Publications

Export 10 results:
Sort by: Author Title Type [ Year  (Desc)]
2008
Inácio, David Comparação numérica e experimental das características dos Motores de Histerese Convencional e Supercondutor. Eds. Mário Neves, Anabela Gonçalves, and João Pina. FCT-UNL, 2008. Abstract

Os motores de histerese são muito atraentes, numa ampla gama de aplicações devido à característica binário - velocidade e simplicidade de construção. É esperado que o rendimento destes motores seja melhorado aquando do uso de materiais supercondutores de alta temperatura (SAT ? supercondutores de alta temperatura) e, de facto, os motores de histerese têm-se mostrado como, provavelmente, a melhor máquina eléctrica usando materiais SAT. Ambos os motores, quer convencional quer supercondutor (com SAT), são motores de histerese, mas apresentam diferentes fenómenos físicos para o seu funcionamento: o comportamento de histerese nos materiais ferromagnéticos convencionais é devido à falta de linearidade das suas propriedades magnéticas dos materiais ferromagnéticos enquanto a histerese nos materiais supercondutores de alta temperatura é de natureza ohmica e está relacionada com dinâmica de vórtices. Nesta tese aspectos teóricos, experimentais e simulados de ambos os motores são discutidos, realçando-se o princípio de funcionamento de cada um e as características mais relevantes de cada um. As características obtidas, quer por testes experimentais quer por uso do simulador usando elementos finitos (FLUX2D?), foram comparadas com o objectivo de avaliar o rendimento dos motores electromecânicos e a eficiência dos sistemas, incluindo a criogenia para os dispositivos supercondutores de alta temperatura.

Pereira, P., S. Valtchev, J. Pina, A. Gonçalves, Ventim M. Neves, and A. L. Rodrigues. "Power electronics performance in cryogenic environment: evaluation for use in HTS power devices." Journal of Physics: Conference Series. 97 (2008): 012219. AbstractWebsite

Power electronics (PE) plays a major role in electrical devices and systems, namely in electromechanical drives, in motor and generator controllers, and in power grids, including high-voltage DC (HVDC) power transmission. PE is also used in devices for the protection against grid disturbances, like voltage sags or power breakdowns. To cope with these disturbances, back-up energy storage devices are used, like uninterruptible power supplies (UPS) and flywheels. Some of these devices may use superconductivity. Commercial PE semiconductor devices (power diodes, power MOSFETs, IGBTs, power Darlington transistors and others) are rarely (or never) experimented for cryogenic temperatures, even when designed for military applications. This means that its integration with HTS power devices is usually done in the hot environment, raising several implementation restrictions. These reasons led to the natural desire of characterising PE under extreme conditions, e. g. at liquid nitrogen temperatures, for use in HTS devices. Some researchers expect that cryogenic temperatures may increase power electronics' performance when compared with room-temperature operation, namely reducing conduction losses and switching time. Also the overall system efficiency may increase due to improved properties of semiconductor materials at low temperatures, reduced losses, and removal of dissipation elements. In this work, steady state operation of commercial PE semiconductors and devices were investigated at liquid nitrogen and room temperatures. Performances in cryogenic and room temperatures are compared. Results help to decide which environment is to be used for different power HTS applications.

Pina, J., P. Pereira, S. Valtchev, A. Gonçalves, Ventim M. Neves, A. Alvarez, and L. Rodrigues. "A test rig for thrust force measurements of an all HTS linear synchronous motor." Journal of Physics: Conference Series. 97 (2008): 012220. AbstractWebsite

This paper presents the design of a test rig for an all HTS linear synchronous motor. Although this motor showed to have several unattractive characteristics, its design raised a number of problems which must be considered in future HTS machines design. HTS electromagnetic properties led to the development of new paradigms in electrical machines and power systems, as e. g. in some cases iron removal and consequent assembly of lighter devices. This is due to superconductor's ability to carry high currents with minimum losses and consequent generation in the surrounding air of flux densities much higher than the allowed by ferromagnetic saturation. However, severe restrictions in HTS power devices design that goes further beyond cryogenic considerations must be accounted in. This is usually the case when BSCCO tapes are used as conductors. Its bending limitations and the presence of flux components perpendicular to tape surface, due to the absence of iron, have to be considered for it may turn some possible applications not so attractive or even practically unfeasible. An all HTS linear synchronous motor built by BSCCO tapes as armature conductors and two trapped-flux YBCO bulks in the mover was constructed and thrust force measurements are starting to be performed. Although the device presents severe restrictions due to the exposed and other reasons, it allowed systematising its design. A pulsed-field magnetiser to generate opposite fluxes for both YBCO bulks is also detailed. Thrust force numerical predictions were already derived and presented.

2007
Inácio, David, João Pina, Anabela Gonçalves, Mário Neves, and Amadeu Rodrigues. "Numerical and Experimental Comparison of Electromechanical Properties and Efficiency of HTS and Ferromagnetic Hysteresis Motors." 8th European Conference on Applied Superconductivity (EUCAS). 2007. Abstract

Hysteresis motors are very attractive in a wide range of fractional power applications, due to its torque-speed characteristics and simplicity of construction. This motor's performance is expected to improve when HTS rotors are used, and in fact, hysteresis motors have shown to be probably the most viable electrical machines using HTS materials. While these motors, either conventional or HTS, are both hysteresis motors, they base their operation on different physical phenomena: hysteretic behaviour in conventional ferromagnetic materials is due to the material's non-linear magnetic properties, while in HTS materials the hysteresis has an ohmic nature and is related with vortices' dynamics. In this paper, theoretical aspects of both conventional and HTS hysteresis motors are discussed, its operation principles are highlighted, and the characteristics of both motors are presented. The characteristics, obtained both by experimental tests and numerical simulation (made with commercial software), are compared, in order to evaluate not only the motor's electromechanical performances but also the overall systems efficiency, including cryogenics for the HTS device.

Pereira, Pedro, S. Valtchev, João Pina, Anabela Gonçalves, Mário Neves, and Amadeu Rodrigues. "Power Electronics Performance in Cryogenic Environment: Evaluation for Use in HTS Power Devices." 8th European Conference on Applied Superconductivity (EUCAS). 2007. Abstract

Power electronics (PE) plays a major role in electrical devices and systems, namely in electromechanical drives, in motor and generator controllers, and in power grids, including high-voltage DC (HVDC) power transmission. PE is also used in devices for the protection against grid disturbances, like voltage sags or power breakdowns. To cope with these disturbances, back-up energy storage devices are used, like uninterruptible power supplies (UPS) and flywheels. Some of these devices may use superconductivity. Commercial PE semiconductor devices (power diodes, power MOSFETs, IGBTs, power Darlington transistors and others) are rarely (or never) experimented for cryogenic temperatures, even when designed for military applications. This means that its integration with HTS power devices is usually done in the hot environment, raising several implementation restrictions. These reasons led to the natural desire of characterising PE under extreme conditions, e. g. at liquid nitrogen temperatures, for use in HTS devices. Some researchers expect that cryogenic temperatures may increase power electronics' performance when compared with room-temperature operation, namely reducing conduction losses and switching time. Also the overall system efficiency may increase due to improved properties of semiconductor materials at low temperatures, reduced losses, and removal of dissipation elements. In this work, steady state operation of commercial PE semiconductors and devices were investigated at liquid nitrogen and room temperatures. Performances in cryogenic and room temperatures are compared. Results help to decide which environment is to be used for different power HTS applications

Pina, João, C. Caracaleanu, A. Gonçalves, Pedro Pereira, S. Valtchev, Mário Neves, and A. Rodrigues. "High Performance, Environment Friendly, Modular and Fault Tolerant Renewable Energy Microgrid." 12th International Energy Conference & Exhibition (ENERGEX2007). 2007. Abstract
n/a
Pina, João, Pedro Pereira, S. Valtchev, A. Gonçalves, Mário Neves, and A. Rodrigues. "A test rig for thrust force measurements f an all HTS linear synchronous motor." 8th European Conference on Applied Superconductivity (EUCAS). 2007. Abstract

This paper presents the design of a test rig for an all HTS linear synchronous motor. Although this motor showed to have several unattractive characteristics, its design raised a number of problems which must be considered in future HTS machines design. HTS electromagnetic properties led to the development of new paradigms in electrical machines and power systems, as e. g. in some cases iron removal and consequent assembly of lighter devices. This is due to superconductor's ability to carry high currents with minimum losses and consequent generation in the surrounding air of flux densities much higher than the allowed by ferromagnetic saturation. However, severe restrictions in HTS power devices design that goes further beyond cryogenic considerations must be accounted in. This is usually the case when BSCCO tapes are used as conductors. Its bending limitations and the presence of flux components perpendicular to tape surface, due to the absence of iron, have to be considered for it may turn some possible applications not so attractive or even practically unfeasible. An all HTS linear synchronous motor built by BSCCO tapes as armature conductors and two trapped-flux YBCO bulks in the mover was constructed and thrust force measurements are starting to be performed. Although the device presents severe restrictions due to the exposed and other reasons, it allowed systematising its design. A pulsed-field magnetiser to generate opposite fluxes for both YBCO bulks is also detailed. Thrust force numerical predictions were already derived and presented.

2003
Magro, Caserza M., Mário Neves, Athanasis Sfetsos, João Pina, and Anabela Gonçalves. "Multipole Superconducting Synchronous Generator." 6th European Conference on Applied Superconductivity (EUCAS). 2003. Abstract
n/a
Sfetsos, Athanasis, João Pina, Anabela Gonçalves, Mário Neves, and Amadeu Rodrigues. "Flux Modelling of Reluctance Machines with Bulk Superconducting Materials." Electromotion Review (2003). AbstractWebsite
n/a
Rodrigues, Amadeu, B. A. Potter, João Pina, Anabela Gonçalves, and Mário Neves. "Torque Modelling of a Superconducting Reluctance Machine." Electromotion Review (2003). AbstractWebsite
n/a