

Dezembro, 2016

Ricardo Diogo Martins Teixeira

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

Licenciado em Ciência e Engenharia Informática

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

Controlled Specification and Generation

of Spreasheets

[Título da Tese]

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática

Dissertação para obtenção do Grau de Mestre em

[Engenharia Informática]

Orientador: Jácome Cunha,

Prof. Auxiliar, Universidade Nova de Lisboa

Co-orientador: Vasco Amaral,

Prof. Auxiliar, Universidade Nova de Lisboa

iii

Controlled Specification and Generation of Spreadsheets

Copyright © Ricardo Diogo Martins Teixeira, Faculdade de Ciências e Tecnolo-

gia, Universidade Nova de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o

direito, perpétuo e sem limites geográficos, de arquivar e publicar esta disserta-

ção através de exemplares impressos reproduzidos em papel ou de forma digital,

ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a di-

vulgar através de repositórios científicos e de admitir a sua cópia e distribuição

com objectivos educacionais ou de investigação, não comerciais, desde que seja

dado crédito ao autor e editor.

iv

v

Abstract

Spreadsheets are one of the most popular programming systems in the

world, widely used both by individuals as well as large companies. Spreadsheets

popularity is due to characteristics such as their low entry barrier, their simple

visual interface, their availability on almost any platform, and their multipurpos-

ness.

However, spreadsheets’ flexibility, which is not accompanied with effective

error prevention mechanisms, makes them extremely error prone, as indicated

by several studies. Moreover, since spreadsheets often take an important role in

business decisions, they can have an enormous impact on critical components of

businesses, as numerous audit processes have shown.

As a result, it is necessary to create mechanisms that allow the specification

of spreadsheets’ structures and their respective business logic correctly, as well

as to maintain the correctness of their data during the spreadsheets’ life cycle.

The aim of this thesis is to design a Domain Specific Language (DSL) that

uses the Model-Driven Development approach (MDD) to address the stated

needs. This DSL consists of a UML-based visual language that covers the most

common spreadsheets patterns and allows to define arbitrary data constraints.

The spreadsheets generated from this DSL will guide the users so they make less

mistakes than before.

As a case study, we have used our approach to derive a spreadsheet to a

governmental institution. Those in charge were quite happy with the new

spreadsheet as it adds several data constraints to the one they used to have.

Keywords: Spreadsheet, Model-Driven Development, Domain Specific

Languages, UML

vi

vii

Resumo

Folhas de cálculo são dos sistemas de programação mais populares no

mundo, amplamente utilizadas tanto por indivíduos, bem como por instituições.

A popularidade das folhas de cálculo deve-se a características tais como a facili-

dade com que se começa a utilizá-las, a sua interface visual simples, a sua dispo-

nibilidade em praticamente qualquer plataforma e o seu multipropósito.

No entanto, a flexibilidade das folhas de cálculo não é acompanhada de me-

canismos eficazes de prevenção de erros, tornando-as extremamente sujeitas a

erros, como indicado por vários estudos. Tendo em conta que as folhas de cálculo

têm frequentemente um papel importante em decisões de negócio, elas podem

ter um enorme impacto sobre componentes críticos de empresas ou outras insti-

tuições, como tem sido demonstrado por numerosos processos de auditoria.

Como resultado, é necessário criar mecanismos que permitam especificar

estruturas de folhas de cálculo e sua respetiva lógica de negócio corretamente,

bem como manter a correção dos seus dados ao longo do ciclo de vida da folha

de cálculo.

O objetivo do trabalho desta tese é a conceção de uma Linguagem de Do-

mínio Específico (Domain-Specific Language - DSL) que usa a abordagem de De-

senvolvimento Dirigido a Modelos (Model Driven Development - MDD) para

tratar das necessidades mencionadas. Esta DSL consiste numa linguagem visual

baseada em UML que cobre os padrões de folhas de cálculo mais comuns e que

permite definir restrições arbitrárias sobre os dados da folha de cálculo. As folhas

de cálculo geradas a partir desta DSL irão guiar os utilizadores de forma a que

estes não cometam erros.

Como caso de estudo, nós usámos a nossa abordagem para derivar uma

folha de cálculo para uma instituição governamental. Os responsáveis ficaram

bastante satisfeitos com a nova folha de cálculo, tendo em conta que a mesma

viii

adiciona várias restrições de dados à folha de cálculo que estava, até então, a ser

usada.

Palavras-chave: Folha de cálculo, Model-Driven Development, Domain

Specific Languages, UML

ix

Contents

1 INTRODUCTION .. 1

1.1 MOTIVATION .. 3

1.2 APPROACH .. 4

1.3 CONTRIBUTIONS ... 5

1.4 DOCUMENT STRUCTURE .. 6

2 STATE OF THE ART .. 8

2.1 MODEL-DRIVEN DEVELOPMENT .. 8

2.2 DOMAIN SPECIFIC LANGUAGES .. 9

2.3 SPREADSHEETS ERROR TAXONOMIES ... 10

2.4 MODEL-DRIVEN SPREADSHEET DEVELOPMENT .. 11

2.4.1 ViTSL ... 12

2.4.2 ClassSheets ... 13

2.4.3 Embedded ClassSheets... 17

2.4.4 Automatic Spreadsheet Generation from a UML class diagram extended with

OCL ... 20

3 TOWARDS SPREADSHEET PATTERNS ... 25

3.1 CHARACTERISTICS OF INDUSTRIAL SPREADSHEETS.. 26

3.2 COMMON DATA ARRANGEMENTS OF SPREADSHEETS .. 29

3.2.1 Table Replication ... 30

3.2.2 Table Structures ... 32

3.2.2 Header Structures ... 37

4 A UML-BASED DSL TO SPECIFY SPREADSHEETS .. 41

4.1 SPREADSHEET SPECIFICATION ... 41

4.1.1 DSL Metamodel ... 45

4.1.2 Patterns ’s Metamodel .. 47

4.2 DOMAIN CONSTRAINTS ... 50

4.2.1 Levels Addressed .. 50

4.2.2 Operations .. 53

4.3 ERRORS ADDRESSED .. 56

x

5 GENSS - A TOOL TO GENERATE SPREADSHEETS .. 59

5.1 TECHNOLOGIES USED ... 59

5.2 ARCHITECTURE ... 60

5.3 USER INTERFACE ... 61

6 CASE STUDY ... 63

6.1 STATE OF THE ART TECHNIQUES ... 68

7 CONCLUSION ... 71

7.1 FUTURE WORK ... 72

REFERENCES ... 73

xi

List of Figures

FIGURE 1.1: VISICALC SPREADSHEET VERSUS NOWADAYS EXCEL SPREADSHEET ... 1

FIGURE 2.1: VITSL/GENCEL ARCHITECTURE AND EDITOR SCREENSHOT [25] .. 12

FIGURE 2.2: A CLASSSHEET WITH THE CORRESPONDING UML CLASS DIAGRAM [26] .. 13

FIGURE 2.3: TILING SYNTAX [26] ... 14

FIGURE 2.4: VISUALIZATION OF SOME TILING STRUCTURES EXAMPLES [26] ... 15

FIGURE 2.5: A TWO-DIMENSIONAL CLASSSHEET WITH THE CORRESPONDING UML CLASS DIAGRAM [26] 16

FIGURE 2.6: FLIGHTS’ VISUAL CLASSSHEET MODEL [9] .. 18

FIGURE 2.7: FLIGHTS’ VISUAL EMBEDDED CLASSSHEET MODEL [9] ... 18

FIGURE 2.8: FLIGHTS’ VISUAL EMBEDDED CLASSSHEET INSTANCE [9] .. 18

FIGURE 2.9: UML CLASS DIAGRAM THAT SUPPORTS THE DISCUSSION ON TRANSFORMATION RULES [10] 20

FIGURE 2.10: THE SPREADSHEET METAMODEL [10] ... 21

FIGURE 2.11: OCL EXPRESSIONS ASSOCIATED TO THE UML MODEL [28] .. 23

FIGURE 3.1: TABLE REPLICATED IN DIFFERENT WORKSHEETS ... 30

FIGURE 3.2: TABLE REPLICATED IN THE SAME WORKSHEET ... 31

FIGURE 3.3: GENERIC STRUCTURE OF WORKBOOK AND WORKSHEET ... 32

FIGURE 3.4: VERTICAL TABLE USED AS A DATABASE ... 33

FIGURE 3.5: VERTICAL TABLE USED TO DISPLAY STATISTICAL DATA .. 33

FIGURE 3.6: GENERIC STRUCTURE OF VERTICAL TABLE .. 34

FIGURE 3.7: HORIZONTAL SINGLE ENTRY TABLE EXAMPLE ... 35

FIGURE 3.8: GENERIC STRUCTURE OF HORIZONTAL SINGLE ENTRY TABLE .. 35

FIGURE 3.9: RELATIONSHIP TABLE EXAMPLE ... 36

FIGURE 3.10: GENERIC STRUCTURE OF RELATIONSHIP TABLE .. 36

FIGURE 3.11: RELATIONSHIP TABLE WITH HEADER COMPOSITION ... 37

FIGURE 3.12: GENERIC STRUCTURE OF HEADER COMPOSITION .. 38

FIGURE 3.13: VERTICAL TABLE WITH A HEADER HIERARCHY ... 39

FIGURE 3.14: RELATIONSHIP TABLE WITH A HEADER HIERARCHY .. 39

FIGURE 3.15: GENERIC STRUCTURE OF HEADER HIERARCHY .. 40

FIGURE 4.1: SALES SPREADSHEET ... 42

FIGURE 4.2: SALES SPREADSHEET’S STRUCTURE ... 43

FIGURE 4.3: SALES SPREADSHEET’S SPECIFICATION ... 44

FIGURE 4.4: PART OF THE UML CLASS DIAGRAM METAMODEL EXTENDED USING OUR DSL MET-AMODEL 45

FIGURE 4.5: WORKBOOK’S METAMODEL ... 47

FIGURE 4.6: WORKSHEET’S METAMODEL .. 48

FIGURE 4.7: TABLE’S METAMODEL ... 49

FIGURE 4.8: HEADER’S METAMODEL .. 50

FIGURE 4.9: ENUMERATION’S METAMODEL .. 51

FIGURE 4.10: ENUMERATION EXAMPLE ... 51

FIGURE 4.11: CELL LEVEL RESTRICTIONS ... 52

file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161139
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161140
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161141
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161142
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161143
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161145
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161144
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161146
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161148
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161147
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161149
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161153
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161158
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161160
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161162
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161163
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161165
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161171

xii

FIGURE 4.12: RECORD LEVEL RESTRICTIONS ... 52

FIGURE 4.13: ENTRY LEVEL RESTRICTIONS .. 53

FIGURE 5.1: TOOL PROTOTYPE’S ARCHITECTURE ... 60

FIGURE 5.2: TOOL’S USER INTERFACE ... 61

FIGURE 6.1: WORKSHEET 1 OF THE IGF SPREADSHEET ... 64

FIGURE 6.2: WORKSHEET 2 OF THE IGF SPREADSHEET ... 64

FIGURE 6.3: DATE TYPE VALIDATION .. 66

FIGURE 6.4: DOMAIN RESTRICTION EXAMPLE AT THE CELL LEVEL .. 67

FIGURE 6.5: DOMAIN RESTRICTION EXAMPLE AT THE RECORD LEVEL ... 67

file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161180
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161181
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161182
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161183
file:///C:/Users/Ricardo/Desktop/Tese%20Mestrado3.docx%23_Toc465161183

xiii

List of Tables

TABLE 3.1: AN OVERVIEW OF THE SPREADSHEETS IN THE ENRON AND EUSES SET ... 26

TABLE 3.2: A COMPARISON BETWEEN ENRON’S AND EUSES MOST USED BUILT-IN FUNCTIONS 27

TABLE 3.3: THE MOST USED FUNCTIONS AND CORRESPONDING PERCENTAGES IN THE ENRON DATSET 28

TABLE 3.4: SPREADSHEETS CONTAINING EXCEL ERRORS IN THE ENRON DATASET .. 28

TABLE 3.5: SPREADSHEETS ERROR TYPE EXPLANATION .. 29

TABLE 4.1: NUMBER OPERATIONS ... 54

TABLE 4.2: TEXT OPERATIONS ... 54

TABLE 4.3: BOOLEAN OPERATIONS ... 55

TABLE 4.4: DATE OPERATIONS .. 55

TABLE 4.5: COLLECTION OPERATIONS .. 55

TABLE 4.6: DEVELOPMENT ERRORS ADRESSED ... 56

TABLE 4.7: USAGE ERRORS ADRESSED .. 57

TABLE 6.1: NUMBER OF DOMAIN CONSTRAINTS NOT ADDRESSED .. 65

xiv

1

Introduction

Spreadsheets are electronic documents in which data is arranged in the rows

and columns of a grid and can be manipulated and used in calculation [1].

Figure 1.1: VisiCalc spreadsheet versus nowadays Excel spreadsheet

The concept was introduced in the early 1980’s with the first spreadsheet

tool called VisiCalc [1], followed by Lotus 1-2-3 [1] which added integrated chart-

ing, plotting and database capabilities. Later in that same decade, the concept

was matured as many companies introduced spreadsheet products with Mi-

crosoft (MS) joining the fray with the innovative Excel [1] – one of the most pop-

ular spreadsheet tools nowadays and an industry standard for spreadsheets. Ex-

cel was one of the first spreadsheets to use a graphical interface with pull-down

menus and a point and click capability using a mouse pointing device, forming

the basis of the modern spreadsheets. In Figure 1.1 we can see a visual compari-

son between the VisiCalc and one the latest versions of MS Excel.

1

2

Due to characteristics such as the initial small learning effort associated

with the use of spreadsheets – it is considerable easy to create a simple spread-

sheet without substancial programming for any technology user -, their friendly

graphic user interface, their availability on almost any platform and especially

their general purpose as a result of the spreadsheets’ high flexibility, spread-

sheets became one of the most popular programming systems. Being the first

“programmer in a box” to come along for technology users, spreadsheets are

widely used both by individuals to cope with simple needs like tracking personal

finances/expenses, training plans, to-do lists, supplier databases, or any purpose

that requires input of data and/or performing calculations; as well as institutions

as integrators of complex systems and as support for informing business deci-

sions especially in areas like marketing, business development, sales, and fi-

nance. In spite of the existence of business intelligence applications, workers do

financial analysis by extracting data from those back-end systems and importing

it into spreadsheets because there are easier to use and the corresponding tool is

installed on every computer separately.

 Spreadsheets are established in institutions. In fact, several studies over

the years have shown, clearly and unmistakably, that spreadsheets have a mas-

sive presence in the labour force, and that they are used to make important deci-

sions:

 A study made in 2003, shows that 47% of mid-size companies use stand-

alone spreadsheets for planning and budgeting [2].

 In 2004, a study in which more than a hundred finance executives were

interviewed, of 14 technologies discussed, spreadsheets were one of most

widely used technologies [3].

 A study which took place in 2005 states that about 23 million American

workers - about 30% of workforce - use spreadsheets [3].

 Finance intelligence firm CODA, estimate that 95% of all U.S.A. firms use

spreadsheets for their financial reporting [3].

3

Despite business intelligence applications have become quite sophisticated,

offering more efficiency and report capabilities far beyond spreadsheets func-

tionalities such as performance indicators, their adoption by companies is not exactly

taking place as one would have expected. Barriers already mentioned such as the

necessary training of the employees and their reluctance to use new technology

eventually can be overcome, however, cost and integration problems remain the

top barriers. According to a study performed by CFO.com [4] which asked fi-

nance companies what barriers prevented them from implementing new tech-

nologies, 74% chose integration with existing systems, while 71% selected cost.

When asked about the importance of spreadsheets in the future, the most domi-

nant response was that spreadsheets would maintain the same important role

(71%), followed by the answer which stated that spreadsheets would gain more

importance (20%). So, to put it simply: spreadsheets are widely used in the world

of business and are here to stay.

1.1 Motivation

Regardless of the enormous popularity and proliferation of spreadsheets,

their use is not at all without problems – the flexibility spreadsheets offer is not

accompanied by effective mechanisms for error prevention.

Numerous audit studies to real-world spreadsheets show that erroneous

spreadsheets are largely common – it was estimated that 94% of real-world

spreadsheets contain errors [5]. Those errors not only are significant regarding

occurrence, but also in importance. Several cases of spreadsheet errors with im-

pact on critical components of businesses which resulted in huge money loss and

career damage have been known in the past decades. Many of them were docu-

mented and made available by the European Spreadsheet Risk Interest Group

(EuSpRIG) [6] in the “Horror Stories” section [7].

Errors in spreadsheets occur during their creation and are made as well

when users perform modifications on them. That happens because the people

who usually create and modify spreadsheets do not completely understand their

4

functionality, because they are not programmers and thus lake programmers’

knowledge of how to structure software. Therefore, they do not program spread-

sheets in a methodical and well-documented way, ignoring the programming

conventions. This situation is particularly critical in the spreadsheets world, since

spreadsheet systems encourage the use of "spaghetti" logic, where, for instance,

cells point to cells that point to cells, which can grow into random networks of

calculation logic. They are prone to several off-by-one errors which in general are

difficult to verify, since they do not have any abstractions like modern program-

ming languages do. Moreover, it does not exist a clear separation between data

and computation in spreadsheets, and the immediate visual feedback mechanism

makes traditional coding and program compilation/execution steps indistin-

guishable from each other. All these factors plague the creation of well-structured

spreadsheets and their maintainability, making it hard and prone to errors.

 Nonetheless, the improvements in spreadsheets over the last years did

not involve considerable enhancements regarding error-prevention, but have

primarily just involved the improvement of the typesetting capabilities of

spreadsheets and the creation of add-ins for data manipulation. Moreover, pro-

posed research techniques for error-prevention have not reached commercial

spreadsheet applications.

1.2 Approach

Model-Driven Engineering (MDE) is a development methodology in

which abstract models of software systems are created and systematically trans-

formed to concrete implementations, as they support visualization, analysis,

communication, and validation of different aspects of a system before its imple-

mentation [8].

In the spreadsheets context, MDE can be used to specify and validate

spreadsheets, as well as validate constraints on them to prevent errors and, ad-

ditionally, to offer a much better understanding of large spreadsheets through

small, precise and compact models.

5

However, the existing models to spreadsheets solutions do not fully ad-

dress real-world operational spreadsheets – they cover a limited kind of spread-

sheets [9]; or the proposed model lack expressiveness [10] –, and, moreover, none

of them possesses mechanisms to apply arbitrary constraints on spreadsheets.

The work proposed in this dissertation aims to provide a model-driven

approach to the controlled specification and generation of spreadsheets which

conforms with all types of industrial spreadsheets.

 With that intent we analyzed the spreadsheets composing two large re-

positories of real-world spreadsheets made public, also taking in to consideration

a previous work analysis made on them [11, 12], to systematize and document

the most common spreadsheet patterns which this work presents.

Taking into account those patterns, we defined a Domain Specific Lan-

guage (DSL) that uses the Model-Driven Development approach (MDD) to ad-

dress the stated needs. This DSL consists of a UML-based class diagram visual

language, complemented with OCL-based invariants to impose business logic

constraints. The choice for a UML conceptual model resides in the fact that UML

class diagrams are one the most proliferated conceptual models and have a high

level of understanding during data models maintenance than other well-known

conceptual models, e.g., Entity-relationship diagrams [13].

1.3 Contributions

Upon the approach of this work described in section 1.2, the contribu-

tions of this work are:

 The systematization and documentation of the most common pat-

terns in real-world spreadsheets.

 A metamodel of those patterns, extending the UML’s metamodel.

 A UML-based class diagram DSL to specify spreadsheets.

6

 A generation technique to produce spreadsheets from these specifi-

cations.

 A parser-generator of OCL-based invariants to spreadsheet formu-

las, for spreadsheet data validation.

 A tool that implements the techniques this work presents.

 Moreover, based on this dissertation’s work, we have a paper: “Ri-

cardo Teixeira, Vasco Amaral, On the Emergence of Patterns for Spread-

sheet Data Arrangements, In Proceedings of the 3rd International Work-

shop on Software Engineering Methods in Spreadsheets, 2016”, to

appear.

1.4 Document Structure

This dissertation is organized as follows:

Chapter 2 introduces the general techniques in which our work is based,

gives a perspective of the literature concerning spreadsheet error taxonomies,

and describes the state of the art regarding the Model-Driven Spreadsheet Devel-

opment.

Chapter 3 contains previous research studies regarding spreadsheet pat-

ters, and our catalog of spreadsheet data arrangement patterns.

Chapter 4 describes our approach based on the patterns presented in Chap-

ter 3 and the spreadsheet errors addressed by it.

Chapter 5 describes the prototype tool developed which implements the

techniques presented in Chapter 4.

Chapter 6 describes the case study of this dissertation. A real-world spread-

sheet is presented and a description of how our work can overcome some of its

deficiencies is made.

7

Chapter 7 concludes this dissertation with remarks on the work done and

exposing directions for future work.

8

State of the Art

In this Chapter we make an introduction to Model-Driven Development

and Domain Specific Languages. Moreover, we describe the state of the art re-

garding spreadsheet error taxonomies, and then we perform a revision of the

state of the art in Model-Driven Spreadsheet Development.

2.1 Model-Driven Development

Typically, a model refers to a description of something. In Software Engi-

neering, a model is an artifact that describes a system through various graph-

based diagram types. Models are formulated in modeling languages, such as

UML, usually visually rendered [14]. A metamodel is a model of a model that

typically defines the language and processes from which to form a model, ac-

cording to rules, properties and relations [14]. A model expressed with a meta-

model is called an instance of that metamodel.

Using models as the primary artefacts of the software development process,

Model-Driven Development (MDD) [14, 15] is a software development paradigm

that aims to automate the programming tasks, some of them quite complex de-

spite routine, by raising the level of abstraction even further – in MDD, all

2

9

knowledge is explicit and can be modeled, from requirements to code, ensuring

compliance and consistency between models.

There are several advantages that MDD brings to software development,

such as productivity and maintainability improvement; up-to-date documenta-

tion – since the model is the documentation; domain-specific validations that are

executed at design-time which can have associated domain-specific error mes-

sages; and development is less error-prone. In fact, these advantages are interre-

lated, e.g., fewer errors favors a higher productivity, and a better documentation

provides higher maintainability [15].

2.2 Domain Specific Languages

 Domain Specific Language (DSL) is a programing/specification language

that offers, through appropriate notations and abstractions, expressive power fo-

cused on, and usually restricted to, a particular problem domain [16, 17].

A DSL can be graphic or textual. There are three approaches for the imple-

mentation of textual languages. In the first approach a grammar can be specified

along with the creation of parser-generator for conversion. The second approach

is to use properties from another language to emulate the capabilities of a DSL.

Lastly, the third common approach is to use XML with a schema to help validate

documents and provide syntax coloring and autocompletion.

A model can be expressed using a DSL, which is an approach for the imple-

mentation of a graphic DSL. DSLs can follow the MDD paradigm for modeling

and can be used to formalize the application structure, behavior and require-

ments, imposing domain-specific constraints and performing model checking

that can detect and prevent many errors in early stages of the development pro-

cess.

Regarding the modeling paradigm, the development cycle of a DSL has sev-

eral steps that should be followed [17]. The first one is the Domain Analysis,

where since the DSL has to take into account the particularities of the domain of

the DSL to be developed. This analysis is carried out using various sources of

10

information, such as the study of technical documentation, existing implementa-

tions, language requirements and through dialogues with domain experts. Then,

based on the gathered information, a metamodel is developed, in which are spec-

ified the syntax and semantics of the DSL. The third step is the actual implemen-

tation of the DSL, based on the metamodel previously defined. The final step is

the validation of the DSL in the context of the domain. The whole process is an

iterative one, since to be flawless, a DSL must be redesigned several times.

2.3 Spreadsheets Error Taxonomies

Spreadsheet errors can be classified in a variety of ways, for distinct focuses

and purposes. Generally accepted taxonomies of spreadsheet errors distinguish

errors by effect, cause, stage, form, or risk [18].

A classification by the errors effect on the spreadsheet were purposed by

several researches [19, 20, 21, 22, 23, 24], categorizing spreadsheet errors in two

general groups: quantitative errors and qualitative errors. Quantitative errors are

errors that produce an immediate incorrect result or logic in the spreadsheet,

while qualitative errors are associated to poor spreadsheet design that increases

the probability of eventual qualitative errors occurrence during operational use

of the spreadsheet.

Galletta et al. [19] differentiated quantitative spreadsheet errors by cause,

dividing errors into domain errors – the ones that occur due to lack of domain

knowledge as, for instance, choosing a wrong formula to implement an algo-

rithm; and device errors – errors involving using the computer as typing or point-

ing errors.

 Panko and Halverson [20] in their taxonomy also presented an error clas-

sification based on the error source of quantitative errors, which included three

types of errors: the mechanical errors – the same as the device errors of Galletta

–, the logical errors, that included the domain errors of Galleta, and the pure log-

ical errors, which consists of incorrect use of logic or mathematics in general –,

11

and the omission errors, which are parts of the spreadsheet model that were mis-

takenly left out.

Rajalingham et al. [22] – also split quantitative errors in mechanical and log-

ical errors, naming them accidental errors and reasoning errors, respectively –,

introduced in their taxonomy the distinction between developer and end-user

errors, that is, the spreadsheet life cycle stage where the errors occur. Moreover,

Panko and Aurigemma [24] revisited the Panko-Halverson taxonomy, adding

that distinction.

Errors could also be distinguished by their form or context. Besides the cell

level, an error can occur, for instance, at the algorithm level, at the module level,

and at the level of the spreadsheet as a whole [24].

Another way of categorizing errors is by the risks they pose. Madahar et al.

[23] presented a taxonomy for categorization of spreadsheet use and the level of

risks involved, proposing a three-dimensional model with the following dimen-

sions: Magnitude of risk – the severity of the consequences of errors within

spreadsheets; Dependency – how fundamental the spreadsheet is for the com-

pany (operational, analytical/management, or financial); and Urgency – dead-

lines associated with the spreadsheet use.

2.4 Model-Driven Spreadsheet Development

Model-Driven approaches to ensure error-free spreadsheets are an object of

research, with several spreadsheet models integrating UML concepts already

proposed.

Those models allow the developer to express explicitly business object

structures and their respective logic within a spreadsheet. A stepwise automatic

transformation process generates a spreadsheet application that is consistent with

the defined model.

12

2.4.1 ViTSL

A visual specification language for spreadsheets called ViTSL [25] (an acro-

nym for Visual Template Specification Language) was introduced to generate MS

Excel spreadsheets.

ViTSL specifications – called templates – are constructed with an editor vis-

ually similar to spreadsheets and then loaded into an Excel extension named

Gencel which provides an environment that manages the use of the spreadsheet

that behaves dependent on the given specification (Figure 2.1), handling all for-

mula generation and spreadsheet structure modification, ensuring that all

spreadsheet formulas are correct and allowing the user to focus on data entry

and analysis. Moreover, this language also has a formal textual representation.

While this language ensures the creation and the of spreadsheets free from

a large class of accidental errors – such as type or pointing errors –, and has a

familiar spreadsheet-like specification editor, it does not cover other types of er-

rors (e.g., domain errors), offers a poor understanding of the spreadsheet struc-

ture and logic, and after creating the spreadsheet it is not possible to modify the

template.

Figure 2.1: ViTSL/Gencel Architecture and editor screenshot [25]

13

2.4.2 ClassSheets

The last one lead to the introduction of ClassSheets [26], a higher-level ob-

ject-oriented spreadsheet model based on ViTSL from which inherits all the

safety/correctness features and extends the textual representation. Instead of the

ViTSL editor, there is a ClassSheet editor where it is possible to define a work-

sheet through a ClassSheet.

A ClassSheet represents two aspects of a spreadsheet application: the struc-

ture and the relationships of the involved classes and objects, along with the de-

tails of how attributes are related and derived from one another – the definition

of these aspects are embed into a grid- based layout similar to the ViSTL tem-

plates.

Moreover, a UML-like class diagram can be derived from a ClassSheet [26],

although forgetting all layout information. This diagram serves as an additional

documentation of the class structure in the ClassSheet.

Figure 2.2: A ClassSheet with the corresponding UML class diagram [26]

14

In Figure 2.2 we can see an illustrative example of a ClassSheet that models

an account system. There are three classes: Account (represents the account sheet),

Income, Expense and Item. Account contains Income and Expense; this last two clas-

ses both contain Item. Item have the attribute value and can be expanded verti-

cally, so Income or Expense can include several items.

Both Income and Expense have the attribute total which is calculated by the

sum of their items value. Finally, Account has also an attribute of its own named

netEarnings that is calculated by the subtraction of the attribute total of Income

by the attribute total of Expense.

The structures and their respective relationships described above are di-

rectly reflected in the UML diagram representation (Figure 2.2), where, from an

object-oriented viewpoint, there is an enclosing aggregating class Account with

two enclosed aggregated classes Income and Expense, with both of these two hav-

ing by their turn the class Item as an aggregate from which they can have multiple

instances. Also, there is a constraint xor which tells that the instances of the Item

class aggregated to Income are disjoint from the ones aggregated to Expense.

The annotation of cells with classes has to result in a regularly nested class

structure. This condition can be formalized through a type system that infers a

spatial structure called tiling for ClassSheets. ClassSheets are considered to be

well-formed if the type system is able to infer a proper tiling from the modeled

structure.

Figure 2.3: Tiling Syntax [26]

15

In Figure 2.3 are presented the tillings construction rules. Tillings are prin-

cipally composed by nested aggregations, which can grow either horizontally or

vertically. Tillings can also feature two-dimensional aggregations, which basi-

cally are relations between two classes who share attributes.

In Figure 2.4 we can see the visualization of some tilling constructions; the

second from the right represents the already mentioned Account Sheet (Figure

2.2).

The first from the right represents the mentioned two-dimension aggrega-

tion that is illustrated by a concrete instance in Figure 2.5 – a budget sheet is com-

posed by Budget class which contains Category and Year as aggregated classes.

Category can be expanded vertically to set several items using the attribute name;

Year can be expanded horizontally to include several years using the attribute

year. CpY (Category-per-Year) relates a year with a category, since each instance is

Figure 2.4: Visualization of some tiling structures examples [26]

16

used to store information for all the categories of a year, and all the years of a

category.

Although ClassSheets offer an additional object-oriented modeling layer to

further reduce the semantic gap between the application domains and the (auto-

matically generated) applications, this model have several considerable draw-

backs:

 ClassSheets do not cover some other common spreadsheet struc-

tures.

 Despite the higher-level modeling introduced, the understanding of

the spreadsheet structure and logic is still quite poor for large-

Figure 2.5: A two-dimensional ClassSheet with the corresponding UML class diagram [26]

17

spreadsheets; the UML-based documentation does not how the clas-

ses are physically structured (for instance, it is not expressed in

which order the aggregated classes of a class appear in the grid).

 Domain errors are not addressed, that is, there is no way to express

arbitrary constraints related to the underlying business logic.

 The model creation and the data insertion/edition occur in different

environments.

 When a template is modified, a new spreadsheet needs to generated

and the user has to migrate the data manually.

2.4.3 Embedded ClassSheets

To address the last two drawbacks of ClassSheets, Cunha et. al. introduced

Embedded ClassSheets [9], which consists of the native embedding of ClassSheet

models in a spreadsheet host system. As a result, the model creation and data

insertion/modification occur in the same environment that end users are familiar

with, and both model and instance are stored in the same file (see Figure 2.7 and

2.8).

Due to some limitations related to syntactic restrictions of the host system,

the ClassSheet visual language suffered some modifications, namely:

 Classes are filled with a background color instead of using colored

border lines. This change is not mandatory, but it easies the identifi-

cation of classes’ parts.

 Horizontal and vertical expansions are identified using cells instead

of using columns/rows labels.

 Expansion limitation is defined with a black line in the spreadsheet

instead of using column/row indices.

18

We can compare the mentioned differences between the original ClassSheet

and the embedded one using a flights’ spreadsheet example (Figures 2.6 and 2.7).

We have a Flight class which aggregates classes PlanesKey and PilotsKey, with this

two having a relationship. With that being said, the differences between the two

ClassSheet models are:

I. In the original ClassSheet, the class Flights is identified by a black

border line, the classes PlanesKey and PilotsKey are both identified

by a red border line, and the relation class between these two are

Figure 2.6: Flights’ visual ClassSheet model [9]

Figure 2.8: Flights’ visual embedded ClassSheet instance [9]

Figure 2.7: Flights’ visual embedded ClassSheet model [9]

19

identified by a blue border line; in the embedded ClassSheet, Flights

is identified by a green background, the class PlanesKey by a cyan

background, the class PilotsKey by a yellow background, and the re-

lation class between them by a green background.

II. Relatively to the expansion identification, in the original model we

have two expansions: one is a horizontal expansion denoted by the

column between columns E and F, the other one, a vertical expan-

sion, is denoted by a row between rows 4 and 5; in the new model

the two expansions are represented by the column F and the row 5,

respectively.

III. To define the expansion limits in the original ClassSheet, there are no

separation lines between the column headers of columns B, C, D and

E which makes the horizontal expansion use three columns and the

vertical expansion only use one row. In the embedded ClassSheet,

there is instead a line between columns A and B and another line

between rows 3 and 4.

Additionally, embedded ClassSheets permit the model evolution alongside

their model instance, so spreadsheets evolve correctly regarding their business

logic. The evolution is bidirectional, that is, the instance can evolve from the in-

stance evolution and vice versa. To accomplish this, two sets of transformation

rules were defined for the model and the instance, so that any transformation on

either artifact implies a sequence of one or more transformations on the other,

keeping the instance always conformed to the model.

Furthermore, an empirical study on a non-industrial environment was con-

ducted to analyze the impact of this solution – although at that time the imple-

mentation only supported a model-to-instance evolution –, and results showed

that embedded ClassSheets favored a less erroneous spreadsheets and also low-

ered the spent time on building spreadsheets.

However, some drawbacks earlier mentioned remain; the model does not

cover all of the usual real-world spreadsheets structures, it is still changeling to

20

reason about large spreadsheets and it is not possible to define arbitrary con-

straints with respect to the business logic to address domain errors.

2.4.4 Automatic Spreadsheet Generation from a UML class diagram ex-

tended with OCL

A previous work proposed a MDE approach to the generation of spread-

sheets using UML class diagrams augmented with OCL expressions, using a

model-to-model transformation in the process [10].

The generation consists of two steps. First, a UML class diagram – the con-

ceptual model – is defined. Although there is no word relatively to how exactly

restricted is that class model in terms of elements involved, it is safe to assume

there are some constraints on the kind of relationships the diagram can have,

since none of the transformation rules written-down includes other relationships

between classes aside association, that is, the other common class relationships

such as aggregation, composition and generalization are ignored; also, associa-

tion relationships are restricted to many-to- one associations. In Figure 2.9 we can

see a UML class diagram that respects those restrictions, and is used further in

the explanation of this approach.

Figure 2.9: UML class diagram that supports the discussion on transformation rules [10]

21

The mentioned class diagram is used to define an another class diagram

which basically represents the spreadsheet to generate – the spreadsheet model

which conforms to a metamodel, the spreadsheet metamodel (Figure 2.10).

The proposed metamodel is very compact and consists of seven elements:

the XWorkbook – which represents the entire spreadsheet – may contain one or

more XWorksheets, each corresponding to a spreahsheet tab. A XWorksheet can be

connected to zero or more instances of XDataTable. An XDataTable is a data table

represented in a worksheet, consisting of rows and columns. Each column is rep-

resented by an instance of XDataTableColumn which has an attribute named header

that gives a name to the contents of its cells, and another attribute named isIden-

tifier that indicates whether the data in its cells can be used to uniquely identify

a row in the table. A table can have one or more identifier columns. XDataType

specify the type of data represented in the cells of a XDataTableColumn which can

be either a standard type (number, string, date, among others) or an enumera-

tion. Enumerations define a set of possible values (instances of XDataElement)

which represent the domain of values that can be assumed by its associated cells.

An XDataTableColumn may also contain a formula, and instance of XFormulaExp

which has an attribute named value that describes the formula in his native tex-

tual format.

Figure 2.10: The spreadsheet metamodel [10]

22

The transformation of the UML model to the spreadsheet model is specified

by a set of rules, which can be summarized as follows:

I. A spreadsheet (an instance of the XWorkbook) element is created from a

UML class diagram.

II. Each class from the UML class diagram is transformed into a worksheet

(XWorksheet) with a single data table (XDataTable) whose name is given by

the class name.

III. Each attribute of a class is transformed into a column (XDataTableColumn)

in the data table corresponding to that class. An attribute associated to a

stereotype named Id means that this attribute is either the identifier or part

of the identifier of the data table.

IV. Each modifiable operation of a class (that is, the operation can change the

state of the system) is transformed into a column in the data table corre-

sponding to that class. The column type is defined according to the return

type of the operation.

V. Each class from the UML model with the stereotype enumeration is trans-

formed into an XDataType instance in the spreadsheet model linked to a set

of XDataElement, one for each enumeration literal defined as an attribute

of the enumeration.

VI. Each association from the UML model is transformed into a column. As

previously stated, the model is restricted to many-to-one associations, so

the transformation adds a new column to each table corresponding to the

many side of each many-to-one binary association.

VII. The body of the class operations are expressed with OCL constrains, which

are transformed into spreadsheet cell formulas (containing arithmetic, re-

lational and conditional operators) and aggregation formulas using OCL

collection operations, namely sum() and size(), which are transformed to

23

spreadsheet common SUMIF and COUNTIF functions. Furthermore, the

OCL association navigation expressions are transformed into INDEX and

MATCH spreadsheet functions, used to return values form other data ta-

bles. In Figure 2.11 we can see some OCL expressions to specify formulas

associated to the UML class diagram of Figure 2.9.

The transformations mentioned were implemented in C#, where the input is

a UML model annotated with OCL expressions defined in Visual Studio 2010,

and the output is a MS Excel spreadsheet. Moreover, an experimental study was

conducted to analyze this approach within IT professionals. The study showed

that the solution provided benefits the creation of less erroneous spreadsheets.

However, the validity of this study is questionable, since the number participants

in the study were too small (six to be exact), and the diversity in terms of spread-

sheet and domain used in the evaluation were limited to the UML model showed

in Figure 2.9).

Although this work takes an initial approach of its value on the conceptu-

alization of spreadsheets within a UML model, the solution presented has some

major drawbacks:

 The spreadsheet model obviously lacks expressiveness, since it covers

a very limited spreadsheet structures, namely, database-like tables.

 This approach only addresses development errors.

Figure 2.11: OCL expressions associated to the UML model [28]

24

25

Towards Spreadsheet Patterns

Understanding the characteristics of real-world spreadsheets, namely in-

dustrial spreadsheets is essential to provide effective mechanisms to prevent the

presence of errors in spreadsheets, especially when talking about Model-Driven

Spreadsheet Engineering techniques. This Chapter presents previous studies

concerning the characteristics of real-world spreadsheets and a catalogue of

spreadsheet data arrangements, with the latter consisting in a contribution of the

work in this dissertation.

 The patterns described were obtain from two large real-word MS Excel

spreadsheets data sets:

 EUSES corpus – published in 2005 and made available only to research-

ers, is a dataset of over 4,500 spreadsheets gathered from the public

world-wide-web.

 Enron corpus – a large dataset containing around 15,000 industrial

spreadsheets extracted from the Enron Corporation e-mail archive

made public during the legal investigation concerning the company af-

ter it went bankrupt.

3

26

3.1 Characteristics of Industrial Spreadsheets

Previous works [11, 12] presented an analysis concerning the EUSES corpus

and the Enron corpus spreadsheets, which focused mainly on the dimensions of

size and coupling of spreadsheets, how functions are used in spreadsheets, and

the presence of errors in spreadsheets. In Table 3.1 there is an analysis overview

of both datasets.

Table 3.1: An overview of the spreadsheets in the Enron and EUSES set

 EUSES Enron

Number of spreadsheets analyzed 4,447 15,770

Number of spreadsheets with formulas 1,961 9,120

Number of worksheets 16,853 70,983

Maximum number of worksheets 106 175

Number of non-empty cells 8,209,095 97,636,511

Average number of non-empty cells per spreadsheet 1,846 6,191

Number of formulas 730,186 20,277,835

Average of formulas per spreadsheet with formulas 372 2,223

Number of unique formulas 65,143 913,472

Number of unique formulas per spreadsheet with formulas 33 100

From those studies, it was possible to verify that there is a considerable lack

of diversity of patterns regarding the analyzed characteristics among the differ-

ent spreadsheets:

 The majority of the spreadsheets of both datasets are small, with a short

number of worksheets (around 3 to 5, with some of them empty be-

cause, by default, a spreadsheet is created with 3 worksheets, which, in

fact, contributes significantly to the mentioned average number).

 Concerning the degree of coupling, the majority of the spreadsheets

(89%) is not linked to other spreadsheets and also within the spreadsheet

only 20% of them have links between worksheets. On the cell level, the

median path depth (calculation chain) is one and a cell with a formula

has a median of three transitive precedent cells.

 Formulas are relatively simple; the diversity of built-in functions are

very low (see Table 3.2 and 3.3), 76% of the Enron spreadsheets use only

5 distinct functions and the most used functions are the basic arithmetic

27

ones, SUM, IF, NOW and AVERAGE, with the rest of the functions ap-

pearing in the spreadsheets within a percentage below 10%.

 User-defined functions are very uncommon (only 47 of the Enron

spreadsheets have functions created by the user).

 Named ranges also have a poor utilization (only 5% of the Enron spread-

sheets use them).

 The spreadsheets of the two datasets are quite similar with some consid-

erable differences related to the average number of formulas and their

calculation chains’ length – the Enron spreadsheets have a higher aver-

age number of formulas and longer calculation chains.

Table 3.2: A comparison between Enron’s and EUSES most used built-in functions

In what concerns to the presence of errors, it is impossible to determine

what spreadsheet cells contain semantic errors, as we do not know the intention

of a formula, nevertheless, syntactical errors occurrence in formulas are not pos-

sible, since the spreadsheet application (in this case Excel) does not allow an in-

sertion of a syntactically incorrect formula, displaying named errors like #DIV/0

or #REF. Based on those errors, an automated analysis was made and, as we can

 Enron EUSES

1 SUM SUM

2 IF IF

3 AVERAGE ROUND

4 VLOOKUP HYPERLINK

5 ROUND CONCATENATE

6 SUBTOTAL AND

7 OFFSET COUNTIF

8 CONCATENATE AVERAGE

9 NOW OR

10 DAVERAGE INDIRECT

11 SUMIF MIN

12 INDEX ISNUMBER

13 MATCH MAX

14 LOOKUP VLOOKUP

15 MONTH ISBLANK

28

see in Table 3.4 and 3.5, reference related errors were the most common ones, as

more than 50% of the syntactically incorrect formulas consists of a reference that

was not found, and over 40% of the spreadsheets with at least one syntax error

contains an error type caused by an invalid reference.

Table 3.3: The most used functions and corresponding percentages in the Enron datset

Rank Functions # Spreadsheets Percentage

1 SUM 6493 72.0%

2 + 5571 61.8%

3 - 4866 54.0%

4 / 3527 39.1%

5 * 3112 34.5%

6 IF 1827 20.3%

7 NOW 1501 16.7%

8 AVERAGE 879 9.8%

9 VLOOKUP 763 8.5%

10 ROUND 606 6.7%

11 TODAY 537 6.0%

12 SUBTOTAL 385 4.3%

13 MONTH 325 3.6%

14 CELL 321 3.6%

15 YEAR 287 3.2%

 Any above 8961 99.4%

Table 3.4: Spreadsheets containing Excel errors in the Enron dataset

Error Type Spreadsheets Formulas Unique Formulas

#DIV/0! 580 76,656 4,779

#N/A! 635 948,194 6,842

#NAME? 297 33,9365 29,442

#NUM! 52 4,087 178

#REF! 931 18,3014 6824

#VALUE! 423 11,1024 1751

Total 2,205 1,662,340 49,796

29

Table 3.5: Spreadsheets Error Type Explanation

Error Type Explanation

#DIV/0! Trying to divide by 0

#N/A!
A formula or a function inside a formula cannot
find the referenced data

#NAME? Text in the formula is not recognized

#NULL!
A space was used in formulas that reference multi-
ple ranges; a comma separates range references

#NUM!
A formula has invalid numeric data for the type of
operation

#REF! A reference is invalid

#VALUE!
The wrong type of operand or function argument is
used

3.2 Common Data Arrangements of Spreadsheets

Knowing the typical data arrangement patterns of spreadsheets, in other

words, what users usually want to model in a spreadsheet and what they usually

expect to see in a spreadsheet, can be very useful insight in how to build mecha-

nisms and strategies to specify less erroneous spreadsheets, namely addressing

qualitative errors.

Works proposing spreadsheet models [9, 26, 27] already systematize com-

mon templates of table structures. Other works created a library containing com-

mon spreadsheet patterns [28] for later use of pattern matching algorithms in or-

der to extract models from them. Other works implemented a header inference

system for spreadsheets [29], describing the relation between the headers and

their association with data. However, these patterns are quite far from covering

all existing kinds of spreadsheet’s data arrangements and do not take in consid-

eration the domains where those patterns are generally applied.

In the work presented in this dissertation a step is taken on the extension of

the current perception of the emerged spreadsheet patterns regarding the data

arrangements. We studied EUSES corpus and Enron corpus (already described

30

in Section 3.1) in terms of template structures, with the respective spreadsheets

being manually observed and analyzed.

 The analysis method consisted of manually selecting random spreadsheet

samples from the two spreadsheet corpora, until the patterns observed were be-

coming redundant. Due to the low diversity verified, only 80 spreadsheets rep-

resentative of all of the spreadsheets existing in the datasets were selected and.

Next is presented the systemization of those data arrangement patterns.

3.2.1 Table Replication

In a spreadsheet, it is often observed the replication of table structures, only

differing semantically in a certain aspect. In Fig. 3.1 we can see two structure

replicas of a total of five replicas of a table, only differing in the year in which the

table data concerns. In this case, the replicas are distributed by different work-

sheets, however, the replication can also occur on a single worksheet as shown

in the example in Fig.3.2, where to calculate the “INCOME” and the “EX-

PENSES” the same table structure can be used.

Figure 3.1: Table replicated in different worksheets

The choice between the two replication options seem to depend on the table

dimensions: larger table structures will naturally fit better in a spreadsheet on

distinct worksheets (Fig. 3.1), while smaller ones can perfectly fit on the same

worksheet (Fig. 3.2); and on the table purpose: if the spreadsheet analysis mainly

31

relies on the comparison of the output data from the distinct replicas, it is con-

venient that the replicas stay physically close, which is the case of the example in

Fig. 3.2 – besides the fact that the structures are quite small, the obvious object of

analysis of the worksheet is the comparison between the “TOTAL INCOME”

and the “TOTAL EXPENSES”.

 Figure 3.2: Table replicated in the same worksheet

In Figure 3.3 we present the generic structures of the workbook and work-

sheet compositions. The tables displayed in a worksheet could be replicated or

32

not, and different types of tables can compose a worksheet, namely Vertical Table

(Tv), Horizontal Single Entry Table (Th) and Relationship Table (Tr). The three dif-

ferent types are talked in the next Section.

Figure 3.3: Generic structure of workbook and worksheet

3.2.2 Table Structures

When thinking about spreadsheets we immediately conceive tabular forms

composed by a set of labels associated with a set of values. Based on the spread-

sheets observed, it is possible to catalogue the common tables structures into

three distinct groups which are defined by the table growth orientation and pur-

pose.

Vertical Table

The most linear table structure consists of a simple grow-vertically table

where there is a set of labels in the first row. Each label is associated with the set

of values of its column. A label can either represent an entry value or a formula

referring other row’s entry values. This structure is commonly associated with

inventory, database (Fig. 3.4) or statistical data (Fig. 3.5).

33

Also, sometimes there is an additional bottom row that applies an aggrega-

tion function to some specific labeled columns. In Figure 3.5 we can see a SUM

function applied to columns B, C and D.

Figure 3.5: Vertical Table used to display statistical data

Figure 3.4: Vertical Table used as a database

34

Figure 3.6 presents a generic data arrangement structure of this type of ta-

ble. Vertical table Tv is composed by several column labels (Lh0…Lhn) that are

displayed next to each other horizontally, with the table records (R0…R1) dis-

played vertically. Those labels can be referring to an entry column E, a formula

column F, or a horizontal header Hh (see further description in Section 3.2.2.).

Additionally, aggregation function labels (A0…An) can optionally appear on the

last table’s rows associated to the respective functions applied vertically to spe-

cific columns.

Figure 3.6: Generic structure of Vertical Table

Horizontal Single Entry Tables

A second table structure is a table whose labels are disposed vertically, and

in which there is only one table record. Typically, the purpose of this kind of

tables is to display summary data, and usually aggregation functions are applied

on the solo record values.

35

Figure 3.7: Horizontal Single Entry Table example

In Figure 3.7, a SUM function is used to calculate the “TOTAL INCOME”

from the above values.

Figure 3.8: Generic structure of Horizontal Single Entry Table

Similar to Figure 3.6, Figure 3.8 shows a generic structure of this kind of

table. In this case, the labels (including the aggregations) are displayed vertically

and, instead of a horizontal header, a label could be referring to a vertical header

(see further description in section 4.3), besides an entry or a formula.

36

Relationship Tables

A third group of table structures are the relationship tables, consisting of

tables that grow horizontally, with a highlighted label – the top one. The top label

values are themselves labels, that is, without those labels’ entry value, the other

label entry values are meaningless. Sometimes the top label is omitted, being only

displayed its values. Aggregation functions are also commonly used on this ta-

bles, both vertically (see row “8” in Figure 3.9) and horizontally (see last column

in Figure 3.11).

This table structure pattern dominates spreadsheets used for financial mod-

eling and analysis, with the top header usually representing calendar years, year

quarters, months, etc.

Figure 3.10: Generic structure of Relationship Table

The generic structure of the Relationship Table is shown in Figure 3.10. In

this case, both horizontal (Lh1…Lhn) and vertical (Lv0…Ln) labels exist, as well

Figure 3.9: Relationship Table example

37

as horizontal (Ah0…Ahn) and vertical (Av0…Avn) aggregation functions. How-

ever, in this table, the horizontal headers cannot be formulas, since the formulas

are applied vertically by the vertical labels.

3.2.2 Header Structures

Header Composition

In horizontal tables, it is usual to see labels composed by other labels. The

main labels – the ones who are composed – typically represent categories, and

the coupled ones are labels belonging to the category of the main label where

they are attached. In this case, this main label constitutes a header.

Commonly, the header’s associated value consists of an aggregation func-

tion – usually SUM – applied to the coupled labels’ entry values.

 Figure 3.11: Relationship Table with Header Composition

38

Figure 3.12: Generic structure of Header Composition

In Figure 3.11, we can see a relationship table composed by six headers:

“Expected number of purses sold:”, “COSTS”, “Total Costs”, “REVENUE

($60/purse)”, “Total Revenue” and “TOTAL PROFIT”, with the last four ones

consisting of formulas. The header “COSTS” is composed by other six headers,

with three of them – namely: “Cigar Boxes”, “Recourses” and “Technology” –

having attached headers of their own.

It is also possible to verify that “COST” has no table entry values associated,

functioning as a pure categorization label, meanwhile the lower level headers,

such as “Cigar Boxes”, have entry values consisting of a SUM aggregation func-

tion applied to the labels’ values they have attached. Figure 3.12 presents the ge-

neric structure of header composition.

Header Hierarchy

Similar to the composed labels, there are the hierarchically organized labels.

Although in the header composition there is some sort of hierarchy, there are

actually some major differences between the two label arrangements: in this type

39

of label arrangement, the hierarchy is explicit, that is, the headers and their sub-

labels are not physically on the same level.

In Fig. 3.13 it is possible to see a vertical table with two header hierarchies

(“Dimensions” and “Location”) which have a mere organizational purpose, with

the intend of offering a clearer and focused table understating.

However, header hierarchies can be use with a comparison purpose in

mind. As we can see in Fig. 3.14, there is a hierarchy for each header naming a

year quarter (“1st Quarter”, “2nd Quarter”, “3rd Quarter” and “4th Quarter”)

with all of them sharing the same semantic yet physically different sub-labels.

Figure 3.13: Vertical Table with a Header Hierarchy

 Figure 3.14: Relationship Table with a Header Hierarchy

40

Using this kind of arrangement obviates the need for multiple tables, whose

physical separation makes it difficult to compare the analogous data from the

distinct tables; or obviates the need for unique labels – for instance, using “1st

Quarter 2002”, “2nd Quarter 2002”, etc., that also complicates the data analysis.

Figure 3.15 presents the generic structure of header hierarchy.

Figure 3.15: Generic Structure of Header Hierarchy

41

A UML-based DSL to Specify Spreadsheets

In this Chapter we describe our approach regarding the controlled specifi-

cation of spreadsheets. First, we show an intuitive example of a custom spread-

sheet that contains some of the patterns described in Chapter 3, and we present

the corresponding specification using this work’s DSL. Then, we describe the

metamodel of our DSL and the mappings between the metamodel and the dif-

ferent spreadsheet patterns described in the previous Chapter. Moreover, we

present a systemization of the errors addressed by this technique, favoring less

erroneous spreadsheets.

4.1 Spreadsheet Specification

In Figure 4.1 we can see an illustrative example of a custom built spread-

sheet named Sales. This spreadsheet has a solo worksheet named Sales Record

which, in turn, has on it a grow-vertically table used to register sales orders of

single clothing products. Each table record consists of nine fields: the Order ID –

4

42

uniquely identifies the order; the Product ID – uniquely identifies the product;

the Description – textually describes the corresponding product; the Date – com-

posed by two concrete dates: Process, the date in which the order was processed

and Delivered, the date in which the product was actually delivered to buyer; the

Payment Method – order’s payment method which can be by Credit Card, Check

or PayPal; the Unit Price – product price per unit; the Quantity – number of

product replicas ordered; and Total Price – order’s total amount to pay, which is

the mathematical product of Unit Price by Quantity. Additionally, there is also an

aggregation function – a SUM function – applied to the Total Price column values

that gives the Revenue.

This spreadsheet can be mapped to the data arrangements structures sys-

temized and formalized in Section 3.2 of Chapter 3, giving us the structure in

Figure 4.2.

 This structure consists of a Workbook WB with a solo Worksheet WS con-

taining a Vertical Table Tv which, in turn, is composed by seven columns, six of

them being an Entry (E0, E1, E2, E5, E6 and E7), one being a Formula F that uses

entries E6 and E7, and a Horizontal Header Hh composed by two entries (E3 and

E4). Lastly, there is also an aggregation function A that uses the values of formula

F column.

 Figure 4.1: Sales Spreadsheet

43

Figure 4.2: Sales spreadsheet’s structure

Describing the previous structure, we used certain terms, namely “Compo-

sition”, “Usage” and “Aggregation”, which are very familiar to UML modeling

concepts. This brings us to the DSL proposed in this work.

Figure 4.3 presents a UML-based specification of the Sales spreadsheet

structure from our DSL. Each one of the object entities of the diagram match an

element of the spreadsheet’s structure (Figure 4.2): Sales – the Workbook WB;

SRec – the Worksheet WS; CSales – the Vertical Table Tv; OrderID, ProductID,

Dscr, PayM, UPrice, Qty – the entries E0, E1, E2, E5, E6, E7, respectively; TtPrice

– the Formula F; Processed and Delivered – the entries E3, E4, respectively; and

Rev – the Aggregation Function A. Finally, there are two object entities on the

diagram that share the name “Date” and that match the Header Hh in the spread-

sheet’s structure: A Header instance and an Entry instance. This entry has no type

(NONE) and serves only to define the order in which the header structure is

physically arranged between the table entries.

Composition and Usage connection entities are used to specify the connec-

tions (and their type) among the object entities. For instance, there is a Composi-

44

tion connection between SRec and CSales. This connection, in terms of the spread-

sheet’s structure, means that SRec – the Worksheet WS – is physically composed

by CSales – the Vertical Table Tv. Another example is the Usage connection from

TtPrice to Uprice and Qty, meaning that the Formula F uses the values of Entry

E6 and Entry E7. An Aggregation connection between Rev and CSales is also used

to specify the aggregation function applied by Aggregation Function A to the

Vertical Table Tv, with the Usage connection additionally used to specify, in par-

ticular, which column cells are aggregated (TtPrice – Formula F).

Figure 4.3: Sales spreadsheet’s specification

With the use of this specification, we guarantee that a correct spreadsheet

structure its created, and that the value types of its cells are not violated.

45

4.1.1 DSL Metamodel

The object entities described are extensions from the UML metamodel [30].

As it is possible to see in Figure 4.4, Workbook, Worksheet, Table, CellsAggrega-

tion, Header and Formula are all entities that extend the entity Class, inheriting

the associations to Composition, Aggregation and Usage connections.

Figure 4.4: Part of the UML class diagram metamodel extended using our DSL met-

amodel

 On the other hand, Entry extends the Property entity, inheriting only the

association to Usage (which is common for both Class and Property), and the as-

sociation composition to Class, being an ownedAttribute of this last entity.

Moreover, all those seven spreadsheet entities inherit the attribute name

from Class and Property (which, in turn, inherit that same attribute from the

NamedElement abstract class of UML).

46

There are also two abstract spreadsheet entities: SpreadsheetLabeledEle-

ment and SpreadsheetOrderedElement. The first represents a spreadsheet ele-

ment that has a label; for example, the Table instance CSales in Figure 4.3 has a

label with the value “Current Sales”, which is the value that appears on the

spreadsheet (cell A1) in Figure 4.1 identifying the table.

Entities such as Formula have no label attribute because it does not specify

a physical structure element on the spreadsheet, but rather a dependency. The

same goes for the Header, which specifies a structure organization. The second

abstract spreadsheet entity represents all the concrete spreadsheet entities that

have a sequence order; worksheets on a workbook appear on a sequence order,

the same for the tables on a worksheet, and the entries and the aggregations func-

tion on a table, therefore, each one of the respective metamodel entities has an

order attribute which specifies the sequence order of an instance in relation to the

others.

Some concrete spreadsheet entities have their own attributes. Entity has an

attribute named cType which specifies the type of the respective cell values. This

attribute consists of an enumeration named CellType that has four literals: BOOL-

EAN, NUMBER, TEXT and DATE. The first three are the Excel’s three data value

types, and the latter is a very common formatting of a number value – in Tables

3.2 and 3.3 of Chapter 3 is possible to see that some of the most used bult-in func-

tion on the Enron dataset work with date formatted values, namely, YEAR,

MONTH, NOW).

Table has an attribute named type which specifies the table’s type: HORI-

ZONTAL, RELATIONSHIP and VERTICAL, the three literals of the enumeration

TableType. This attribute specifies the data arrangement structure of table, being

one of the three types described in Section 3.2.2 of Chapter 3. In Figure 4.3 this

attributed is set VERTICAL, which makes the table grow vertically, with the en-

tries, headers, and formula displayed horizontally (see Figure 4.2).

47

CellsAggregation entity has also his own attribute aFunction, which speci-

fies what aggregation function it is used, being one of the enumeration Aggrega-

tionFunction literals: AVERAGE, COUNT, MIN, MAX, SUM and MEDIAN (in

Table 3.2 of Chapter 3 it is possible to see that these functions are heavily used in

spreadsheets).

Finally, Formula owns attribute formula which specifies the formula’s ex-

pression to be applied to the respective cells. The expression’s syntax is the same

as the formula syntax of the spreadsheet system, except the cell references being

replaced by entry names (see TtPrice in Figure 4.2).

4.1.2 Patterns ’s Metamodel

The data arrangement patterns identified in Chapter 3 can be mapped to

our DSL metamodel. In Figure 4.5 it is shown the part of metamodel concerning

the workbook structure of a spreadsheet. A Workbook entity can have multiple

Worksheet entities associated through a Composition connection entity, whereas a

Worksheet entity is associated with only one Workbook.

Figure 4.5: Workbook’s Metamodel

In Figure 4.6 we can see the part of the metamodel regarding the structure

of a spreadsheet. A Worksheet entity can have multiple Table entities - which in

the spreadsheet are displayed next to each other vertically - through an associa-

tion with a Composition connection entity. On the reverse side, a Table entity can

have only one Worksheet, and the attribute type is used to define the type of the

48

table (see TableType enumeration in Figure 4.4), since a spreadsheet can have dis-

tinct types of tables.

Figure 4.6: Worksheet’s Metamodel

In respect to the three distinct table structures mentioned and described in

Section 3.2.2 of Chapter 3, we can see in Figure 4.7 the part of the metamodel that

concerns the data arrangements of these table structures. The Table entity is com-

posed by multiple Entry entities, and has two associations through a Composition

connection entity with Header and Formula entities. Also, the Table entity can have

multiple CellsAggregation entities through an Aggregation connection. Moreover,

a Formula entity can have multiple Entry entities through a Usage connection.

The value of the attribute type of the Table entity define how the mentioned

entities’ instances are physical arranged in the worksheet. If the type has the value

VERTICAL, the table labels referring to entries, headers and formulas are placed

horizontally next to each other, and the aggregation labels are displayed verti-

cally at the bottom of the table, as we can see in the table structure in Figure 3.6;

if the type has the value HORIZONTAL, all labels are displayed vertically as

49

shows Figure 3.7; lastly, if the value is RELATIONSHIP, the Header instance that

is associated with the Entry instance (has the same name) with the lesser order

value attribute will be treated has a Table with the type HORIZONTAL, mean-

while the other entries are displayed horizontally, as we can see the table struc-

ture presented in Figure 3.7.

 The Header’s metamodel is presented in Figure 4.8. A Header entity has the

same associations the Table entity has. The type of header structure is determined

by the type of the Table instance associated with the root Header instance. If the

root Table instance’s type attribute has the value VERTICAL, then the header

structure will be a Header Composition (Figure 3.12); if the value is HORIZONTAL,

then a Header Hierarchy will be used (Figure 3.13); if the value is RELATIONSHIP,

the Header instance related to the first Entry (the one with the lesser order value

attribute) that composes the Table entity, and all the Header entity’s “child head-

ers” will be structured as a Header Composition, and the rest of the Header instances

Figure 4.7: Table’s Metamodel

50

related to the rest of the Entry entities that compose the Table entity will be struc-

tured as a Header Hierarchy.

Figure 4.8: Header’s Metamodel

4.2 Domain Constraints

4.2.1 Levels Addressed

Cell Level

In the Sales spreadsheet of Figure 4.1, for instance, it is possible to specify

through our DSL model seen so far that only TEXT values are allowed to be en-

tered in each cell of the Pay Method column (see PayM in Figure 4.3), however, it

is not possible to specify the exact concrete TEXT values that are permitted,

which, in this case, are Check, Credit Card and PayPal.

51

To address this issue, UML’s Enumeration and EnumerationLiteral entities

(Figure 4.9) are used to define the set of values allowed, with each one of them

matching a literal of the enumeration as Figure 4.10 shows. Moreover, the enu-

meration is associated to the entry through a usage link, as Figure 4.10 shows.

Figure 4.9: Enumeration’s Metamodel

Figure 4.10: Enumeration Example

Nevertheless, we may be want to specify a larger set of values or define a

range of values. For example, Quantity must certainly have a value above 0 and

the Product ID must have exactly 8 characters. In these cases, the use of enumer-

ations is obviously impracticable.

In order to achieve more expressiveness, a portion of OCL’s invariants are

used. Figure 4.11 shows the two OCL invariants used to address the respective

value restrictions. To specify which entry is being referenced, the full path from

the workbook to the entry is written down.

52

Figure 4.11: Cell Level Restrictions

Record Level

Besides the cell level, the entries may have value dependencies between

each other on the record level. The Processed DATE must be certainly lower than

the Delivered DATE.

Also, it may be wanted, for instance, a restriction to bound the Quantity to

order if the Payment Method equals PayPal. Figure 4.12 presents the correspond-

ing OCL invariants to address these two constraints.

Figure 4.7: Record Level Restrictions

53

Entry Level

We also may want to impose restrictions on the entry level. For instance, all

table records must have a unique Order ID value. In order to guarantee this in-

variant, we call on OCL’s collection operations as Figure 4.8 shows – a isUnique

operation is used to check if all the Order ID values are different from each other.

 Note, however, that the operation of this example is a simplification of the

OCL’s operation of the same name. In this function no expression is passed as

argument to be applied to each value of the collection to then check if all the

output values are unique (see all supported operations in Section 4.2.4).

Figure 4.8: Entry Level Restrictions

4.2.2 Operations

The operations that are used in the OCL’s invariants of this DSL are de-

scribed in the Tables 4.1, 4.2, 4.2, 4.3, and 4.4. The tabled tabulated operations are

OCL Standard [31] operations, except the ones highlighted, which were added to

the language to offer the expressiveness needed to cover a significant range of

restrictions in the domain of spreadsheets.

In the first table (4.1) we have the NUMBER type operations, and in Table

4.2, we have the TEXT type operations. In addition to the standard string opera-

tions, we added the operation toNum that converts a NUMBER value to a TEXT

value. Also, we added the operation filter. This operation returns either a TRUE

value or a FALSE value, according if the TEXT value matches or not the “filter”

– Excel’s text search pattern – passed as argument. In Table 4.3, are described the

BOOLEAN type operations, and in Table 4.4 are tabulated the DATA type oper-

ations that were all added to the language, so we can use restrictions on DATA

54

types values. Lastly, Table 4.5 shows the COLLECTION operations. This opera-

tions, in the context of spreadsheets, represent operations applied to solo table

entries, as showed in Section 4.2.3 example though the use of isUnique operation.

Moreover, the product, average, median, max and min functions are analogous to

the standard sum function.

Table 4.1: NUMBER Operations

NUMBER

Operation Notation Result type

equals a = b BOOLEAN

not equals a <> b BOOLEAN

less a < b BOOLEAN

more a > b BOOLEAN

less or equal a <= b BOOLEAN

more or equal a >= b BOOLEAN

plus a + b NUMBER

minus a - b NUMBER

multiply a * b NUMBER

divide a / b NUMBER

modulus a.mod(b) NUMBER

integer division a.div(b) NUMBER

absolute value a.abs() NUMBER

maximum a.max(b) NUMBER

minimum a.min(b) NUMBER

round a.round() NUMBER

floor a.floor() NUMBER

Table 4.2: TEXT Operations

TEXT

Operation Notation Result type

concatenation s.concat(string) TEXT

size s.size() NUMBER

to lower case s.toLower() TEXT

to upper case s.toUpper() TEXT

substring s.substring(int, int) TEXT

equals s1 = s1 BOOLEAN

not equals s1 <> s2 BOOLEAN

filter s.filter(string) BOOLEAN

to num s.toNum() NUMBER

55

Table 4.3: BOOLEAN Operations

BOOLEAN

Operation Notation Result type

or a or b BOOLEAN

and a and b BOOLEAN

exclusive or a xor b BOOLEAN

negation not a BOOLEAN

equals a = b BOOLEAN

not equals a <> b BOOLEAN

implication a implies b BOOLEAN

if then else if a then b1 else b2 type of b

Table 4.4: DATE Operations

DATE

Operation Notation Result type

equals a = b BOOLEAN

not equals a <> b BOOLEAN

less a < b BOOLEAN

more a > b BOOLEAN

less or equal a <= b BOOLEAN

more or equal a >= b BOOLEAN

day a.day() NUMBER

month a.month() NUMBER

year a.year() NUMBER

Table 4.5: COLLECTION Operations

COLLECTION

Operation Notation Result type

includes a->includes(b) BOOLEAN

is unique a->isUnique() BOOLEAN

sum a->sum() NUMBER

product a->product() NUMBER

average a->average() NUMBER

median a->median() NUMBER

max a->max() NUMBER

min a->min() NUMBER

56

4.3 Errors Addressed

This DSL prevents the occurrence of errors during the two spreadsheet life

cycle stages: the development and the usage. Note that the error’s risk taxonomy

was not taken into consideration because, in contrast to other taxonomies, this is

a taxonomy of spreadsheets rather than of errors in a spreadsheet, and the men-

tioned errors are transversal to any kind of spreadsheets.

Table 4.6: Development errors adressed

Development

Level

Errors

Qualitative

Quantitative

Reasoning
Accidental

Domain Omission Pure Logical

Any Adressed Not Adressed

Indirecty.

Adressed Not Adressed Adressed

In the development stage (Table 4.6) both qualitative and quantitative er-

rors are addressed.

 The first ones are dealt with in this stage given the fact that this types of

errors are only introduced in the spreadsheet on the modeling phase. In respect

to the quantitative errors, the accidental (mechanical) ones committed in this step

are prevented, but the reasoning (logical) ones are not fully addressed: the do-

main errors are not treated because it is assumed that the developer is a domain

expert. Moreover, other mechanisms can be built on top of this DSL to ensure

correctness of domain implementation, for instance a DSL for the domain. The

pure logical errors are also not addressed because spreadsheet systems already

have mechanisms to detect some of these kind of errors (e.g., circular reference);

lastly, the omission errors occurrence can be attenuated taking into account that

the stated spreadsheet modeling offers a much better reasoning, but it cannot

ensure the absence of this type of errors.

57

Table 4.7: Usage errors adressed

Usage

Level

Errors

Qualitative

Quantitative

Reasoning

Accidental
Domain Omission

Pure Logi-

cal

Cell

Not Applicable

Adressed

Not Applicable Not Applicable Adressed
Record Adressed

Entry Adressed

Spreadsheet Not Adressed

In the usage stage (Table 4.7) both qualitative, omission and pure logical

errors are not addressed (they concern the development phase). On the other

hand, accidental errors – such as inserting wrong type values or overwriting a

formula – are prevented, and domain errors are also dealt with. Business logic

restrictions are enforced on the cell, record and entry levels; on the spreadsheet

level restrictions are not enforced, since the degree of coupling between work-

sheets in a spreadsheet is low, as we mentioned in Section 3.1 of Chapter 3.

58

59

GenSS - A Tool to Generate Spreadsheets

This chapter presents a prototype implementation of the approach de-

scribed in Chapter 4. We describe the technologies used for the implementation

(Section 5.1), the architecture (Section 5.2) of the prototype, along with details

about its user interface (Section 5.3). The GenSS prototype’s source code is avail-

able at: https://github.com/spreadsheetsunl/uml-spreadsheets/tree/master.

5.1 Technologies Used

For the DSL construction and design, we used the following technologies:

 EMF (Eclipse Modeling Framework) [32] – a modeling framework for

describing models and runtime support for the models.

 GMF (Graphical Modeling Framework) [33] – a generative component

and runtime infrastructure for developing graphical editors based on

EMF.

 Epsilon [34] – a set of tools and task-specific languages for code gener-

ation, model-to-model transformation, model validation, model merg-

ing, among others, that works with EMF and GMF. The Epsilon task-

specific languages used in the implementation are namely:

5

https://github.com/spreadsheetsunl/uml-spreadsheets/tree/master

60

o EVL (Epsilon Validation Language) – a OCL alike validation lan-

guage that supports dependencies between constraints and offers

customizable error messages to be displayed to the user, as well as

the specification of fixes which users can invoke to fix inconsistency

errors.

o EGL (Epsilon Generation Language) – a template-based model-to-

text language for generating code, documentation and other textual

artefacts from models.

 JavaCC (Java Compiler Compiler) [35] – a parser generator that reads

a grammar specification and converts it to a Java program that can rec-

ognize matches to the grammar.

5.2 Architecture

Figure 5.1: Tool prototype’s architecture

61

Figure 5.1 shows the architecture of our tool. The first component concerns

the spreadsheet specification using EMF/GMF, in which the spreadsheet’s

model is described using a visual editor. Then, the specified model is validated

using EVL – if the model it is not valid, we go back to the specification step.

Lastly, EGL is used to generate the spreadsheet from the defined model, and that

includes the translation from the OCL-based invariant expressions to the spread-

sheet formulas. The generated spreadsheet consists of an Excel 2003 XML format-

ted spreadsheet that can be processed by any other spreadsheet system that sup-

port that format.

5.3 User Interface

The user interface of our tool is shown in Figure 5.2. The interface consists

of a visual editor that allows the user to model a spreadsheet using our DSL con-

structors. For this purpose, there is a “Palette” of entities divided into “Objects”

and “Connections “that can be selected to instantiate the corresponding entity on

the model.

Figure 5.2: Tool’s user interface

62

63

Case Study

The case study for this dissertation consists of a real-world spreadsheet

built by a Portuguese financial public entity – IGF (Inspeção-Geral de Finanças)

– responsible for the evaluation and strategic control of the financial administra-

tion of the State and the specialized technical support to the Ministry of Finances.

The spreadsheet under study serves as a collector of the data regarding the ben-

eficiaries of the annual public subsidies in 2016. The beneficiary entities are re-

sponsible for filling the spreadsheet with their data, and then to send it back to

the financial entity that validates the received data and imports it to a database.

During the meetings with IGF, they reported that is quite common the in-

troduction of errors in the spreadsheet during the data insertion by the users.

Our interest is to show how we can increase the robustness of the spreadsheet

through the use of this work’s DSL and tool.

The spreadsheet is a workbook composed by two worksheets. Figure 6.1

shows part of the first worksheet - the main one. This worksheet has a solo verti-

cal table with multiple header hierarchies – as the pattern mentioned in Section

3.2.2 -, with a total number of 56 table entries.

6

64

Each entry is one of three types: DATE, NUMBER or TEXT. For the last two

types there are data validations that ensure that the values entered correspond

to the respective defined type. Also, list values are used to restrict the possible

entering values; those list values are defined in the second worksheet (see Figure

6.2).

Lastly, there are also comments that inform the user about the format of the

values that are expected and the existing dependencies between them.

Figure 6.1: Part of Worksheet 1 of the IGF Spreadsheet

Figure 6.2: Part of Worksheet 2 of the IGF Spreadsheet

65

We assume that there were no development errors and the spreadsheet is

correctly modulated for the intended purpose. In respect to the usage errors, alt-

hough the spreadsheet already avoids some usage errors directly (type valida-

tions) and use strategies to mitigate them (comments), a larger majority of the

errors are still unaddressed, specifically:

 Accidental errors are not prevented (e.g., the user can modify the list val-

ues defined in the second spreadsheet).

 Domain constraints on the cell level are not addressed (e.g., an entry of

type TEXT for a ZIP Code has a specific text formatting, but is not possible

to ensure that only values that meet the condition are entered by the user;

also, there is no validation on the values of entries with type DATE).

 Domain constraints on the record level are not addressed (e.g., entries of

type DATE have certain conditional dependencies between them such as

one being lesser than a certain other, nevertheless the user can insert val-

ues that violate that restriction.).

Through the use of this work’s DSL and tool it was possible to address the

listed usage errors up to a certain level. Firstly, accidental errors are prevented,

since the list values used are protected and hidden from the user. In fact, all the

cells that are not supposed to be modified by the user, e.g., cells associated with

formulas or labels, are also protected. The cells to be protected are implicitly de-

termined by the model, since the cells derived from certain model entities, e.g.,

Formula or Header, are generated with a “protected” flag.

Table 6.1: Number of Domain Constraints not addressed

 Domain Constraints Not Addressed

 Cell Level Record Level

Original 16/56 0/54

Using GenSS 2/56 34/54

In respect of the domain constraints, Table 6.1 shows the existing domain

constraints to be addressed (both at the cell and record levels) in the original

spreadsheet versus the generated spreadsheet by our tool.

66

Of the 56 entries of the spreadsheet’s vertical table (Figure 6.1), the original

spreadsheet still had 16 non-error free entries, while the spreadsheet generated

from our tool reduced that number to 2.

For instance, we can ensure that the user only enters valid values of type

DATE. In Figure 6.3 it is shown the type definition of the entry, defining it as

DATE, and the corresponding error prompt when a wrong value is entered.

Figure 6.4 shows another example of a restriction applied on the cell level.

In this case, the local ZIP Code is validated.

The 2 non-error free entries not addressed by our approach are entries for

the insertion of the Tax Identification Number. The checksum algorithm repre-

sentation in a spreadsheet formula surpasses the number of 255 characters al-

lowed for data validation in the spreadsheet system.

Figure 6.3: DATE type validation

67

Regarding the domain restrictions at the record level, the original spread-

sheet does not address any of them, with a total of 54 dependencies between en-

tries not prevented from possible violation, while the spreadsheet generated

from our tool addresses 20 dependencies, thus reducing the number of depend-

encies not addressed to 34. For example, in Figure 6.5, we see a validation of a de-

pendency between two data entries, where it is guaranteed that the start date is

never higher than the end date.

However, the limitations of the spreadsheet system make some errors not

addressable by our approach - cells associated with lists of values cannot have

associated data validation formulas too.

A possible way to overcome these limitations of the system (maximum

number of characters and unique type of validation per cell) in future versions of

our tool, is to use specific script languages for each specific spreadsheet system

Figure 6.4: Domain restriction at the cell level example

68

(e.g, VB in MS Excel) to address constraints regardless of the mentioned system

limitations.

Nevertheless, in the current version of our tool we already have a substan-

tial level of effectiveness, as we saw in Table 6.1.

6.1 State of the Art Techniques

Although some of the approaches mentioned in Section 2.4 of Chapter 2

prevent accidental errors during the usage stage (e.g., Embedded ClassSheets),

Figure 6.5: Domain restriction at the record level example

69

none of them can derive completely the original spreadsheet of this case study -

header hierarchy structures and the list values are not possible to model.

Moreover, none of those approaches can derive the domain constraints

needed to prevent domain errors.

This demonstrates the clear advantage of our approach in comparison with

other existing techniques in terms of expressiveness.

70

71

´

Conclusion

Several types of research have proposed approaches to offer a better under-

standing of spreadsheets, improving work performance and preventing errors.

Nevertheless, none of them adequately addresses real-word spreadsheet’s pat-

terns, being specific to a single pattern. Moreover, none of those techniques in-

cludes mechanisms to express arbitrary constraints on top of the model in order

to address domain errors, and, consequently, granting a larger cover of spread-

sheet errors.

Adopting a Model-Driven approach, the work in this dissertation increases

the expressiveness of a model specification of a spreadsheet. It allows the gener-

ation of spreadsheets that are more close to the user’s needs regarding the do-

main of the problem (and not regarding the solution domain), and allowing

him/her to specify domain restrictions, and thus helping the enforcement of the

spreadsheet’s business logic.

To achieve this, we proposed a UML-based class diagram DSL that allows

the specification of a spreadsheet with a higher level of expressiveness than a

standard UML model, and, in addition, the use of some OCL invariant language

7

72

constructors that allows a solid sub-set of arbitrary constraints over the defined

model.

Lastly, we used this DSL to overcome the deficiencies of a real-world

spreadsheet regarding its error-proneness, reducing it and, thus, showing the ef-

fectiveness of this work’s approach.

7.1 Future Work

The currently modelling language requires an expert to create models. We

intend to create a family of DSL’s, so spreadsheet end users can build these mod-

els themselves with a more natural way. From this, we will generate our models.

The second direction for future research could be the generation of these models

from the database schema itself, since many spreadsheets are created to be inter-

faces to databases.

73

References

[1] POWER, D. J., A BRIEF HISTORY OF SPREADSHEETS, DSSRESOURCES.COM, HTTP://DSSRE-

SOURCES.COM/HISTORY/SSHISTORY.HTML, 2004 (VISITED: 2016-06-22)

[2] SCAFFIDI, C., SHAW, M., AND MYERS, B.A., ESTIMATING THE NUMBERS OF END USERS AND

END USER PROGRAMMERS. IN PROCEEDINGS OF THE IEEE SYMPOSIUM ON VISUAL LAN-

GUAGES AND HUMAN-CENTRIC COMPUTING (VL/HCC), PP. 207–214, 2005.

[3] PANKO, R., AND ORDWAY, N., SARBANES-OXLEY: WHAT ABOUT ALL THE SPREADSHEETS?

CONTROLLING FOR ERRORS AND FRAUD IN FINANCIAL REPORTING. EUSPRIG 2005 PRO-

CEEDINGS, PP. 2-3, LONDON, 2005.

[4] DURFEE, DON. SPREADSHEET HELL. CFOS ARE INTERESTED IN THE MANY NEW TECHNOLO-

GIES BEING PITCHED TO THEM, BUT ARE THEY REALLY TRAPPED IN SPREADSHEET HELL?,

CFO.COM, HTTP://WWW.CFO.COM/PRINTABLE/ARTICLE.CFM/3014451, 2004 (VISITED:

2016-01-22)

[5] PANKO R., FACING THE PROBLEM OF SPREADSHEET ERRORS, DECISION LINE,. VOL. 37, NO.

5, 2006.

[6] EUSPRIG. EUROPEAN SPREADSHEET RISKS INTEREST GROUP. HTTP://WWW.EUSPRIG.ORG/

(VISITED: 2016-01-22).

[7] EUSPRIG. EUSPRIG HORROR STORIES. HTTP://WWW.EUSPRIG.ORG/HORROR-STORIES.HTM/

(VISITED: 2015-01-22).

[8] KENT, S., MODEL DRIVEN ENGINEERING, IN IFM ’02: PROCEEDINGS OF THE THIRD INTER-

NATIONAL CONFERENCE ON INTEGRATED FORMAL METHODS, PP. 286-298, LONDON, 2002.

[9] CUNHA, J., FERNANDES, J. P., MENDES, J., AND SARAIVA, J., EMBEDDING AND EVOLUTION

OF SPREADSHEET MODELS IN SPREADSHEET SYSTEMS. IN PROCEEDINGS OF THE 2011 IEEE

SYMPOSIUM ON VISUAL LANGUAGES AND HUMAN-CENTRIC COMPUTING, VL/HCC ’11,

PP. 179-186, 2011

[10] ANTUNES, L., CORRÊA, A., AND BARROS, M., AUTOMATIC SPREADSHEET GENERATION

FROM CONCEPTUAL MODELS. IN 29TH BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEER-

ING, PP. 140 - 149, BELO HORIZONTE, 2015

74

[11] HERMANS, F., AND MURPHY-HILL, E., ENRON’S SPREADSHEETS AND RELATED EMAILS: A

DATASET AND ANALYSIS, IN ICSE’ 15: 37TH INTERNATIONAL CONFERENCE ON SOFTWARE

ENGINEERING, FLORENCE, 2015

[12] JANSEN, B., ENRON VERSUS EUSES: A COMPARISON OF TWO SPREADSHEET CORPORA, IN

SEMS'15: SECOND WORKSHOP ON SOFTWARE ENGINEERING METHODS IN SPREADSHEETS,

PP. 41-46, FLORENCE, 2015

[13] DE LUCIA, A., GRAVINO, C., OLIVETO, R., AND TORTORA, G., AN EXPERIMENTAL COM-

PARISON OF ER AND UML CLASS DIAGRAMS FOR DATA MODELLING, IN EMPIRICAL SOFT-

WARE ENGINEERING VOLUME 15, ISSUE 5, PP. 455-492, 2010

[14] KÜHNE, T., WHAT IS A MODEL?, IN: BÉZIVIN, J., HECKEL, R. (EDS.) PROCS. DAGSTUHL

SEMINAR 04101, LANGUAGE ENGINEER-ING FOR MODEL-DRIVEN SOFTWARE DEVELOP-

MENT, 2004

[15] SELIC, B., THE PRAGMATICS OF MODEL-DRIVEN DEVELOPMENT, IEEE SOFTW., VOL. 20,

NO. 5, PP.19-25, 2003

[16] DEURSEN, ARIE VAN, KLINT, PAUL AND VISSER, JOOST. DOMAIN-SPECIFIC LANGUAGES:

AN ANNOTATED BIBLIOGRAPHY. ACM SIGPLAN NOTICES, VOL. 35, NO. 6, PP. 26-36,

2000.

[17] VÖLTER, M., BENZ, S., DIETRICH, C., ENGELMANN, B., HELANDER, M., L. C. L. KATS, L.

C. L., VISSER, E., AND WACHSMUTH, G., DSL ENGINEERING - DESIGNING, IMPLEMENTING

AND USING DOMAIN-SPECIFIC LANGUAGES, DSLBOOK.ORG, 2013.

[18] POWELL, S. G., BAKER, K. R., LAWSON, B., A CRITICAL REVIEW OF THE LITERATURE ON

SPREADSHEET ERRORS, DECISION SUPPORT SYSTEMS, VOL. 46, NO. 1, PP. 128-138, 2008

[19] GALLETTA, D. F., ET AL, AN EMPIRICAL STUDY OF SPREADSHEET ERROR – FINDING PER-

FORMANCE, ACCOUNTING, MANAGEMENT, AND INFORMATION TECHNOLOGY, VOL. 3, NO.

2, PP. 79-95, 1993

[20] PANKO, R., AND HALVERSON, R. P., JR., SPREADSHEETS ON TRIAL: A SURVEY OF RESEARCH

ON SPREADSHEET RISKS, PROCEEDINGS OF THE 29TH HAWAII INTERNATIONAL CONFER-

ENCE ON SYSTEM SCIENCES, PP. 326-335, 1996

[21] TEO, T. S. H., AND TAN, M., QUANTITATIVE AND QUALITATIVE ERRORS IN SPREADSHEET

DEVELOPMENT, PROCEEDINGS OF THE THIRTIETH HAWAII INTERNATIONAL CONFERENCE

ON SYSTEM SCIENCES, MAUI, HAWAII, 1997

[22] RAJALINGHAM, K., CHADWICK, D. & KNIGHT, B., CLASSIFICATION OF SPREADSHEET ER-

RORS, PROCEEDINGS OF THE EUSPRIG 2000 CONFERENCE, PP. 23-24, UNIVERSITY OF

GREENWICH, LONDON, 2000

75

[23] MADAHAR, M., CLEARY, P. AND BALL, D., CATEGORISATION OF SPREADSHEET USE

WITHIN ORGANISATIONS INCORPORATING RISK: A PROGRESS REPORT, PROCEEDINGS OF

THE EUROPEAN SPREADSHEET RISKS INTEREST GROUP 8TH ANNUAL CONFERENCE, UNI-

VERSITY OF GREENWICH, LONDON, PP. 37-45, 2007

[24] PANKO, R. R. AND AURIGEMMA, S., REVISING THE PANKO-HALVERSON TAXONOMY OF

SPREADSHEET ERRORS. DECISION SUPPORT SYSTEMS, VOL. 49, PP. 235-244, 2010

[25] ERWIG, M., ABRAHAM, R., COOPERSTEIN, I., AND KOLLMANSBERGER, S., GENCEL: A PRO-

GRAM GENERATOR FOR CORRECT SPREADSHEETS, JOURNAL OF FUNCTIONAL PROGRAM-

MING, VOL. 16, NO. 3, PP. 293-325, 2006

[26] ENGELS, G., AND ERWIG, M., CLASSSHEETS: AUTOMATIC GENERATION OF SPREADSHEET

APPLICATIONS FROM OBJECT-ORIENTED SPECIFICATIONS, 20TH IEEE/ACM INT. CONF.

ON AUTOMATED SOFTWARE ENGINEERING, PP. 124-133, 2005

[27] CUNHA, J., FERNANDES, J. P., AND SARAIVA, J., FROM RELATIONAL CLASSSHEETS TO

UML+OCL, IN: PROCEEDINGS OF THE 27TH ANNUAL ACM SYMPOSIUM ON APPLIED COM-

PUTING (SAC 2012), PP. 1151–1158, TRENTO, ITALY, 2012

[28] HERMANS, F., PINZGER, M., AND DEURSEN, A. VAN, ATOMATICALLY EXTRACTING CLASS

DIAGRAMS FROM SPREADSHEETS. IN PROC. OF THE 24TH EUROPEAN CONFERENCE ON OB-

JECT-ORIENTED PROGRAMMING, PP. 52-75, BERLIN, 2010

[29] ABRAHAM, R., AND ERWIG, M., HEADER AND UNIT INFERENCE FOR SPREADSHEETS

THROUGH SPATIAL ANALYSES. IN PROCEEDINGS OF THE 2004 IEEE SYMPOSIUM ON VIS-

UAL LANGUAGES AND HUMAN-CENTRIC COMPUTING, PP. 165-172, ROME, 2004

[30] OMG UNIFIED MODELING LANGUAGE, VERSION 2.5, OBJECT MANAGEMENT GROUP,

2015

[31] OBJECT CONSTRAINT LANGUAGE, VERSION 2.4, OBJECT MANAGEMENT GROUP, 2014

[32] ECLIPSE, ECLIPSE MODELLING FRAMEWORK, HTTPS://ECLIPSE.ORG/MODE

ING/EMF/ (VISITED: 2016-01-22)

[33] ECLIPSE, GMF TOLLING, HTTP://WWW.ECLIPSE.ORG/GMF-TOOLING/ (VIS-

ITED: 2016-01-22)

[34] ECLIPSE, EPSILON, HTTP://WWW.ECLIPSE.ORG/EPSILON/ (VISITED: 2016-01-

22)

[35] JAVA, JAVACC, HTTPS://JAVACC.JAVA.NET/ (VISITED: 2016-01-22)

