Export 2 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q [R] S T U V W X Y Z   [Show ALL]
Pina, João, David Inácio, Gonçalo Luis, José M. Ceballos, Pedro Pereira, João Martins, M. Ventim-Neves, Alfredo Alvarez, and Leão A. Rodrigues. "Research and Development of Alternative Concepts in HTS Machines." IEEE Transactions on Applied Superconductivity. 21 (2010): 1141-1145. AbstractWebsite

High temperature superconducting (HTS) machines are recognized to offer several advantageous features when comparing to conventional ones. Amongst these, highlights the decrease in weight and volume of the machines, due to increased current density in conductors or the absence of iron slots' teeth; or the decrease in AC losses and consequent higher efficiency of the machines, even accounting for cryogenics. These concepts have been already demonstrated and some machines have even achieved commercial stage. In this paper, several alternative approaches are applied to electrical motors employing HTS materials. The first one is an all superconducting linear motor, where copper conductors and permanent magnets are replaced by Bi-2223 windings and trapped flux magnets, taking advantage of stable levitation due to flux pinning, higher current densities and higher excitation field. The second is an induction disk motor with Bi-2223 armature, where iron, ironless and hybrid approaches are compared. Finally, an innovative command strategy, consisting of an electronically variable pole pairs' number approach, is applied to a superconducting hysteresis disk motor. All these concepts are being investigated and simulation and experimental results are presented.

Pina, J. M., P. Suárez, Ventim M. Neves, A. Álvarez, and A. L. Rodrigues. "Reverse engineering of inductive fault current limiters." Journal of Physics: Conference Series. 234 (2010): 1-9. AbstractWebsite

The inductive fault current limiter is less compact and harder to scale to high voltage networks than the resistive one. Nevertheless, its simple construction and mechanical robustness make it attractive in low voltage grids. Thus, it might be an enabling technology for the advent of microgrids, low voltage networks with dispersed generation, controllable loads and energy storage. A new methodology for reverse engineering of inductive fault current limiters based on the independent analysis of iron cores and HTS cylinders is presented in this paper. Their electromagnetic characteristics are used to predict the devices' hysteresis loops and consequently their dynamic behavior. Previous models based on the separate analysis of the limiters' components were already derived, e.g. in transformer like equivalent models. Nevertheless, the assumptions usually made may limit these models' application, as shown in the paper. The proposed methodology obviates these limitations. Results are validated through simulations.