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Abstract. This paper presents an automatic verification technique for
transactional memory Java programs executing under snapshot isolation
level. We certify which transactions in a program are safe to execute un-
der snapshot isolation without triggering the write-skew anomaly, open-
ing the way to run-time optimizations that may lead to considerable
performance enhancements.
Our work builds on a novel deep-heap analysis technique based on sepa-
ration logic to statically approximate the read- and write-sets of a trans-
actional memory Java program.
We implement our technique and apply our tool to a set of micro bench-
marks and also to one benchmark of the STAMP package. We corrob-
orate known results, certifying some of the examples for safe execution
under snapshot isolation by proving the absence of write-skew anomalies.
In other cases our analysis has identified transactions that potentially
trigger previously unknown write-skew anomalies.

1 Introduction

Full-fledged Software Transactional Memory (STM) [18,11] usually provides strict
isolation between transactions and full serializability semantics. Alternative re-
laxed semantics approaches, based on weaker isolation levels that allow transac-
tions to interfere and to generate non-serializable execution schedules, are known
to perform considerably better in some cases. The interference among non-
serializable transactions are commonly known as serializability anomalies [2].

Snapshot Isolation (SI) [2] is a well known relaxed isolation level widely used
in databases, where each transaction executes with relation to a private copy of
the system state — a snapshot — taken at the beginning of the transaction and
stored in a local buffer. All write operations are kept pending in the local buffer
until they are committed in the global state. Reading modified items always refer
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to the pending values in the local buffer. In all cases, committing transactions
obey the general First-Commiter-Wins rule. This rule states that a transaction
A can only commit if no other concurrent transaction B has committed modifi-
cations to data items pending to be committed by transaction A. Hence, for any
two concurrent transactions modifying the same data item, only the first one to
commit will succeed.

Tracking memory operations introduces some overhead, and TM systems run-
ning under serializable isolation level must track both memory read and write
accesses, incurring in considerable performance penalties. Validating transac-
tions in SI only requires to check if any two concurrent transaction wrote at a
common data item. Hence the runtime system only needs to track the memory
write accesses per transaction, ignoring the read accesses, possibly boosting the
overall performance of the transactional runtime, as shown in [7].

Although appealing for performance reasons, the application of SI may lead
to non-serializable executions, resulting in a serializability anomaly called write-
skew. For instance, a write-skew, arises in the following example of two state-
ments running in concurrent transactions

x := x+ y || y := y + x

In this case, it is possible to find a trace of execution that is not serializable and
yields unexpected results. In general, this anomaly occurs when two transactions
are writing on disjoint memory locations (x and y) but are also reading data
that is being modified by the other.

In this paper we present a verification technique for STM Java programs
that statically detects if any two transactions may cause a write-skew anomaly.
The application of the proposed technique may be used to optimize program
execution, by letting memory transactions run in snapshot isolation whenever
possible, and by explicitly requiring the full serializability semantics otherwise.
Our technique performs deep-heap analysis (also called shape analysis) based
on separation logic [16,8] to compute memory locations in the read- and write-
sets for each distinguished transaction in a Java program. The analysis only
requires the specification of the state of the heap for each transaction and is
able to automatically compute loop invariants during the analysis. Our analysis
computes read and write-sets of transactions using heap paths, which capture
dereferences through field labels, choice and repetition.

For instance, a heap path of the form x .(left | right)∗.right describes the access
to a field labeled right , on a memory location reachable from variable x after a
number of dereferences through left or right fields.

We implemented a tool with the proposed techniques, called StarTM, which
allows to analyze Java Bytecode programs extended with STM annotations. To
validate our approach, we tested implementations of a transactional Linked List
and of a transactional Binary Search Tree, and also of a Java implementation
of the STAMP Intruder benchmark [5]. Our results confirm that i) it is possible
to safely execute concurrent transactions of a Linked List under snapshot iso-
lation with noticeable performance improvements, supporting the arguments of



[17]; ii) it is possible to build a transactional insert method in a Binary Search
Tree that is safe to execute under SI; and iii) our automatic analysis of the
STAMP Intruder benchmark found a new write-skew anomaly in the existing
implementation.

We impose some limitations on the programs for which our approach is able
to guarantee the absence of write-skew anomalies. We only support acyclic data
structures, such as tree-like data structures, and only detect write-skews between
pairs of transactions.

The main contributions of this paper are:

– The first program verification technique to statically detect the write-skew
anomaly in transactional memory programs;

– The first technique able to verify transactional memory programs even in
presence of deep-heap manipulation thanks to the use of shape analysis tech-
niques;

– A model that captures fine-grained manipulation of memory locations based
on heap paths;

– An implementation of our technique and the application of the tool to a set
of intricate examples.

The remainder of the paper describes the theory of our analysis technique
and the validation experiments. We start by describing a step-by-step example
of applying StarTM to a simple example in section 2. We then present the core
language, in section 3, and the abstract domain for the analysis procedure in sec-
tion 4. In section 5, we present the symbolic execution of programs against the
abstract state representation. We finalize the paper by presenting some experi-
mental results in Section 6 and comparing our approach with others in Section 7.

2 StarTM by Example

StarTM analyzes Java multithreaded programs that make use of memory trans-
actions. The scope of a memory transaction is defined by the scope of a Java
method annotated with @Atomic, which in our case requires a mandatory argu-
ment with an abstract description of the initial state of the heap. Other methods
called inside a transactional method do not require this initial description, as it
is automatically computed by the symbolic execution.

To describe the abstract state of the heap, we use a subset of separation logic
formulae composed of a set of predicates — among which a points-to (7→) predi-
cate — separated by the special separation conjunction (∗) typical of separation
logic. The user can define new predicates in a proper scripting language and also
define abstraction functions which, in case of infinite state spaces, allows the
analysis to converge. The abstraction function is defined by a set of abstraction
rules as in the jStar tool [9]. The user defined predicates and abstraction rules
are described in separate files and are associated with the transactions’ code by
the class annotations @Predicates and @Abstractions, which receive as argument
the corresponding file names.



1 @Pred icates ( f i l e="list_pred.sl" )
2 @Abst ract ions ( f i l e="list_abs.sl" )
3 pub l i c c l a s s L i s t { pub l i c c l a s s Node{ . . . } . . . }

23 @Atomic ( s t a t e= "| this -> [head:h’]
24 * List(h’, nil)" )
25 pub l i c vo id add ( i n t v a l u e ) {
26 boolean r e s u l t ;
27 Node p rev = head ;
28 Node next = prev . getNext ( ) ;
29 wh i l e ( nex t . ge tVa lue ( ) < v a l u e ) {
30 prev = next ;
31 next = prev . getNext ( ) ;
32 }
33 i f ( nex t . ge tVa lue ( ) != va l u e ) {
34 Node n = new Node ( va lue , nex t ) ;
35 prev . s e tNex t ( n ) ;
36 }
37 }

39 @Atomic ( s t a t e= "| this -> [head:h’]
40 * List(h’, nil)" )
41 pub l i c vo id remove ( i n t v a l u e ) {
42 boolean r e s u l t ;
43 Node p rev = head ;
44 Node next = prev . getNext ( ) ;
45 wh i l e ( nex t . ge tVa lue ( ) < v a l u e ) {
46 prev = next ;
47 next = prev . getNext ( ) ;
48 }
49 i f ( nex t . ge tVa lue ( ) == va l u e ) {
50 prev . s e tNex t ( nex t . getNext ( ) ) ;
51 }
52 }

Fig. 1. Order Linked List code

// list_pred.sl file

/*** Predicate definition ***/
Node(+x,-n) <=> x -> [next:n] ;;

List(+x,-y) <=> x != y /\
( Node(x,y) \/ E z’. Node(x,z’) *

List(z’,y) );;

// list_abs.sl file
/*** Abstractions definition ***/
Node(x, y’) * Node(y’,z)∼∼>List(x, z):

y’ nin context;
y’ nin x;
y’ nin z

;;
...
List(x,y’) * Node(y’,z)∼∼>List(x, z):

y’ nin context;
y’ nin x;
y’ nin z

;;

Fig. 2. Predicates and Abstraction rules of Linked List

We use as running example the implementation of an ordered singly linked
list, adapted from the DeuceSTM [13] samples, shown in Fig. 1. The corre-
sponding predicates and abstractions rules are defined in Fig. 2. The predicate
Node(+x,-y) defined in Fig. 2 by

Node(x, y)⇔ x 7→ [next : y]

is valid if variable x points to a memory location where the corresponding next
field points to the same location as variable y, or both the next field and y point
to nil. Predicate List(+x,-y) defined by

List(x, y)⇔ x 6= y ∧ (Node(x, y) ∨ ∃z′.Node(x, z′) ∗ List(z′, y))

is valid if variables x and y point to distinct memory locations and there is a
chain of nodes leading from the memory location pointed by x to the memory
location pointed by y. The predicate is also valid when both y and the last node
in the chain point to nil.



# Method boolean add(int value)
Result 1:
ReadSet: { this.head.(next )[*A].next.value }
WriteSet >: { }
WriteSet <: { }

Result 2:
ReadSet: { this.head.(next )[*B].next.value }
WriteSet >: { this.head.(next )[*B].next }
WriteSet <: { this.head.(next )[*B].next }

# Method boolean remove(int value)
Result 1:
ReadSet: { this.head.(next )[*C].next.value }
WriteSet >: { }
WriteSet <: { }

Result 2:
ReadSet: { this.head.(next )[*D].next.value , this.head.(next )[*D].next.next}
WriteSet >: { this.head.(next )[*D].next }
WriteSet <: { this.head.(next )[*D].next }

Fig. 3. Sample of StarTM result output for the Linked List example

The modifiers + and - of the predicate parameters indicate that the corre-
sponding parameter points to a memory location respectively inside or outside
of the memory region defined by the predicate. A more precise definition of these
modifiers is presented in Section 4.2.

In Fig. 1, we annotate the add(int) and remove(int) methods as transactions
with the initial state described by the following formula:

| this->[head:h’] * List(h’,nil)

This formula states that variable this points to a memory location that contains
an object of class List , and whose field head points to the same memory location
pointed by the existential variable3 h′, which is the entry point of a list with at
least one element.

StarTM performs an inter-procedural symbolic execution of the program. The
abstract domain used by the symbolic execution is composed by a separation
logic formula describing the abstract heap structure, and the abstract read-
and write-sets. The abstract write-set is defined by two sets: a may write-set
and a must write-set. As the naming implies one over-approximates, and the
other under-approximates the possible real write-set. The abstract read-set is an
over-approximation of the possible real read-set. The read- and write-sets are
defined as sets of heap paths. A memory location is represented by its path, in
terms of field accesses, beginning from some shared variable. We assume that the
parameters of a transactional method and the instance variable this are shared
in the context of that transaction.

3 Throughout this paper we consider primed variables as implicitly existentially quan-
tified.



The sample of the results of our analysis, depicted in Fig. 3, includes two pos-
sible pairs of read- and write-sets for method add(int). The may write-set is de-
noted by label WriteSet> and the must write-set is denoted by label WriteSet<.
The first result has an empty write-set4, and thus corresponds to a read-only
execution of the method add(int), where the heap path in the read-set can be in-
terpreted as follows. The heap path this.head.(next)[*A].next.value asserts
that method add(int) reads the head field from the memory location pointed by
variable this and following the memory location pointed by head it reads the
next field, then for each memory location it reads the next and value fields and
hops to the next memory location through the next field. In the last memory
location accessed it only reads the value field. In general, we can interpret the
meaning of an abstract read-set as all the memory locations represented by the
heap paths present in the read-set and also by their prefixes.

The star (∗) operator has always a label attached, in case of [*A], the label
is A. This label is used to identify the subpath guarded by the star and can be
interpreted, in this case, as A = (next)∗. This label is existentially quantified in
a pair of read- and write-sets.

The second pair of read- and write-sets of method add(int) in Fig. 3 contains
the same read-set and a different write-set. In this case the may and must write-
sets are equal. The heap path this.head.(next)[*B].next asserts that the
next field, of the memory location represented by the path this.head .(next)∗B ,
was written.

It is important to notice that the interpretations of the read- and write-set
are different. In the read-set we consider that all the path prefixes of all heap
path expressions were read, while in the write-set we consider that there was a
single write operation in the last field of each heap path expression.

The may write-set may contain heap paths of the form this.head .(next)∗̄B . In
this case, the interpretation of this expression is that the field next is written in
every memory location represented by the path this.head .(next)∗B . More details
on heap path expressions are given in Section 4.2.

The analysis also originates two possible results for method remove(int). The
first result for this method is similar to the first result for method add(int). In
the second result for method remove(int), the field next is read for all memory
locations including the last memory location where field value was accessed,
since the star label is the same in the two heap path expressions in the read-set.
The write-set is the same as in the add(int) method.

We can now check for the possible occurrence of a write-skew anomaly. We
define a write-skew condition as:

Definition 1 (Abstract Write-Skew). Let T1 and T2 be two transactions,
and let Ri, W>

i and W<
i (i = 1, 2) be their corresponding abstract read-, may

write- and must write-sets. There is a write-skew anomaly if

R1 ∩W>
2 6= ∅ ∧ W>

1 ∩R2 6= ∅ ∧ W<
1 ∩W<

2 = ∅
4 If the context is not ambiguous we will always refer to both the may and must

write-sets.



# Method boolean remove(int value)
Result 2:
ReadSet: { this.head.(next )[*D].next.value , this.head.(next )[*D].next.next }
WriteSet >: { this.head.(next )[*D].next , this.head.(next )[*D].next.next }
WriteSet <: { this.head.(next )[*D].next , this.head.(next )[*D].next.next }

Fig. 4. Sample of StarTM result output for corrected remove(int) method

We will consider that each result (a pair of a read- and a write-set) corresponds to
a single transaction instance. From the above condition we may trivially ignore
the results with an empty write-set. Hence, only result pairs with non-empty
write-sets need to be checked.

We denote the second result of the add(int) method as Tadd, and the second
result of the remove(int) method as Trem. To detect the possible existence of a
write-skew we need to check the following pairs:

(Tadd,Tadd), (Trem,Trem), (Tadd,Trem)

Let’s examine in detail the pair (Tadd,Trem). We simplify the description of the
read-set of each transaction by ignoring the field value, since neither transac-
tions writes to that field and thus we will focus only on interactions with the field
next. We assume that the shared variable this points to the same object in both
transactions, otherwise no conflicts would ever arise. The read- and write-set for
transactions Tadd, and Trem (relative to field next) are

Radd = {this.head , this.head .B , this.head .B .next}
W>
add =W<

add = {this.head .B .next}
Rrem = {this.head , this.head .D , this.head .D .next , this.head .D .next .next}
W>
rem =W<

rem = {this.head .D .next}

Given these read- and write-sets, if an instantiation ofB andD exist that satisfies
the write-skew condition then the concurrent execution of these two transactions
could possibly cause a write-skew anomaly. In this particular case, the assertion
B = D .next , which means that the memory locations represented by B are the
same as the ones represented by D .next , satisfies the write-skew condition.

To correct the list implementation from triggering a write-skew anomaly one
can add the additional write operation next.setNext(null ) between lines 50 and
51 of the code shown in Fig. 1. This write operation, although unnecessary in
terms of the list semantics, is essential to make the list implementation safe
under snapshot isolation as we shall see. Given this new implementation, the
result of the analysis by StarTM is depicted in Fig. 4. Notice that the write-set
has two heap paths describing that the transaction writes the next field of the
penultimate and last memory locations. Now, the new read- and write-set for



e ::= (expression)
x (variables)

| null (null value)
A ::= (assignments)

x := e (local)
| x := y.f (heap read)
| x := fun(~y) (function call)
| x.f := e (heap write)
| x := new (allocation)

b ::= (boolean exp)
e⊕b e (boolean op)

| true | false (bool values)
S ::= (statements)

S ;S (sequence)
| A (assignment)
| if b thenS elseS (conditional)
| while b doS (loop)
| return e (return)
| skip (Skip)

P ::= fun(~x) = S | P (program)

Fig. 5. Core language syntax for programs

transactions Tadd, and Trem (relative to field next) are

Radd = {this.head , this.head .B , this.head .B .next}
W>
add =W<

add = {this.head .B .next}
Rrem = {this.head , this.head .D , this.head .D .next , this.head .D .next .next}
W>
rem =W<

rem = {this.head .D .next , this.head .D .next .next}

In this case, it is not possible to find an instantiation for B and D, such that the
write-skew condition is true. Hence, these transactions can execute concurrently
under SI without ever triggering the write-skew anomaly.

3 Core Language

In this section we define a core language to support our static analysis. We
include the subset of Java that captures essential features such as object creation
(new), field dereferencing (x.f), assignment (x := e), and function invocation
(fun(~x)). The syntax of the language is defined by the grammar in Fig. 5. A
program in this language is a set of function definitions. We do not explicitly
represent transactions nor an entry point in the syntax, and we assume that all
functions are transactions that can be called concurrently.

We assume a countable set of program variables Vars (ranged over by x, y, . . .),
a set of shared variables SVars ⊆ Vars, a countable disjoint set of primed vari-
ables Vars′ (ranged over by x′, y′, . . .), a countable set of locations Locations, and
a finite set of field names Fields. The operational semantics for the language is
defined over configurations of the form 〈s, h, S〉, where s ∈ Stacks is a stack (a
mapping from variables to values), h ∈ Heaps is a (concrete) heap (a mapping



e ::= (expressions)
x, y, . . . ∈ Vars (program variables)

| x′, y′, . . . ∈ Vars′ (existential variables)
| nil (null value)

ρ ::= f1 : e, . . . , fn : e (record)

S ::= e 7→ [ρ] | p(~e) (spatial predicates)
P ::= e = e (pure predicates)
Π ::= true | P ∧Π (pure part)
Σ ::= emp | S ∗Σ (spatial part)

H ::= Π|Σ (symbolic heap)

Fig. 6. Separation logic syntax

from locations to values through field labels).

Values = Locations∪ {nil}
Stacks = (Vars∪Vars′)→ Values

Heaps = Locations ⇀fin (Fields→ Values)

The small step structural operational semantics is the standard for this kind of
imperative language defined by the reduction relation 〈s, h, S〉 =⇒ 〈s′, h′, S′〉.

4 Symbolic States

In the symbolic execution a symbolic state is of the form (H,M,R,W): where H
is a symbolic heap, defined using a fragment of separation logic formulae,M is a
map between variables and heap path expressions, and R and W are read- and
write-sets. The write-set W in our analysis is actually composed by two sets: a
may write-set, denoted byW>, which over-approximates the concrete write-set,
and a must write-set, denoted by W<, which under-approximates the concrete
write-set.

The fragment of separation logic formulae that we use to describe symbolic
heaps is defined by the grammar in Fig. 6. Satisfaction of a formula H by a stack
s and heap h is denoted s, h |= H and defined by structural induction on H in
Fig. 7. There, JpK is as usual a component of the least fixed point of a monotone
operator constructed from a inductive definition set; see [3] for details. In this
heap model a location maps to a record of values. The formula e 7→ [ρ] can
mention any number of fields in ρ, and the values of the remaining fields are
implicitly existentially quantified.

4.1 Symbolic Heaps

Symbolic heaps are abstract models of the heap of the form H = Π|Σ where Π
is called the pure part and Σ is called the spatial part. We use prime variables



s, h |= emp iff dom(h) = ∅
s, h |= x 7→ [f1 : e1, , fn : en] iff h = [s(x) 7→ r] where r(fi) = s(ei) for i ∈ [1, n]

s, h |= p(~e) iff (s(~e), h) ∈ JpK
s, h |= Σ0 ∗Σ1 iff ∃h0, h1. h = h0 ∗ h1 and s, h0 |= Σ0 and s, h1 |= Σ1

s, h |= e1 = e2 iff s(e1) = s(e2)

s, h |= Π1 ∧Π2 iff s, h |= Π1 and s, h |= Π2

s, h |= Π|Σ iff ∃~v′.
(
s(~x′ 7→ ~v′), h |= Π

)
and

(
s(~x′ 7→ ~v′), h |= Σ

)
where ~x′ is the collection of existential variables

in Π|Σ

Fig. 7. Separation Logic semantics

x

Node(x, y)

y x

List(x, y)

y

...

Fig. 8. Graph representation of the Node(x, y) and List(x, y) predicates

(x′1, . . . , x
′
n) to implicitly denote existentially quantified variables that occur in

Π|Σ. The pure part Π is a conjunction of pure predicates which states facts
about the stack variables and existential variables (e.g., x = nil). The spatial
part Σ is the ∗ conjunction of spatial predicates, i.e., related to heap facts. In
separation logic, the formula S1 ∗ S2 holds in a heap that can be split into two
disjoint parts, one of them described exclusively by S1 and the other described
exclusively by S2.

In symbolic heaps, memory locations are either pointed directly by program
variables (e.g., v) or existential variables (e.g., v′), or they are abstracted by
predicates. Predicates are abstractions for the graph-like structure of a set of
memory locations. For example, the predicate Node(x, y), in Fig. 8, abstracts
a single memory location pointed by variable x, while the predicate List(x, y)
abstracts a set of an unbound number of memory locations, where each location
is linked to another location of the set by the next field.

A predicate p(~e) has at least one parameter, from its parameter set, that is
the entry point for reaching every memory location that the predicate abstracts.
We denote this kind of parameter as entry parameters. Also, there is a subset of
parameters that correspond to the exit points of the memory region abstracted
by the predicate. These parameters denote variables pointing to memory loca-
tions that are outside the predicate but the predicate has memory locations
with links to these outsider locations. In Fig. 8 we can observe that the pred-
icate List(x, y) has one entry parameter x and one exit parameter y. Users of



H ::= v | v.P (heap path)
P ::= f | f.P | C∗A.P (subpath)
C ::= f | f “|” C (choice)

SJvKs,h,l = {l′} SJv.P Ks,h,l = SJP Ks,h,l′ where l′ = s(v)

SJfKs,h,l = {l′} SJf.P Ks,h,l = SJP Ks,h,l′ where l′ = h(l, f)

SJC∗.P Ks,h,l = SJf1.C∗.P Ks,h,l ∪ ... ∪ SJfn.C∗.P Ks,h,l ∪ SJP Ks,h,l where C = f1|...|fn

Fig. 9. Heap Path syntax and semantics

StarTM are required to indicate which parameters of a predicate are entry or
exit by prefixing them with the unary operators + and -, denoting entry and
exit respectively. In the definition of our analysis we can query if a parameter
a of a predicate p is of entry or exit type with the δ+

p (a) or δ−p (a) operators
respectively. For the special case of predicate (7→), we always consider that the
variable on its left side is an entry parameter and the variables on its right side
are exit parameters.

4.2 Heap Paths

We are going to represent a memory location as a sequence of fields, starting from
a program variable. If we successively dereference the field labels that appear
in the sequence, we reach the memory location denoted by the sequence. We
call these sequences of field labels, prefixed by a variable name, a heap path. For
instance, the path x .left .right , denotes the memory location that is reachable
by dereferencing the field left of the location pointed by variable x, and by
dereferencing the field right of the location represented by x .left .

We can also represent sequences of field dereferences in a heap path by using
the Kleene star (∗) and choice (|) operators. For instance, the path x .(left | right)∗

denotes a memory location that can be reached by starting on variable x and
then dereferencing either the left or right field on each visited memory location.

The syntax of heap paths is depicted in Fig. 9 and corresponds to a very
restrictive subset of the regular expressions syntax. A heap path always starts
with a variable name (v) followed by sequences of field labels (f), repeating
subpath expressions under a Kleene operator (C∗), and choices of field labels
(C). We syntactically restrict heap paths, with respect to regular expressions,
by only allowing choices of field labels guarded by a Kleene operator, and rep-
etitions of choices of single field labels (not sequences). For instance, the path
x.(left | right∗) is not a valid heap path expression.

Each repeating subpath is always associated with a label. This is used to
identify the subpath guarded by the star and we can rewrite C∗A.P as A.P
where A = C∗. As we shall see later, this label will be used to identify subpath
expressions that denote the same concrete path in the heap. We may also denote
the repetition sequence with a bar on top of the star, e.g., x .C ∗̄A. This will be



Φ(x 7→ [f1 : y, . . . , fn : z], x, y) = x.f1

Φ(p(~i, ~o), x, y) = hp where x ∈~i ∧ δ+p (x) ∧ y ∈ ~o ∧ δ−p (y) ∧ hp = Γ (p, x, y)

Φ(S ∗ S′, x, y) = concat(Φ(S, x, z), Φ(S′, z, y))

where exists path from x to z in S and from z to y in S′

concat(x.P, z.P ′) = x.P.P ′

Fig. 10. Rules for transforming a symbolic heap into a heap path

used to distinguish between different interpretations, of heap path expressions
contained in read- and write-sets.

We now define the semantics of heap paths with relation to concrete stacks
and heaps through function SJHKs,h,l in Fig. 9. According to this definition
a heap path expression denotes the set of all memory locations that can be
reachable by following it in a concrete memory, SJHK ⊆ Locations. Abstract
read- or write-sets are sets of heap paths. We write HPaths for the set of all heap
path expressions.

In the following developments we interpret read-sets, may write-sets, and
must write-sets in three different ways. For read-sets we always consider the
saturation of the read-set with the denotations of all prefixes of its heap-paths.
For must write-sets we consider one under-approximation where a heap-path H
represents exactly one location in the set SJHK. For may write-sets we consider
the over-approximation by saturating the set with the expansion of the ∗̄ repeti-
tion annotation. For instance, a heap path expression x .C ∗̄.f in a may write-set,
denotes write operations on all fields f for all locations of the set SJx .C ∗̄K.

4.3 From Symbolic Heaps to Heap Paths

During the symbolic execution, we generate heap paths based on the information
given by the symbolic heap. Recall that the only information given by the user
to the verification tool is a description of the state at the beginning of the
transaction using a symbolic heap, everything else is inferred.

Given a memory location l pointed by some variable x, if there is a path
in the symbolic heap from some other variable s, where s ∈ SVars, to variable
x, then we can generate a heap path that represents the path from the shared
variable s to the memory location l. Moreover, the computation of a heap path
from the symbolic heap requires a transformation function that given a predicate
and its arguments returns a heap path. In this case, the separation conjunction
operator (∗) corresponds to the concatenation in the heap path. See Fig. 10 for
the whole set of transformation rules. Function concat(x.P, z.P ′) concatenates
the path described by P ′ to the heap path x.P . Note that this concatenation is
sound, given the pre-condition that x.P represents the same memory location
as variable z, which is true in the case above.



The rule for transforming a predicate p(~i, ~o) into a heap path relies on a func-
tion Γ that returns a heap path given a predicate and a pair of variables. A predi-
cate definition can be transformed into a DFA (Deterministic Finite Automaton)
where states correspond to predicates and transitions’ labels correspond to fields.
Then, we can generate a heap path expression, from the automaton, using well
know automata to regular expressions transformation techniques. Consider the
example of a heap path generated for the list segment predicate:

Example 1 (Heap Path of the List Segment Predicate).

List(x, y)⇔ x 6= y ∧
(
x 7→ [next : y] ∨ ∃z′. x 7→ [next : z′] ∗ List(z′, y)

)
Given the List predicate definition, the heap path that represents the memory location
pointed by y reachable from x is:

Γ (List(x, y), x, y) = x .next+A

We abbreviate repeating sequences with at least one field label using symbol +
(e.g. next+). The label A is fresh in the context of the symbolic state where the
heap path is computed. Notice that heap path expressions containing repetitions
and choices are only generated when transforming recursive predicates into heap
paths.

5 Symbolic Execution

Next, we define the symbolic execution for the core language presented in Sec-
tion 3 taking inspiration from [8]. In our case, the symbolic execution defines the
effect of statements on symbolic states composed by a symbolic heap, a path map,
and a read- and write-set. We represent a symbolic state as: 〈H,M,R,W〉 ∈
(SHeaps×(Vars ⇀ HPaths) × Rs×Ws) where SHeaps is the set of all symbolic
heaps, (Vars ⇀ HPaths) is the map between program variables and heap path
expressions, Rs is the set of all read-sets, and Ws is the set of pairs of all may
and must write-sets. We write SStates for denoting the set of all symbolic states.

The path mapM is a map that associates variables to heap path expressions.
In each state of the symbolic execution, a variable x in this map is associated
with a heap path expression that represents the memory location pointed by x.
The purpose of this map is to keep a heap path expression less abstract than the
one that we can capture from the symbolic heap. For instance, in the map, we
may have the information that we only accessed the left field of each node of a
tree, but from the symbolic heap we get the information that we accessed the
left or right fields in each node. The symbolic execution will always maintain
the invariant Sp ⊆ Gp where Sp is the heap path in the path map and Gp is the
heap path from the symbolic heap, for a variable x. The subset relation means
that all paths described by Sp are described by Gp.

Each transactional method is annotated with the @Atomic annotation de-
scribing the initial symbolic heaps for that transaction. The symbolic execution
will analyze only transactional methods and all methods present in the invoca-
tion tree that occurs inside their body. In the beginning of the analysis we have



the specification of the symbolic heaps for each transactional method. An empty
path map and empty read- and write-sets are associated to each initial symbolic
heap, thus creating a set of initial symbolic states for each transactional method.
The complete information for each method is composed by:

– the initial symbolic states, which can be given by the programmer or be
computed by the analysis;

– the final symbolic states resulting from the method’s execution. These final
symbolic states are computed by the analysis and, in the special case of the
transactional methods, are the final result of the analysis.

For each method, given one initial symbolic state, the analysis may produce
more than one symbolic states. The symbolic execution is defined by function
exec that yields a set of symbolic states or an error (>), given a method body
(from Stmt) and an initial symbolic state (from SStates):

exec : Stmt×SStates→ P(SStates) ∪ {>}

To support inter-procedural analysis we also need the auxiliary function spec,
that given a method signature (fun(~x) ∈ Sig), yields a mapping from symbolic
heaps to sets of symbolic states: SHeaps→ P(SStates).

spec : Sig→ (SHeaps→ P(SStates))

For non-transactional methods, called inside transactions, the initial symbolic
state is computed in the course of the symbolic execution, which is inferred from
the symbolic state of the calling context. Recursive functions are currently not
supported by our analysis technique.

5.1 Past Symbolic Heap

In our analysis we need a special kind of predicates, which we call past predicates,
and are denoted as p̂(~e) or x̂7→ [ρ]. The past symbolic heap is composed by
predicates and past predicates. The latter ones have an important role in the
correctness for computing heap paths. Heap paths must always be computed with
respect to the initial snapshot of memory, which is shared between transactions,
and corresponds to the initial symbolic heap. Otherwise we may fail to detect
some shared memory access due to some memory privatization pattern. We
illustrate this problem by means of an example:

Example 2. Given an initial symbolic heap, where x ∈ SVars is a shared variable:

{}|List(x, y) ∗ y 7→ [next : z] ∗ z 7→ nil

The heap paths representing the locations pointed by each variable are:

x ≡ x y ≡ x.(next)+
A z ≡ x.(next)+

A.next



If we update the location pointed by y by assigning its next field to nil we get

{}|List(x, y) ∗ y 7→ [next : nil] ∗ z 7→ nil

After the update, the heap paths representing the locations pointed by x and y
remain the same. However, z is no longer reachable from a shared variable, and
hence, we have lost the information that in the context of a transaction, z is still
a shared memory location subject to concurrent modifications.

This example shows that the heap path representing a memory location, that
is reachable by a shared variable in the beginning of the transaction, must not
be changed by the updates in the structure of the heap. So, in order to compute
the correct heap path we need to use a “past view” of the current symbolic heap.
To get the past view we need past predicates, which are added to the symbolic
heap whenever an update is made to the structure of the heap. In the case of
the previous example, the result of updating variable y would give the following
symbolic heap:

{}|List(x, y) ∗ y 7→ [next : nil] ∗ ŷ7→ [next : z] ∗ z 7→ nil

The past predicate ŷ7→ [next : z] denotes that there was a link between variable
y and z in the initial symbolic heap. Now, if there is a read access to a field of
the memory location pointed by variable z, we compute the heap path of this
location in the past view of the symbolic heap. We define a function that given
a symbolic heap returns the past view of such symbolic heap:

Definition 2 (Past Symbolic Heap). Let Past(H) be the set of past predicates
in H, and NPast(Π|Σ) = {S | Σ = S ∗Σ′ ∧ ¬ hasPastΠ|Σ(S)}. Then we define
the past symbolic heap by

PSH(Π|Σ) , Π|~S∈NPast(Π|Σ) S ∗~Ŝ∈Past(Π|Σ)
Ŝ

This function makes use of the hasPast function to assert if there is already a
past predicate, in the symbolic heap, with the same entry parameters. We define
hasPast as:

Definition 3 (Has Past).

hasPastH(x 7→ [ρ])⇔ H ` x̂7→ [ρ] ∗ true
hasPastH(p(~i, ~o)) ⇔ ∀i ∈~i : δ+

p (i) ∧ ∃i ∈~i : H ` p̂(. . . , i, . . .) ∗ true

The result of the past heap function applied to the previous example is:

PSH({}|List(x, y) ∗ y 7→ [next : nil] ∗ ŷ7→ [next : z] ∗ z 7→ nil)

, {}|List(x, y) ∗ y 7→ [next : z] ∗ z 7→ nil

Which corresponds to the initial symbolic heap of Example 2. Thus we can
calculate correctly the heap paths of the locations pointed by x, y and z.

We also define a function PastOfH(x 7→ [ρ]) that if the symbolic heap H
does not contain a past points-to predicate for a points-to predicate x 7→ [ρ], it
creates a new past predicate x̂7→ [ρ].



〈H,M,R,W, S〉 =⇒ 〈H′,M′,R′,W ′〉 ∨ 〈H,M,R,W, S〉 =⇒ >

I(e) ::= e.f := x | x := e.f

H ` y = nil

〈H,M,R,W, I(y)〉 =⇒ >
(Heap Error)

x′ is fresh

〈H,M,R,W, x := e〉 =⇒ 〈x = e[x′/x] ∧H[x′/x],M[x 7→ M(e)],R,W〉
(Assign)

p = GenP(PSH(H),M, y) M′ = uMap(M,H, y, p)[x 7→ p.f ]
H′ = x = z[x′/x] ∧H[x′/x] x′ is fresh

〈H ∗ y 7→ [f : z],M,R,W, x := y.f〉 =⇒ 〈H′,M′,R∪ {p.f},W〉
(Heap Read)

p = GenP(PSH(H ∗ x 7→ [f : z]),M, x) M′ = uMap(M,H, x, p)
H′ = H ∗ x 7→ [f : e] ∗ PastOfH(x 7→ [f : z])

〈H ∗ x 7→ [f : z],M,R,W, x.f := e〉 =⇒ 〈H′,M′,R,W d {p.f}〉
(Heap Write)

x′ is fresh

〈H,M,R,W, x := new〉 =⇒ 〈H[x′/x] ∗ x 7→ [],M[x 7→ ε],R,W〉
(Allocation)

〈H,M,R,W, return e〉 =⇒ 〈ret = e ∧H,M[ret 7→ M(e)],R,W〉
(Return)

〈H′′,M′,R′,W ′〉 ∈ spec(fun(~z))(H′) H ` H′[~y/~z] ∗Q H′′′ = Q ∗ H′′[~y/~z]
R′′ = R′[~y/~z] W ′′ =W ′[~y/~z] M′′ = uAMap(R′′ ∪W ′′,M,H′′′)

r.P ′ =M′(ret) M′′′ =M′′[x 7→ GenP(PSH(H′′′),M′′, r).P ′]
R′′′ = R∪ {M′′′(v).P | v.P ∈ R′′} W ′′′ =W d {M′′′(v).P | v.P ∈ W ′′}

〈H,M,R,W, x := fun(~y)〉 =⇒ 〈x = ret ∧H′′′,M′′′,R′′′,W ′′′〉
(FCall)

aliasH(x) , {y | H ` x = y} ∪ {x}

uMap(M,H, x, p) , {v 7→ s | v 7→ s ∈M∧ v /∈ aliasH(x)} ∪ {a 7→ p | a ∈ aliasH(x)}

uAMap(V,M,H) , {s | v.P ∈ V ∧ p = GenP(PSH(H),M, v) ∧ s ∈ uMap(M,H, v, p)}

Fig. 11. Operational Symbolic Execution Rules

Definition 4 (Generate Past Predicate).

PastOfH(x 7→ [ρ]) ,

®
emp if hasPastH(x 7→ [ρ])

x̂7→ [ρ] otherwise

5.2 Symbolic Execution Rules

The symbolic execution is defined by the rules shown in Fig. 11.
The rule Assign, when executed in a state 〈H,M,R,W〉 adds the informa-

tion that in the resulting state, x is equal to e. As in standard Hoare/Floyd
style assignment, all the occurrences of x, in H and e, are replaced by a fresh
existential quantified variable x′. We also compute a new path map where we



associate variable x with the heap path of expression e. If e is null then we asso-
ciate variable x with empty ε. The read- and write-set are not changed because
there are no changes in the heap.

The Heap Read rule adds an equality, to the resulting state, between x and
the content of the field f of the location pointed by y. Every time we access
the heap, for reading or writing, we compute a new path map. In this case we
generate a heap path for variable y using the symbolic heap and the current path
map. Note that the heap path generated is computed in the past symbolic heap
as described in Section 5.1. This operation, denoted as GenP, is also responsible
for abstracting the representation of heap paths, we will describe it in detail in
Section 5.4. Given the new computed heap path p we compute a new path map
by associating path p with variable y, and all its aliases. We use function uMap
to perform these operations. Then we associate variable x with the result of the
concatenation of path p, which represents the memory location pointed by y,
with field f . Finally, we add to the read-set the memory access represented by
the heap path p and the field f .

The Heap Write rule denotes an update to the value of field f in the
location pointed by x. Variable x is associated with the generated heap path p
(uMap(M,H, x, p)) in a new path map. The symbolic heap is extended with a
past predicate representing the link between variable x and the record [f : z]
that just ceased to exist. The resulting write-set is extended with the field access
{p.f} (W d {p.f}). The operation W d {p.f}, denotes the adding of {p.f} to
both components of the write set W, to the may write-set W> and to the
must write-set W<. While adding an heap path access p.f to the must write-
set W< is straightforward, adding p.f to the may write-set W> is a bit more
involved. If W> already contains p.f , then we replace all repeating sequences in
p, by repeating sequences of the kind ∗̄. For instance, in the previous example,
if p.f = x .next∗A .next is already in W>, the may write-set after adding p.f
contains x .next ∗̄A .next instead.

When a new memory location is allocated, rule Allocation, and is assigned
to variable x we update the path map entry for variable x with empty (ε).

In the FCall rule, the function spec is used to get the symbolic state
〈H′′,M′,R′,W ′〉 which corresponds to one of the final states of the symbolic
execution of a function fun. The read- and write-set are composed by heap path
expressions, where each expression v.P represents a memory location where vari-
able v is the root of the path. This variable is a root variable in the context of
function fun but in the context of the function that is being analyzed where fun
was invoked, variable v might point to a memory location that is represented by
a heap path expression v′.P ′ where v′ 6= v. This means that a memory location
that is represented by the expression v.P in the context of fun, is represented by
the expression v′.P ′.P in the context of the calling site of fun where v′.P ′ is the
expression that represent the memory location pointed by v in the context of
the calling site. We need to update all heap path expressions of all variables that
are in the returned read- (R′) and write-set (W ′). We use the uAMap function
to iterate over all variables and generate a new heap path expression and update



the path map accordingly. The return value of function fun is assigned to vari-
able x and therefore we update the path map entry for variable x with the heap
path expression that represents memory location pointed by the special return
variable ret in the context of the calling site. In the last step, we merge the read-
and write-sets using the updated path mapM′′′ by concatenating the heap path
M′′′(v) with the remaining path returned from the read- (R′) or write-set (W ′).
The final symbolic heap H′′′ is computed in the typical way for inter-procedural
analysis using separation logic that is by combining the frame of the function
call (in this case Q)5, and the postcondition of the spec H′′ [9].

Since we are not aiming at verifying execution errors, we silently ignore the
symbolic error states (>) produced by Heap Error rule in our analysis.

5.3 Rearrangement Rules

The symbolic execution rules manipulate object’s fields. When these are hidden
inside abstract predicates both Heap Read and Heap Write rules require the
analyzer to expose the fields they are operating on. This is done by the function
rearr defined as:

Definition 5 (Rearrangement).

rearr(H, x.f) , {H′ ∗ x 7→ [f : y] | H ` H′ ∗ x 7→ [f : y]}

5.4 Fixed Point Computation and Abstraction

Following the spirit of abstract interpretation [6] and the jStar work [9] to ensure
termination of symbolic execution, and to automatically compute loop invari-
ants, we apply abstraction on sets of symbolic states. Typically, in separation
logic based program analyses, abstraction is done by rewriting rules, also called
abstraction rules which implement the function abs : SHeaps→ SHeaps. For each
analyzed statement we apply abstraction after applying the execution rules. The
abstraction rules accepted by StarTM have the form:

premises

H ` emp H′ ` emp
(Abstraction Rule)

This rewrite is sound if the symbolic heap H implies the symbolic heap H′. An
example of some abstraction rules, for the List(x, y) predicate, is shown in Fig. 2.

The heap path expressions that are stored in the path map (M) need also
to be abstracted because otherwise we would get expressions with infinite se-
quences of fields. Since the symbolic heap is abstracted we can use it to compute
an abstract heap path expression. The abstraction procedure is done by the
GenP(H,M, v) function. This function receives a symbolic heap H, a path map

5 The frame of a call is the part of the calling heap which is not related with the
precondition of the callee.



compress(f1.f2) = (f1)+A if f1 = f2 where A is fresh

compress(f1.f2) = (f1|f2)+A if f1 6= f2 where A is fresh

compress((C)+C .f1) = (C)+C if f1 ∈ C

compress((C)+C .f1) = (C|f1)+C if f1 /∈ C
compress(f1.f2.P ) = compress(compress(f1.f2).P )

Fig. 12. Compress abstraction function

M, and a variable v for which will be computed the heap path representing the
memory location pointed by such variable.

The heap path stored in the path map M for variable v will be denoted as
S, and the heap path computed from the symbolic heap will be denoted as G.
The analysis will always ensure the invariant that S ⊆ G. This subset relation
means that all paths described by S are also described by G.

The result of this function is a heap path, denoted as E which satisfies the
following invariant: S ⊆ E ⊆ G. Since the symbolic heap is proven to converge
into a fixed point, the heap path E will also converge into a fixed point because
it is a subset of G.

The procedure to compute the path E is based on a pattern matching ap-
proach. Taking G as the most abstract path we generate a pattern from it that
must match in S. This pattern is generated by taking G and substituting all its
repeating sequences with wildcards. For instance, if G = x.(left | right)+

A.right
then the pattern would be Pt = x .α.right where α is a wildcard. We also denote
αG as the subpath in G that is associated to the wildcard α, and in this case,
αG = (left | right)+

A.
We take this pattern and try to apply it to S and check which subpath

expression of S matches the wildcard. For instance, if S = x .left .left .right , then
the wildcard α of pattern Pt = x .α.right will match left .left denoted as αS .
The pattern can only be matched successfully if the wildcard in S (αS) and the
wildcard in G (αG) satisfy the following invariant: αS ⊆ αG, which is the case
in our example.

Now we apply an abstraction operation over the wildcard to generate a
more abstract subpath. We denote this operation as compress and is defined
in Fig. 12. The result of applying the abstraction function to wildcard αS is
compress(αS) = left+

B . Notice that the abstracted subpath satisfies the invariant
αS ⊆ compress(αS) ⊆ αG. Finally, we substitute the wildcards in the pattern
for the computed abstract subpath expressions. In our example we get the final
expression E = x. left+

B .right which is a subset of G.

5.5 Write-Skew Detection

The result of the symbolic execution is a set of symbolic states 〈H,M,R,W〉 for
each transactional method. In this section, we define the write-skew test, which



is based on the abstract read- and write-set (R,W) and on the satisfiability of
the condition of Definition 1 (see example in Fig. 3).

Recall that the interpretation of read-sets contain all prefixes of its heap
paths. Hence, to compute the satisfiability of the write-skew condition we must
compute the set of prefixes of the heap-paths in both read-sets. We define
prefix(x.P ) for a heap path expression x.P as follows:

prefix(P.f) , {P.f} ∪ prefix(P ) prefix(P.C∗A) , {P.C∗A} ∪ prefix(P )

prefix(x.f) , {x.f} prefix(x.C∗A) , {x.C∗A}

and define it for sets of heap paths prefix(R) as

prefix(R) ,
⋃
p∈R

prefix(p).

For instance, the prefixes of the read-set R = {this.head .(next)∗A.next} are:

prefix(R) = {this.head , this.head .A, this.head .A.next}

For the sake of simplicity, we denote repeating sequences by their unique label.
Given the sets, R?1 = prefix(R1), R?2 = prefix(R2), W<

1 , W>
1 , W<

2 , and W>
2 , the

write-skew condition is the following:

R?1 ∩ W>
2 6= ∅ ∧ W>

1 ∩ R?2 6= ∅ ∧ W<
1 ∩ W<

2 = ∅

From this condition we generate a set of (in)equations, on the labels of repeating
sequences, necessary to reach satisfiability. For instance, given the sets:

R? = {this.head , this.head .A, this.head .A.next , this.head .A.next .next}
W> = {this.head .B .next}

The condition R? ∩W> 6= ∅ is satisfied if there is a possible instantiation of A
and B such that:

B .next ≤ A ∨ B = A ∨ B = A.next

In inequation B .next ≤ A, the operator ≤ denotes prefixing, in this case that
B .next is a prefix of A. After generating the (in)equation system on labels (A,
B) needed to satisfy the write-skew condition, we use an SMT solver to check
their satisfiability. The consequence of that result is that a write-skew may occur
between the two transactions being analyzed. Notice that when comparing read-
and write-sets we make the correspondence between concrete paths in the heap
through the unique labels of repeating sequences.

5.6 Soundness

Our approach is sound for the detection of the write-skew anomaly between pairs
of transactions. We argue that, by analyzing the satisfiability test described in



section 5.5, if no write-skew anomaly is detected by our algorithm then there is
no possible execution of the program that contains a write-skew. Our analysis
computes an over-approximation of the concrete read- and write-sets (the may
write-set), and also an under-approximation of the concrete write-set (the must
write-set), for all possible executions of the program.

The question then remains whether an occurrence of a write-skew condition
at runtime is captured by our test. To see this, let’s assume that Rc1, Wc

1 , Rc2,
Wc

2 are concrete, exact read- and write- sets for transactions T1 and T2. Notice
that a write-skew condition occurs between T1 and T2 if

Rc1 ∩Wc
2 6= ∅ ∧ Wc

1 ∩Rc2 6= ∅ ∧ Wc
1 ∩Wc

2 = ∅

Our analysis computes abstract over-approximations of read-sets (R1 and R2),
write-sets (W>

1 andW>
2 ), and under-approximation of write-sets (W<

1 andW<
2 )

related to the concrete read- and write-sets as follows:

Rc1 ⊆ R1, Rc2 ⊆ R2, Wc
1 ⊆ W>

1 , Wc
2 ⊆ W>

2 , W<
1 ⊆ Wc

1 , W<
2 ⊆ Wc

2

These set relations allow us to prove that the condition on abstract sets is implied
by the condition on concrete sets:

(Rc1 ∩Wc
2 6= ∅ ∧ Wc

1 ∩Rc2 6= ∅ ∧ Wc
1 ∩Wc

2 = ∅)⇒
(R1 ∩W>

2 6= ∅ ∧ W>
1 ∩R2 6= ∅ ∧ W<

1 ∩W<
2 = ∅)

Hence we can conclude that if a real write-skew exists in an execution this will
be detected by our test, and this, as consequence, makes our method sound.
The implication above also shows that our method may present false positives:
it may detect a write-skew that will never occur at runtime. This is a classical
unavoidable effect of conservative methods based on abstract interpretation.

6 Experimental Results

StarTM is a prototype implementation of our static analysis applied to Java
byte code, using the Soot toolkit [20] and the CVC3 SMT solver [1]. We applied
StarTM to three STM benchmarks: an ordered linked list, a binary search tree,
and the Intruder test program of the STAMP benchmark. In the case of the list
we tested two versions: the unsafe version called List and the safe version called
List Safe. The List Safe version has an additional update in the remove method
as discussed in Section 2.

Table 1 shows the detailed results of our verification for each transactional
method of the examples above. The results were obtained in a Intel Dual-Core
i5 650 computer, with 4 GB of RAM. We show the time (in seconds) taken by
StarTM to verify each example, the number of lines of code, and the number
of states produced during the analysis. The last column in the table shows the
pairs of transactions that may actually trigger a write-skew anomaly.



Table 1. StarTM applied to STM benchmarks.

Bench. Method Time LOC States Write-Skews

List

add

5

16 2
remove 14 2 (add, remove)
contains 11 1 (remove, remove)
revert 11 4

List Safe

add
6

16 2
-remove 15 2

contains 11 1

Tree
treeAdd

11
21 3

-
treeContains 15 2

Intruder
atomicGetPacket

24
9 2

(atomicProcess,
atomicProcess 173 7
atomicGetComplete 15 2 atomicGetComplete)

The expected results for the two versions of the linked list benchmark were
confirmed by our tool. The tool detects the existence of two write-skew anoma-
lies, in the unsafe version of the linked list, resulting from the concurrent execu-
tion of the add and remove methods. The safe version is proven to be completely
safe when executing all transactions under SI.

In the case of the Tree benchmark, the treeAdd method performs a tree traver-
sal and inserts a new leaf node. StarTM proves that the concurrent execution of
all transactions of the Tree benchmark is safe.

StarTM detects a write-skew anomaly in the Intruder example, which is trig-
gered by the concurrent execution of atomicProcess and atomicGetComplete trans-
actions. This happens when transaction atomicProcess pushes an element into a
stack and transaction atomicGetComplete pops an element from the same stack,
which result on writes on different parts of the memory. However, the Intruder
example is not entirely analyzed, there is a small part of the code that is not ana-
lyzed due to the use of arrays and cyclic data-structures, which are not currently
supported by our tool.

These promising results together with the known performance advantages [7]
support the key idea of using relaxed isolation levels in transactional memory
systems.

7 Related Work

Software Transactional Memory (STM) [18,11] systems commonly implement
the full serializability of memory transactions to ensure the correct execution
of concurrent programs. To the best of our knowledge, SI-STM [17] is the only
existing implementation of a STM using snapshot isolation. This work focuses on
improving the transactional processing throughput by using a snapshot isolation
algorithm. It proposes a SI safe variant of the algorithm, where anomalies are



dynamically avoided by enforcing additional validation of read-write conflicts.
Our approach avoids this validation by using static analysis and correcting the
anomalies before executing the program.

In our work, we aim at providing the serializability semantics under snapshot
isolation for STM and Distributed STM systems. This is achieved by perform-
ing a static analysis of the program and asserting that no SI anomalies will ever
occur when executing a transactional application. This allows to avoid track-
ing read accesses in both read-only and read-write transactions, thus increasing
performance throughput.

The use of snapshot isolation in databases is a common place, and there are
some previous works on the detection of SI anomalies in this domain. Fekete
et al. [10] developed the theory of SI anomalies detection and proposed a syn-
tactic analysis to detect SI anomalies for the database setting. They assume
applications are described in some form of pseudo-code, without conditional (if-
then-else) and cyclic structures. The proposed analysis is informally described
and applied to the database benchmark TPC-C [19] proving that its execution
is safe under SI. A sequel of that work [12], describes a prototype which is able
to automatically analyze database applications. Their syntactic analysis is based
on the names of the columns accessed in the SQL statements that occur within
the transaction.

Although targeting similar results, our work deals with different problems.
The most significant one is related to the full power of general purpose languages
and the use of dynamically allocated heap data structures. To tackle this prob-
lem, we use separation logic [16,8] to model operations that manipulate heap
pointers. Separation logic has been the subject of research in the last few years
for its use in static analysis of dynamic allocation and manipulation of memory,
allowing one to reason locally about a portion of the heap. It has been proven
to scale for larger programs, such as the Linux kernel [4].

The approach described in [15] has a close connection to ours. It defines
an analysis to detect memory independences between statements in a program,
which can be used for parallelization. They extended separation logic formulae
with labels, which are used to keep track of memory regions through an execu-
tion. They can prove that two distinct program fragments use disjoint memory
regions on all executions, and hence, these program fragments can be safely
parallelized. In our work, we need a finer grain model of the accessed memory
regions. We also need to distinguish between read and write accesses to shared
and separated memory regions.

The work in [14] informally describes a similar static analysis to approximate
read- and write-sets using escape graphs to model the heap structure. Our shape
analysis is based on separation logic, and, as far as we understand, heap-paths
give a more fine-grain representation of memory locations at a possible expense
in scalability.

Some aspects of our work are inspired by jStar [9]. jStar is an automatic
verification tool for Java programs, based on separation logic, that enables the
automatic verification of entire implementations of several design patterns. Al-



though our work has some aspect in common with jStar, the properties being
verified are completely different.

8 Concluding Remarks

We describe a novel and sound approach to automatically verify the absence of
the write-skew snapshot isolation anomaly in transactional memory programs.
Our approach is based on a general model for fine grain abstract representation
of accesses to dynamically allocated memory locations. By using this represen-
tation, we accurately approximate the concrete read- and write-sets of memory
transactions, and capture write-skew anomalies as a consequence of the satisfia-
bility of an assertion based on the output of the analysis, the abstract read- and
write-sets.

We present StarTM, a prototype implementation of our theoretical frame-
work, unveiling the potential for the safe optimization of transactional memory
Java programs by relaxing isolation between transactions. Our approach is not
without limitations. Issues that require further developments range from the
generalization of the write-skew condition for more than two transactions, the
support for richer dynamic data structures, to the support for array data types.
Together with a runtime system support for mixed isolation levels, we believe
that our approach can scale up to significantly optimize real-world transactional
memory systems.
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