Publications

Export 13 results:
Sort by: Author Title Type [ Year  (Desc)]
2013
Arsenio, Pedro, Tiago Silva, Nuno Vilhena, João Pina, and Anabela Pronto. "Analysis of Characteristic Hysteresis Loops of Magnetic Shielding Inductive Fault Current Limiters." IEEE Transactions on Applied Superconductivity. 23 (2013): 5601004. AbstractWebsite

Magnetic shielding inductive fault currentlimiterswith high temperature superconducting cylinders have previously been described by a characteristic (or maximum)hysteresisloop, built from properties of their constitutive parts, which allowed predicting their behavior in electrical grids. These preliminary results were based on finite elements simulations, but posterior experiments suggested limitations in the models. In order to investigate the application of these previous models to real devices, two laboratory scale prototypes were built with different types of superconducting material in the secondary, either bulk cylinder, either tape. Although the behavior of both devices is still approximately defined by a maximumhysteresisloop, differences in the shielding current response, when compared with previous model, must be incorporated in future models.

2011
Inácio, D., João Pina, Go{\cn}alo Luis, J. F. Martins, M. Ventim-Neves, and Alfredo Alvarez. "Experimental Characterization of a Conventional (Aluminum) and of a Superconducting (YBCO) Axial Flux Disc Motor." IEEE Transactions on Applied Superconductivity (2011). AbstractWebsite

An equivalent model and electromechanical characteristics for the disk motor was obtained based on the Steinmetz parameters. This paper describes a series of tests conducted on an axial flux motor, equipped with an aluminum rotor disc and an YBCO high temperature superconducting rotor disc, at liquid nitrogen temperature (77 K). The rotating magnetic field was produced by a four-pole, three-phase stator winding, at 50 Hz. At asynchronous permanent regime, Steinmetz-type models are able to describe both motors' behavior. From the performed tests, the parameters of both motors' models were deduced. A variable load was used to obtain both motor's characteristics (conventional and superconducting). Experimental obtained characteristics of both motors are compared with the ones predicted from parameters' calculation. The HTS motor provides high efficiency then the conventional ones.

2010
Pina, João, David Inácio, Gonçalo Luis, José M. Ceballos, Pedro Pereira, João Martins, M. Ventim-Neves, Alfredo Alvarez, and Leão A. Rodrigues. "Research and Development of Alternative Concepts in HTS Machines." IEEE Transactions on Applied Superconductivity. 21 (2010): 1141-1145. AbstractWebsite

High temperature superconducting (HTS) machines are recognized to offer several advantageous features when comparing to conventional ones. Amongst these, highlights the decrease in weight and volume of the machines, due to increased current density in conductors or the absence of iron slots' teeth; or the decrease in AC losses and consequent higher efficiency of the machines, even accounting for cryogenics. These concepts have been already demonstrated and some machines have even achieved commercial stage. In this paper, several alternative approaches are applied to electrical motors employing HTS materials. The first one is an all superconducting linear motor, where copper conductors and permanent magnets are replaced by Bi-2223 windings and trapped flux magnets, taking advantage of stable levitation due to flux pinning, higher current densities and higher excitation field. The second is an induction disk motor with Bi-2223 armature, where iron, ironless and hybrid approaches are compared. Finally, an innovative command strategy, consisting of an electronically variable pole pairs' number approach, is applied to a superconducting hysteresis disk motor. All these concepts are being investigated and simulation and experimental results are presented.

2009
Inácio, D., J. A. Inácio, J. Pina, S. Valtchev, M. Neves, J. Martins, and A. Rodrigues. "Conventional and HTS Disc motor with pole variation control." 2nd International Conference on Power Engineering, Energy and Electrical Drives (POWERENG'2009). 2009. 513-518. Abstract

In this paper, a poly-phase disc motor innovative feeding and control strategy, based on a variable poles approach, and its application to a high temperature superconductor (HTS) disc motor, are presented. The stator windings may be electronically commutated to implement a 2, 4, 6 or 8 poles winding, thus changing the motor's torque?speed characteristics. The motor may be a conventional induction motor with a conductive disc rotor, or a new HTS disc motor, with conventional copper windings at its two iron semi-stators and a HTS disc as a rotor. The conventional induction motor's operation principle is related with the induced electromotive forces in the conductive rotor. Its behaviour, characteristics and modelling through Steinmetz and others theories are well known. The operation principle of the motor with HTS rotor, however, is rather different and is related with vortices' dynamics and pinning characteristics; this is a much more complex process than induction, and its modelling is quite complicated. In this paper, the operation was simulated through finite-elements commercial software (FLUX2D), whereas superconductivity was simulated by the E-J power law. The electromechanical performance of both motor's computed are compared. Considerations about the systems overall efficiency, including cryogenics, are also discussed.

2008
Inácio, Steve Projecto de uma caixa de velocidades eléctrica por meio da variação do número de pólos para motores em disco de rotor em alumínio e em materiais supercondutores de alta temperatura (SAT). Eds. Mário Neves, João Pina, and Stanimir Valtchev. FCT-UNL, 2008. Abstract

Nesta dissertação apresenta-se um motor em disco polifásico inovador bem como uma estratégia de controlo com base no método de variação de velocidade por comutação do número de pares de pólos. A configuração das bobinas aliada à escolha das correntes e tensões que se injectam nas bobinas dos estatores, permite comutar electronicamente o número de pólos do motor entre 2, 4 6 e 8 pólos, conseguindo-se controlar a característica binário?velocidade do motor. O motor em disco possui a bobinagem feita em cobre com dois semi-estatores, em que quando utiliza o rotor em alumínio (com condutividade diferente de zero) comporta-se como um motor de indução convencional. Quando se substitui o rotor em alumínio por um constituído por um supercondutor de alta temperatura (SAT), o dispositivo comporta-se como um motor de histerese. O princípio de funcionamento do motor em disco convencional é baseado na indução de força electromotrizes no rotor e, consequentemente, uma vez que o alumínio é bom condutor eléctrico, correntes eléctricas induzidas, originadas por haver um campo magnético variável que é criado pelos semi-estatores. O comportamento deste tipo de motores, no que diz respeito a principais características (como o binário?velocidade para os diferentes números de pares de pólos), circuito equivalente de Steinmetz, entre outras teorias associadas é já conhecido há bastante tempo. O princípio de funcionamento do motor SAT é diferente do apresentado anteriormente, funciona com base na dinâmica de vórtices e devido ao facto de aparecer o fenómeno de ancoragem de fluxo (flux pinning) nos supercondutores de alta temperatura. Como o campo magnético varia, então o disco roda. Este motor tem um princípio de funcionamento muito mais complexo que o motor de indução sendo a obtenção do modelo do motor SAT complicada. A obtenção do modelo do motor SAT não é abordado nesta dissertação. Os comportamentos e modos de operação do motor com disco de alumínio e em materiais SAT são simulados através de um programa comercial de elementos finitos, nesta dissertação, sendo a supercondutividade simulada com base na relação entre o campo eléctrico e a densidade de corrente pela lei da potenciação (E-J power law). Com as simulações pretende-se comparar o rendimento electromecânico de ambos os motores.

Inácio, S., D. Inácio, J. M. Pina, Stanimir Valtchev, M. V. Neves, and A. L. Rodrigues. "An electrical gearbox by means of pole variation for induction and superconducting disc motor." Journal of Physics: Conference Series. 97 (2008): 012221. AbstractWebsite

In this paper, a poly-phase disc motor innovative feeding and control strategy, based on a variable poles approach, and its application to a HTS disc motor, are presented. The stator windings may be electronically commutated to implement a 2, 4, 6 or 8 poles winding, thus changing the motor's torque?speed characteristics. The motor may be a conventional induction motor with a conductive disc rotor, or a new HTS disc motor, with conventional copper windings at its two iron semi-stators, and a HTS disc as a rotor. The conventional induction motor's operation principle is related with the induced electromotive forces in the conductive rotor. Its behaviour, characteristics (namely their torque?speed characteristics for different number of pole pairs) and modelling through Steinmetz and others theories are well known. The operation principle of the motor with HTS rotor, however, is rather different and is related with vortices' dynamics and pinning characteristics; this is a much more complex process than induction, and its modelling is quite complicated. In this paper, the operation was simulated through finite-elements commercial software, whereas superconductivity was simulated by the E-J power law. The Electromechanical performances of both motors where computed and are presented and compared. Considerations about the systems overall efficiency, including cryogenics, are also discussed.

Pereira, P., S. Valtchev, J. Pina, A. Gonçalves, Ventim M. Neves, and A. L. Rodrigues. "Power electronics performance in cryogenic environment: evaluation for use in HTS power devices." Journal of Physics: Conference Series. 97 (2008): 012219. AbstractWebsite

Power electronics (PE) plays a major role in electrical devices and systems, namely in electromechanical drives, in motor and generator controllers, and in power grids, including high-voltage DC (HVDC) power transmission. PE is also used in devices for the protection against grid disturbances, like voltage sags or power breakdowns. To cope with these disturbances, back-up energy storage devices are used, like uninterruptible power supplies (UPS) and flywheels. Some of these devices may use superconductivity. Commercial PE semiconductor devices (power diodes, power MOSFETs, IGBTs, power Darlington transistors and others) are rarely (or never) experimented for cryogenic temperatures, even when designed for military applications. This means that its integration with HTS power devices is usually done in the hot environment, raising several implementation restrictions. These reasons led to the natural desire of characterising PE under extreme conditions, e. g. at liquid nitrogen temperatures, for use in HTS devices. Some researchers expect that cryogenic temperatures may increase power electronics' performance when compared with room-temperature operation, namely reducing conduction losses and switching time. Also the overall system efficiency may increase due to improved properties of semiconductor materials at low temperatures, reduced losses, and removal of dissipation elements. In this work, steady state operation of commercial PE semiconductors and devices were investigated at liquid nitrogen and room temperatures. Performances in cryogenic and room temperatures are compared. Results help to decide which environment is to be used for different power HTS applications.

Pina, J., P. Pereira, S. Valtchev, A. Gonçalves, Ventim M. Neves, A. Alvarez, and L. Rodrigues. "A test rig for thrust force measurements of an all HTS linear synchronous motor." Journal of Physics: Conference Series. 97 (2008): 012220. AbstractWebsite

This paper presents the design of a test rig for an all HTS linear synchronous motor. Although this motor showed to have several unattractive characteristics, its design raised a number of problems which must be considered in future HTS machines design. HTS electromagnetic properties led to the development of new paradigms in electrical machines and power systems, as e. g. in some cases iron removal and consequent assembly of lighter devices. This is due to superconductor's ability to carry high currents with minimum losses and consequent generation in the surrounding air of flux densities much higher than the allowed by ferromagnetic saturation. However, severe restrictions in HTS power devices design that goes further beyond cryogenic considerations must be accounted in. This is usually the case when BSCCO tapes are used as conductors. Its bending limitations and the presence of flux components perpendicular to tape surface, due to the absence of iron, have to be considered for it may turn some possible applications not so attractive or even practically unfeasible. An all HTS linear synchronous motor built by BSCCO tapes as armature conductors and two trapped-flux YBCO bulks in the mover was constructed and thrust force measurements are starting to be performed. Although the device presents severe restrictions due to the exposed and other reasons, it allowed systematising its design. A pulsed-field magnetiser to generate opposite fluxes for both YBCO bulks is also detailed. Thrust force numerical predictions were already derived and presented.

2007
Pereira, Pedro, S. Valtchev, João Pina, Anabela Gonçalves, Mário Neves, and Amadeu Rodrigues. "Power Electronics Performance in Cryogenic Environment: Evaluation for Use in HTS Power Devices." 8th European Conference on Applied Superconductivity (EUCAS). 2007. Abstract

Power electronics (PE) plays a major role in electrical devices and systems, namely in electromechanical drives, in motor and generator controllers, and in power grids, including high-voltage DC (HVDC) power transmission. PE is also used in devices for the protection against grid disturbances, like voltage sags or power breakdowns. To cope with these disturbances, back-up energy storage devices are used, like uninterruptible power supplies (UPS) and flywheels. Some of these devices may use superconductivity. Commercial PE semiconductor devices (power diodes, power MOSFETs, IGBTs, power Darlington transistors and others) are rarely (or never) experimented for cryogenic temperatures, even when designed for military applications. This means that its integration with HTS power devices is usually done in the hot environment, raising several implementation restrictions. These reasons led to the natural desire of characterising PE under extreme conditions, e. g. at liquid nitrogen temperatures, for use in HTS devices. Some researchers expect that cryogenic temperatures may increase power electronics' performance when compared with room-temperature operation, namely reducing conduction losses and switching time. Also the overall system efficiency may increase due to improved properties of semiconductor materials at low temperatures, reduced losses, and removal of dissipation elements. In this work, steady state operation of commercial PE semiconductors and devices were investigated at liquid nitrogen and room temperatures. Performances in cryogenic and room temperatures are compared. Results help to decide which environment is to be used for different power HTS applications

Inácio, S., D. Inácio, J. Pina, S. Valtchev, Ventim M. Neves, and A. Rodrigues. "An Electrical Gearbox by means of pole variation for induction and superconducting disc motor." 8th European Conference on Applied Superconductivity (EUCAS). 2007. Abstract

In this paper, a poly-phase disc motor innovative feeding and control strategy, based on a variable poles approach, and its application to a HTS disc motor, are presented. The stator windings may be electronically commutated to implement a 2, 4, 6 or 8 poles winding, thus changing the motor's torque?speed characteristics. The motor may be a conventional induction motor with a conductive disc rotor, or a new HTS disc motor, with conventional copper windings at its two iron semi-stators, and a HTS disc as a rotor. The conventional induction motor's operation principle is related with the induced electromotive forces in the conductive rotor. Its behaviour, characteristics (namely their torque?speed characteristics for different number of pole pairs) and modelling through Steinmetz and others theories are well known. The operation principle of the motor with HTS rotor, however, is rather different and is related with vortices' dynamics and pinning characteristics; this is a much more complex process than induction, and its modelling is quite complicated. In this paper, the operation was simulated through finite-elements commercial software, whereas superconductivity was simulated by the E-J power law. The Electromechanical performances of both motors where computed and are presented and compared. Considerations about the systems overall efficiency, including cryogenics, are also discussed.

Pina, João, C. Caracaleanu, A. Gonçalves, Pedro Pereira, S. Valtchev, Mário Neves, and A. Rodrigues. "High Performance, Environment Friendly, Modular and Fault Tolerant Renewable Energy Microgrid." 12th International Energy Conference & Exhibition (ENERGEX2007). 2007. Abstract
n/a
Pina, João, Pedro Pereira, S. Valtchev, A. Gonçalves, Mário Neves, and A. Rodrigues. "A test rig for thrust force measurements f an all HTS linear synchronous motor." 8th European Conference on Applied Superconductivity (EUCAS). 2007. Abstract

This paper presents the design of a test rig for an all HTS linear synchronous motor. Although this motor showed to have several unattractive characteristics, its design raised a number of problems which must be considered in future HTS machines design. HTS electromagnetic properties led to the development of new paradigms in electrical machines and power systems, as e. g. in some cases iron removal and consequent assembly of lighter devices. This is due to superconductor's ability to carry high currents with minimum losses and consequent generation in the surrounding air of flux densities much higher than the allowed by ferromagnetic saturation. However, severe restrictions in HTS power devices design that goes further beyond cryogenic considerations must be accounted in. This is usually the case when BSCCO tapes are used as conductors. Its bending limitations and the presence of flux components perpendicular to tape surface, due to the absence of iron, have to be considered for it may turn some possible applications not so attractive or even practically unfeasible. An all HTS linear synchronous motor built by BSCCO tapes as armature conductors and two trapped-flux YBCO bulks in the mover was constructed and thrust force measurements are starting to be performed. Although the device presents severe restrictions due to the exposed and other reasons, it allowed systematising its design. A pulsed-field magnetiser to generate opposite fluxes for both YBCO bulks is also detailed. Thrust force numerical predictions were already derived and presented.

Steve, Inácio, João Pina, Stanimir Valtchev, Mário Neves, and Amadeu Rodrigues. "Topology of an Electrical Gearbox with Variable Poles for Induction and Superconducting Disc Motors." X Portuguese-Spanish Congress in Electrical Engineering. 2007. Abstract
n/a