Publications

Export 16 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Silva, F., J. Xavier, F. A. M. Pereira, J. Morais, N. Dourado, and M. F. S. F. de Moura. "Determination of cohesive laws in wood bonded joints under mode I loading using the DCB test." Holzforschung. 67 (2013): 835-959. AbstractWebsite
n/a
Silva, F. G. A., J. J. L. Morais, N. Dourado, J. Xavier, F. A. M. Pereira, and M. F. S. F. de Moura. "Determination of cohesive laws in wood bonded joints under mode II loading using the ENF test." International Journal of Adhesion and Adhesives. 51 (2014): 54-61. AbstractWebsite

n/a

Fernandes, R. M. R. P., J. A. G. Chousal, M. F. S. F. de Moura, and J. Xavier. "Determination of cohesive laws of composite bonded joints under mode II loading." Composites Part B: Engineering. 52 (2013): 269-274. Abstract

n/a

Cidade, Rafael A., Daniel S. V. Castro, Enrique M. Castrodeza, Peter Kuhn, Giuseppe Catalanotti, Jose Xavier, and Pedro P. Camanho. "Determination of mode I dynamic fracture toughness of IM7-8552 composites by digital image correlation and machine learning." Composite Structures. 210 (2019): 707-714. AbstractWebsite

An optical experimental procedure for evaluating the J-Integral from full-field displacement fields under dynamic loading is proposed in this work. The methodology is applied to measure the J-integral in the dynamic compressive loading of fiber-reinforced composites and to calculate the dynamic fracture toughness associated with the propagation of a kink-band. A modified J-Integral that considers inertia effects is calculated over the full-field measurements obtained by digital image correlation, for double edge-notched specimen of IM7-8552 laminates dynamically loaded in a split-Hopkinson pressure bar (SHPB). A sensibility study is conducted to address the influence of the speckle parameters. The results show good agreement with experimental observations obtained by using a different data reduction method, suggesting the existence of a rising R-curve for the studied material under dynamic loading. Furthermore, it was noticed that the inertia effect can be negligible, indicating a state of dynamic equilibrium in which quasi-static approaches may comfortably be used.

Pereira, F. A. M., M. F. S. F. de Moura, N. Dourado, J. J. L. Morais, J. Xavier, and M. I. R. Dias. "Determination of mode II cohesive law of bovine cortical bone using direct and inverse methods." International Journal of Mechanical Sciences. 138-139 (2018): 448-456. AbstractWebsite

This study presents two alternative methods to determine the cohesive law of bovine cortical bone under mode II loading, employing the End Notched Flexure (ENF) test. The direct method results from the combination of the progress of the mode II strain energy release rate with the crack tip shear displacement, obtained by digital image correlation. The resulting cohesive law is determined by differentiation of this relation relatively to the crack shear displacement. The inverse method employs finite element analyses with cohesive zone modelling, in association with an optimization procedure. The resulting strategy enables determining the cohesive law without establishing a pre-defined shape. The significant conclusion that comes out of this work is that both methods offer consistent results regarding the estimation of the cohesive law in bone. Given that the inverse method dispenses the use of sophisticated equipment to obtain the cohesive law in bone, it can be used as a more convenient procedure to accomplish efficient studies in the context of bone fracture characterization under mode II loading.

Kuhn, P., G. Catalanotti, J. Xavier, M. Ploeckl, and H. Koerber. "Determination of the crack resistance curve for intralaminar fiber tensile failure mode in polymer composites under high rate loading." Composite Structures. 204 (2018): 276-287. AbstractWebsite

This paper presents the determination of the crack resistance curve of the unidirectional carbon-epoxy composite material IM7-8552 for intralaminar fiber tensile failure under dynamic loading. The methodology, proposed by Catalanotti et al. (2014) for quasi-static loading conditions, was enhanced to high rate loading in the order of about 60 ?s-1. Dynamic tests were performed using a split-Hopkinson tension bar, while quasi-static reference tests were conducted on a standard electromechanical testing machine. Double-edge notched tension specimens of different sizes were tested to obtain the size effect law, which in combination with the concepts of the energy release rate is used to measure the entire crack resistance curve for the fiber tensile failure mode. Digital image correlation is applied to further verify the validity of the experiments performed at both static and dynamic loading. The data reduction methodology applied in this paper is suitable for intralaminar fiber failure modes without significant delamination. Sufficient proof is given that quasi-static fracture mechanics theory can also be used for the data reduction of the dynamic tests. It is shown, that the intralaminar fracture toughness for fiber tensile failure of UD IM7-8552 increases with increasing rate of loading.

Crespo, J., A. Majano-Majano, J. Xavier, and M. Guaita. "Determination of the resistance-curve in Eucalyptus globulus through double cantilever beam tests." Materials and Structures. 51 (2018): 77. AbstractWebsite

The prediction of the fracture behaviour through reliable and practical criteria in the design of structural timber elements and connections has become of great importance and demands a proper fracture characterization of the material. Eucalyptus globulus Labill is envisioned as a hardwood species with great potential for high performance structural purposes because of its major mechanical and durability properties, being so far mainly used in paper industry. Experimental research on the identification of the resistance curves to derive the critical strain energy release rate in Eucalyptus globulus L. under pure mode I and RL crack propagation system is performed by means of Double Cantilever Beam tests. Three different data reduction schemes are compared: the Modified Experimental Compliance Method; and two approaches of the Compliance Based Beam Method. These methods take into account the non negligible damage mechanisms at the fracture process zone and have the advantage of being based exclusively on the specimen compliance following an equivalent crack concept, for which crack length monitoring during testing is not required. The Compliance Based Beam Method turns out to be the most appropriate data reduction scheme to obtain the critical energy release rate in eucalyptus because of its simplicity. Concerning this, a high average value of 720�J/m2 was obtained confirming Eucalyptus globulus L. as a promising hardwood species for timber structural design.

Xavier, J., M. Oliveira, J. J. L. Morais, and M. F. S. F. de Moura. "Determining mode I cohesive law of Pinus pinaster by coupling double cantilever beam test with digital image correlation." Fracture and Structural Integrity. 31 (2015): 13-22. AbstractWebsite

The direct identification of the cohesive law in pure mode I of Pinus pinaster is addressed. The approach couples the double cantilever beam (DCB) test with digital image correlation (DIC). Wooden beam specimens loaded in the radial-longitudinal (RL) fracture propagation system are used. The strain energy release rate in mode I (GI ) is uniquely determined from the load-displacement ( P ?? ) curve by means of the compliance-based beam method (CBBM). This method relies on the concept of equivalent elastic crack length ( eq a ) and therefore does not require the monitoring of crack propagation during test. The crack tip opening displacement in mode I ? ? I w is determined from the displacement field at the initial crack tip. The cohesive law in mode I I I (? ? w ) is then identified by numerical differentiation of the I I G ? w relationship. Moreover, the proposed procedure is validated by finite element analyses including cohesive zone modelling. It is concluded that the proposed data reduction scheme is adequate for assessing the cohesive law in pure mode I of P. pinaster.

Xavier, J., M. Oliveira, J. J. L. Morais, and M. F. S. F. de Moura. "Determining mode İI\} cohesive law of Pinus pinaster by combining the end-notched flexure test with digital image correlation." Construction and Building Materials. 71 (2014): 109-115. Abstract

Abstract This work addresses the direct identification of cohesive law of Pinus pinaster in mode II. The end-notched flexure (ENF) test is selected for mode İI\} loading. The strain energy release rate in mode İI\} (GII) is determined according to the compliance-based beam method (CBBM) by processing the global load�displacement curve, without requirements to monitor the crack length during test. The fracture test is coupled with digital image correlation (DIC) for the local measurement of the crack tip opening displacement in mode İI\} (wII). Using a direct method, the cohesive law in mode İI\} (sII�wII) is determined by differentiating the GII�wII relationship. The procedure is validated from both numerical, using finite element analyses including cohesive zone modelling, and experimental approaches. The methodology and accuracy on this reconstruction is discussed. It is concluded that the proposed data reduction scheme is suitable for assessing the cohesive law of P. pinaster in mode II.

Subramani, P., Sohel Rana, Bahman Ghiassi, Raul Fangueiro, Daniel V. Oliveira, Paulo B. Lourenco, and Jose Xavier. "Development and characterization of novel auxetic structures based on re-entrant hexagon design produced from braided composites." Composites Part B: Engineering. 93 (2016): 132-142. AbstractWebsite

Abstract This paper reports the first attempt of developing macro-scale auxetic structures based on re-entrant hexagon design from braided composite materials for civil engineering applications. Braided composite rods (BCRs) were produced and arranged as longitudinal and horizontal elements to produce three types of auxetic structures: (1) basic re-entrant hexagon structure, (2) basic structure modified by adding straight longitudinal elements and (3): structure-2 modified by changing structural angle. The influence of various material and structural parameters as well as structure type on Poisson's ratio and tensile properties was thoroughly investigated. The auxetic behaviour was found to strongly depend on the structural angle and straight elements, resulting in lower auxeticity with lower angles and in presence of straight elements. Material parameters influenced the auxetic behaviour to a lesser extent and a decrease in auxetic behaviour was noticed with increase in core fibre linear density and using stiffer fibres such as carbon. The reverse effect was observed in case of tensile strength and work of rupture. Among these structures, structure-3 exhibited good auxetic behaviour, balanced tensile properties, and high energy absorption capacity and their auxetic behaviour could be well predicted with the developed analytical model. Therefore, these novel structures present good potential for strengthening of civil structures.

Subramani, P., S. Rana, D. V. Oliveira, R. Fangueiro, and J. Xavier. "Development of novel auxetic structures based on braided composites." Materials & Design. 61 (2014): 286-295. AbstractWebsite
n/a
Pereira, F. A. M., M. F. S. F. de Moura, N. Dourado, J. J. L. Morais, J. Xavier, and M. I. R. Dias. "Direct and inverse methods applied to the determination of mode I cohesive law of bovine cortical bone using the DCB test." International Journal of Solids and Structures. 128 (2017): 210-220. AbstractWebsite

Abstract This work addresses the determination of the cohesive law under mode I loading of bovine cortical bone tissue using the Double Cantilever Beam (DCB) test. Direct and inverse methods were proposed to assess the cohesive laws representative of bone fracture under mode I loading. The direct method combines the evolution of the strain energy release rate under mode I loading with the crack tip opening displacement that is monitored by digital image correlation technique. According to this method, the cohesive law is obtained by differentiation of such relation with respect to the crack opening. The inverse procedure is performed through a finite element analysis including cohesive zone modelling, conjointly with a developed optimization algorithm. This identification strategy does not require a pre-established shape of the cohesive law as with the conventional inverse based procedures, which is viewed as a novelty of this work. It was concluded that both methods provide consistent results, being appellative tools concerning systematic and methodical studies dedicated to bone fracture characterization.

Xavier, J., M. Oliveira, P. Monteiro, J. J. L. Morais, and M. F. S. F. Moura. "Direct Evaluation of Cohesive Law in Mode I of Pinus pinaster by Digital Image Correlation." Experimental Mechanics. 54 (2014): 829-840. AbstractWebsite
n/a
Pinto, V. C., T. Ramos, A. S. F. Alves, J. Xavier, P. J. Tavares, P. M. G. P. Moreira, and R. M. Guedes. "Dispersion and failure analysis of PLA, PLA/GNP and PLA/CNT-COOH biodegradable nanocomposites by SEM and DIC inspection." Engineering Failure Analysis. 71 (2017): 63-71. AbstractWebsite

Biodegradable polymers such as PLA have been studied for medical applications, human ligament repair is one of such cases. However, these materials can be applied in other sectors as aerospace, aeronautics, automotive, food packaging. PLA presents a relatively brittle on the mode I fracture behavior, being often blend with other biodegradable or non-degradable polymers to improve its fracture energy. For some existing applications, PLA components exhibit accumulated permanent deformation resulting from dynamic mechanical inputs, resulting on failure by laxity of parts. Aiming the improvement of PLA mechanical properties, the inclusion of carbon nanofillers into PLA matrix, in particular, CNT-COOH and GNP have been developed, due to their strong sp2 carbon-carbon bondings and their geometric arrangement that enhance mechanical properties of the polymer matrix. PLA and nanocomposites were produced by melt blending followed by compression moulding in a hot press, with small weight percentages of nanofillers added to the matrix. Nanocomposites dispersion was evaluated by SEM. Quasi static tensile tests were performed on a mechanical testing machine (Instron� ElectroPuls E1000) along with strain field measurements of specimens with centred crack with digital image correlation, revealing strain distribution along specimens.

Morais, J. J. L., M. F. S. F. de Moura, F. A. M. Pereira, J. Xavier, N. Dourado, M. I. R. Dias, and J. M. T. Azevedo. "The double cantilever beam test applied to mode I fracture characterization of cortical bone tissue." Journal of the Mechanical Behavior of Biomedical Materials. 3 (2010): 446-453. Abstract

n/a

Fernandes, Pedro, José Sena-Cruz, José Xavier, Patrícia Silva, Eduardo Pereira, and José Cruz. "Durability of bond in NSM CFRP-concrete systems under different environmental conditions." Composites Part B: Engineering. 138 (2018): 19-34. AbstractWebsite

Abstract This paper addresses the durability of bond between concrete and carbon fibre reinforced polymer (CFRP) strips installed according to the near-surface mounted (NSM) technique (NSM CFRP-concrete systems) under the effects of two main groups of environmental conditions: (i) laboratory-based ageing conditions; (ii) real outdoor ageing conditions. The bond degradation was evaluated by carrying out direct pullout tests on aged specimens that were previously subjected to distinct environmental conditions for different periods of exposure. Moreover, the degradation of the mechanical properties of the involved materials was investigated. The digital image correlation (DIC) method was used to document the evolution of the deformation fields at the surface over the whole region of interest consisting of concrete and epoxy adhesive at the ligament region. This information supported the discussion about the evolution of the bond resistant mechanism developed in \{NSM\} CFRP-concrete specimens during testing, as well as the assessment of the bond quality of the system. In general, the results obtained from the durability tests conducted have shown that the different exposure environments, which may be considered as quite severe, did not result in significant damage on \{NSM\} CFRP-concrete system. The maximum decrease of about 12% on bond strength was obtained for real outdoor environments. Conversely, a maximum increase of 8% on bond strength was obtained on the specimens exposed to the temperature cycles between -15��C and +60��C. \{DIC\} allowed to document the stress transfer mechanisms established between the \{CFRP\} and the concrete substrate, revealing the crack patterns and the influence widths of the \{CFRP\} reinforcement strips, which were shown to be important for avoiding group effect when using multiple parallel strengthening \{CFRP\} strips.