
cess execution. The program code is run in its real
environment and all of its communications events
are registered and logged into a special log file.
The log file provides an input for the animated pro-
gram re-execution, which provides the user with
the recorded sequence of communication events
visualized by special control flow tokens.

Upon completing (breaking) a dynamic program
execution, the user may continue further on with
symbolic analysis. The relevant variable values
that were set during the real execution are trans-
ferred to the symbolic interpreter, so that it may
use them as the starting point for further analysis.
Each program may be executed several times with
different input data and with slightly modified sce-
narios to better localize the errors.

A testing method should enable stepping back from
any point of analysis, either dynamic or static, in order
to generate a whole series of alternate scenarios.

In our approach, the STEPS tool (see section 3) is
responsible for systematically generating reproducible
test patterns for the process spawning and communica-
tion parts of a C+PVM program. The information that
is collected as a result of the analysis performed during
the testing phase, will be used to guide the constrained

program execution, under the control of the DDBG de-
bugging tool (see section 4). Such constrained execu-
tion is required in order to guarantee the reproducible
program execution in a replay mode, as well as to sup-
port a more detailed analysis of dynamic program be-
havior, following the paths that were identified in the
testing phase. The debugging phase allows the use of
interactive techniques like breakpoints, step-by-step ex-
ecution, variable inspection, suitably adapted to provide
consistent view of the state of the parallel computation,
and supported by both text-based and graphical based
user interfaces.

3 The STEPS tool

STEPS (Structural TEsting of Parallel Software) [9] is a
tool designed for the interactive testing of parallel pro-
grams that use PVM message passing primitives for in-
terprocess communication. It supports the modes of ex-
ecution and testing activities described in section 2. The
tool incorporates three basic objects: a parallel pro-
gram under test (source code file and executable file),
test scenario script (TeSS), and log file.

A parallel program is modeled by a set of intercon-
nected nodes, representing either blocks of sequential
processing statements or communication events. Pro-
cessing nodes encapsulate sequential assignment and
decision statements while communication event nodes
encapsulate small sets of matching “send” and “re-
ceive” actions. The set of interconnected nodes consti-
tutes a multi-flow graph that specifies the control struc-
ture of the program under test. STEPS views parallel
program execution as independent control flow tokens
progressing through the related multi-flow graph. Each
single token progresses from node to node and (possi-
bly) interacts with other control flow tokens.

3

generate TeSS

step forward

run scenario

replay from log

step back

error

inspect variables

modify variables

OK

DDBG

end

Figure 2: The testing cycle - interactive creation of testing scenarios

STEPS supports four basic groups of activities:

1. Retrieval of information from the program source
code in order to construct its respective multi-flow
graph representation.

2. Visualization of a multi-flow graph structure for
interactive design of testing scenarios.

3. Symbolic interpretation of program paths for de-
signing testing scenarios concerning data values
and process timing.

4. Dynamic execution of tests using the logging fa-
cility of communication actions to detect the oc-
currence of communication events.

The above mentioned activities enable three modes
of execution for testing of parallel programs. Random,
controlled or deterministic execution relies on activities
of type (1) when figuring out all possible communica-
tion events, and uses activities of type (2) when ani-
mating program execution with moving control flow to-
kens. Deterministic execution, and to some extent con-
trolled execution need (3) to provide appropriate values
for program variables. Finally, (4) supports all three ex-
ecution modes by monitoring states during the dynamic
program execution.

STEPS consists of four major functional subsystems
that are presented in figure 1:

� Window user interface [WUI].
WUI is a window user interface to manage tool
functionality, to interact with static analysis of a
program text, and to design testing scenarios.

� Static analyzer of PVM text [SAPTE].
SAPTE is a static analyzer of PVM text to identify

communication events using reachability analysis
and determining various quality parameters.

� Interactive data test generator [IDATEG].
IDATEG is an interactive data test generator to de-
termine symbolic path conditions and to assist the
users in finding suitable data for program execu-
tion.

� Testing scenario execution manager [TESEM].
TESEM is a testing scenario execution manager to
execute the run-time code of the program under
test for various testing scenarios and to record its
relevant behavior.

Two kinds of input information are normally required
by STEPS: the program input source code and user
commands. An initial user command is to start static
analysis of parallelism based on input source code. As
a result of this analysis three kinds of information are
retrieved from the program text: an interconnection
structure of component processes’ graphs, the respec-
tive sets of matching communication actions identified
as communication events, and timing (ordering) rela-
tions between identified events.

Information retrieved by SAPTE is used by WUI to
display a multi-flow graph structure needed for prepar-
ing testing scenarios. Information about all node con-
nections and communication event nodes is also pro-
vided by SAPTE. Based on this the user can design a
testing scenario using interaction provided by WUI and
then run the tested program for it under the supervision
of TESEM. The program can be run also without any
testing scenario. In this case such testing scenario can
be produced later using the logged information.

Basic tool functionalities provided by SAPTE, WUI,
IDATEG and TESEM enable the user to design testing

4

scenarios interactively. This forms a specific testing cy-
cle, as outlined schematically in figure 2.

There are two ways to enter the cycle in the run sce-
nario phase. One is via static analysis and enables de-
terministic execution according to the scenario. An-
other one is random execution without any specific sce-
nario. After the execution, values of program variables
can be read. Based on the recorded log entries, the re-
play phase can be performed. The next four phases:
step back, inspect, modify variables, and step forward,
enable the preparation of a new (modified) testing sce-
nario script, that can be used to re-enter the cycle.

Dynamic execution supervised by TESEM relies on
the standard GNU ’gdb’ debugger. The debugger is
used to control installation and removal of breakpoint
traps, introduced by the scenario script, and to imple-
ment timing of the processes and modifying program
variables.

STEPS was implemented mainly using the C/C++
languages, with the major parts of IDATEG imple-
mented in Prolog. The user interface uses the Motif
library.

4 The DDBG tool

The DDBG (Distributed DeBuGger) [3] tool is a dis-
tributed debugging engine that provides the following
functionalities for distributed programs written in C,
and with interprocess communication implemented us-
ing the message passing primitives provided by the
PVM system [1]:

� Central user interface to control the processes be-
ing debugged.

� Simultaneous access to multiple (high-level) client
tools.

� Dynamic attach and detachment of client tools to
the debugging engine.

� Global view of the system being debugged.

� An event trace is collected with minimal infor-
mation to support program replay [10]. This al-
lows reproducible behavior (concerning external
events).

� Support of debugging control commands during a
replay session.

� A checkpoint facility under replay mode will sup-
port execution replay from an intermediate point,
instead of from the beginning of the program only.

DDBG is organized in terms of a distributed col-
lection of daemon processes that cooperate in order
to control multiple/remote debugger instances (called
process-level debuggers), each associated with an in-
dividual application (PVM) process. The architecture
of this tool is illustrated in figure 3, and includes the
following components:

� Debugging interface library.
This library provides full access to all debugging
functionalities of the tool, and implements a trans-
parent communication channel between the client
tool and the main daemon.

� Main daemon.
The main daemon manages all the interactions
between the client processes and the process-
level debuggers, controlling the application pro-
cess components.

� Local daemon(s).
In each node a local daemon works as a gateway
between the main daemon and the process-level
debuggers located in that node.

� Process-level debugger(s).
This is a sequential debugger1 used to control and
inspect a sequential process (component of a dis-
tributed application).

� Text user interface.
A text console, giving the user command line ac-
cess to the debugging functionalities supported by
the DDBG engine [5].

� Graphical user interface.
The X-Windows based graphical user interface
gives access to the DDBG functionalities. It sup-
ports a browser of the processes under debugging,
and a per-process window that display process
variables, that are valid in the current execution
context of the associated process. The refreshment
of the variables values is done on explicit com-
mand, avoiding heavy communication between the
graphical user interface and the main daemon.

1Currently, we are using the GNU “gdb” from Free Software
Foundation.

5

Application

Local Daemon

Process

Local Daemon

Application
Process

DDBG

Main Daemon

Graph. Cons.

Process
DDBG

Text Console

Application

Debugger

Debugger

DDBG libClient Tool

Debugger

Figure 3: The DDBG architecture

DDBG was developed as a distributed developing in-
frastructure with flexibility in mind: in the user-level
debugging commands, in the interfacing to a diversity
of high-level client tools [8, 2, 3, 4, 13], and in the
handling of heterogeneous process-level debuggers. It
shares the latter goal with related systems, namely [7].
Currently there is a working prototype implementing
all of the above functionalities except checkpointing,
which is under development.

5 Integrated testing and debug-
ging

The testing tool allows to identify potential critical
paths and critical sections in the program. The debugger
tool can inspect and control the program behavior, help-
ing in the localization of a program’s bug and its causes.
When composing both tools, one must ensure that the
program will run and behave as expected, i.e. the criti-
cal conditions found with the testing tool will occur.

The composition of the testing and the debugging
tools starts by re-running the program and forcing it to
follow some specific path, ensuring that it will reach
the critical points previously located by the testing tool
and will stop in a consistent state (also called a “global
breakpoint”). Here, one question should be asked:
What to do whenever a global breakpoint is reached?
Two main options have been considered:

� Generate a log file.
This could give a great help in localizing the pro-
gram’s bugs, but another question arises: What
events should be logged? The answer to this ques-
tion is not trivial and depends on the program func-
tionality, current data and the user preferences.

� Support interactive analysis driven by the user.
In this case, when the program stops in a global
breakpoint, the user is allowed to interact with
it, inspecting and/or changing the program state
and variables, making this approach much like the
“conventional interactive debugging”.

We claim that an integrated testing and debugging
environment should provide and use both of the above
presented options simultaneously, allowing the user to
interact with the running program and providing full ac-
cess to the execution history recorded in the log file.
The work presented in this paper reports our experience
on the implementation and use of the last of the above
presented options. There are alose plans to integrate
the DDBG debugger with a monitoring tool, providing
more functionality in the integrated testing and debug-
ging environment.

The DEIPA (Deterministic (re-)Execution and Inter-
active Program Analysis) tool was developed to sup-
port the integration of the STEPS testing tool (see sec-
tion 3) and the DDBG debugging tool (see section 4).
DEIPA acts as an intermediary between those tools, rec-
ognizing and processing the output of the STEPS tool—
the TeSS file—and converting it into (a set of) com-
mands for the DDBG tool. To support this function-
ality, the DDBG capability of having multiple simulta-
neous client tools has been used, by having the DEIPA
tool controlling the execution of all the processes of the
distributed application and having a textual user inter-
face (DDBG console) and/or a graphical user interface
to inspect and change the program state.

The DEIPA tool is mainly composed of 3 modules:
the Console, the Vid Database Manager, and the Re-
player. The architecture of the DEIPA tool and its re-
lations with the STEPS and DDBG tools are presented

6

Process 3

DDBG

TeSS file

DDBG

Vid DBM

Deamon

Console

Replayer

DEIPA

Process 1 Process 2 [. . .]

STEPS Console

Figure 4: DEIPA integration with STEPS and DDBG

in figure 4, and explained below.

� The Console module.
This module acts as the user interface to the
DEIPA tool. Actually, this interface is based on
a console (command-line oriented user interface)2,
from which the user can load a TeSS file and con-
trol the (re-)execution of the sequecnial processes
of the distributed application. The console pro-
vides the user with some basic commands that
are directly used to control program execution,
e.g. load, or that are converted into (a set of) de-
bugging commands and applied to the processes
via the DDBG tool, e.g. step.

� The Vid Database Management module.
During the statical analysis, the STEPS tool al-
ways refers to processes through symbolic iden-
tifiers (this is mandatory, as the processes execu-
tion isn’t real but simulated). During debugging
the processes are really running, and a mapping
between symbolic and the real process identifiers
is required. This module manages this mapping
function, and is composed of 4 sub-modules (the
first two are integrated into the DEIPA tool and the
last two are used by the client processes):

1. SPAWN TABLE parser.
A parser that recognizes the syntactical struc-
ture of the SPAWN TABLE section of the
TeSS file and builds a database with the rele-
vant information.

2. Vid database manager.
This sub-module manages the database cre-

2A graphical user interface to comlement this text-oriented user
interface is currently under development.

ated by the above cited parser and updates
some extra fields with the dynamic process
information,e.g. PVM Task Identifiers, when
requested.

3. Vid DBM client functions.
A set of library functions that should be
linked to the client code, providing access
to the Vid Database Manager. This al-
lows the client process to get data from the
database, e.g. get the process Task Identifier
given its Virtual IDentifier, and store data
in the database, e.g. register the Task Iden-
tifier of a new process. This library pro-
vides the interface to the Vid Manager mod-
ule of the DEIPA tool, supporting the map-
ping between STEPS Virtual IDentifiers and
PVM Task Identifiers during program replay,
as well as process status and other informa-
tions.

4. PVM code instrumentation.
An extra module has to be added to the client
source code. It’s an instrumentation library
for PVM code, in order to send registration
messages to the Vid Database Manager when
spawning new PVM tasks. Every time a new
process is spawned, the parent process sends
a message to the Vid Manager with the rele-
vant data needed to the future determination
of a process Task Identifier based in its Vir-
tual IDentifier.

� The Replayer module.
The replayer module is responsible for the map-
ping of console commands into DDBG com-
mands. It’s also responsible for the processes con-

7

trol needed to force a process to follow the specific
path that is specified in the TeSS file.

In order to allow the STEPS and the DEIPA tools
to run in different physical architectures, all the data
transfered between these tools should be architecture
independent, and an option for ASCII file(s) has been
made. In order to provide different types of informa-
tion in the same ASCII file, a specific file format has
been defined [12].

The TeSS file contains all the relevant data (exclud-
ing program source files) necessary to support the de-
terministic replay of the sequential processes of a dis-
tributed application in the PVM environment.

Concerning the interface between STEPS and DEIPA
tools, three sections from the TeSS file are relevant:

1. START FILE.
The STEPS tool assumes that the distributed ap-
plication has a root process, which will start all
other application processes. This information is
redundant, as the file for the root process is also de-
clared in the SPAWN TABLE section of the TeSS
file (see below) with special values in some of its
fields, but it eliminates the need of an extra analy-
sis of the SPAWN TABLE.

2. SPAWN TABLE.
The SPAWN TABLE section of the TeSS file spec-
ifies the parental relation between processes, as
well as part of the information needed to map
the Virtual IDentifiers in real Process Identifiers.
Some extra fields are also available for each pro-
cess, in order to verify the validity of the source
files. These files are not included in the TeSS file,
as they can be corrupted or may have been changed
between the generation of the TeSS file and the
program replaying phase.

3. INITIAL.
This section defines a sequence of global break-
points. A global breakpoint consist of a set of sub-
breakpoints, one for each running process of the
distributed application being tested. They will be
used to control the distributed application behav-
ior (i.e. the path to be followed by each application
process).

6 Further Work

Besides the work already done, some improvements
to the individual tools and the integrated system are
planned, such as:

� Automatization of selected testing activities like
data generation and generation of simple testing
scenarios.

� A database of behaviors of programs with typical
bugs injected.

� Development of a testing methodology.

� Integration of DDBG with a monitoring tool, such
as Tape/PVM [11].

� Development of full functional GUI for DDBG
and DEIPA tools.

� Perform further testing and debugging of the soft-
ware!

7 Conclusions

The use of the STEPS tool complemented with the si-
multaneous use of both DEIPA and DDBG consoles
provides the user with a very flexible and powerful en-
vironment to locate potential and real program bugs,
through the symbolic analysis of the source files and
the controlled execution and inspection of the running
processes.

The TeSS file is generated by the STEPS tool and
can be loaded into the DEIPA tool environment using
its console. Using the same DEIPA console, the pro-
gram can be started and ran until a global breakpoint is
reached. As each global breakpoint is reached, the user
can refresh the information available in the graphical in-
terface and/or switch to the DDBG console to analyze
in further detail any of the processes under debugging,
e.g. by inspecting their program stacks and/or by read-
ing/setting local and global variables, or step into the
next global breakpoint.

If some unexpected behavior is found and its causes
are determined, it is possible to correct the problem
and close the testing/debugging development cycle, by
restarting the analysis with the STEPS tool.

Considering the relevance of the static and dynamical
analysis made by the STEPS tool and reflected in the
TeSS file, the DEIPA tool has proven to be adequate to

8

partially execute the distributed application and to force
it to follow the pre-determined path.

The functionality obtained using both consoles to-
gether, the DEIPA and DDBG consoles, is a major im-
provement over the traditional debugging of distributed
application based in a collection of sequential indepen-
dent debuggers, as it is possible to know what the pro-
gram flow will be before its execution.

Acknowledgments

This work was partially supported by the EC within
COPERNICUS Programme, Research Projects SEPP
(Contract CIPA-C193-0251) and HPCTI (Contract CP-
93-5383).

References

[1] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek,
and V. S. Sunderam. A User’s Guide to PVM Parallel
Virtual Machine. Technical Report ORNL/TM-118266,
Oak Ridge National Laboratory, USA, 1991.

[2] J. Cunha and J. Lourenço. An Experiment in Tool Inte-
gration: the DDBG Parallel and Distributed Debugger.
Technical report, Departamento de Informática da Uni-
versidade Nova de Lisboa, Portugal, Oct. 1996.

[3] J. C. Cunha, J. Lourenço, and T. Antão. A Debug-
ging Engine for a Parallel and Distributed Environment.
In Proceedings of DAPSYS’96, 1st Austrian-Hungarian
Workshop on Distributed and Parallel Systems, pages
111–118, Misckolc, Hungary, Oct. 1996.

[4] J. C. Cunha, J. Lourenço, and T. Antão. A Distributed
Debugging Tool for a Parallel Software Engineering
Environment. In ONERA, editor, EPTM’96, 1st Eu-
ropean Parallel Tools Meeting, Chatillon, France, Oct.
1996.

[5] J. C. Cunha, J. Lourenço, and T. Antão. DDBG: A Dis-
tributed Debugger — User’s Guide. Technical report,
Departamento de Informática da Universidade Nova de
Lisboa, Portugal, Aug. 1996.

[6] S. K. Damodaran-Kamal and J. M. Francioni. Testing
Races in Parallel Programs with an OtOt Startegy. In
Proceedings 1994 Int. Symp. on Software Testing and
Analysis, pages 216–227, WA, USA, 1994.

[7] R. Hood. The P2D2 Project: Building a Portable Dis-
tributed Debugger. In Proceedings of the SPDT’96:
SIGMETRICS Symposium on Parallel and Distributed
Tools. ACM, May 1996.

[8] P. Kacsuk, J. Cunha, G. Dózsa, J. Lourenço, T. Fadgyas,
and T. Antão. A Graphical Development and Debug-
ging Environment for Parallel Programs. (To appear in)
Parallel Computing, Elsevier Science, 1997.

[9] H. Krawczyk and B. Wiszniewski. Interactive Testing
Tool for Parallel Programs. In P. C. Chapman & Hal:
I. Jelly, I. Gorton, editor, Software Engineer for Parallel
and Distributed Systems, pages 98–109, London, UK,
1996.

[10] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging
Parallel Programs wirh Instant Replay. IEEE Transac-
tions on Computers, C-36(4), April 1987.

[11] E. Maillet. Issues in Performance Tracing with
Tape/PVM. In Proceedings of the EuroPVM’95, pages
143–148, Lyon, France, 1995.

[12] M. Neyman and J. Lourenço. Integration of STEPS and
DDBG. Technical report, Departamento de Informática
da Universidade Nova de Lisboa, Portugal, July 1996.

[13] S. Winter and P. Kacsuk. Software Engineering for
Parallel Processing. In Proceedings of the 8th Sympo-
sium on Microcomputer and Microprocessor Applica-
tions, pages 285–293, Budapest, Hungary, 1994.

9

