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Abstract
This paper presents StarTM , an automatic verification tool
for transactional memory Java programs executing under re-
laxed isolation levels. We certify which transactions in a
program are safe to execute under Snapshot Isolation with-
out triggering the write-skew anomaly, opening the way to
run-time optimizations that may lead to considerable perfor-
mance enhancements.

Our tool builds on a novel shape analysis technique based
on Separation Logic to statically approximate the read- and
write-sets of a transactional memory Java program. This
technique is particularly challenging due to the presence of
dynamically allocated memory.

We implement our technique and apply our tool to a set of
intricate examples. We corroborate known results, certifying
some of the examples for safe execution under Snapshot
Isolation by proving the absence of write-skew anomalies. In
other cases we identify transactions that potentially trigger
the write-skew anomaly.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—Parallel program-
ming; D.2.4 [Software Engineering]: Software/Program
Verification—Validation; F.3.2 [Logics and Meanings of
Programs]: Semantics of Programming Languages—Program
analysis

General Terms Languages, Verification, Reliability
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1. Introduction
Full-fledged Software Transactional Memory (STM) [11,
17] usually provide strict isolation between transactions
and full serializability semantics. Alternative relaxed seman-
tics approaches, based on weaker isolation levels that allow
transactions to interfere and to generate non-serializable ex-
ecution schedules, may in some cases perform considerably
better. The interference among non-serializable transactions
are commonly known as serializability anomalies [3]. Snap-
shot Isolation (SI) [3], a relaxed isolation level largely used
in database transactional systems to improve performance,
is an appealing alternative for the STM setting if used under
controlled circumstances. For example, the serializability
anomaly allowed by SI, called the write-skew, arises in the
following example of two statements running in concurrent
transactions

x := x+ y || y := y + x

In this case, it is possible to find a trace of execution that
is not serializable and yields unexpected results. In general,
this anomaly occurs when two transactions are writing on
disjoint memory locations (x and y) but are also reading data
that is being modified by the other.

In this paper we present StarTM , a verification tool for
STM Java programs that statically detects if any two trans-
actions may cause a write-skew anomaly. Such analysis may
be used to optimize code by letting memory transactions run
in snapshot isolation whenever possible, and by explicitly
requiring the full serializability semantics otherwise.

Our tool performs shape analysis [9] based on Separa-
tion Logic [15] to compute memory locations in the read-
and write-sets for each distinguished transaction in a Java
program. Our analysis starts by producing ranges of mem-
ory locations that approximate the read- and write-sets of a
transaction, based on a notion of distance to shared variables.
For instance, a range of the form a.next[1,N : N > M]
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describes the access to field next on all locations reachable
from variable a, in a number of steps between 1 and a num-
ber N that is greater than another number M. These ranges are
then used to approximate the intersection of read- and write-
sets for the numbers N and M. For this, we resort to an SMT
solver with arithmetic theory.

We ran our tool against implementations of a Linked List
and a Binary Search Tree, and also against a Java imple-
mentation of the STAMP [6] Intruder benchmark. Our re-
sults confirm that i) it is possible to safely execute concurrent
transactions of a Linked List under Snapshot Isolation with
noticeable performance improvements, supporting the argu-
ments of [16]; ii) it is possible to build a transactional insert
method in a Binary Search Tree that is safe to execute under
SI; and iii) the verification of the STAMP Intruder bench-
mark proved to trigger the write-skew anomaly.

The main contributions of this paper are:

• The first automatic verification technique to statically
detect the write-skew anomaly in transactional memory
programs;
• The first approach able to verify transactional memory

programs even in presence of deep-heap manipulation
thanks to the use of shape analysis techniques;
• We develop a model that captures fine-grained manipula-

tion of memory locations based on a range of distances
to shared variables;
• We have implemented our technique and we have applied

our tool to a set of intricate examples. The experimental
results are very promising.

The remainder of the paper describes the development,
implementation and validation process of our tool. We start
by describing a step-by-step example of applying StarTM to
a simple example in section 2. We then present the core lan-
guage, in section 3, and the abstract domain for the analysis
procedure in section 4. In section 5, we present the symbolic
execution of programs against the abstract state representa-
tion. We finalize the paper by presenting some experimental
results in Section 6 and comparing our approach with others
in Section 7.

2. StarTM by Example
StarTM analyzes Java multithreaded programs that make use
of memory transactions. Transactions are defined by a Java
method annotated with @Atomic, which in our case requires
a mandatory argument with an abstract description of the ini-
tial state of the heap. Methods called inside a transactional
method do not require this initial description, as it is auto-
matically computed by the symbolic execution.

To describe the abstract state of the heap, we use a sub-
set of Separation Logic formulae composed by a set of
predicates — among which a points-to (7→) predicate —
separated by the special separation conjunction (∗) typi-

1 @Pred icates ( f i l e="list_pred.sl" )
2 @Abst ract ions ( f i l e="list_abs.sl" )
3 pub l i c c l a s s L i s t {
4

5 pub l i c c l a s s Node {
6 i n t v a l u e ;
7 Node next ;
8 Node ( i n t v , Node n ) { v a l u e = v ; nex t = n ;}
9 i n t ge tVa lue ( ) { r e t u r n v a l u e ;}

10 Node getNext ( ) { r e t u r n next ;}
11 vo id s e tNex t (Node n ) {next = n ;}
12 }
13

14 p r i v a t e Node head ;
15

16 pub l i c L i s t ( ) {
17 Node min = new Node ( I n t e g e r .MIN VALUE ) ;
18 Node max = new Node ( I n t e g e r .MAX VALUE) ;
19 min . nex t = max ;
20 head = min ;
21 }
22

23 @Atomic ( s t a t e=
24 "| this -> [head:h’] * List(h’, nil)" )
25 pub l i c vo id add ( i n t v a l u e ) {
26 boolean r e s u l t ;
27 Node p r e v i o u s = head ;
28 Node next = p r e v i o u s . getNext ( ) ;
29 wh i l e ( nex t . ge tVa lue ( ) < v a l u e ) {
30 p r e v i o u s = next ;
31 next = p r e v i o u s . getNext ( ) ;
32 }
33 i f ( nex t . ge tVa lue ( ) != va l u e ) {
34 Node n = new Node ( va lue , nex t ) ;
35 p r e v i o u s . s e tNex t ( n ) ;
36 }
37 }
38

39 @Atomic ( s t a t e=
40 "| this -> [head:h’] * List(h’, nil)" )
41 pub l i c vo id remove ( i n t v a l u e ) {
42 boolean r e s u l t ;
43 Node p r e v i o u s = head ;
44 Node next = p r e v i o u s . getNext ( ) ;
45 wh i l e ( nex t . ge tVa lue ( ) < v a l u e ) {
46 p r e v i o u s = next ;
47 next = p r e v i o u s . getNext ( ) ;
48 }
49 i f ( nex t . ge tVa lue ( ) != va l u e ) {
50 p r e v i o u s . s e tNex t ( nex t . getNext ( ) ) ;
51 next . s e tNex t ( n u l l ) ;
52 }
53 }
54 }

Figure 1. Order Linked List code.

cal of separation logic. The user can define new predicates
in a proper scripting language and also define an abstrac-
tion function which, in case of infinite state spaces, allows
the convergence of the analysis algorithm. The abstraction
function is defined by a set of abstraction rules as in the
jStar tool [8]. The user defined predicates and abstraction
rules are defined in separate files and are associated with the
transactions’ code by the class annotations @Predicates and
@Abstractions, which receive as argument the correspond-
ing file names.

We use as running example the implementation of an
ordered singly linked list, adapted from the DeuceSTM [13]
samples, shown in Figure 1. The corresponding predicates
and abstractions rules are defined in Figure 2. Predicate
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// list_pred.sl file

/*** Predicate definition ***/
Node(+x,-n) <=> x -> [next:n] ;;

List(+x,-y) <=> x != y /\
( Node(x,y) \/ E z’. Node(x,z’) * List(z’,y) );;

/*** Lengths ***/
dist Node(x,n) : n -> x = 1 ;;
dist List(x,y) : y -> x = N : N > 0 ;;

// list_abs.sl file

/*** Abstractions definition ***/
Node(x, y’) * Node(y’,z) ∼∼> List(x, nil) :

y’ nin context;
y’ nin x;
y’ nin z;
z = nil

;;
...
List(x,y’) * Node(y’,z) ∼∼> List(x, z) :

y’ nin context;
y’ nin x;
y’ nin z;
z = nil

;;
...

Figure 2. Predicates and Abstraction rules of Linked List

# Method boolean add(int value)
Result 1:
ReadSet: { this.head[0, 0],

this.next[1, 1+N : N > 0],
this.value[2, 1+N+1 : N > 0] }

WriteSet: { }

Result 2:
ReadSet: { this.head[0, 0],

this.next[1, 1+N : N > 0],
this.value[2, 1+N+1 : N > 0] }

WriteSet: { this.next [1+N, 1+N : N > 0] }

# Method boolean remove(int value)
Result 1:
ReadSet: { this.head[0, 0],

this.next[1, 1+N : N > 0],
this.value[2, 1+N+1 : N > 0] }

WriteSet: { }

Result 2:
ReadSet: { this.head[0, 0],

this.next[1, 1+N+1 : N > 0],
this.value[2, 1+N+1 : N > 0] }

WriteSet: { this.next [1+N, 1+N+1 : N > 0] }

Figure 3. Sample of StarTM result output for the Linked List
example.

Node(+x,-y) defined in Figure 2 by

Node(x, y)⇔ x 7→ [next : y]

is valid if variable x points to a memory location where
the corresponding next field points to the same location as
variable y, or both the next field and y point to nil. Predicate

List(+x,-y) defined by

List(x, y)⇔ x 6= y

∧ (Node(x, y) ∨ ∃z′.Node(x, z′) ∗ List(z′, y))

is valid if variables x and y point to different memory loca-
tions and there is a chain of nodes leading from the memory
location pointed by x and the memory location pointed by y.
It can also be the case where both y and the last node in the
chain point to nil.

The modifiers + and - of the predicate parameters indi-
cate that the corresponding parameter points to a memory
location respectively inside or outside of the memory region
defined by the predicate. A more precise definition of these
modifiers is presented in Section 4.2.1. In Figure 1, we an-
notate the add(int) and remove(int) methods as transactions
with the initial state:

| this->[head:h’] * List(h’,nil)

This formula states that variable this points to a memory
location that contains an object of class List , and whose
field head points to the same memory location pointed by
the existential variable1 h′, which is the entry point of a list
with at least one element.

StarTM performs an intra-procedural symbolic execution
of the program. The abstract domain used by the symbolic
execution is composed by a separation logic formula de-
scribing the abstract heap structure, and the abstract read-
and write-sets. On every step of the symbolic execution a
new abstract state is computed. The read- and write-sets are
defined as sets of memory location intervals (or ranges).
A memory location is represented by its distance to some
shared variable, where the distance corresponds to the num-
ber of dereferences necessary to reach that memory location
from the shared variable.

The sample of the results of our analysis, depicted in
Figure 3, include two possible pairs of read- and write-sets
for method add(int). The first result has an empty write-
set, and thus corresponds to a read-only execution of the
method add(int), where the ranges in the read-set can be
interpreted as follows. The range this.head[0, 0] asserts
that method add(int) reads the field head from the memory
location pointed by shared variable this , as the distance in
this range is 0. The range this.next[1, 1+N : N > 0]
asserts that the field next is read on all memory cells at a
distance between 1 and 1 + N , starting from the shared
variable this , for some numberN ∈ N. Notice that the scope
of N is delimited by the pair of read- and write-sets within
the same result. Range this.value[1, 1+N+1 : N > 0]
is similar to the previous range. The second pair of read-
and write-sets of method add(int) in Figure 3 contain the
same read-set and a different write-set. In this case, range

1 Throughout this paper we consider primed variable as tacitly existentially
quantified.
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this.next[1+N, 1+N : N > 0] asserts that the method
add(int) updates the field next of the memory location which
is at a distance of 1 +N from variable this .

The analysis also originates two possible results for
method remove(int). The first result for this method is similar
to the first result for method add(int). Note that N is distinct
for each pair of read- and write-sets. In the other result for
method remove(int), field next is read for all memory loca-
tions whose distance to shared variable this is between 1 and
1 +N + 1. In the case of the write-set, field next is updated
for memory locations whose distance to shared variable this

is 1 +N and 1 +N + 1. Notice that the two update accesses
identified in the write-set correspond to the lines 50 and 51
in Figure 1. The update operation in line 51, although un-
necessary in terms of the list semantics, is essencial to make
the Linked List implementation safe under Snapshot Isola-
tion. The precise justification for this claim is laid out in the
remainder of this section.

We can now check for the possible occurrence of a write-
skew anomaly. We define a write-skew condition as:

Definition 1 (Write-Skew). Let T1 and T2 be two distinct
concurrent transactions, and let Ri and Wi (i = 1, 2) be
their corresponding read- and write-sets. There is a write-
skew anomaly if

R1 ∩W2 6= ∅ ∧ W1 ∩R2 6= ∅ ∧ W1 ∩W2 = ∅

We will consider that each result (a pair of a read- and
a write-set) corresponds to a single transaction instance. In
this example we have four possible transactions, and we
use Tadd1 and Tadd2 to denote the first and second result
of method add(int); and Trem1 and Trem2 to denote the
first and second possible results of method remove(int). To
detect a write-skew anomaly we compare all possible pairs
of transactions including the ones that contain a transaction
in concurrency with itself. In this case we need to test the
following pairs:
(Tadd1 ,Tadd1), (Tadd1 ,Tadd2), (Tadd2 ,Tadd2),
(Trem1 ,Trem1), (Trem1 ,Trem2), (Trem2 ,Trem2),
(Tadd1 ,Trem1), (Tadd1 ,Trem2), (Tadd2 ,Trem1), and
(Tadd2 ,Trem2).
The number of pairs to be analyzed can be significantly re-
duced because some pairs are trivially safe, meaning that
they will not trigger a write-skew anomaly. Since transac-
tions Tadd1 and Trem1 are read-only, we do not need to test
pairs that contain any of these transactions. We need only to
test the pairs:
(Tadd2,Tadd2), (Trem2,Trem2) and (Tadd2,Trem2)
In the cases above, the write-skew condition is not satisfiable.
As an example we examine in detail the pair (Tadd2 ,Trem2).
We will only consider the intersection of intervals associated
with the next field because these transactions never write
on the value field. We assume that the shared variable this

points to the same object in both transactions, otherwise
no conflicts would ever arise. The read- and write-set for

transactions Tadd2 , and Trem2 (relative to field next) are

Radd2 = [1, 1 +N ] where N ∈ N
Wadd2 = [1 +N, 1 +N ] were N ∈ N
Rrem2 = [1, 2 +M ] where M ∈ N
Wrem2 = [1 +M, 2 +M ] were M ∈ N

Given theses read- and write-sets, it is not possible to find
two numbers N and M , such that the write-skew condition
is true, hence these transaction can execute concurrently
without ever triggering a write-skew anomaly.

If we consider the case of the code in Figure 1, with-
out the update in line 51 (irrelevant to the semantics of the
remove operation). The write-set resulting from the analy-
sis is this.next[1+N, 1+N : N > 0]. The read-set is the
same as before. Hence, the read- and write-sets to test satis-
fiability are:

Radd2 = [1, 1 +N ] where N ∈ N
Wadd2 = [1 +N, 1 +N ] were N ∈ N
Rrem2 = [1, 2 +M ] where M ∈ N
Wrem2 = [1 +M, 1 +M ] were M ∈ N

In this case, if we consider N = 2 and M = 1, the write-
skew condition holds, and hence the concurrent execution
of the two transactions could possibly cause a write-skew
anomaly.

3. Core Language
In this section we define a core language to support our static
analysis. We include the subset of Java that captures essen-
cial features such as object creation (new), field dereferenc-
ing (x.f ), assignment (x := e), and function and procedure
invocation (func(~x) and proc(~x)). The syntax of the lan-
guage is defined by the grammar in Figure 4. A program in
this language is a set of procedure and function definitions.
We do not explicitly represent transactions or an explicit en-
try point in the syntax and we assume that all procedures are
transactions that can be called concurrently.

The operational semantics for the language is defined
over configurations of the form 〈s, h, S〉, where s ∈ Stacks
is a stack (a mapping from variables and primed variables
to values), h ∈ Heaps is a (concrete) heap (a mapping from
locations to values through field labels). We assume given
a countable set of program variables Vars (ranged over by
x, y, . . .).

Stacks = Vars→ Values

Heaps = Locations ⇀ Fields→ Values

Values = Z ∪ Locations∪ {nil}

We define a semantic function A : Exp → Stacks →
Values to evaluate expressions, where ⊕a represents the
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e ::= (expression)
x (variables)

| n (constant)
| e⊕a e (arithmetic op)
| null (null value)

b ::= (boolean exp)
e⊕b e (boolean op)

| true (true value)
| false (false value)

A ::= (assignments)
x := e (local)

| x := y.f (heap read)
| x := func(~y) (function call)
| x.f := e (heap write)
| x := new (allocation)

S ::= (statements)
S ;S (sequence)

| A (assignment)
| proc(~y) (procedure call)
| if b thenS elseS (conditional)
| while b doS (loop)
| return e (return)
| skip (Skip)
| error (Error)

P ::= func(~x) = S | proc(~x) = S | P (program)

Figure 4. Core language syntax

arithmetic binary operations +,−,×, . . .

AJeKs =


n, if e = n

s(x), if e = x

nil, if e = null

AJe1Ks ⊕a AJe2Ks, if e = e1 ⊕a e2

Likewise, boolean expressions are evaluated according to the
semantic function B : BExp → {true, false}, where ⊕b

represents the boolean binary operations =, 6=, <,≤, . . .

BJbKs =


true, if b = true

false, if b = false

AJe1Ks ⊕b AJe2Ks, if b = e1 ⊕b e2

The small step structural operational semantics of the lan-
guage is defined by the set of rules in Figure 5.

4. Abstract Domain
The abstract domain used in the symbolic execution is de-
fined as a set of triples of the form (H,R,W): whereH is a
symbolic heap, defined using a fragment of separation logic
formulae, andR andW are read- and write-sets.

The fragment of separation logic formulae that we use to
describe symbolic heaps is defined by the grammar in Fig-
ure 6. The corresponding semantics is given by a satisfaction
relation |= between a concrete stack, a concrete heap and a
symbolic heap s, h |= H, and sample clauses of the seman-
tics appear in Figure 7.

4.1 Symbolic Heaps
Symbolic heaps are abstract models of the heap of the form
H = Π|Σ where Π is called the pure part and Σ is called
the spatial part. We use prime variables (x′1, . . . , x

′
n) to

implicitly denote existentially quantified variables that occur
in Π|Σ. The pure part Π is a conjunction of pure predicates
which states facts about the stack variables and existential

e ::= (expressions)
x, y, . . . ∈ Vars (program variables)

| x′, y′, . . . ∈ Vars′ (primed variables)
| nil (null value)

ρ ::= f1 : e, . . . , fn : e (record)

S ::= e 7→ [ρ] | p(~e) | p̂(~e) | junk (spatial predicates)
P ::= e = e (pure predicates)
Π ::= true | P ∧Π (pure part)
Σ ::= emp | S ∗ Σ (spatial part)

H ::= Π|Σ (symbolic heap)

Figure 6. Separation logic syntax

JxKs = s(x) Jx′Ks = s(x′) JnilKs = nil

s, h |= emp iff dom(h) = ∅
s, h |= x 7→ [f1 : e1, . . . , fn : en] iff dom(h) = {JxKs 7→ r}

where r(fi) = JeiKs for i ∈ [1, n]

s, h |= p(~e) iff (s(~e), h) ∈ JpK

s, h |= junk iff dom(h) 6= ∅
s, h |= Σ0 ∗ Σ1 iff ∃h0, h1. h = h0 ∗ h1

and s, h0 |= Σ0 and s, h1 |= Σ1

s, h |= e1 = e2 iff Je1Ks = Je2Ks

s, h |= Π1 ∧Π2 iff s, h |= Π1 and s, h |= Π2

s, h |= Π|Σ iff s, h |= Π and s, h |= Σ

Figure 7. Separation Logic semantics

variables (e.g., x = nil), but are not concerned with heap
allocated objects. The spatial part is the ∗ conjunction of
spatial predicates, i.e., related to heap facts. In separation
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〈s, h, S〉 =⇒ 〈s′, h′, S′〉

〈s, h, S1〉 =⇒ 〈s′, h′, S′1〉
〈s, h, S1 ; S2〉 =⇒ 〈s′, h′, S′1 ; S2〉

(SEQ 1)

〈s, h, S1〉 =⇒ 〈s′, h′, skip〉
〈s, h, S1 ; S2〉 =⇒ 〈s′, h′, S2〉

(SEQ 2)

BJeKs = true

〈s, h, if e then S1 else S2〉 =⇒ 〈s, h, S1〉
(COND 1)

BJeKs = false

〈s, h, if e then S1 else S2〉 =⇒ 〈s, h, S2〉
(COND 2)

BJeKs = true

〈s, h, while e do S〉 =⇒ 〈s, h, S ; while e do S〉
(LOOP 1)

BJeKs = false

〈s, h, while e do S〉 =⇒ 〈s, h, skip〉
(LOOP 2)

P (proc) = (~x)S S′ = S
{

~y/~x
}

〈s, h, proc(~y)〉 =⇒ 〈s, h, S′〉
(PCALL)

AJeKs = v

〈s, h, return e〉 =⇒ 〈s[ret 7→ v], h, skip〉
(RETURN)

AJeKs = v

〈s, h, x := e〉 =⇒ 〈s[x 7→ v], h, skip〉
(ASSIGN)

s(y) = l l ∈ dom(h) h(l)(f) = v

〈s, h, x := y.f〉 =⇒ 〈s[x 7→ v], h, skip〉
(HEAP READ)

s(x) = l l ∈ dom(h) AJeKs = v

〈s, h, x.f := e〉 =⇒ 〈s, h[l 7→ f 7→ v], skip〉
(HEAP WRITE)

P (func) = (~x)S S′ = S
{

~y/~x
}

〈s, h, x := func(~y)〉 =⇒ 〈s, h, S′; x := ret〉
(FCALL)

l /∈ dom(h) l 6= nil

〈s, h, x := new〉 =⇒ 〈s[x 7→ l], h[l 7→ ]〉
(ALLOCATION)

Figure 5. Structural operation semantics

logic, the formula

S1 ∗ S2

holds in a heap that can be split into two disjoint parts where
in one of them the only allocated memory is described by S1

and in the other only by S2.
We use a field splitting model [8], i.e., in our model,

objects are considered to be a compound entities composed
by fields which can be split by ∗. Notice that if S1 and S2

describe the same field of an object than S1 ∗ S2 implies
false . We call SHeaps to the set of all valid symbolic heaps.

4.2 Memory Representation
The concrete read-/write-sets of a transaction is a set of ac-
tual memory locations which are accessed for reading/writ-
ing during its execution. In our work, we want to statically
determine the read- and write-sets of memory transactions
which are impossible to compute at compile time. Hence,
we need to find a suitable memory representation based on
static information.

We start by only describing memory locations that are
accessible (shared) by different threads, which means that
they are reachable starting from some shared variable. We
define shared memory reachability in a concrete stack and a
concrete heap as follows:

Definition 2 (Memory Reachability). Given a state s ∈
Stacks and a heap h ∈ Heaps, we define ReachS(s,h)(l) and

ReachHh(l′, l) as

ReachS(s,h)(l) , ∃ v ∈ dom(s), l′ ∈ dom(h) :

shared(v) ∧ s(v) = l′ ∧ ReachHh(l′, l)

ReachHh(l′, l) , ∃f ∈ Fields :

h(l′)(f) = l ∨ (h(l′)(f) = l′′ ∧ ReachHh(l′′, l) )

For the sake of simplicity consider that shared(v) is always
known for any program. We represent a shared memory lo-
cation, allocated at runtime, by a pair with a shared variable
and a field path. A field path is a sequence of fields that is
used to reach the memory location. A memory location di-
rectly pointed by a shared variable has an empty field path.

Definition 3 (Field Path). A field path is a sequence of fields,
which is represented as 〈f1, f2, . . . , fn〉, and is calculated using
the following function:

FPathh(l, l′) ,


〈〉 if l = l′

〈f〉 ∪ FPathh(l′′, l′) if l 6= l′ ∧ ∃f ∈ Fields

h(l)(f) = l′′

For the sake of comprehension we are not considering mul-
tiple paths from one shared variable to some shared loca-
tion, although that may happen in reality. If that is the case
we always pick the path with maximum length. A shared
location is then identified by a set of pairs, of the form
(v, 〈f1, . . . , fn〉), for each shared variable v that has a path
to such shared location.
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Figure 8. Graph representation of the List(x, y) predicate.

Considering that the heap may be infinite, a field path
may also have an infinite length. For program analysis pur-
poses a more convenient representation should be used with
the tradeoff of losing some precision. We abstract this rep-
resentation by instead of keeping a field path, we keep the
length of the field path and hence, we represent a memory
location by a set of pairs of the form (v, n) where v is the
shared variable and n is the length of the field path. While
the previous representation uniquely identifies a shared lo-
cation, the new abstract representation may identify two dis-
tinct shared locations at the same time. But with this new
representation it is easy to represent shared locations that
may have a length described as a restriction in the domain of
natural numbers. For instance, (v, n) where n > 3 means a
shared location that has a length of at least 4 from the shared
variable v. We will use this abstract representation to iden-
tify shared locations in our static analysis.

4.2.1 Static Memory Accesses
Since our analysis models the concrete states of execution
using symbolic heaps H = Π|Σ, we have to define the
length of a field path in terms of H. In symbolic heaps,
memory locations are pointed directly by program variables
(e.g., v) or by existencial prime variables (e.g., v′), or are
abstracted inside predicates. Predicates are abstractions of
a set of one or more memory locations and abstract their
graph structure. For example, as depicted in Figure 8, the
List(x, y) predicate abstract a set, of unbound cardinality,
of memory locations where each location is linked to another
location by its next field.

Every predicate p(~e) has a subset of its parameters which
are the entry points for reaching every memory location that
it abstracts. We call these parameters entry parameters, and
every predicate has at least one entry parameter. Also, there
is a subset of parameters that correspond to the exit points
of the memory region abstracted by the predicate. These pa-
rameters denote variables pointing to memory locations that
are outside the predicate but the predicate has memory loca-
tions with links to these outsider locations. In Figure 8 we
can observe that the predicate List(x, y) has one entry pa-
rameter x and one exit parameter y. Users of StarTM are re-
quired to indicate which parameters of a predicate are entry
or exit by using an unary operator as a prefixed of the pa-
rameter. Operators + and - mean entry and exit respectively.
In our formal definitions we can query if a parameter p is of
entry or exit type with the δ+(p) or δ−(p) operators respec-

tively. For the special case of predicate (7→), we consider that
the variable on the left side of (7→) is an entry parameter and
the variables at the right side of (7→) are exit parameters.

Besides defining entry and exit parameters, the user must
specify, for each predicate, the abstract length between each
pair of exit and entry parameters of the predicate. For in-
stance, in the List(x, y) predicate, the user must specify
the abstract length between variable y (exit) and variable x
(entry). This length is semantically equivalent to the length
of the field path presented in the previous section. For the
List(x, y) predicate the user may define that the length be-
tween y and x is n > 0. Meaning that the length of this pred-
icate could be of 1 or more. In the case of the Node(x, y)
predicate, where δ+(x) and δ−(y), the length should be de-
fined as 1. All lengths between pairs of entry parameters are
defined as 0.

During symbolic execution, the same predicate holding
for different parameters in the same symbolic heap, or hold-
ing for the same parameters in different symbolic heaps,
may have different length expressions for the correspond-
ing parameters. This situation occurs due to the use of ab-
stractions [9], which abstract a set of predicates into another
set of predicates. The length expressions of the resulting set
of predicates are recalculated and associated to those predi-
cates. These abstraction computations are described in detail
in Section 5.4.

We denote ∆List(y, x) as the function to retrieve the
length between variable y and x of the predicate List , where
y is an exit parameter δ−(y) and x is an entry parameter
δ+(x). In StarTM the user has to specify, for each predicate
and pair of entry and exit parameters, the corresponding
length. We now define a small language L used to specify
such lengths.

L ::= (Length)
n ∈ N0 (constant)

| N (natural variable)
| L+ L (length sum)

N ::= v[C] (Natural Variable Definition)
C ::= (> | ≥ | =) L (Condition)

A length, in this language, can be a natural constant or
a variable with a domain condition. The domain condition
can be composed by other variables or natural constants.
These variables, are not variables in the sense of traditional
programming languages, this variables are just identifiers
associated with a condition. The only restriction is just we
do not allow the use of the same identifier in a variable
present in a nested condition. An example of a valid length
in this language is:N [≥ 1+M [> 0]]+2. The mathematical
meaning of this expression is the length: ∃N,M ∈ N0 :
2 + N where M > 0 ∧ N ≥ M + 1. During symbolic
execution, the identifiers of these lengths will be generated
according to well defined rules for convergence purposes.
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We can define two notions of length equality. The first one
is based on identifier equality and is defined as follows:

Definition 4 (Identifier Length Equality).

lequalid(n1, n2)⇔ n1 = n2

lequalid(v1[c1], v2[c2])⇔ v1 = v2

lequalid(l1 + l2, l3 + l4)⇔ (lequalid(l1, l3) ∧ lequalid(l2, l4))

∨ (lequalid(l1, l4) ∧ lequalid(l2, l3))

The second notion of equality is defined based on the
structure of the expression meaning that two expressions l1
and l2 of language L are equal if have the same conditions
and constants in the same order.

Definition 5 (Structural Length Equality).

lequal(n1, n2)⇔ n1 = n2

lequal(l1 + l2, l3 + l4)⇔ (lequal(l1, l3) ∧ lequal(l2, l4))

∨ (lequal(l1, l4) ∧ lequal(l2, l3))

lequal(v1[α1 l1], v2[α2 l2])⇔ α1 = α2 ∧ lequal(l1, l2)

where α ∈ [>,≥,=]

For our symbolic execution, we will also need to compare
inequalities between lengths. For instance, given l1 = 1 +
N1[≥ N2[≥ 2] + 1] and l2 = 1 + N2[≥ 2] compare if
l1 ≤ l2. For this purpose we make use of an SMT solver,
and we translate our length expressions in SMT formulae
and check the satisfiability of inequalities.

We may now define the function that calculates the length
of the field path between two variables in a symbolic heapH,
and the function that calculates the length of such path. We
first define a function to test the reachability between two
variables and then we use it to calculate the respective path.

Definition 6 (Reachability).

reachΠ(x 7→ [f1 : x1, . . . , fn : xn], y, z)⇔
Π ` y = x ∧ ∃k ∈ [1, n] : Π ` z = xk

reachΠ(p(~i, ~o), y, z)⇔
δ+(~i) ∧ δ−(~o) ∧ ∃i ∈~i, o ∈ ~o : Π ` y = i ∧Π ` z = o

reachΠ(x 7→ [f1 : x1, . . . , fn : xn] ∗ Σ, y, z)⇔
Π ` y = x ∧ ∃k ∈ [1, n] : reachΠ(Σ, xk, z)

reachΠ(p(~i, ~o) ∗ Σ, y, z)⇔
δ+(~i) ∧ δ−(~o) ∧ ∃i ∈~i, o ∈ ~o : Π ` y = i ∧ reachΠ(Σ, o, z)

reachΠ(Σ, y, z)⇔ false if none of the above conditions are met

Definition 7 (Predicate Path). Returns the predicates that con-
stitute the path between two variables.

pathΠ(x 7→ [f1 : x1, . . . , fn : xn], y, z) ,

{〈x 7→ [f1 : x1, . . . , fn : xn]〉}
if reachΠ(x 7→ [f1 : x1, . . . , fn : xn], y, z)

pathΠ(p(~i, ~o), y, z) , {〈p(~i, ~o)〉} if reachΠ(p(~i, ~o), y, z)

pathΠ(x 7→ [f1 : x1, . . . , fn : xn] ∗ Σ, y, z) ,

x 7→ [f1 : x1, . . . , fn : xn]⊗
{pathΠ(Σ, x1, z), . . . , pathΠ(Σ, xn, z)}

if reachΠ(x 7→ [f1 : x1, . . . , fn : xn] ∗ Σ, y, z)

pathΠ(p(~i, ~o) ∗ Σ, y, z) , p(~i, ~o)⊗ {pathΠ(Σ, o, z)|∀o ∈ ~o}
if reachΠ(p(~i, ~o) ∗ Σ, y, z)

pathΠ(Σ, y, z) , emp if ¬ reachΠ(Σ, y, z)

The function path makes use of the⊗ operator wich joins
the left side predicate with each predicate path in the set of
the right side.

Example 1.

List(x, y)⊗ {〈emp〉, 〈emp〉, 〈Node(y, z)〉}
= {〈List(x, y), emp〉, 〈List(x, y),

emp〉, 〈List(x, y),Node(y, z)〉}
= {〈List(x, y)〉, 〈List(x, y),Node(y, z)〉}

The result of the predicate path function is a set of paths
between two variables and its prefix paths. We can ignore
the prefixes because they are just a consequence of the defi-
nition and are not relevant. If we get two different paths for
the same pair of variables then we can soundly choose the
longest one. So, given two variables y and z and a symbolic
path between the two, we can calculate the length between y
and z using the following function.

Definition 8 (Predicate Path Length). Returns the length of the
predicate path.

lengthΠ(〈x 7→ [f1 : x1, . . . , fn : xn],Σ〉, y, z) , 1

+ lengthΠ(〈Σ〉, cvar(x 7→ [f1 : x1, . . . , fn : xn],Σ), z)

lengthΠ(p(~i, ~o),Σ〉, y, z) , ∆p(y, v) + lengthΠ(〈Σ〉, v, z)
where v = cvar(p(~i, ~o),Σ)

lengthΠ(〈x 7→ [f1 : x1, . . . , fn : xn]〉, y, z) , 1

lengthΠ(〈p(~i, ~o)〉, y, z) , ∆p(y, z)

This function makes use of the following function cvar,
which calculates the variable that is common in two succes-
sive predicates in a path:
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Definition 9 (Connection Variable).

cvar(p1(~i1, ~o1), p2(~i2, ~o2)) , v

if ∃o1 ∈ ~o1, i2 ∈ ~i2 : δ−(o1) ∧ δ+(i2) ∧ v = o1 = i2

cvar(p1(~i1, ~o1), x 7→ [f1 : x1, . . . , fn : xn]) , x

cvar(x 7→ [f1 : x1, . . . , fn : xn], p2(~i2, ~o2)) , v

if ∃k ∈ [1, n], i2 ∈ ~i2 : δ−(xk) ∧ δ+(i2) ∧ v = xk = i2

cvar(x 7→ [f1 : x1, . . . , fn : xn],

y 7→ [f1 : y1, . . . , fn : yn]) , y

An abstract memory location is then represented by a set
of pairs of the form (x, len) where x is a shared variable and
len ∈ L is a symbolic length. An abstract memory access is
pair of the form (m, f) where m = (x, len) is an abstract
memory location and f ∈ Fields is the field accessed in
location m. For simplicity we represent an access, from now
on, as triple of the form (x, f, len).

4.3 Memory Ranges
A memory range (or interval) is a sequence of memory
locations that are reachable from the same shared variable
and all the locations were accessed by the same field. If
we have a set of memory accesses, of the form (x, f, len),
we can group them by variable x and field f and create a
range with the minimum and maximum length len . Each
memory range has the form (x, f, [l1, l2]) where x is a shared
variable, f is a field and l1 and l2 are abstract lengths. The
set of all memory ranges is denoted as Ranges. The read- and
write-set are defined as a subset of Ranges:R ⊆ Ranges and
W ⊆ Ranges.

During symbolic execution read and write accesses must
be added to the read- and write-set respectively. But we need
to define how a memory access is transformed into a range,
or added into an existing range. We first define the operation
⊕r for inserting a memory access, of the form (x, f, l) where
x is a shared variable, f is a field, and l is an abstract length,
into an existing range:

Definition 10 (Range Add).

(x, f, l)⊕r (x′, f ′, [l1, l2]) , (x′, f ′, [l1, l2])

if x 6= x′ ∨ f 6= f ′

(x, f, l)⊕r (x′, f ′, [l1, l2]) , (x′, f ′, [l1, l2]) if l ⊆ [l1, l2]

(x, f, l)⊕r (x′, f ′, [l1, l2]) , (x′, f ′, [l, l2]) if l < l1

(x, f, l)⊕r (x′, f ′, [l1, l2]) , (x′, f ′, [l1, l]) if l > l2

Adding a memory access to a range only takes effect if the
the access variable and field matches the ones in the range,
and if the access length is outside the interval defined by the
range. Please note that with this operation we are abstracting
the memory accesses by keeping an over approximation
instead of keeping a collection of concrete memory accesses.

Now we define the operation ⊕s for inserting a memory
access into a set of ranges which constitutes a read- or write-
set.

Definition 11 (Range Set Add). Given R ⊆ Ranges:

(x, f, l)⊕s R , {(x, f, l)⊕r r | r ∈ R}

The symbolic execution rules make use of these functions
to generate the abstract read- and write-sets of each analyzed
method.

5. Symbolic Execution
Next, we define our symbolic execution for the core lan-
guage presented in Section 3 taking inspiration from [9]. In
our case, the symbolic execution defines the effect of state-
ments on symbolic states composed by a symbolic heap,
and a read- and write-set. We represent a symbolic state as:
〈H,R,W〉 ∈ (SHeaps×Rs×Ws) where SHeaps is the set
of all symbolic heaps and Rs and Ws is the set of all read-
and write-sets respectively. Please note that each read- write-
set pair is always associated to a symbolic heap. We write
SStates for denoting the set of all symbolic states.

Each transactional method is annotated with the @Atomic

annotation describing the initial symbolic heaps for that
transaction. The symbolic execution will analyse only trans-
actional methods and all the invocation tree that occur inside
their body. In the beginning of the analysis we have the
specification of the symbolic heaps for each transactional
method. To these initial symbolic heaps empty read- and
write-sets are associated thus creating a set of initial sym-
bolic states for each transactional method. The complete
information for each method is composed by:

• the initial symbolic states, which can be given by the
programmer or is calculated by the analysis;
• the final symbolic states resulting from the method’s ex-

ecution. These final symbolic states are calculated by the
analysis and, in the special case of transactional methods,
are the final result of the analysis.

Each initial symbolic state can originate more than one fi-
nal symbolic state as result of the method’s analysis. The
symbolic execution is a function that takes a procedure and
a symbolic state, and returns the set of resulting symbolic
states or an error (>):

exec : Stmt×SStates→ P(SStates) ∪ {>}

The specification of a method is defined as: SStates →
P(SStates). The mapping between a method’s signature and
its specification is done by the following function:

specinv : Sig→ (SStates→ P(SStates))

Where Sig is the signature of the transactional method,
which in our core language is represented as proc(~x) or
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func(~x). The specification of methods that are called inside
transactional methods is calculated by the symbolic execu-
tion. The method’s initial symbolic state is inferred by the
symbolic state of the calling context.

5.1 Past Symbolic Heap
Our separation logic fragment, depicted in Figure 6, con-
tains a special definition of past predicates (Ŝ). These spe-
cial predicates have an important role in the correctness for
calculating abstract memory locations. It is important to note
that updates made to the heap, done inside a transaction, are
not visible to other concurrent transactions. This means that
memory locations should always be calculated in respect to
the initial snapshot of memory that is shared between con-
current transactions.

Example 2. Given an initial specification of a symbolic
heap, where x is a shared variable (shared(x)):

{}|List(x, y) ∗ y 7→ [next : z] ∗ z 7→ nil

The representation of the abstract locations pointed by each
variables is the following:

x ≡ (x, 0)

y ≡ (x,N [> 0])

z ≡ (x, 1 +N [> 0])

If we update the location pointed by y by modifying its next
field to nil we get the following symbolic heap:

{}|List(x, y) ∗ y 7→ [next : nil] ∗ z 7→ nil

The representation of the locations pointed by x and y re-
main the same. However after the update in this symbolic
heap, z is no longer reachable from a shared variable.
Hence, we have lost the information that in the context of
a transaction, z is still a shared memory location subject to
concurrent modifications.

This example shows that the representation of a memory
location, that is reachable by a shared variable, must not be
changed by the updates in the structure of the heap. So, in
order to calculate the correct location representation we need
to use a “past view” of the current symbolic heap. The get
the past view we need past predicates, denoted by a hat on
top of the predicate, which are added to the symbolic heap
whenever an update is made to the structure of the heap.
In the case of the previous example, the result of updating
variable y would give the following symbolic heap:

{}|List(x, y) ∗ y 7→ [next : nil] ∗ ŷ7→[next : z] ∗ z 7→ nil

The past predicate ŷ7→[next : z] denotes that there was a
link between variable y and z in the initial symbolic heap.
Now, if there is a read access to a field of the memory

location pointed by variable z, then we need to calculate the
representation this location in the past view of the symbolic
heap.

We define a function that given a symbolic heap returns
the past view of such symbolic heap:

Definition 12 (Past Symbolic Heap). Let NPast(Π|Σ) = {S |
Σ = S ∗ Σ′ ∧ ¬ hasPastΠ|Σ(S)} and Past(H) the set of past
predicates in H . Then

PastSH(Π|Σ) , Π|~S∈NPast(Π|Σ) S ∗~Ŝ∈Past(Π|Σ)
Ŝ

This function makes use of the hasPast function to assert
if there is already a past predicate, in the symbolic heap,
with the same entry parameters. We define hasPast as:

Definition 13 (Has Past).

hasPastH(x 7→ ρ) ⇔ H ` x“7→[ρ] ∗ true
hasPastH(p(~i, ~o)) ⇔ ∀i ∈~i : δ+(i)∧

∃i ∈~i : H ` p̂(. . . , i, . . .) ∗ true

The result of past heap function to the previous example
is:

PastSH({}|List(x, y) ∗ y 7→ [next : nil] ∗ ŷ7→[next : z]

∗ z 7→ nil) , {}|List(x, y) ∗ y 7→ [next : z] ∗ z 7→ nil

Which corresponds to the initial symbolic heap of Exam-
ple 2. Thus we can calculate correctly representation of the
locations pointed by x, y and z.

5.2 Symbolic Execution Rules
The definitions of the operational symbolic execution rules
are described in Figure 9.

The rule ASSIGN, when executed in a state 〈H,R,W〉
adds the information that in the resulting state x is equal
to e. As in standard Hoare/Floyd style assignment, all the
occurrences of x in H, and e are replaced by a fresh ex-
istential quantified variable x′. The read- and write-set are
not changed because there are not any changes in the heap
as well. The HEAP READ rule adds an equality between x
and the content of the field f of object pointed by y to the
resulting state. In this case, we are performing a read opera-
tion, in field f , on the memory location pointed by variable
y, hence this read access is added to the read-set. The read
function generates an abstract read access, based on the def-
initions described in Section 4.2.1, and updates the current
read-set by inserting the new read access into the respective
range. The read access is calculated over the past view of
the current symbolic heap H as described in the previous
section. The HEAP WRITE rules update the value of a field
f of object x. There are two different rules to distinguish
the case where a past predicate must be created. If already
exists a past definition for variable x then we do not need
to create another one because we only need the first, which
corresponds to the initial symbolic heap. In these rules the
write-set is properly updated to reflect the write-access made
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〈H,R,W, S〉 =⇒ 〈H′,R′,W ′〉 ∨ 〈H,R,W, S〉 =⇒ >

I(e) ::= e.f := x | x := e.f

H ` y = nil

〈H,R,W, I(y)〉 =⇒ >
(HEAP ERROR)

x′ is fresh

〈H,R,W, x := e〉 =⇒ 〈x = e[x′/x] ∧H[x′/x],R,W〉
(ASSIGN)

R′ = read(H ∗ y 7→ [f : z],R, y, f) x′ is fresh

〈H ∗ y 7→ [f : z],R,W, x := y.f〉 =⇒ 〈x = z[x′/x] ∧ (H ∗ y 7→ [f : z])[x′/x],R′,W〉
(HEAP READ)

∃v ∈ Vars : shared(v) ∧ reachΠ(H, v, x) H 0 x“7→[. . .] W ′ = write(H ∗ x 7→ [f : z],W, x, f)

〈H ∗ x 7→ [f : z],R,W, x.f := e〉 =⇒ 〈H ∗ x 7→ [f : e] ∗ x“7→[f : z],R,W ′〉
(HEAP WRITE 1)

(∀v ∈ Vars : shared(v) ∧ ¬ reachΠ(H, v, x)) ∨H ` x“7→[. . .] W ′ = write(H ∗ x 7→ [f : z],W, x, f)

〈H ∗ x 7→ [f : z],R,W, x.f := e〉 =⇒ 〈H ∗ x 7→ [f : e],R,W ′〉
(HEAP WRITE 2)

x′ is fresh

〈H,R,W, x := new〉 =⇒ 〈H[x′/x] ∗ x 7→ [],R,W〉
(ALLOCATION)

〈H,R,W, return e〉 =⇒ 〈ret = e ∧H,R,W〉
(RETURN)

specinv (func(~x)) = 〈H′, {}, {}〉 → 〈H′′,R′,W ′〉 H ` H′[~y/~x] ∗R H′′′ = R ∗ H′′[~y/~x]
R′′ = mergeH′′′ (R,R′[~y/~x]) W ′′ = mergeH′′′ (W,W ′[~y/~x])

〈H,R,W, x := func(~y)〉 =⇒ 〈x = ret ∧H′′′,R′′,W ′′〉
(FCALL)

specinv (proc(~x)) = 〈H′, {}, {}〉 → 〈H′′,R′,W ′〉 H ` H′[~y/~x] ∗R H′′′ = R ∗ H′′[~y/~x]
R′′ = mergeH′′′ (R,R′[~y/~x]) W ′′ = mergeH′′′ (W,W ′[~y/~x])

〈H,R,W, proc(~y)〉 =⇒ 〈H′′′,R′′,W ′′〉
(PCALL)

Figure 9. Operational Symbolic Execution Rules

to the object pointed by x. Once again the write-access is
calculated over the past view of the current symbolic heap.

In the FCALL and PCALL rules, the function specinv is
used to get the symbolic state 〈H′′,R′,W ′〉 corresponding
to the execution of a function func or procedure proc. The
read- (R′) and write-set (W ′) are renamed and merged into
the read-R and write-set (W) using the function merge wich
recalculates the lengths of ranges in R′ and W ′ and adds
these updates ranges intoR andW respectively.

Definition 14 (Read- and Write-Set Merge).

mergeΠ|Σ(S, S′) , {s′ | a ∈ genLensΠ|Σ(S′)∧
s ∈ S ∧ s′ = a⊕r s}

Definition 15 (Lengths Generation).

genLensΠ|Σ(S) , {(v, f, l1 + l′), (v, f, l2 + l′) |
(x, f, [l1, l2]) ∈ S, v ∈ vars(Σ) : shared(v)∧

l′ = lengthΠ(Σ, v, x)}

The final symbolic heap H′′′ is computed the same way
as in other typical inter-procedural analysis using separation
logic [8]. In the case of FCALL rule we add the equality
x = retwhich corresponds to the returning value of function
func.

Error states (>) such as the ones produced by HEAP ER-
ROR rule are not relevant for our analysis because is not our
objective to verify the occurrence of execution exceptions.
Therefore we silently discard these states from our set of re-
sults.
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5.3 Rearrangement Rules
The symbolic execution rules manipulate object’s fields.
When these are hidden inside abstract predicates both HEAP
READ and HEAP WRITE rules require the analyzer to ex-
pose the fields they are operating on. This is done by the
function rearr defined as:

Definition 16 (Rearrangement).

rearr(H, x.f) , {H′ ∗ x 7→ [f : y] | H ` H′ ∗ x 7→ [f : y]}

5.4 Fixed Point Computation and Abstraction
Following the spirit of abstract interpretation [7] and the
jStar work [8] to ensure termination of symbolic execution
we apply abstraction on sets of symbolic states. Typically,
in separation logic based program analyses, abstraction is
done by rewriting rules, also called abstraction rules which
implement the function:

abs : SHeaps→ SHeaps

For each analyzed statement we apply abstraction after ap-
plying the execution rules. The abstraction rules accepted by
the StarTM have the form:

premises

H ` emp H′ ` emp
(ABSTRACTION RULE)

This rewrite is sound if the symbolic heap H implies the
symbolic heap H′. An example of some abstraction rules,
for the List(x, y) predicate, is show in Figure 2.

In our symbolic execution, the application of an abstrac-
tion rule does more than a simple rewrite operation. The pa-
rameter lengths of the more abstract predicates, which ap-
pear inH′, are updated accordingly to the less abstract pred-
icates in H. This length update is essential to achieve very
precise definitions of ranges but it is also necessary to define
strict rules for this update in order to achieve convergence of
the analysis.

Length updates are applied to all predicates except the
points-to (7→). For each predicate inH′, is updated the length
of each pair of entry and exit parameters in the context of the
symbolic heapH.

Definition 17 (Abstraction Rule).

premises

Π|Σ ` emp H′ ` emp

Where if p(~i, ~o) ∈ H′, i ∈~i, o ∈ ~o and l = lengthΠ(Σ, i, o) then
∆p(o, i) = K[≥ l]

Notice that we are calculating the length l, of the path
between i and o, in the less abstract symbolic heap, and then,
we define the length of parameters i and o for predicate p in
the more abstract symbolic heap (∆p(o, i)) as a variable K
(in L language) with the condition [≥ l]. This means that the
length of the more abstract predicate is at least as the length
of the path found in the less abstract symbolic heap.

The identifier of variable K is not chosen randomly. This
identifier is the result of an hash function applied to the iden-
tifier of the predicate (p), the parameters (i and o) and the
corresponding abstract rule. This identifier generation pro-
cess ensures that a fixed-point is reached because the same
sequence of abstraction rules generates the same identifiers.
A problem may arise when length l already has in its deep-
nested conditions a variable with the same identifier as K.
We solve this case by partially evaluation the expression l
by simplifying the condition where this same identifier oc-
curs.

Example 3 (Partially Evaluation of Length). Give a length
l denoting the following expression:

l = n1[≥ n2[> 2]]

If the new identifier K is equal to n2 then we partially
evaluate l returning the following expression:

l = n1[≥ 3]

And now we can create the new length, as described in the
abstraction rule above, as n2[≥ n1[≥ 3]].

This partially evaluation is actually counting the number
of times the same abstraction is applied to the same symbolic
heap H and this may break the convergence properties. To
avoid this problem we compare lengths that appear inside
read- and write-sets using Definition 4, which assert that two
lengths are equal if have the same identifier.

5.5 Write-Skew Satisfiability Test
The result of the symbolic execution is a set of symbolic
states for each transactional method. We can then ignore the
symbolic heap part and keep only the set of pairs of read- and
write-set. An example of this result is shown in Figure 3.

Each pair of read- and write-set for a given method m
is an approximation of a possible concrete read- and write-
set resulting from the actual execution of method m. We
then have to test the satisfiability of the write-skew condition
between pairs of results of different methods, but only in the
case when such results have non-empty write sets.

We test the satisfiability by feeding an SMT solver with
the information of the read-/write-set of each method and
check the satisfiability of interval intersection as described
at the beginning of this paper, in Section 2.

6. Experimental Results
StarTM is a prototype implementation of our static analysis
applied to Java byte code, using the Soot toolkit [19] and
the CVC3 SMT solver [2]. We applied StarTM to three STM
benchmarks: an ordered linked list, a binary search tree, and
the Intruder test program of the STAMP benchmark.

Due to limitations in the prototype implementation,
which does not support arrays, we could only verify part

12 2011/4/9



Benchmark Method Duration (sec) #LOC #Coverage (%) #Final States Write-Skews

List

add

8

16 100 6

0
remove 15 100 6
contains 11 100 3
revert 11 100 3

Tree
treeAdd

49
21 100 69

0
treeContains 15 100 51

Intruder
atomicGetPacket

51
9 77 2

(atomicProcess, atomicGetComplete)atomicProcess 173 89 17
atomicGetComplete 15 73 2

Table 1. StarTM applied to STM benchmarks.

of the Intruder test. Our prototype is also limited when ver-
ifying graph-like data structures. Hence, our code coverage
is between 73% and 89% for the operations in this particular
test. Table 1 shows the detailed results of our verification
for each transactional method of the examples above. The
results were obtained in a Intel Core i5 650 computer, with
4 GB of RAM and an Intel dual-core processor.

We show the time that StarTM takes (in seconds) to verify
each example, the number of lines of code, the code cover-
age, and the number of states produced during the analysis.
The last column in the table shows the pairs of transactions
that may actually trigger a write-skew anomaly.

The linked list example, used in Section 2, is proven to
be completely safe when executing all transactions under SI.
The same result is reached for the BSTree example, but in
this case the number of final states is much higher than in
the List case.

7. Related Work
Software Transactional Memory (STM) [11, 17] systems
commonly implement the full serializability of memory
transactions to ensure the correct execution of the programs.
To the best of our knowledge, SI-STM [16] is the only ex-
isting implementation of a STM using Snapshot Isolation.
This work focuses on improving the transactional processing
throughput by using a snapshot isolation algorithm. It pro-
poses a SI safe variant of the algorithm, where anomalies are
dynamically avoided by enforcing validation of read-write
conflicts. Our approach avoids this validation by using static
analysis and correcting the anomalies before executing the
program. Bieniusa et al. [4] presents the implementation of
a decentralized Dsitributed STM (DSTM) algorithm that ex-
ecutes under a variant of snapshot isolation. They also avoid
anomalies by tracking read accesses in read-write transac-
tions and validate the read-set at commit time.

In our work, we aim at providing the serializability se-
mantics under snapshot isolation for STM and DSTM sys-
tems. This is achieved by performing a static analysis of the
program and asserting that no SI anomalies will ever oc-
cur when executing a transactional application. This allow

to avoid tracking read accesses in both read-only and read-
write transactions, thus increasing performance throughput.

The use of Snapshot Isolation in databases is a common
place, and there are some previous works on the detection of
SI anomalies in this domain. Fekete et al. [10] developed the
theory of SI anomalies detection and proposed a syntactic
analysis to detect SI anomalies for the database setting. They
assume applications are described in some form of pseudo-
code, without conditional (if-then-else) and cyclic structures.
The proposed analysis is informally described and applied to
the database benchmark TPC-C [18] proving that its execu-
tion is safe under SI. A sequel of that work [12], describes
a prototype which is able to automatically analyze database
applications. Their syntactic analysis is based on the names
of the columns accessed in the SQL statements that occur
within the transaction.

Although targeting similar results, our work deals with
different problems. The most significant one is related to the
full power of general purpose languages and the use of dy-
namically allocated heap data structures. To tackle this prob-
lem, we use Separation Logic [9, 15] to model operations
that manipulate heap pointers. Separation Logic has been
subject of research in the last few years for its use in static
analysis of dynamic allocation and manipulation of memory,
allowing one to reason locally about a portion of the heap.
It has been proven to scale for larger programs, such as the
linux kernel [5].

The approach described in [14] has a close connection
to ours. It defines an analysis to detect memory indepen-
dences between statements in a program, which can be used
for parallelization. They extended separation logic formu-
lae with labels, which are used to keep track of memory re-
gions through an execution. They can prove that two distinct
program fragments use disjoint memory regions on all exe-
cutions, and hence, these program fragments can be safely
parallelized. In our work, we need a finer grain model of the
accessed memory regions. We also need to distinguish be-
tween read and write accesses to shared and separated mem-
ory regions.
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Some aspects of our work are inspired on jStar [8]. The
jStar is an automatic verification tool for Java programs,
based on Separation Logic, that enables the automatic veri-
fication of entire implementations of several design patterns.
Although our work have some aspect in common with jStar,
the properties being verified are completely different.

In the field of optimization, Afek et al. in [1] describes
the use of standard static analysis techniques to optimize
transactional code. They perform several optimizations and
achieve speed ups of 29–50% for single thread runs, and
of 19% for 32 threads runs. However, in the cases involving
pointer manipulation, the analysis is not very precise. We
believe that the use of shape analysis techniques, such as
Separation Logic, would probably allow more precise and
tailored code optimizations in this work.

8. Concluding Remarks
In this paper we described a novel approach to automati-
cally verify the absence of the write-skew snapshot isolation
anomaly in transactional memory Java programs.

The approach is based on a general model for fine grain
abstract representation of memory accesses. Using this rep-
resentation we accurately approximate the abstracts read-
and write-sets of memory transactions. We define the write-
skew as a consequence of the satisfiability of an assertion
over abstracts read- and write-sets.

StarTM is the practical outcome of the theoretical frame-
work laid out in this paper, unveiling the potential for further
optimization of transactional memory Java programs.
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