
A Hardware Approach for Detecting, Exposing and
Tolerating High Level Atomicity Violations

Lois Orosa João Lourenço
CITI — Departamento de Informática

Universidade Nova de Lisboa, Portugal
loisorosa@gmail.com joao.lourenco@fct.unl.pt

1. INTRODUCTION
Multicores are the main trend in computer architecture

to gain performance without exponentially increasing the
power consumption. However, to take advantage of these
new architectures we need parallel programs. Parallel pro-
gramming is challenging mainly because the programmer
has to reason about many threads accessing data concur-
rently, and the data access interleavings are not determinis-
tic, hence unpredictable.
Locks are the most used mechanism to synchronize the

accesses to shared memory. Using coarse-grain locks en-
forces the serialization of large code blocks and hinders per-
formance, and using fine grain locks is a tedious and error
prone process for the programmer that frequently ends up
in deadlocks and other concurrency related errors. An alter-
native to locks is transactional memory, an abstraction for
defining atomic blocks that may be executed speculatively,
making good use of the available cores and solving some of
the problems associated with locks.
In this paper we address a solution for detecting and tol-

erating one of the most typical concurrency bugs: atomicity
violations. More specifically, we address High-Level Atomic-
ity Violations (HLAV). High-level atomicity violations result
from the misspecification of the scope of an atomic block, by
splitting it in two or more atomic blocks which may be inter-
leaved with other atomic blocks. Figure 1 shows an example
of this type of atomicity violation. The intuitive idea behind
HLAV is that if two shared data items (e.g., memory loca-
tions) were both accessed inside an atomic block, they are
interrelated and probably the programmer intention is that
there shall be no interleavings between these two accesses.
Therefore, if (in the same program) this two addresses are
accessed separately in different atomic blocks, an unfortu-
nate interleaving may cause an atomicity violation.
In the context of this paper, a view is the set of identifiers

of the shared data items (e.g., address of memory locations)
accessed in an atomic block, and a view is maximal if it is
not a subset of any other view in that thread [1].
There are software approaches that handle HLAV dynam-

ically [1] and statically [3], but ours is the first addressing the
detection of HLAV by hardware. Other related works ad-
dress the detection and toleration of other types of atomicity
violations, such as asymmetric data races [6], and the detec-
tion of atomicity violations involving one variable (stale val-
ues). Other proposals are more ambitious [4] because their
definition of atomicity violation is wider, but it requires more
complex hardware and software modifications.
We are proposing a simple hardware module to detect, ex-

Figure 1: Example of high level atomicity violation.

pose and tolerate multivariable HLAV. This module is based
on signatures, and may be easily extended to support other
functionalities, such as the detection of asymmetric data
races [6], or code analysis and optimization [7].

The advantages of using our hardware approach are:

• Negligible overhead detecting HLAV, with minimal in-
fluence in the normal flow of the program;

• Exposing mode is useful for both, identifying improb-
able interleavings that cause HLAV, and for providing
a run-time verification of suspicious interleavings.

• In production runs, our module can be used to tolerate
HLAV with low or even negligible performance penalty.

2. A HARDWARE MODULE TO DETECT
HLAV

Unlike software approaches, hardware solutions have to
deal with very limited resources, valuing the good trade-offs
between precision and complexity.

The general scheme for our approach is depicted in Fig-
ure 2. We only keep a bounded number of views per core,
and each core has one local signature1 that keeps track of the
addresses of all memory location accessed in the last atomic
block (the last view) or of the current accesses (if the core
is currently executing an atomic block). When an atomic
block finishes, the signature with the current view is sent to
the HLAV module. Upon reception by the HLAV module,

1A signature may be implemented by a bloom filter.



    

    









    






 


 


























Figure 2: General picture of the module.

 







   

Figure 3: Example of atomicity violation detected
by the module.

the view encoded in the signature is stored in the module’s
internal knowledge base and triggers a new checking phase
for atomicity violations.
The HLAV module keeps a bounded window of the last

views for each core. A larger window per core keeps more
views and improves the precision of the approach, but also
requires more hardware resources.
In Figure 3 we show an example of an atomicity violation

detected by a module with a window of size three (keeping an
history of 3 views). The module already contains two views,
one with (AB) associated to core2 and another with (B)
associated with core1. When the new view (A) associated
with core1 enters the module, it fires the atomic violation
checking process and an atomicity violation is detected due
to the execution of the atomic region accessing AB in core2
in-between the execution of the accesses to (A) and (B) in
core1.
To expose atomicity violations we need to collect informa-

tion and estimate the potential future atomicity violations.
Whenever such a potential AV is identified, we stall a core
with the aim of achieving an interleaving that produces the
bug.
For tolerating atomicity violations, besides collecting in-

formation about potential atomicity violations, we need to
protect data identified as possibly involved in a HLDR. This
protection may benefit from the transactional memory sup-
port by hardware already available in the most recent pro-
cessors.

3. INITIAL EVALUATION
The HLDR detection module was implemented as an ex-

tension to Pin [5], following the algorithm as described in [3],
with a window of five views per core to limit the addition

hardware resources required. This experimental setup al-
lowed to assert the effectiveness of the proposed architecture
and confirmed that we were able to detect the same HLAV
as the software approaches. However, this version of the
module is quite complex, and other more simple approaches
were required.

We have implemented a second version of the algorithm
inspired in colorsafe [4], by coloring the views according with
the relation of their data. Two views have the same color
when they share at least one address. Abstracting the views
using colors allows to simplify the hardware at the expense
of missing some atomicity violations. Unlike colorsafe, the
information for coloring the views is automatically collected
at run-time, hence not needing annotations provided by the
programmer nor by the compiler.

Currently we are implementing a third approach that in-
cludes a new window of maximal views, that keeps the last
maximal views inserted in the module, and that allows to
simplify the hardware and to extend the visibility of the bugs
in some cases. Therefore, the results should be better that
with coloring, because the algorithm is a variant of the first
version [3].

We evaluated our module with Pin [5] and experimented
with several well known benchmarks from the Parsec suite [2],
as well as with a suite of atomicity violations from the lit-
erature [3]. We have simulated the first two versions of the
module described above.

In the parsec benchmarks tested, we did not experiment
any false positives with any of those two versions. However,
in the examples of atomicity violations, we failed to detect
some HLDR when using the coloring strategy.

4. REFERENCES
[1] C. Artho, K. Havelund, and A. Biere. High-level data

races. In Journal of Software Testing, Verification &
Reliability (STVR), page 2003, 2003.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec
benchmark suite: Characterization and architectural
implications. In Proc. of PACT, PACT ’08, pages
72–81, New York, NY, USA, 2008. ACM.

[3] R. J. Dias, V. Pessanha, and J. M. Lourenço. Precise
detection of atomicity violations. In A. Biere, A. Nahir,
and T. Vos, editors, Hardware and Software:
Verification and Testing, volume 7857 of LNCS, pages
8–23. Springer Berlin Heidelberg, 2013.

[4] B. Lucia, L. Ceze, and K. Strauss. Colorsafe:
architectural support for debugging and dynamically
avoiding multi-variable atomicity violations. In
A. Seznec, U. C. Weiser, and R. Ronen, editors, ISCA,
pages 222–233. ACM, 2010.

[5] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building customized program analysis tools with
dynamic instrumentation. In Proc. of PLDI, PLDI ’05,
pages 190–200, New York, NY, USA, 2005. ACM.

[6] S. Qi, N. Otsuki, L. Orosa, A. Muzahid, and
J. Torrellas. Pacman: Tolerating asymmetric data races
with unintrusive hardware. In Proc. of HPCA, pages 1
–12, feb. 2012.

[7] J. Tuck, W. Ahn, L. Ceze, and J. Torrellas. Softsig:
Software-exposed hardware signatures for code analysis
and optimization. In Proc. of ASPLOS, ASPLOS XIII,
pages 145–156, New York, NY, USA, 2008. ACM.


