Publications

Export 80 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Arteiro, A., C. Catalanotti, J. Xavier, and P. P. Camanho. "Notched response of non-crimp fabric thin-ply laminates: analysis methods." Composites Science and Technology. 88 (2013): 165-171. Abstract
n/a
Arteiro, A., G. Catalanotti, J. Xavier, P. Linde, and P. P. Camanho. "Effect of tow thickness on the structural response of aerospace-grade spread-tow fabrics." Composite Structures. 179 (2017): 208-223. AbstractWebsite

The effect of ply thickness on the onset of intralaminar and interlaminar damage is extremely important for the structural response of laminated composite structures. This subject has gained particular interest in recent years due to the introduction in the market of spread-tow, ultra-thin carbon-fibre reinforcements with different configurations. In the present paper, an experimental test campaign was carried out to study the structural response of aerospace-grade plain weave spread-tow fabrics (STFs) of different areal weights. The results showed that, in spite of an apparent superior longitudinal tensile strength of the thick STF, the multidirectional thin-STF laminate exhibited an improved tensile unnotched strength over the thick-STF laminate, attributed to its damage suppression capability. However, damage suppression was also responsible for similar tensile notched strengths. In compression, the thin-STF laminate performed substantially better than the thick-STF laminate in both unnotched and notched configurations. Finally, a similar bearing response was obtained in both STF laminates, in spite of a slightly higher resistance of the thin-STF laminate to the propagation of subcritical damage mechanisms.

Arteiro, A., G. Catalanotti, J. Xavier, P. Linde, and P. P. Camanho. "A strategy to improve the structural performance of non-crimp fabric thin-ply laminates." Composite Structures. 188 (2018): 438-449. AbstractWebsite

The enhanced mechanical performance of thin-ply laminates results from their ability to delay the onset of damage typically observed in composite materials. However, in notched structures, subcritical damage growth causes beneficial stress redistributions in the vicinity of the notch, blunting the stress concentration. Precluding these damage mechanisms, as in thin-ply laminates, may potentially lead to inferior notched responses. To obviate this limitation of thin-ply laminates, a strategy based on the combination of standard grade 0� plies and thin transverse and off-axis plies is analysed in this paper. A detailed study of the effect of 0� ply blocking is carried out, with particular emphasis on the blunting mechanisms and notched response. Tests on scaled notched panels loaded in tension, with notch sizes between 6?mm and 30?mm, show that the combination of standard grade 0� ply blocks with thin transverse and off-axis plies promotes localised fibre-matrix splitting, which acts as an important notch blunting mechanism, while preventing matrix cracking and delamination. This results in an improved notched response and superior large damage capability. It is also shown that thicker 0� ply blocks provide higher stability in composite bolted joints, while the thin transverse and off-axis plies contribute for matrix-dominated damage suppression, resulting in an improved bolt-bearing response. The improvements of the large damage capability and bolt-bearing performance are obtained without compromising the superior unnotched tensile and compressive strengths intrinsic to thin-ply laminates.

Arteiro, A., G. Catalanotti, J. Xavier, and P. P. Camanho. "A Finite Fracture Mechanics Model for the Prediction of the Notched Response and Large Damage Capability of Composite Laminates." Advances in Fracture and Damage Mechanics XIII. Vol. 627. Key Engineering Materials, 627. Trans Tech Publications, 2015. 13-16. Abstract

A new model based on Finite Fracture Mechanics (FFMs) has been proposed to predict the open-hole tensile strength of composite laminates [1]. Failure is predicted when bothstress-based and energy-based criteria are satisfied. This model is based on an analytical solution, and no empirical adjusting parameters are required, but only two material properties: the unnotched strength and the fracture toughness. In the present work, an extension of the proposed FFMs model to predict the notched response of composite laminates with notch geometries other than a circular opening [2] is presented and applied to the prediction of size effects on the tensile and compressive notched strength of composite laminates. The present model is also used to assess the notch sensitivity and brittleness of composite laminates by means of versatile design charts and by the identification of a dimensionless parameter designated as notch sensitivity factor. A further extension of the FFMs model is proposed, which takes into account the crack resistance curve of the laminate in the model's formulation, and it is used to predict the large damage capability of a non-crimp fabric thin-ply laminate [3].

Arteiro, A., G. Catalanotti, J. Xavier, and P. P. Camanho. "Large damage capability of non-crimp fabric thin-ply laminates." Composites Part A: Applied Science and Manufacturing. 63 (2014): 110-122. AbstractWebsite
n/a
Arteiro, A., G. Catalanotti, J. Xavier, and P. P. Camanho. "Notched response of non-crimp fabric thin-ply laminates." Composites Science and Technology. 79 (2013): 97-114. Abstract
n/a
C
Catalanotti, G., P. P. Camanho, J. Xavier, C. G. Dávila, and AT Marques. "Measurement of resistance curves in the longitudinal failure of composites using digital image correlation." Composites Science and Technology. 70 (2010): 1986-1993. Abstract
n/a
Catalanotti, G., P. Kuhn, J. Xavier, and H. Koerber. "High strain rate characterisation of intralaminar fracture toughness of GFRPs for longitudinal tension and compression failure." Composite Structures. 240 (2020): 112068. AbstractWebsite

The elastic parameters, strengths, and intralaminar fracture toughness are determined for an E-Glass polymer composite material system, statically and at high strain rate, adapting methodologies previously developed by the authors for different carbon composites. Dynamic experiments are conducted using tension and compression Split-Hopkinson Bars (SHBs). A unique set of experimental parameters is obtained, and reported together with the experimental set-up, in order to ensure reproducibility. While in-plane elastic and strength properties were obtained by testing one specimen geometry, intralaminar fracture properties required the testing of different sized notched specimens with scaled geometries. This allowed the use of the size-effect method for the determination of the dynamic R-curve. When comparing these results with those previously obtained for a carbon/epoxy material system, it is observed that the dynamic fracture toughness exhibits a much more significant increase in both tension and compression. The obtained results permit the identification of the softening law at different strain rates, allowing its use in any analytical or numerical strength predictive method.

Catalanotti, C., J. Xavier, and P. P. Camanho. "Measurement of the compressive crack resistance curve of composites using the size effect law." Composites Part A: Applied Science and Manufacturing. 56 (2014): 300-307. Abstract
n/a
Catalanotti, G., and J. Xavier. "Measurement of the mode II intralaminar fracture toughness and R-curve of polymer composites using a modified Iosipescu specimen and the size effect law." Engineering Fracture Mechanics. 138 (2015): 202-214. AbstractWebsite

Abstract A modified Iosipescu specimen is proposed to measure the mode İI\} intralaminar fracture toughness and the corresponding crack resistance curve of fibre reinforced composites. Due to the impossibility of scaling the specimen, a modification of the classical size effect method is proposed. The calculation of the crack driving force curves is performed using the Finite Element Method. The classical Iosipescu shear feature was used and tests were coupled with digital image correlation to support the proposed approach. Experiments were performed on IM7/8552 material system and the R-curve was obtained. The steady-state value of the fracture toughness of the ply is found to be equal to R 0 ss = 34.4  kJ/m2.

Cidade, Rafael A., Daniel S. V. Castro, Enrique M. Castrodeza, Peter Kuhn, Giuseppe Catalanotti, Jose Xavier, and Pedro P. Camanho. "Determination of mode I dynamic fracture toughness of IM7-8552 composites by digital image correlation and machine learning." Composite Structures. 210 (2019): 707-714. AbstractWebsite

An optical experimental procedure for evaluating the J-Integral from full-field displacement fields under dynamic loading is proposed in this work. The methodology is applied to measure the J-integral in the dynamic compressive loading of fiber-reinforced composites and to calculate the dynamic fracture toughness associated with the propagation of a kink-band. A modified J-Integral that considers inertia effects is calculated over the full-field measurements obtained by digital image correlation, for double edge-notched specimen of IM7-8552 laminates dynamically loaded in a split-Hopkinson pressure bar (SHPB). A sensibility study is conducted to address the influence of the speckle parameters. The results show good agreement with experimental observations obtained by using a different data reduction method, suggesting the existence of a rising R-curve for the studied material under dynamic loading. Furthermore, it was noticed that the inertia effect can be negligible, indicating a state of dynamic equilibrium in which quasi-static approaches may comfortably be used.

Crespo, J., A. Majano-Majano, J. Xavier, and M. Guaita. "Determination of the resistance-curve in Eucalyptus globulus through double cantilever beam tests." Materials and Structures. 51 (2018): 77. AbstractWebsite

The prediction of the fracture behaviour through reliable and practical criteria in the design of structural timber elements and connections has become of great importance and demands a proper fracture characterization of the material. Eucalyptus globulus Labill is envisioned as a hardwood species with great potential for high performance structural purposes because of its major mechanical and durability properties, being so far mainly used in paper industry. Experimental research on the identification of the resistance curves to derive the critical strain energy release rate in Eucalyptus globulus L. under pure mode I and RL crack propagation system is performed by means of Double Cantilever Beam tests. Three different data reduction schemes are compared: the Modified Experimental Compliance Method; and two approaches of the Compliance Based Beam Method. These methods take into account the non negligible damage mechanisms at the fracture process zone and have the advantage of being based exclusively on the specimen compliance following an equivalent crack concept, for which crack length monitoring during testing is not required. The Compliance Based Beam Method turns out to be the most appropriate data reduction scheme to obtain the critical energy release rate in eucalyptus because of its simplicity. Concerning this, a high average value of 720�J/m2 was obtained confirming Eucalyptus globulus L. as a promising hardwood species for timber structural design.

D
Dias, G. F., M. F. S. F. de Moura, J. A. G. Chousal, and J. Xavier. "Cohesive laws of composite bonded joints under mode I loading." Composite Structures. 106 (2013): 646-652. Abstract
n/a
Dourado, N., M. F. S. F. de Moura, J. Xavier, and F. A. M. Pereira. "A New Procedure for Mode I Fracture Characterization of Cement-Based Materials." Strain. 51 (2015): 483-491. AbstractWebsite

Fracture characterization under mode I loading of a cement-based material using the single-edge-notched beam loaded in tree-point-bending was performed. A new method based on beam theory and crack equivalent concept is proposed to evaluate the Resistance-curve, which is essential to determine fracture toughness with accuracy. The method considers the existence of a stress relief region in the vicinity of the crack, dispensing crack length monitoring during experiments. A numerical validation was performed by finite element analysis considering a bilinear cohesive damage model. Experimental tests were performed in order to validate the numerical procedure. Digital image correlation technique was used to measure the specimen displacement with accuracy and without interference. Excellent agreement between numerical and experimental load–displacement curves was obtained, which validates the procedure.

E
Ercin, G. H., P. P. Camanho, J. Xavier, G. Catalanotti, S. Mahdi, and P. Linde. "Size effects on the tensile and compressive failure of notched composite laminates." Composite Structures. 96 (2013): 736-744. Abstract
n/a
F
Fernandes, Pedro, José Sena-Cruz, José Xavier, Patrícia Silva, Eduardo Pereira, and José Cruz. "Durability of bond in NSM CFRP-concrete systems under different environmental conditions." Composites Part B: Engineering. 138 (2018): 19-34. AbstractWebsite

Abstract This paper addresses the durability of bond between concrete and carbon fibre reinforced polymer (CFRP) strips installed according to the near-surface mounted (NSM) technique (NSM CFRP-concrete systems) under the effects of two main groups of environmental conditions: (i) laboratory-based ageing conditions; (ii) real outdoor ageing conditions. The bond degradation was evaluated by carrying out direct pullout tests on aged specimens that were previously subjected to distinct environmental conditions for different periods of exposure. Moreover, the degradation of the mechanical properties of the involved materials was investigated. The digital image correlation (DIC) method was used to document the evolution of the deformation fields at the surface over the whole region of interest consisting of concrete and epoxy adhesive at the ligament region. This information supported the discussion about the evolution of the bond resistant mechanism developed in \{NSM\} CFRP-concrete specimens during testing, as well as the assessment of the bond quality of the system. In general, the results obtained from the durability tests conducted have shown that the different exposure environments, which may be considered as quite severe, did not result in significant damage on \{NSM\} CFRP-concrete system. The maximum decrease of about 12% on bond strength was obtained for real outdoor environments. Conversely, a maximum increase of 8% on bond strength was obtained on the specimens exposed to the temperature cycles between -15��C and +60��C. \{DIC\} allowed to document the stress transfer mechanisms established between the \{CFRP\} and the concrete substrate, revealing the crack patterns and the influence widths of the \{CFRP\} reinforcement strips, which were shown to be important for avoiding group effect when using multiple parallel strengthening \{CFRP\} strips.

Fernandes, A., J. Lousada, J. Morais, J. Xavier, J. Pereira, and P. Melo-Pinto. "Comparison between neural networks and partial least squares for intra-growth ring wood density measurement with hyperspectral imaging." Computers and Electronics in Agriculture. 94 (2013): 71-81. Abstract
n/a
Fernandes, R. M. R. P., J. A. G. Chousal, M. F. S. F. de Moura, and J. Xavier. "Determination of cohesive laws of composite bonded joints under mode II loading." Composites Part B: Engineering. 52 (2013): 269-274. Abstract

n/a

Fernandes, A., J. Lousada, J. Morais, J. Xavier, J. Periera, and P. Melo-Pinto. "Measurement of intra-ring wood density by means of imaging VIS/NIR spectroscopy (hyperspectral imaging)." Holzforschung. 67 (2013): 59-65. Abstract
n/a
Fernández-Cabo, J. L., R. Widmann, M. Arce-Blanco, R. Crocetti, J. Xavier, and A. Majano-Majano. "Assessment of wire-frame analysis models of a historical planked timber arch." Proceedings of the Institution of Civil Engineers - Structures and Buildings. 168 (2015): 680-694. AbstractWebsite
n/a
Furtado, C., A. Arteiro, G. Catalanotti, J. Xavier, and P. P. Camanho. "Selective ply-level hybridisation for improved notched response of composite laminates." Composite Structures. 145 (2016): 1-14. AbstractWebsite

Abstract This work presents an experimental study on the effect of ply-level hybridisation on the tensile unnotched and notched response of composite laminates. In a first assessment, notched tests were performed on laminates with nominal ply thicknesses between 0.03 mm and 0.30 mm. From the understanding of the effect of ply thickness on the damage mechanisms that govern the notched response of laminates, the concept of ply-level hybridisation is introduced, which consists in combining plies of different grades. A uniform combination of thin and conventional plies resulted in a hybrid laminate with intermediate notched response. Selective hybridisation, where thin off-axis plies are combined with thicker 0° plies, resulted in a globally enhanced notched behaviour without compromising the unnotched and fatigue responses. This work clearly shows how ply-level hybridisation, when designed to trigger specific damage mechanisms, can be used to improve the notched response of composite laminates.

G
Garon-Roca, J., J. M. Sena-Cruz, P. Fernandes, and J. Xavier. "Effect of wet-dry cycles on the bond behaviour of concrete elements strengthened with NSM CFRP laminate strips." Composite Structures. 132 (2015): 331-340. AbstractWebsite

Abstract The near-surface mounted (NSM) strengthening technique is capable of effectively increase the bearing capacity of structural concrete elements. This technique which basically consists of placing \{FRP\} reinforcements inside small grooves cut in the concrete cover, has been widely investigated in terms of structural performance and ability to improve the flexural and shear behaviour of reinforced concrete beams and columns. However, little research has been carried out concerning to the \{NSM\} long-term performance and durability. Motivated by the need of increasing the knowledge on the expected durability of the \{NSM\} technique using \{CFRP\} laminates, this paper presents an experimental program in which direct pull-out tests are carried out for evaluating the bond behaviour of specimens aged through wet-dry cycles. A total of 30 specimens are tested, analysing the effect of the bond length, the groove width, the groove depth and the aging effect on the bond behaviour. Digital image correlation method is also used to identify the bond resistant mechanism developed in an element strengthened using \{NSM\} technique. Finally, using the experimental results, an analytical�numerical strategy is applied to establish the local bond stress�slip relationship.

Ghiassi, B., J. Xavier, D. V. Oliveira, and P. B. Lourenço. "Application of digital image correlation in investigating the bond between FRP and masonry." Composite Structures. 106 (2013): 340-349. Abstract

n/a

Ghiassi, B., J. Xavier, D. V. Oliveira, A. Kwiecien, P. B. Lourenço, and B. Zajac. "Evaluation of the bond performance in FRP-brick components re-bonded after initial delamination." Composite Structures. 123 (2015): 271-281. Abstract

Abstract The bond behavior between Fiber Reinforced Polymers (FRPs) and masonry substrates has been the subject of many studies during the last years. Recent accelerated aging tests have shown that bond degradation and \{FRP\} delamination are likely to occur in FRP-strengthened masonry components under hygrothermal conditions. While an investigation on the possible methods to improve the durability of these systems is necessary, the applicability of different bond repair methods should also be studied. This paper aims at investigating the debonding mechanisms after repairing delaminated FRP-strengthened masonry components. FRP-strengthened brick specimens, after being delaminated, are repaired with two different adhesives: a conventional epoxy resin and a highly flexible polymer. The latter is used as an innovative adhesive in structural applications. The bond behavior in the repaired specimens is investigated by performing single-lap shear bond tests. Digital image correlation (DIC) is used for deeper investigation of the surface deformation and strains development. The effectiveness of the repair methods is discussed and compared with the strengthened specimens.

Gomes, F., J. Xavier, and H. Koerber. "High strain rate compressive behaviour of wood on the transverse plane." Procedia Structural Integrity. 17 (2019): 900-905. AbstractWebsite

The high strain rate compressive behaviour of Pinus pinaster Ait. wood along the radial and tangential material axes was addressed in this work. Both quasi-static and dynamic tests were considered for comparation purposes. The quasi-static compression tests were performed on rectangular prismatic specimens along the radial and tangential directions coupled with digital image correlation. The high strain rate tests were carried out using a classical split-Hopkinson pressure bar coupled with a high-speed imaging system allowing independent kinematic measurements through digital image correlation. From these tests and material symmetry orientations, the constitutive curves were determined from which the Young modulus, Poisson’s ratio and yield stress were evaluated and compared over the two different regimes over the strain rate spectrum. The mechanical properties observed for this species under quasi-static compression loading agree with reference values. A qualitative comparison between quasi-static and high strain rate regimes reveals a significant increase of some mechanical properties by increasing the strain rate. Quantitatively, by comparing mean values at the two strain rates, it was found that, in the radial direction, the modulus of elasticity increased by 6.3%, the yield stress showed an increase of 130.3% and the Poisson’s ratio is slightly higher by 3.0%. Furthermore, in the tangential direction, it was found that the modulus of elasticity increased by 21.9% while the value of the yield stress showed an increase of 111.8%, and finally the Poisson‘s ratio presented a reduction of 24.3%.