
Ricardo Magalhães Martins Korn Moreira

BSc in Computer Science

SheetGit: A Tool for Collaborative Spreadsheet
Development

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática

Orientador: Jácome Cunha, Professor Auxiliar,
Universidade Nova de Lisboa

Júri

Presidente: Prof. Dra. Carmen Morgado
Arguente: Prof. Dr. João Saraiva

Vogal: Prof. Dr. Jácome Cunha

December, 2016

SheetGit: A Tool for Collaborative Spreadsheet Development

Copyright © Ricardo Magalhães Martins Korn Moreira, Faculdade de Ciências e Tecnolo-

gia, Universidade NOVA de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro

meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios

científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de inves-

tigação, não comerciais, desde que seja dado crédito ao autor e editor.

Este documento foi gerado utilizando o processador (pdf)LATEX, com base no template “unlthesis” [1] desenvolvido no Dep.
Informática da FCT-NOVA [2]. [1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/unlthesis
http://www.di.fct.unl.pt

Para a minha família.

Acknowledgements

I would like to thank my adviser Jácome Cunha for his support, guidance and patience

in relation to both my research and myself. I would also like to extend my gratitude to

my university, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, for

giving me the opportunity to conduct my Master’s Degree and this research.

I would also like to thank NOVA LINCS for financing my trip to Vienna, to present

my paper at a workshop and for the opportunity to meet many wonderful people engaged

in the world of spreadsheets, whose advice definitely helped improving my work.

I am also thankful to all my friends for the support, encouragement and their great

friendship when it was needed the most.

Last but not least, a special thanks for my family for supporting me not only through

this thesis but also my entire education and life.

I also want to thank everyone not listed here who contributed to this journey. Even if

your names weren’t mentioned, you were all parts of the building blocks that in the end

created this thesis.

vii

Abstract

Modern development environments include several tools such as debuggers, testing

frameworks, or version control. Indeed, version control has become an essential tool for

assisting programmers in managing their source code. It helps them keep backups of

their own work while providing an accessible history of everything they have done.

End users with no programing experience can also create complex software in the

form of spreadsheets, both for personal and business use. In the case of business use, such

spreadsheets may reach enormous levels of complexity and size. Complex spreadsheets

can be very hard to create, debug and understand, problems that can be alleviated by

having a proper version control system.

With this work we present an approach to bring the well-known version control

benefits to spreadsheets in a simpler, easy to use and understand manner in order to

appeal to end users. Our tool provides an intuitive graphical interface integrated in Excel

with numerous features such as automatic version creation, viewing differences between

two versions, uniting two versions together as one, and collaboration with other users.

An empirical study was also performed on the tool, in the end showing that it is indeed

more efficient and effective to use it when performing certain tasks compared to standard

Microsoft Excel.

Keywords: Spreadsheets, End users, Microsoft Excel, Version Control, Excel Add-in

ix

Resumo

Os ambientes de desenvolvimento modernos incluem várias ferramentas como debug-
gers, estruturas de testes, ou controlo de versões. De fato, o controlo de versões tem-se

tornado uma ferramenta essencial para ajudar os programadores na gestão do seu código

fonte. O controlo de versões ajuda os utilizadores a manter cópias de segurança dos seus

trabalhos e ao mesmo tempo fornece uma história acessível de todo o trabalho que foi

efetuado. Os programadores não profissionais também podem criar software complexo,

na forma de folhas de cálculo, tanto para fins pessoais como profissionais. No caso de

fins profissionais, as folhas de cálculo podem atingir dimensões e níveis de complexidade

muito elevadas. Folhas de cálculo complexas podem ser muito difíceis de desenvolver,

corrigir e compreender, problemas que podem ser aliviados através de um sistema de

controlo de versões.

Este trabalho apresenta uma forma de trazer os benefícios bem conhecidos do controlo

de versões para as folhas de cálculo num formato simples, de utilização e compreensão

fácil, de forma a agradar os programadores não profissionais. A ferramenta fornece uma

interface gráfica intuitiva integrada com o Microsoft Excel, que permite criar versões

automaticamente, visualizar as diferenças entre as versões, unir duas versões numa só

e colaborar com outros utilizadores. Foi feito um estudo empírico sobre a ferramenta,

mostrando que é mais eficaz e eficiente utiliza-la na execução de certas tarefas comparado

com o Excel por si só.

Palavras-chave: Folhas de cálculo, Programadores não profissonais, Microsoft Excel, Con-

trolo de versões, Excel Add-in

xi

Contents

List of Figures xv

1 Introduction 1

1.1 Motivation . 2

1.2 Challenges . 3

1.3 Approach . 4

1.4 Contributions . 4

1.5 Thesis structure . 4

2 State of the Art 7

2.1 Microsoft Excel . 7

2.2 Coopy . 8

2.3 Google Sheets . 10

2.4 XLTools . 11

2.5 Pathio . 12

3 Version Control for Spreadsheets 15

3.1 Version listing . 15

3.2 Creating versions . 16

3.3 Moving between versions . 17

3.4 Creating branches . 17

3.5 Version messages and tags . 18

3.6 Diffing . 18

3.7 Collaboration . 19

3.8 Conflict resolution . 20

4 SheetGit: A Version Control System for Spreadsheets 23

4.1 Overview . 23

4.2 Backend . 24

4.3 Ribbon tab . 25

4.4 Main Pane . 25

4.5 Settings Pane . 26

4.6 Diff Pane . 28

xiii

CONTENTS

4.7 Conflicts Pane . 30

4.8 Availability . 30

5 Empirical Validation 33

5.1 Design . 33

5.1.1 Hypothesis . 34

5.1.2 Variables . 34

5.1.3 Subjects and Objects . 34

5.1.4 Instrumentation . 35

5.1.5 Data Collecting Procedure . 36

5.1.6 Analysis Procedure and Evaluation of Validity 36

5.2 Execution . 37

5.3 Analysis . 37

5.3.1 Descriptive Statistics . 38

5.3.2 Hypothesis Testing . 43

5.4 Interpretation . 44

5.4.1 Threats to validity . 44

5.4.2 Inferences . 45

5.5 Discussion . 46

6 Conclusions 47

6.1 Concluding Observations . 47

6.2 Future Work . 48

Bibliography 49

A Pre-Questionnaire 53

B Tutorial for Spreadsheet Compare 57

C Tasks for Spreadsheet Compare 67

D Tutorial for SheetGit 71

E Tasks for SheetGit 77

F Post-Questionnaire 81

G Version list JSON schema 85

xiv

List of Figures

2.1 An example of the spreadsheet history tab as seen in Microsoft Excel 2016 for

Windows. 8

2.2 Spreadsheet Compare 2016 comparing two versions of a spreadsheet from the

Enron corpus. 9

2.3 Coopy’s graphical user interface as seen in Linux Mint 9

2.4 An example of Coopy’s highlighter diff format [8]. 10

2.5 A list of versions in a Google Sheets document 11

2.6 A list of spreadsheet versions in XLTools . 12

2.7 An example of Pathio’s diffing [31]. 13

3.1 A representation of a simple version tree . 16

3.2 A version tree with a branch . 16

3.3 A tree where the visible, current spreadsheet is its third version 17

3.4 Version tree displaying a version message and a version tag 18

3.5 Timeline between two versions . 19

3.6 Resolving a conflict in a cell . 21

3.7 A version tree in SheetGit after a merge . 21

4.1 SheetGit in Excel 2016 . 24

4.2 SheetGit’s Ribbon Tab . 25

4.3 SheetGit’s main task pane display . 26

4.4 SheetGit’s main pane in Comparison Mode . 27

4.5 SheetGit’s Settings Pane . 28

4.6 SheetGit’s Diff Pane . 29

4.7 SheetGit during a diffing procedure . 29

4.8 Resolving conflicts in SheetGit . 31

5.1 Box plot for the time elapsed in executing Grades’s first task 38

5.2 Box plot for the time elapsed in executing Grades’s second task 39

5.3 Box plot for the time elapsed in executing Markets’s first task 40

5.4 Box plot for the time elapsed in executing Markets’s second task 41

5.5 Bar chart with the amount of participants who inputted wrong values in the

right version . 42

xv

List of Figures

5.6 Bar chart with the amount of participants who inputted correct values in

wrong versions . 42

xvi

C
h
a
p
t
e
r

1
Introduction

Spreadsheets have become an indispensable necessity in many peoples’ lives. Their

widespread use can be attributed to the fact that they are extremely flexible, easy to

create, fast to use and hold countless functions that can be used in various different

businesses [38]. Microsoft Excel and other spreadsheet programs hold an install base of

over 90% of all computers globally [2], and for 2012, it was estimated that there were

55 million of end users using databases or spreadsheets just in the United States alone

[32]. The problem is that, while spreadsheets hold immense potential power, they are

extraordinarily prone to error [29].

There have been multiple studies attempting to measure errors in spreadsheets, and

they have always found them in abundance [29]. By default, spreadsheets are easy to share

and modify, which makes it incredibly difficult to control and maintain their integrity [4].

The amount of user controls in spreadsheets do not approach the level of controls that

professional programmers have found to be necessary in a similar application, so errors

are more likely to happen and not be detected.

Another point worth mentioning is that due to the lack of development and design

standards in spreadsheets, it is normal for spreadsheets to reach incredible levels of

complexity and size, making them hard to comprehend and debug, ergo increasing the

number of errors when they are used [18][2].

By adding new functionalities and controls that would help both detect and prevent

errors from happening, one of the major advantages of spreadsheets, their simplicity and

agility, would begin to wane. It is, however, becoming more of a necessity as spreadsheet

usage continues to grow and as both businesses and end users come to rely on them to

perform crucial tasks that could define their future. As a result, Excel has in fact been at

the center of numerous financial crises [12].

1

CHAPTER 1. INTRODUCTION

So essentially, spreadsheets are being used as cheaper, more agile replacements of pro-

fessional programs that would normally cost large sums of money to create and manage,

but they have few to no controls and tools to prevent errors. If professional program-

mers are no longer making sure end users will not make mistakes, to prevent these from

happening the end users must themselves start to adopt the disciplines and tools that

programmers have long used when dealing with complex software [30], one of which

being version control.

Version control is known to be beneficial for experienced programmers [26], but it

has also been proven that it would be beneficial for end users both for learning and

debugging purposes [25]. This is due to them generally learning from existing examples

and how they tend to "debug their programs into existence", that is, they search for various

alternatives to a solution, and backtrack their changes when required [25]. Version control

also helps in understanding spreadsheets as these reach high levels of complexity. With

proper version control, one can see how a spreadsheet was built over time and, from its

origin, gradually come to understand it.

End users in fact already perform their own versioning manually by, for example,

adding a suffix to a filename with the file’s version number. This can even be seen in

a large company such as Enron inside their corpus [17], where they commonly send

updated spreadsheets through email. However, manual versioning holds numerous risks,

as it is possible for a user to receive an email with a wrong or already outdated version,

which would cause a problem whose root can be very difficult to find. In turn, experienced

programmers have sophisticated tools to create and manage their versions such as Git

[13] and Subversion [35], that help prevent these issues. Modern development tools

such as these could be applied to spreadsheets, but they lack native integration and it

would be very inconvenient for end users to have to learn the syntax and concepts behind

something akin to Git. One of the big allures of spreadsheets is their simplicity and agility,

so tools that require a lot of time to learn are likely to be discarded, but that does not

mean it is impossible for many of their features to be available. These features just need

to be presented in the right way, which is what we intend to do in this work.

1.1 Motivation

Assume that you’re working on an Excel spreadsheet related to a company’s finances.

To avoid any problems with missing information, it’s normal to keep versions of the

spreadsheet as it is being worked on, this will prevent data loss and will remain as a

fruitful backup if needed in the future.

Now, a second person could be working on the same spreadsheet as you, performing

changes concurrently. In Version Control, versions are generally organized in the shape

of a tree that grows with each version. The coworker started working based on your

spreadsheet, but it has now branched off into creating its own different versions, this

would be called a different branch in version control, in the tree.

2

1.2. CHALLENGES

When dealing with multiple versions of the same spreadsheet, it’s important to be

able to see the differences between said versions. In Version Control, this is called diffing,

though the term is usually applied to text files.

In this case, eventually your coworker will want to join his part of the work with

yours in one single spreadsheet. In Version Control, one of the methods of doing this

would be by merging. The tree branch would connect back to the trunk where it sprouted

from, with all the changes now integrated into it. Of course, if the two users edited at

some point the same cells, this would be a conflict that would have to be resolved when

performing this merge.

Microsoft Excel has no way of performing these actions. It does maintain backups,

you could consider them as versions, but you’re unable to branch off previous versions

and keep your backups organized at the same time. Collaborative work is limited to

working simultaneously on Excel Online in an internet browser, with your spreadsheet

saved on Microsoft’s servers. Diffing is only possible through Spreadsheet Compare, an

application bundled with Microsoft Office, but is completely independent and separate

from Excel.

Aside from helping manage versions and streamlining collaboration, version control

also helps solve other problems with spreadsheet integrity. The user is always aware of

what is the latest version of the spreadsheet, and the relationship between all the versions.

So problems of data loss occurring due to a coworker mistaking an old version for the

latest will not happen. Even if it did, version control’s merging feature would casually

update it with the newest changes. If an error shows up, it is always traceable down to

who did it and when it happened, so the consequences that may happen over time can be

ascertained.

Thus we chose to make this application to unite all of these features into one easy to

use application, bringing version control’s full benefits to spreadsheet end users.

1.2 Challenges

The main challenge of this work is the user interface. Version control is very complex

and has numerous features. In order for spreadsheet end users to use our tool, it must

be very intuitive, require a minimal tutorial and be very unobtrusive, otherwise they will

not use it for fear of breaking their agile and flexible workflow. They do not have the

same training professional programmers do.

Another big challenge is abstraction. It is also closely related to user interface. Not

only is it the manner of how we abstract the complicated version control tools into simpler

ones, but also how we adapt these tools to spreadsheets, when they were not designed to.

3

CHAPTER 1. INTRODUCTION

1.3 Approach

Our goal is to bring version control to spreadsheet end users, in an intuitive manner, to

help modernize Excel’s development tools, to help lower the risk of spreadsheet errors

and to help end users create, manage and comprehend complex spreadsheets. For this

purpose, we chose to design a version control system for spreadsheets, this including all

of its features, chosen because they could be adapted to spreadsheets, and presentation,

because end-user developers who have never programmed or and have never version

control would need to understand them. All of this is detailed in Section ??.

We then created an add-in, based on our design, for Microsoft Excel because of its

high install base in computers, and its undefeated market share [24]. The add-in automat-

ically creates versions, makes branches when needed, allows the user to change between

versions and see the difference between them, collaborate with colleagues and unite their

changes into another spreadsheet with a carefully designed user interface.

1.4 Contributions

This work makes the following contributions:

• A methodology to create a version control system tailored for spreadsheets, includ-

ing:

– A user interface to interact with version trees and their children.

– A methodology to allow online collaboration on a spreadsheet

– A process for automatically creating versions and changing between them.

– An approach to show differences between two spreadsheets.

– A methodology to present and resolve conflicts in spreadsheets.

• An open-source add-in, termed SheetGit [33], that implements all of the mentioned

items.

• We have also published a paper presented at an international spreadsheet work-

shop - "SheetGit: A Tool for Collaborative Spreadsheet Development" in Software
Engineering Methods in Spreadsheets 2016 [28]

1.5 Thesis structure

The rest of the thesis is structured as follows:

• In Chapter 2 we present the state of the art, the current existing solutions to our

problem and how they differ from the one we created.

4

1.5. THESIS STRUCTURE

• In Chapter 3 we present the concepts and methodologies revolving around adapting

a version control system to both spreadsheets and end-user developers.

• Chapter 4 explains how SheetGit functions and presents several details about its

implementation.

• In Chapter 5 presents our empirical study on SheetGit.

• In Chapter 6 concludes the developed work and discusses future work.

5

C
h
a
p
t
e
r

2
State of the Art

It is no surprise that solutions already exist for version control in the context of spread-

sheets, but we find them to be less powerful and intuitive than they ultimately could

be.

In this chapter we discuss these other approaches to version control, comparing them

to our own solution.

2.1 Microsoft Excel

Microsoft Excel’s [27] official approach, which they simply call History, is available solely

on the Windows platform. However, it is limited to spreadsheets hosted on Microsoft

Sharepoint, so one cannot make use of it without being online. Versions are saved auto-

matically when the user saves the document; Excel will either create a completely new

version or merge the changes with the last one, with unknown criteria.

One of the important features in version control is the ability to see the differences

between versions of a file. Excel does not have such a feature; the user is given a list of

versions, as seen in Figure 2.1, and upon clicking a version, he/she can see the spreadsheet

as it was at that time, and is given the option to either revert to that version or abort.

It is worth noting that Microsoft has actually developed an official tool to detect

spreadsheet differences called Spreadsheet Compare [34] that comes alongside some ver-

sions of Excel 2013 and 2016 in Windows. It works as an external tool and can function

without having Excel itself open, having no integration with Excel’s version control sys-

tem.

In Spreadsheet Compare, as seen in Figure 2.2, the spreadsheets are put together, side

by side, with their formatting stripped and, depending on the type of change, instead

having specific colors highlight the altered cells. Additionally, there’s one button to show

7

CHAPTER 2. STATE OF THE ART

Figure 2.1: An example of the spreadsheet history tab as seen in Microsoft Excel 2016 for
Windows.

cell formulas in place of their resulting values and another one to show the spreadsheet’s

real formatting. Unfortunately, there’s no easy way to detect changes to entire rows and

columns, as sometimes the program’s algorithm merely sees them as regular changed cell

values, and while that is indeed correct, it’s not very useful for human users as it doesn’t

represent what happened in reality. When it does detect row and column changes, it

only notes them down in the list of all changes and doesn’t specifically show that in the

spreadsheet.

2.2 Coopy

Coopy [9] is a spreadsheet version control tool which supports diffing, patching (applying

a diff file’s changes to another spreadsheet), merging and conflict resolution on spread-

sheets and database tables. It is separate from spreadsheet programs, and focuses on

keeping data in synchronization across multiple spreadsheet technologies by converting

the sheets to an intermediate format called CSVS. The meaning of the acronym is not

officially known, but the last "S" is likely to form the plural of the term CSV (Comma-

separated values), due to the fact that each CSVS file is essentially multiple concatenated

CSV files.

This CSVS format is based on the well known CSV format but with support for multi-

ple sheets per file, unambiguous header rows, and a clear representation of NULL. There

is currently no known software other than Coopy that supports CSVS files.

While Coopy does have a large feature-set, its interface is aimed more towards pro-

fessional programmers with its use of concepts, information and syntax that end users

normally would not understand (e.g. diffing, branch, merge) as can be seen in Figure 2.3.

8

2.2. COOPY

Figure 2.2: Spreadsheet Compare 2016 comparing two versions of a spreadsheet from the
Enron corpus.

Coopy also does not support the more popular .XLSX Excel format; instead only supports

the older XLS through Gnumeric and its libspreadsheet library.

Figure 2.3: Coopy’s graphical user interface as seen in Linux Mint

Coopy has two main methods to present spreadsheet differences[10][7]: i) the tDiff
text format is meant to retain the aesthetics of regular diff files, and is intended to not

9

CHAPTER 2. STATE OF THE ART

only be parsed by programs, but also for end users to be able to read the differences [11].

But it can be difficult for a user with no experience to read it, and not only that but the

diff’s complexity can grow when dealing with large spreadsheets. What we are aiming

with our solution is a method that can be read by anyone who understands a spreadsheet,

with at most a minimal tutorial, while also being a method that can be applied to other

types of spreadsheet content, such as the formatting, something tDiff cannot do [11].

ii) The highlighter diff format. This format is meant to be presented in an actual

spreadsheet yet it can also be parsed for analysis and patching. However much like tDiff,

it deals solely with cell content and no sort of cell formatting or formulae [8]. In Figure

2.4 we can see that two tables have merged together, with colors marking what cells were

newly added, removed or changed. There is also a new control row and column, situated

at the top row and the leftmost column, which identify the type of changes that happened

in them. The markers in these control sections (e.g. ’+++’, ’+’) can potentially be hard for

users with no experience with diffs to understand.

Having this information condensed in one single table, makes it easier to evaluate

larger spreadsheets in one glance, unlike Spreadsheet Compare’s approach, which re-

quires one to look at various places at once. However, the spreadsheet may become very

disorganized and complex if the number of changes between versions is high.

Figure 2.4: An example of Coopy’s highlighter diff format [8].

2.3 Google Sheets

Google Sheets’ [16] revision history system is very powerful. It begins functioning im-

mediately upon creating a new spreadsheet and automatically commits a new version

whenever a new change is made. If various changes are done in a short period of time,

Google Sheets may aggregate the changes into a single commit.

In the Revision History page, one is able to see a list of all versions right next to the

actual spreadsheet, as shown in Figure 2.5, each having the list of people who edited the

sheet in that particular version and their unique color. Upon clicking one of the versions,

10

2.4. XLTOOLS

the spreadsheet will change to show that particular point in history but in a gray-scale

color scheme; the cells that were edited will be tinted with the unique color of their author.

A curious thing to note is that Google Sheets marks a cell as edited even if the end result

of the edits ends up the same as it started; this includes any formatting and formula

changes.

Figure 2.5: A list of versions in a Google Sheets document

Due to new versions being saved with every change done to the document, Google

Sheets joins revisions that happened in a short period time between each other into a

single one to make it easier to navigate through the list. The user can click a button

at all times to see all of the revisions separately. Similarly, in order to save space, the

document will at times suffer actual revision pruning if its file size or age is too high. This

compresses various revisions into a single one, as if they all happened at the same time.

We seek for our solution to behave very similarly to Google Sheets’s system, but with

more control over the automatic commits and with a more robust way to show differences

between the spreadsheets, as Google Sheets merely points out the locations that were

changed and gives no indication of what actually happened.

2.4 XLTools

XLTools [36] is a suite of various utilities for Microsoft Excel all in one Visual Studio Tools
for Office add-in, normally called a VSTO add-in, one of them being called Version Control

[37]. This tool can create a local Git repository for the active workbook, where committing

11

CHAPTER 2. STATE OF THE ART

can be done either manually or automatically when saving (commit messages can also be

added). The user has also access to the list of revisions, where they can choose to compare

or save individual sheets, as shown in Figure 2.6. There is no option to directly restore to

a previous version. One has to save the file somewhere and then overwrite the original

when Excel is closed, as the original cannot be overwritten while Excel and the add-on

are open.

Spreadsheet comparing can only be applied to one worksheet at a time. This will open

a new Excel window with both old and new versions of the worksheet, having the new cell

values tinted in red and its text in bold. The tool doesn’t detect formatting changes and

merely detects the actual cell value, and since formatting when comparing sheets is not

changed, if one is unfortunate enough to have the same red and boldface cell formatting

as the add-on uses, edited cells in the document may be confused with cells that were

never touched.

Figure 2.6: A list of spreadsheet versions in XLTools

2.5 Pathio

Pathio [31] is a recently created program that provides version control in spreadsheets.

It is not directly integrated with Excel, it instead functions by creating a folder in the

operating system that will be monitored by the program. Any spreadsheets placed in

it become versioned, and when they are edited, the program will detect the changes

and create a new version appropriately. It can also work through the cloud by detecting

changes on Dropbox or Sharepoint accounts. In this case one would not need to download

their personal client. Versions are kept in a linear format, much like Microsoft Excel. The

12

2.5. PATHIO

service provides diffing, in a similar way to Coopy’s highlighter format, as shown in the

Figure 2.7. Pathio does not work without an internet connection nor does it support

branching and merging.

Figure 2.7: An example of Pathio’s diffing [31].

13

C
h
a
p
t
e
r

3
Version Control for Spreadsheets

Version control has been proven to be beneficial for end users, but it was not created with

spreadsheets or end user developers in mind, thus in this chapter we introduce some

concepts and methodologies in how to abstract and adapt the functionalities of version

control into this setting. In each of the following sections, we present a feature usually

available in version control systems.

3.1 Version listing

Despite most of the applications presented in Chapter 2 showing their list of versions in a

linear dropdown list, we instead prefer presenting the list of versions in a tree format. The

tree format is not something new in the version control world, yet no one had considered

using it in spreadsheets.

The tree grows vertically from top to bottom in a chronological manner, an example

can be seen in Figure 3.1, with each node being a different version. So, the oldest version

would be at the base of the tree, and as new versions get added, the tree grows down.

Since the tree in the mentioned figure has a fairly abstract appearance, it is important for

something akin to arrows to be placed in between nodes, otherwise users may misunder-

stand which way the timeline flows. This issue may not occur if the tree is chosen to be

presented in a more realistic fashion.

The problem with having regular linear lists for versioning is that they cannot easily

depict a version’s parent. This can lead to confusion because these lists are generally

ordered in a chronological manner. This masks instances where a version is actually

derived from some older version [25]. With a tree’s graphical representation, we can

display all of this information at once, such as creating a branch in the tree when the user

restores to that version.

15

CHAPTER 3. VERSION CONTROL FOR SPREADSHEETS

Figure 3.1: A representation of a simple version tree

In Figure 3.2’s case, the version labeled "V4", which stands for "Version 4", in the gray

branch was made after V3 in the purple branch. In a linear list V4 would show up after

V3, which is not wrong, but it creates the impression that the former was created based on

the latter. But in reality, their sole relation is V1, which was the base used for the purple

development branch. Through this graphical representation, we can keep the version

list organized in a chronological manner without losing any information on the versions’

parentage.

As the graph grows more complicated, it is best to label each version so they gain

a sense of individuality. Users will find it easier to pinpoint or memorize information

related to a version if it has a name. In our earlier example, and in SheetGit, we put the

number of the version next to the node so it is visible at all times.

Figure 3.2: A version tree with a branch

Having information about these parent versions will help users understand how

spreadsheets they did not create actually came to be, because as mentioned before, end

users tend to learn from existing examples and when facing a problem, they prefer to at-

tempt various possible solutions, backtracking when required, something which is made

easier with a proper version control system.

3.2 Creating versions

Creating versions should be done automatically, as to prevent any sort of data loss due

to the user forgetting to create a version, and to not interrupt the user as he/she works.

16

3.3. MOVING BETWEEN VERSIONS

Other metrics could also be implemented, such as "Create a version after every 3 changes

by the user" or "Create a version if the user, after performing a change, idles for over 10

seconds".

An option to enable manual versioning should exist for more advanced users who

have a good notion of how the version control system functions. End user developers may

acquire this sense over time with experience.

3.3 Moving between versions

This is what is generally called Checkout in Git. Versions are only useful if a person can

actually use them, either to just give it a glance to find specific information or to perform

a complete rollback.

Since a graphical version tree would be employed with this work’s methodology, it is

possible to have the user interact directly with the tree to perform actions. This would

also help them understand how the tree and the whole system behind it functions.

Thus, we propose having the user interact with the version nodes of the tree to change

versions, such as clicking them. In this case, it is also important to show an indication of

what version of the spreadsheet the user is currently seeing. In Figure 3.3’s case, we have

the current version displayed as a larger node with a white interior as to make it stand

out from its siblings.

Figure 3.3: A tree where the visible, current spreadsheet is its third version

3.4 Creating branches

As suggested earlier, branches are used to keep versions’s parentage visible to the end

user. Much like versions, branches should be created automatically. More specifically,

they should be created whenever a user attempts to create a version when they are not

located at the tip, the latest node, of a branch.

Using the same Figure 3.2 as earlier, the user in that case would have moved from V2,

the latest version before any branches existed, to V1 and then performed some changes

to the spreadsheet. This would cause the automated creation of the purple branch and a

new version labeled V3.

17

CHAPTER 3. VERSION CONTROL FOR SPREADSHEETS

3.5 Version messages and tags

The version tree can grow confusing after it acquires a large amount of version nodes.

Versions can be organized by the user by letting them add version messages and tags to

the versions. Tags are messages to label specific points in history as important.

Tags should be shown directly on the graph, so they can be visible even if the user is

not looking at that version in specific. An example of this based on the previous figures

would be to put the tag next to the version number.

Version messages can be more detailed, and accessed by interacting with the version

node. For example, hovering with the mouse over the version node should show a speech

bubble with all the information pertaining to it. Since version creation is automated

by default, version messages could also be automated in the same vein, by for example

detailing it with the changes that were done in that specific version.

An example detailing these methodologies can be seen in Figure 3.4, where the mouse

would be hovering the third version to show a message, and the sixth version has an

always visible tag.

Figure 3.4: Version tree displaying a version message and a version tag

3.6 Diffing

Considering the user can already change versions, and have the effect show directly on

the Excel spreadsheet, it is only intuitive to keep the diffing process the same.

In order to make a scaleable yet easy to understand comparison in complex spread-

sheets we suggest thinking about a timeline with one version at one end, and the other

at the opposite end, as in Figure 3.5 Between the two versions would be all of the cells

with any differences between the two. Supposing the user starts in "Version A" and walks

through the timeline to the other end, as the user passes through the cells, their values

would change in the visible spreadsheet to how they are in Version B. So when the user

18

3.7. COLLABORATION

reaches the end, the spreadsheet at that point would be exactly like it is in Version B. This

would all apply in vice-versa as well, from Version B to A.

Using our figure as an example, in Version A, the A1 cell would have the value "hello",

but if we move one step to the right in the timeline, it would display as "goodbye". At this

point if we moved back to the left it would revert, and if we instead moved onwards to

the right we would move to different cells, the same process applying to them, gradually

turning into Version B. This would also apply to entire lines or columns if they were

edited in one step, such as their creation and deletion, as seen in the second step of

Figure 3.5

This allows the user to see the differences step-by-step rather than being overwhelmed

with all of them at the same time. This would scale reasonably well with spreadsheet

size and complexity as long as the user has control of the speed of traversal through the

timeline. An option to skip to certain cells of the comparison also helps in this regard.

The differences that are shown as the user moves through the timeline also have to be

appropriately highlighted in the spreadsheet as one needs to be able to tell it apart from

the rest of the spreadsheet. This can be done for example by changing the affected area’s

color or by drawing an circle around it.

Diffing should also be accessible directly through Excel and the version tree graph.

An example would be to right-click a node and choosing to either diff or move (checkout)
to it. Another one could be to have a button toggle the two different options for when

clicking the nodes. SheetGit uses the latter option.

Figure 3.5: Timeline between two versions

3.7 Collaboration

In order to avoid confusion and workspace clutter, users cannot see each other’s branches,

only their own. Instead, they interact with each other through a single branch, the left-

most branch of the graphs shown until now, which we call the trunk. This allows users

19

CHAPTER 3. VERSION CONTROL FOR SPREADSHEETS

to use their branches as temporary, in development work, that is hidden to other peo-

ple, while the trunk is meant for finalized versions that are ready to be shown to other

colleagues.

Users cannot create versions normally in the trunk because multiple users can interact

with it, creating the possibility of conflicts arising if two users edited the same cells

concurrently. Thus the trunk can only be updated through merges as to detect and

resolve any conflicts that may arise.

It is important for the trunk to be distinct from the other branches, whether it be

through color or some other visual change, as it behaves very differently from other

branches.

3.8 Conflict resolution

Conflicts should be solved directly on the spreadsheet, like how text conflicts are resolved

in the actual text file in Git.

Conflicted cells, lines, or rows should be highlighted for the user to differentiate them

from the rest of the spreadsheet. When one interacts with the conflicted area, one should

be immediately shown what are the options to take, where do they stem from, and what

was the original value before the two conflicted versions changed it. This gives the user

context and allows a person to deliberate while being able to look at the current status of

the spreadsheet around the conflict.

The user should be able to choose the options directly in Excel but not by editing the

cell directly. This can lead to human error, so the options should be immutable and abso-

lute. If the user decides neither option is suddenly of his interest, those changes should

be left for after the conflicts have been resolved to keep the version history coherent.

Figure 3.6 shows a way to handle conflict resolution. Dropdowns are used to select

options, which contain information about the branch where they are from, the version’s

cell value and what the original cell value used to be.

After the merge, the program should also create a new version in the trunk, with two

lines pointing towards both its parents in the trunk and the branch that was merged. The

example tree in Figure 3.2 and Figure 3.3 can be seen after the merge in Figure 3.7.

bh

20

3.8. CONFLICT RESOLUTION

Figure 3.6: Resolving a conflict in a cell

Figure 3.7: A version tree in SheetGit after a merge

21

C
h
a
p
t
e
r

4
SheetGit: A Version Control System for

Spreadsheets

As version control has been proven to be beneficial for end users, what remains is to

actually create a solution with an attractive interface and reliable functionalities that

cater to their needs.

In this chapter we will discuss the details of our application, which implements the

concepts and methodologies detailed in the previous chapter.

4.1 Overview

We have decided to create our solution as an add-in to keep it as closely knit to Excel

as possible. An overview of the application within Excel can be seen in Figure 4.1 (top

ribbon and right-hand side pane), this makes it more pleasant to work with, as the tool

is inside the spreadsheet application itself, rather than having to be run externally. This

also enables us to present information directly in the active spreadsheet, and grant us

easy access to Excel’s proprietary file formats.

There are two main types of add-ins for Excel, the VSTO, which stands for Visual
Studio Tools for Office, add-ins made in C# or Visual Basic, and the new type that Microsoft

simply calls Office add-ins. The latter are simply webpages that can interact with the

documents using an API in Javascript. They are sandboxed and less closely integrated

with Office, making them more restrictive than VSTO add-ins, but in exchange, they

would also work in Excel for browsers, macOS and iPad.

We chose to create an VSTO add-in instead of using the new Javascript API, because

we find the API not powerful enough for what we intend to create. We ultimately want

the add-in to start immediately when Excel is ran so there is no risk of the users forgetting

to enable the add-in, possibly losing data as a result, something that is not possible in

23

CHAPTER 4. SHEETGIT: A VERSION CONTROL SYSTEM FOR SPREADSHEETS

Figure 4.1: SheetGit in Excel 2016

the Javascript add-ins due to their sandboxed nature. As a result, our solution will only

support Microsoft Excel in the Windows platforms.

4.2 Backend

The application creates a folder in the user’s Program Files by default, and also in the

user’s Application Data. The Application Data folder is used to store the settings and all

the Git repositories. So, the user can create and edit his/her Excel spreadsheets anywhere

in the computer, and the repositories will always be stored in that one folder. This way,

the process is completely invisible to the user.

When the user creates a spreadsheet, the application in turn creates a Git repository

in the Applications Data folder and a remote one in Bitbucket if online connectivity is

enabled. This repository tracks the spreadsheet and a JSON file. This JSON contains

additional information about the versions such as the list of changes, the parent of each

commit and its branch. Portions of the JSON are used for managing the list of versions

24

4.3. RIBBON TAB

visible to the user and the diffing and merging procedures. The JSON file follows the

schema visible in Appendix G, which follows the IETF JSON Schema Internet Draft

Version 4 standard [19][20][21]. In the span of this work, our tool only detects changes in

cell values and formulae, though there are no technical limitations that prevents SheetGit

in the future from spanning far more content types in Excel.

4.3 Ribbon tab

The ribbon is the strip of buttons and icons located above Excel’s work area that was first

introduced with Excel 2007. SheetGit has its own ribbon tab, shown in Figure 4.2 with a

sole Toggle SheetGit button. This button will toggle SheetGit’s visibility and behavior on

and off as the user wishes.

Figure 4.2: SheetGit’s Ribbon Tab

4.4 Main Pane

The application makes use of the Excel task pane, to not disturb the user’s work yet re-

maining visible at all times. The main pane can be seen in Figure 4.3. The objective is to

keep the list of versions in the task pane, and updated in real time, so users can under-

stand how it is being built and have an idea of how their changes are spread throughout

the versions.

The task pane is created using Windows Forms, and the main pane contains an em-

bedded web browser so we can make use of Javascript which makes it easier to show

graphical information.

We make use of a version tree, as detailed in the previous chapter, to show our list

of versions, with the base version being at the top and having the tree grow downwards.

The tree is generated by the Javascript library GitGraph [15].

As described before, SheetGit uses a toggle to switch what happens when a version

is clicked. The Comparison Mode button serves this purpose, switching between moving

to the selected version and comparing the selected version with the current one. As

seen in Figure 4.4, the pane will be tinted red to show the user that the application is in

Comparison Mode.

25

CHAPTER 4. SHEETGIT: A VERSION CONTROL SYSTEM FOR SPREADSHEETS

Figure 4.3: SheetGit’s main task pane display

The Create Version button manually creates a version if there are any recorded changes

to the spreadsheet. The button is disabled if the application is in its default mode where

it creates a version for each change.

The Settings button changes the SheetGit to the Settings Pane. This pane is explained

in detail on Section 4.5

The Place versions in trunk button serves to perform merges into the trunk.

When information or errors need to be shown to the user, the text that currently

displays "Welcome to SheetGit" is temporarily changed to the message.

4.5 Settings Pane

The settings pane, as seen in Figure 4.5 allows the user to change how certain parts of the

application function, and to provide it with information for collaboration.

The Back button returns the user to the Main Pane.

SheetGit does support collaboration between multiple users, with the spreadsheets

being hosted at Bitbucket [1]. The Bitbucket account fields and the Grant Permission button

are to temporarily provide the user’s Bitbucket account information to the application.

26

4.5. SETTINGS PANE

Figure 4.4: SheetGit’s main pane in Comparison Mode

The button will initiate the OAuth2.0 protocol to grant SheetGit permission to create and

manage the user’s Bitbucket-hosted spreadsheets.

The User information fields and the Update button are for the user to write his/her

name and email as it will be displayed on each version. Currently SheetGit does not

show this information for each version, but it is shown on Bitbucket’s website and in any

application that can read local Git repositories.

The Versioning metrics dropdown allows users to choose how versioning is performed

between

1. Every workbook change

2. Every 5 workbook changes

3. After 5 seconds of idle time

4. Manual versioning

27

CHAPTER 4. SHEETGIT: A VERSION CONTROL SYSTEM FOR SPREADSHEETS

Figure 4.5: SheetGit’s Settings Pane

4.6 Diff Pane

The Diff Pane, as shown in Figure 4.6, contains all functionality related to viewing differ-

ences between two versions.

The slider moves through each cell that has differences between the two versions, as

detailed in the previous chapter. The two directional buttons move the slider up and

down, one step at a time, for when more precision is required and because some users

may favor clicking buttons rather than dragging the slider around.

To help the user understand which cells are changing, the text on the right of the

slider, shows what cell the slider is point towards, alongside the values and formulae for

the cell in both versions. The cells’ colors also change when the slider passes through

them, aiding the user in finding them. This can be seen in both Figure 4.6 and Figure 4.7,

where in the latter picture, the left side is how the spreadsheet is normally, and on the

right is how it is when the slider passes by a cell. In this case it is tinted green because it

was a value that was changed, in case of formulae, the tint is instead purple. The legend

for the colors is shown in the diff pane’s informative text, also shown in Figure 4.6.

Differences are detected by means of comparing worksheets to a prior copy of them,

using the VSTO API to check which parts of a cell have changed, whether it be its value

or formatting. So, all changes to a spreadsheet are saved as the versions are created and

are then compared in the diffing procedure.

The text below the Exit Comparsion button explains how the diffing process works,

while the one next to the slider points out the details of the current cell in the two versions.

The actual Exit Comparison button returns the user to the Main Pane. Any changes to

28

4.6. DIFF PANE

the spreadsheet as result of the diffing are reverted.

Figure 4.6: SheetGit’s Diff Pane

Figure 4.7: SheetGit during a diffing procedure

29

CHAPTER 4. SHEETGIT: A VERSION CONTROL SYSTEM FOR SPREADSHEETS

4.7 Conflicts Pane

When one decides to merge, one of the two following cases will happen:

Three-way merge

In case the trunk has had new versions since the branch was created, there is the pos-

sibility of conflicts arising, so a three-way merge algorithm is employed, with the user

having to solve any conflicts that arise. This is the case that would happen if the previous

example of Figure 4.3 was executed. This algorithm is used in most big version control

solutions such as Git [14] and diff3 [22].

Fast-forward merge

In case the trunk has not changed since the branch was created, since there are no conflicts,

no actual merge of versions to perform, they could technically be seen as just one branch.

As such, the application will apply the fast-forward method used in Git [14], which has

the trunk point to the latest version of the branch, making them effectively one branch

altogether. The user will see the their branch becoming part of the trunk, and will require

no further input from them. This is meant to simplify the version tree, as the three-way

merge could be applied in this situation as well.

The Conflicts Pane, as seen in Figure 4.8, will automatically arise during a three-way

merging process with conflicts, and will naturally disappear when these are dealt with.

The pane itself just has text explaining what is happening and what the user should

do to fix the conflicts, alongside a large red note and number showing how many are

conflicts remaining. This number is automatically updated as the situation changes.

When conflicts are detected, automatic versioning stops until they have been resolved.

Conflicting cells are shown with a special "<CONFLICT>" value, and a drop down that

has the two different versions of the cell. In the dropdown, the options begin with either a

"T" or a "B". "T" stands for trunk, the version we are trying to merge into, while "B" stands

for branch, the version we were on before beginning the merging process. Followed by

this prefix is the data type that is to be changed, in this case it is a regular cell value but

it could be a formula. The "Original" parameter stands for the value in the parent of the

two conflicting versions.

Once the user selects one of options, the cell will take that value and return to normal.

Once all conflicts are resolved, the program will return to normal functionality.

4.8 Availability

The source code is available in Github as part of SpreadsheetsUNL, a group of spreadsheet

related tools developed in Universidade Nova de Lisboa [33].

30

4.8. AVAILABILITY

Figure 4.8: Resolving conflicts in SheetGit

31

C
h
a
p
t
e
r

5
Empirical Validation

An empirical validation is widely recognized as essential in order to validate a new ap-

plication. Thus, we have prepared an empirical study, which is described and analyzed

in this chapter. Our motivation to perform this study is the need to understand if users

are more efficient and effective at performing certain tasks in spreadsheets with our tool

rather than than without it.

In Section 5.1 we detail the design of our study and in section 5.2 we explain how it

was executed. In Section 5.3 we then analyse the collected data followed by its interpre-

tation in Section 5.4.

5.1 Design

The aim of our study is to evaluate the effectiveness and efficiency of users using our appli-

cation when performing certain tasks, compared to simply using Excel and Spreadsheet

Compare, which comes bundled with Microsoft Office.

As we have previously described, it is common for errors to occur when editing spread-

sheets. Our ambition is to mitigate this problem. Thus, evaluating the effectiveness and

efficiency of users using SheetGit is quite important.

The application’s target audience are spreadsheet end users, therefore our subjects

were intended to be people with at least minimal Excel experience and few to no program-

ming experience. Participants performed two tasks per spreadsheet across two different

spreadsheets provided by us. Those spreadsheets were retrieved from EUSES [6] and from

the spreadsheet corpus VEnron [5], which is originally based on the Enron company’s

email corpus [17].

The study we have designed was applied in an academic environment, with freshmen

computer science students. To provide incentive for participation, we decided to raffle a

33

CHAPTER 5. EMPIRICAL VALIDATION

voucher with the value of fifty euro for a retail store chain in Portugal that sells cultural

and electronic products, the winner was a student named João Silva.

5.1.1 Hypothesis

In theory, using SheetGit reduces the number of errors and improves the user’s speed in

performing certain tasks compared to Excel and Spreadsheet Compare. However, this

needs to be tested. So, we could informally state two hypotheses:

1. In order to perform a given set of tasks, users spent less time when using SheetGit

instead of using only Excel and Spreadsheet Compare.

2. Spreadsheets used with the support of SheetGit have a correctness grade higher

than using only Excel and Spreadsheet Compare.

Formally, two hypotheses are being tested: HT for the time that is needed to per-

form a given set of tasks, and HC for the correctness grade found in different types of

spreadsheets. They are respectively formulated as follows:

1. Null hypothesis,HT0
: The time to perform a given set of tasks using SheetGit is not

less than that taken using only Excel and Spreadsheet Compare. HT0
: µd ≤ 0, where

µd is the expected mean of the time differences.

Alternative hypothesis,HT1
: µd > 0, that is, the time to perform a given set of tasks

using SheetGit is less than using only Excel and Spreadsheet Compare.

Measures needed: time taken to perform the tasks.

2. Null hypothesis, HC0
: The correctness grade in spreadsheets when using SheetGit

is not smaller than using only Excel and Spreadsheet Compare. HC0
: µd ≤ 0, where

µd is the mean difference of the correctness grades (effectiveness).

Alternative hypothesis, HC1
: µd > 0, that is, the correctness grade when using

SheetGit is smaller than when using only Excel and Spreadsheet Compare.

Measures needed: correctness grade for each spreadsheet.

5.1.2 Variables

The independent variables are: for HT the time to perform the tasks, and for HC the

correctness grades (effectiveness).

5.1.3 Subjects and Objects

The subjects of this study should be end user developers, people who have at least min-

imal experience with Excel, but not much if any programming experience. In this case

specifically, our subjects should not have any experience with version control, because it

would possibly form a bias towards our tool.

34

5.1. DESIGN

In the end, the study was performed with freshmen computer science students from

the Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa. They were

chosen because they are likely to have minimal experience with Excel, yet not enough

programming experience to know about version control.

In order to find the population with the desired requirements to this study, we created

a selection questionnaire (Appendix A in Portuguese) as a way to evaluate the subjects’s

knowledge of Excel and version control.

The objects of this study are three distinct spreadsheets that will be described later

in section 5.1.4. One spreadsheet is used as a tutorial, explaining half of the participants

how to use SheetGit, and the other half, Spreadsheet Compare. Spreadsheet Compare

being a tool bundled by Microsoft with Excel, we thought it would be easier to perform

the tasks with the tool’s help, yet since the subjects may not know about its existence,

a tutorial was provided. The remaining two spreadsheets are used in the tasks that the

participants have to complete.

5.1.4 Instrumentation

As we have been describing, our study is supported by three distinct spreadsheets. Each

spreadsheet contains multiple versions, in the form of Git repositories for SheetGit and

as regular separate Excel files for Spreadsheet Compare.

The subjects are not asked to understand the context of the spreadsheet. Thus, the

three spreadsheets were chosen to be simple to understand. The tutorial one, termed

Southpoint, was taken from the VEnron spreadsheet corpus [5] and calculates the total gas

usage when given input values. The second spreadsheet, termed Grades, was taken from

the EUSES corpus [6], and manages and calculates grades for students of an university

course. The third spreadsheet was retrieved from Enron as well and is termed Markets.

This one calculates the income of Enron’s global markets.

Participants received a set of tasks (Appendix C and E), two different questions for

each of the three spreadsheets. The two questions were similar in content across the three

spreadsheets, as to see if the users could perform similar tasks in different spreadsheets.

The first question asks users to correct an error in a spreadsheet that sprouted in a

recent version, but was correct some time ago. So users would have to diff the multiple

versions to find out where the error occurred, and then correct it in a new version.

The second question asks users to unite two versions of a spreadsheet into one, as-

suming they both had the same parent. Users would then have to compare the three

spreadsheets (the parent and the two different children) and then perform a three-way

merge.

In order to understand the hardships participants can encounter during the study,

two questionnaires were prepared: one to answer before the study, the pre-questionnaire

(Appendix A), and another to answer afterwards, the post-questionnaire (Appendix F).

35

CHAPTER 5. EMPIRICAL VALIDATION

Before the participants left the room, we collected the spreadsheets with their proposed

solutions from their computers.

5.1.5 Data Collecting Procedure

We have planned several steps to run our study, with two different options: perform

the tasks with and without SheetGit is help, as an attempt to compare the efficiency

and effectiveness of performing the set tasks. Therefore, the first option consists of five

phases:

1. Filling the pre-questionnaire (Appendix A);

2. Attending and performing the tutorial on SheetGit (Appendix D)

3. Performing the set of tasks on the two given spreadsheets (Appendix E);

4. Filling the post-questionnaire (Appendix F);

5. Collecting all spreadsheets, questionnaires and answers.

Regarding the second option, the participants would instead attend a tutorial on Spread-

sheet Compare. Even though the tool is bundled with Microsoft Office, the users might

not have any experience with it, thus we decided to create a tutorial for it.

In steps (2) and (5) we would directly interact with the participants, teaching them the

tutorial answering any questions in the former step, and by retrieving their results and

materials in the latter. No help is provided to the participants while they were executing

the tasks in step (3).

5.1.6 Analysis Procedure and Evaluation of Validity

The analysis of the collected data is achieved through the comparison of the group of

participants that performed the tasks using our application with the group of participants

that perform the tasks with just Excel and Spreadsheet Compare. Since the study is

comprised of several tasks, the participants note down the time it took for each user to

complete the tasks.

To perform the comparison, we calculate the average timespan it took for the partici-

apnts to complete the tasks in each group, and then compare both of them. To ensure the

validity of the collected data, we would offer various kinds of support to the participants,

such as the tutorial for the tools, availability to answer any questions during the tutorial,

and supervision in a manner that does not disturb them while they work. In this last

point, supervision serves to help participants in case they have issues that if solved would

not influence the study results.

36

5.2. EXECUTION

5.2 Execution

The study was performed in a classroom during a freshman Computer Science course. A

total of sixteen college students participated across two sessions, one for the tasks with

SheetGit, the other without it.

Initially, we had scheduled to perform the study outside classes, recruiting people

through email with scheduled sessions across the week. Despite providing incentives to

participate, such as attending a small workshop for the users to learn version control and

the chance at winning the voucher mentioned before, not enough participants showed

up.

SheetGit and Excel 2013 was installed beforehand in the classroom where the study

was conducted. Before each session, we personally verified if the environment was cor-

rectly set and ready for the participants. When they were already in the classroom and

seated, we introduced the purpose of the study, explaining what we developed so far and

why their participation was important.

Afterwards, the participants started filling the pre-questionnaire, with general infor-

mation about themselves (gender, age range, scholar year) as well as some questions about

their previous experience with spreadsheets, programming and version control, if any.

We then provided an interactive tutorial with SheetGit and Spreadsheet Compare,

depending on which session it was, and answered all participants’s questions. They then

had to solve the two tasks per spreadsheet by themselves.

Regarding the sessions, the participants were split between the two types of tasks,

as to have an equal amount of people with and without SheetGit. We also decided to

alternate which spreadsheet the participants started the study with. In other words, some

participants started with the Markets spreadsheet and others with the Grades spreadsheet.

This is important to get more realistic and even results, as during the tasks performed

with their first spreadsheet, participants are still learning and will gradually improve, so

when they reach the second spreadsheet, they will have more experience than they had at

the start. Concentration levels also begin to decrease over a period of time, which could

influence the time spent on each task.

Lastly, we have asked participants to answer the post-questionnaire in order to evalu-

ate the confidence that they had on their performance during the study and afterwards

we have collected the modified spreadsheet files, the questionnaires, the answers of each

spreadsheet as well as the times to perform each task, so we could analyze them at a later

time.

5.3 Analysis

In order to perform a quantitative analysis of the study, we used all the subjects’s results:

Nine subjects that used SheetGit and nine that did not.

37

CHAPTER 5. EMPIRICAL VALIDATION

5.3.1 Descriptive Statistics

Subjects:

Basic information about the subjects was gathered, namely their gender, age, familiarity

with spreadsheets and version control. From the eighteen subjects, sixteen were male

and two were female. All of the subjects were below twenty years old. All of the students

were freshmen in the Computer Science degree. 62% of the subjects had experience with

Excel and only 25% have had experience with version control.

Time spent (efficiency):

There were noticeable differences in the time the participants used to perform the study.

Figures 5.1 and 5.2 show the time it took for the participants to perform each of the

Grades spreadsheet’s tasks. They Y axis contains the time in seconds while the X axis

points out whether SheetGit was used in turn of Spreadsheet Compare. Likewise, Fig-

ures 5.3 and 5.4 are the equivalent for the Markets spreadsheet.

Figure 5.1: Box plot for the time elapsed in executing Grades’s first task

38

5.3. ANALYSIS

Figure 5.2: Box plot for the time elapsed in executing Grades’s second task

39

CHAPTER 5. EMPIRICAL VALIDATION

Figure 5.3: Box plot for the time elapsed in executing Markets’s first task

40

5.3. ANALYSIS

Figure 5.4: Box plot for the time elapsed in executing Markets’s second task

41

CHAPTER 5. EMPIRICAL VALIDATION

Correctness grade (effectiveness):

In regards to the correctness grade, we divided the type of errors participants could

perform into two categories: having incorrect values inputted in the correct version and

inputting the correct values in a wrong version. As such, the bar chart in Figure 5.5 shows

the number of participants who committed the former error, while Figure 5.6 the latter.

The charts show all the spreadsheets’ results together, the Y axis showing the number of

people and the X axis whether SheetGit was used or not in place of Spreadsheet Compare.

Figure 5.5: Bar chart with the amount of participants who inputted wrong values in the
right version

Figure 5.6: Bar chart with the amount of participants who inputted correct values in
wrong versions

42

5.3. ANALYSIS

5.3.2 Hypothesis Testing

To test our hypothesis on efficiency, we ran a Welch’s unequal variances t-test to determine

if there’s any statistical significance in our study, as suggested in [23]. The results are

presented in Table 5.1. GradesP1 and P2 are the first and second tasks of the Grades

spreadsheet respectively, the same rule applying for the Markets spreadsheets.

Table 5.1: Welch’s unequal variances t-test results

t df Two-tailed P Mean difference Std. error difference

GradesP1 0.418 14.689 0.682 22.11111 52.91689
GradesP2 5.302 8.357 0.001 262.55556 49.51565
MarketsP1 1.664 15.691 0.116 55.77778 33.52118
MarketsP2 3.859 8.791 0.004 228.00000 59.07933

This is followed by calculating Cohen’s d to determine our effect size in Table 5.2, also

suggested in [23].

Table 5.2: Calculation of Cohen’s d

SheetGit? Mean Std. deviation Std. error mean Cohen’s d

GradesP1
false 244.4444 94.00015 31.33338

0.196974
true 222.3333 127.92869 42.64290

GradesP2
false 361.3333 146.91664 48.97221

2.499612
true 98.7778 21.94754 7.31585

MarketsP1
false 224.3333 65.92989 21.97663

0.784395
true 168.5556 75.93601 25.31200

MarketsP2
false 323.4444 94.00015 57.66742

1.819253
true 95.4444 38.51659 12.83886

Comparison of times

From the t-test results we can deduce that only the P2 tasks have statistical relevance, and

through Cohen’s d we can see that in P2’s case the difference between the two means can

be classified as very large. So SheetGit in these tasks helped the participants in a scale of

more than one standard deviation, which is very impressive. For the P1 tasks, there was

no statistical relevance within the study.

Comparison of correctness

A couple of different tests were conducted, such as the Pearson Chi-Square and Fisher’s

Exact Test but no statistical relevance could be found, mostly due to the low count of

errors in both cases.

43

CHAPTER 5. EMPIRICAL VALIDATION

5.4 Interpretation

The results from the analysis suggest that SheetGit does improve user performance while

performing these tasks. The second task, related to merging in version control, had

strong statistical relevance, being noticeably superior over not using SheetGit. This is

likely because SheetGit actually introduces a new method that directly aids users in the

merging process. An example would be how it pinpoints conflicting cells while the

counterpart users would have to search for them manually. SheetGit also automates parts

of the merging process when possible to perform decisions without user input, which

helps greatly lower the time, difficulty and possibility of errors within the task.

In regards to the first task, related to diffing and correcting errors, there was no

statistical relevance found, though the average time required to solve the task was inferior

for SheetGit users. This is likely because while SheetGit allows one to move between

versions and diff without changing windows, it is not that much faster than perfoming

a diff with Spreadsheet Compare, it is simply providing a different interface. Even if

the interface proves to be simpler, both sides of the participants received tutorials for

their tools, so provided they understood the tool, it would be likely for the difference

to be small. The results can also be attributed to the fact that there were few versions

to compare, which can provide an edge to Spreadsheet Compare, which displays all

differences between two versions instantaneously. SheetGit instead shows the changes

one by one, though it can group up the changes from multiple versions in a single diff. In

this scenario, SheetGit would likely be even faster because those without it would have

to navigate through menus several times to change the versions to compare.

While no statistical relevance was obtained from analyzing the correctness of the

tasks, SheetGit had less errors in terms of wrong values overall. This may be because

of the unified interface, all inside Excel, which keeps the users focused and can lead to

less human error. The lower average time when performing the tasks would also help in

terms of focus.

It is interesting to note that SheetGit did indeed have more errors when it comes to

users inputting the correct values, but in wrong versions. What this means is that they

corrected what error they had to find, but in an old version. So the new resulting version

did not have any of the changes that occurred between that old version and the latest. All

of these errors occurred in the exact version where the error had, which means the users

just did not return to the latest version to correct it there.

We intend to improve SheetGit based on these results, this will be explained in more

detail in Section 6.2.

5.4.1 Threats to validity

The goal of the study was to show that it is better to use SheetGit to perform these tasks

than to not use it. Multiple validity threats exist, these were analysed and split into four

44

5.4. INTERPRETATION

categories as defined in [3]: Internal validity, conclusion validity, construct validity and

external validity.

Internal validity

In order to minimize any effects on the independent variables that would reflect on the

casuality, several actions were taken. First, half the participants started with the Markets

spreadsheet, and the other half with the Grades spreadsheet. This would minimize any

learning effects from happening throughout the session. Second, the study was intention-

ally short in order to prevent the participants from losing focus while performing their

tasks. Third, the study was performed over two sessions, one in which half the partici-

pants used SheetGit and the other where the latter half did not. Fourth, all participants

executed the exact same tasks, so no group received special treatment.

Conclusion validity

A concern is the low amount of participants, which leads to a lower statistical power for

the study. When calculating the correctness grade, we grouped the tasks’ errors together

in order which increases our statistical power.

Construct validity

The participants were informed beforehand that they were not under any sort of evalua-

tion to guarantee they would not be affected by the study itself. The tasks we asked the

participants to perform are common issues that are solved by the use of version control,

either with or without our tool, such as merging and diffing spreadsheets. By choos-

ing these sort of tasks, our study construct can evaluate whether or not users are more

effective and efficient while using SheetGit.

External validity

This validity is related to the strength to generalize the results of this study to industrial

practice. Due to this, we have selected two spreadsheets from the real-world: one from

an actual company [17] and another from the EUSES corpus, which in turn retrieved it

from a Google search as part of a real-world example [6]. Although the spreadsheets are

real-world spreadsheets, the environment is not. Nevertheless, the participants represent

a wide range of spreadsheet users, and thus, we believe that results are generalizable.

5.4.2 Inferences

Since this study was performed in a very specific environment, we cannot generalize it to

every case. Nevertheless, the environment used to perform this study was as similar as

possible to a real one, in which end users are normally non-professional programmers and

in which spreadsheets are already developed with a specific purpose. Therefore, the used

45

CHAPTER 5. EMPIRICAL VALIDATION

spreadsheets were based on real cases, and the majority of the students which preformed

the study had few to no programming experience. Our application was developed mainly

for end users, so it could be useful if applied in a professional industry.

5.5 Discussion

The empirical study we have conducted reveals promising results for SheetGit. Most

participants wrote on the post-questionnaire that SheetGit helped them greatly in per-

forming their tasks and that they thought it was necessary for such a tool to exist.

Despite that participants had a short amount of time to learn a completely new per-

spective on managing backups and versions with our add-in, they accomplished their

tasks on average faster than those that did not use SheetGit. Even if the first task did

not achieve statistical significance, the users did in fact all finish on average faster than

those without SheetGit, which is impressive if one considers that they had to learn a new

interface and perspective on Excel. That said, it could be faster by, for example, giving

ahead of time a small highlight to every cell that would be changed. This way, users have

a much better notion of the version in its entirety and the train of thought behind the

changes.

Regarding errors, most found were related to users correcting errors on versions that

were not the latest. This may be due to a lack of understanding or just an honest mistake

due to the seamless nature of the interface, as this sort of situation happened even with

users that finished both tasks fairly fast and otherwise correctly. A warning could be

shown in case changes are attempted on versions that are not the latest to prevent this

sort of error. The version tree could also be better labeled, much like SheetGit is diff
tab, which has a thorough and detailed explanation of its functionality and appearance

directly on the interface.

46

C
h
a
p
t
e
r

6
Conclusions

In this last chapter we present some concluding remarks in section 6.1 and future work

in section 6.2

6.1 Concluding Observations

Spreadsheets are the most used programming environment in the world. However, the

notorious agility and flexibility of the spreadsheet comes with its problems as well. They

still lack many of the modern tools and features that modern programming environments

offer, in particular the lack of control and validation makes spreadsheets prone to error.

We chose to alleviate this problem by bringing version control, a tool that’s widely used

in the programming world, to spreadsheet end users in the form of SheetGit.

SheetGit functions as an integrated add-in for Excel and aids the users by providing

various functionalities of version control, such as automated version creation, collabo-

ration with other users, version comparison, and uniting two versions together in one

spreadsheet. All of this directly in Excel, interacting with the spreadsheet itself, all in a

graphical and intuitive manner.

The empirical validation we performed showed that SheetGit indeed does improve

the users’s efficiency when performing specific tasks, while receiving praise from the

participants for its concept, ease of use and necessity in the spreadsheet world.

It must be noted that both version control and spreadsheets have an extremely large

list of features that just could not be implemented over the length of the work, but could

still be integrated together in future versions of SheetGit, as we detail in the next section.

47

CHAPTER 6. CONCLUSIONS

6.2 Future Work

SheetGit, the add-in itself, can still be improved in many ways:

1. Version control still has some features which were not included in SheetGit that

can still be integrated into the spreadsheet world, such as cherry picking, rebase
and many others. But careful consideration must be put into these features as

they must be abstracted and adapted to spreadsheets and their end user developers.

Otherwise the user interface will just become more complex which is against the

original purpose of the application.

2. SheetGit could always detect more types of Excel changes, such as cell validation

and Visual Basic code, which will be addressed in future work.

3. While version messages, tags and automated version pruning were initially in-

tended to be implemented for this version, the development of these was stalled so

other important features could be finished. They are still important features that

could help in the understanding and navigation on the version tree.

48

Bibliography

[1] Atlassian Bitbucket. url: https://www.bitbucket.org (visited on 09/20/2016).

[2] L. Bradley and K. McDaid. “Using Bayesian statistical methods to determine the

level of error in large spreadsheets.” In: Software Engineering-Companion Volume,
2009. ICSE-Companion 2009. 31st International Conference on. IEEE. 2009, pp. 351–

354.

[3] T. D. Cook, D. T. Campbell, and A. Day. Quasi-experimentation: Design & analysis
issues for field settings. Vol. 351. Houghton Mifflin Boston, 1979.

[4] Deloitte. Spreadsheet Management: Not what you figured. 2009. url: http://www2.

deloitte.com/us/en/pages/audit/articles/spreadsheet-management.html.

[5] W. Dou, L. Xu, S.-C. Cheung, C. Gao, J. Wei, and T. Huang. “VEnron: a versioned

spreadsheet corpus and related evolution analysis”. In: Proceedings of the 38th
International Conference on Software Engineering Companion. ACM. 2016, pp. 162–

171.

[6] M. Fisher and G. Rothermel. “The EUSES spreadsheet corpus: a shared resource

for supporting experimentation with spreadsheet dependability mechanisms”. In:

ACM SIGSOFT Software Engineering Notes. Vol. 30. 4. ACM. 2005, pp. 1–5.

[7] P. Fitzpatrick. Diff formats in Coopy. url: http://share.find.coop/doc/patch_

format.html (visited on 07/29/2016).

[8] P. Fitzpatrick. Specification of the highlighter diff format. url: http://share.find.

coop/doc/spec_hilite.html (visited on 01/29/2016).

[9] P. Fitzpatrick. Coopy. 2016. url: http://share.find.coop/doc/index.html

(visited on 01/29/2016).

[10] P. Fitzpatrick. Coopy’s ReadMe document. 2016. url: https://github.com/

paulfitz/coopy/blob/master/README.md (visited on 01/29/2016).

[11] P. Fitzpatrick and J. Panico. Diff formats in Coopy. 2011. url: http://share.find.

coop/doc/tdiff_spec_draft.html (visited on 07/29/2016).

[12] S. Gandel. Damn Excel! How the ‘most important software application of all time’ is
ruining the world. 2013. url: http://fortune.com/2013/04/17/damn-excel-

how-the-most-important-software-application-of-all-time-is-ruining-

the-world/ (visited on 01/18/2016).

49

https://www.bitbucket.org
http://www2.deloitte.com/us/en/pages/audit/articles/spreadsheet-management.html
http://www2.deloitte.com/us/en/pages/audit/articles/spreadsheet-management.html
http://share.find.coop/doc/patch_format.html
http://share.find.coop/doc/patch_format.html
http://share.find.coop/doc/spec_hilite.html
http://share.find.coop/doc/spec_hilite.html
http://share.find.coop/doc/index.html
https://github.com/paulfitz/coopy/blob/master/README.md
https://github.com/paulfitz/coopy/blob/master/README.md
http://share.find.coop/doc/tdiff_spec_draft.html
http://share.find.coop/doc/tdiff_spec_draft.html
http://fortune.com/2013/04/17/damn-excel-how-the-most-important-software-application-of-all-time-is-ruining-the-world/
http://fortune.com/2013/04/17/damn-excel-how-the-most-important-software-application-of-all-time-is-ruining-the-world/
http://fortune.com/2013/04/17/damn-excel-how-the-most-important-software-application-of-all-time-is-ruining-the-world/

BIBLIOGRAPHY

[13] Git. url: https://git-scm.com/ (visited on 02/05/2016).

[14] Git Branching - Basic Branching and Merging. url: https://git-scm.com/book/

en/v2/Git-Branching-Basic-Branching-and-Merging (visited on 10/11/2016).

[15] Gitgraph.js. url: https://github.com/nicoespeon/gitgraph.js (visited on

02/07/2016).

[16] Google Sheets. 2016. url: https://www.google.com/sheets/about/ (visited on

01/29/2016).

[17] F. Hermans and E. Murphy-Hill. “Enron’s Spreadsheets and Related Emails: A

Dataset and Analysis”. In: Proceedings of the 37th International Conference on Soft-
ware Engineering - Volume 2. ICSE ’15. Florence, Italy: IEEE Press, 2015, pp. 7–16.

url: http://dl.acm.org/citation.cfm?id=2819009.2819013.

[18] F. F. J. Hermans. “Analyzing and Visualizing Spreadsheets”. PhD thesis. 2013.

[19] JSON Hyper-Schema: Hypertext definitions for JSON Schema. url: https://tools.

ietf.org/html/draft-luff-json-hyper-schema-00 (visited on 09/20/2016).

[20] JSON Schema: core definitions and terminology. url: https://tools.ietf.org/

html/draft-zyp-json-schema-04 (visited on 09/20/2016).

[21] JSON Schema: interactive and non interactive validation. url: http://tools.ietf.

org/html/draft-fge-json-schema-validation-00 (visited on 09/20/2016).

[22] S. Khanna, K. Kunal, and B. C. Pierce. “A formal investigation of diff3”. In: Inter-
national Conference on Foundations of Software Technology and Theoretical Computer
Science. Springer. 2007, pp. 485–496.

[23] B. Kitchenham, L. Madeyski, P. Brereton, S. Charters, S. Gibbs, and A. Pohthong.

“Robust Statistical Methods for Empirical Software Engineering”. In: ().

[24] Knowledge@Wharton. Rivals Set Their Sights on Microsoft Office: Can They Topple
the Giant? - Knowledge@Wharton. 2007. url: http://knowledge.wharton.upenn.

edu/article/rivals-set-their-sights-on-microsoft-office-can-they-

topple-the-giant/ (visited on 01/20/2016).

[25] S. K. Kuttal, A. Sarma, and G. Rothermel. “On the Benefits of Providing Versioning

Support for End Users: An Empirical Study”. In: ACM Trans. Comput.-Hum. In-
teract. 21.2 (Feb. 2014), 9:1–9:43. issn: 1073-0516. doi: 10.1145/2560016. url:

http://doi.acm.org/10.1145/2560016.

[26] L.Mitchell. You’re Not Using Source Control? Read This! 2014. url: http://www.

lornajane.net/wp-content/uploads/2013/01/source-control-whitepaper-

v1.1.pdf (visited on 01/11/2016).

[27] Microsoft Excel. url: https://products.office.com/en/excel (visited on

01/29/2016).

50

https://git-scm.com/
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://github.com/nicoespeon/gitgraph.js
https://www.google.com/sheets/about/
http://dl.acm.org/citation.cfm?id=2819009.2819013
https://tools.ietf.org/html/draft-luff-json-hyper-schema-00
https://tools.ietf.org/html/draft-luff-json-hyper-schema-00
https://tools.ietf.org/html/draft-zyp-json-schema-04
https://tools.ietf.org/html/draft-zyp-json-schema-04
http://tools.ietf.org/html/draft-fge-json-schema-validation-00
http://tools.ietf.org/html/draft-fge-json-schema-validation-00
http://knowledge.wharton.upenn.edu/article/rivals-set-their-sights-on-microsoft-office-can-they-topple-the-giant/
http://knowledge.wharton.upenn.edu/article/rivals-set-their-sights-on-microsoft-office-can-they-topple-the-giant/
http://knowledge.wharton.upenn.edu/article/rivals-set-their-sights-on-microsoft-office-can-they-topple-the-giant/
http://dx.doi.org/10.1145/2560016
http://doi.acm.org/10.1145/2560016
http://www.lornajane.net/wp-content/uploads/2013/01/source-control-whitepaper-v1.1.pdf
http://www.lornajane.net/wp-content/uploads/2013/01/source-control-whitepaper-v1.1.pdf
http://www.lornajane.net/wp-content/uploads/2013/01/source-control-whitepaper-v1.1.pdf
https://products.office.com/en/excel

BIBLIOGRAPHY

[28] R. Moreira. “SheetGit: A Tool for Collaborative Spreadsheet Development”. In:

Software Engineering Methods in Spreadsheets 2016. To appear co-located with STAF

2016.

[29] R. R. Panko. “What we know about spreadsheet errors”. In: Journal of Organiza-
tional and End User Computing (JOEUC) 10.2 (1998), pp. 15–21.

[30] R. Panko and J. Halverson R.P. “Spreadsheets on trial: a survey of research on

spreadsheet risks”. In: Proceedings of HICSS-29: 29th Hawaii International Confer-
ence on System Sciences 2 (1996), pp. 326–335. doi: 10.1109/HICSS.1996.495416.

[31] Pathio. 2016. url: http://www.pathio.com/ (visited on 09/12/2016).

[32] C. Scaffidi, M. Shaw, and B. Myers. “Estimating the numbers of end users and

end user programmers”. In: Visual Languages and Human-Centric Computing, 2005
IEEE Symposium on. 2005, pp. 207–214. doi: 10.1109/VLHCC.2005.34.

[33] SheetGit. 2016. url: http://spreadsheetsunl.github.io/sheetgit/.

[34] Spreadsheet Compare. url: https://support.office.com/en- us/article/

Overview-of-Spreadsheet-Compare-13fafa61-62aa-451b-8674-242ce5f2c986?

ui=en-US&rs=en-US&ad=US (visited on 07/29/2016).

[35] Subversion. url: https://subversion.apache.org/ (visited on 08/05/2016).

[36] XLTools. 2016. url: https://xltools.net/ (visited on 01/30/2016).

[37] XLTools’ Version Control for Excel Spreadsheets. 2016. url: https://xltools.net/

excel-version-control/ (visited on 01/30/2016).

[38] ZeusDB. What is Spreadsheet Risk? 2014. url: https://www.zeusdb.com/blog/

what-is-spreadsheet-risk/ (visited on 01/18/2016).

51

http://dx.doi.org/10.1109/HICSS.1996.495416
http://www.pathio.com/
http://dx.doi.org/10.1109/VLHCC.2005.34
http://spreadsheetsunl.github.io/sheetgit/
https://support.office.com/en-us/article/Overview-of-Spreadsheet-Compare-13fafa61-62aa-451b-8674-242ce5f2c986?ui=en-US&rs=en-US&ad=US
https://support.office.com/en-us/article/Overview-of-Spreadsheet-Compare-13fafa61-62aa-451b-8674-242ce5f2c986?ui=en-US&rs=en-US&ad=US
https://support.office.com/en-us/article/Overview-of-Spreadsheet-Compare-13fafa61-62aa-451b-8674-242ce5f2c986?ui=en-US&rs=en-US&ad=US
https://subversion.apache.org/
https://xltools.net/
https://xltools.net/excel-version-control/
https://xltools.net/excel-version-control/
https://www.zeusdb.com/blog/what-is-spreadsheet-risk/
https://www.zeusdb.com/blog/what-is-spreadsheet-risk/

A
p
p
e
n
d
i
x

A
Pre-Questionnaire

53

Questionário Pré-Sessão

Este questionário tem como objectivo selecionar pessoas com alguma ex-
periência no uso da ferramenta Excel e averiguar se têm alguma experiencia
com controlo de versões

1. Em que ano está inscrito?:

© 1o Ano

© 2o Ano

© Outro:

2. Sexo:

© Masculino

© Feminino

3. Idade:

© <20

© 20-22

© 23-25

© >25

Curso:

4. Já trabalhou em alguma ferramenta de edição de folhas de cálculo? (Exemplo: Mi-
crosoft Excel, LibreOffice, OpenOffice, etc.)

© Sim

© Não

5. No contexto de folhas de cálculo, saberia fazer o somatório de diferentes células?

© Sim

© Não

6. Na fórmula seguinte, qual contêm apenas referências relativas?

© =G4+D13

© =G4+D13

© Não sei o que são referências relativas.

APPENDIX A. PRE-QUESTIONNAIRE

54

7. Já programou anteriormente? (Em linguagens como C, Python, PHP, Java, etc)

© Sim

© Não

8. Caso a resposta anterior tenha sido sim, já usou controlo de versões nos seus progra-
mas? (Exemplo: Git, Subversion, Fossil, etc)

© Sim

© Não

Só deve responder às perguntas seguintes caso tenha respondido ’Sim’ à pergunta
anterior. Caso contrário, o questionário termina aqui.

9. Já trabalhou em simultâneo com outras pessoas utilizando controlo de versões?

© Sim

© Não

10. Qual é o resultado de efetuar ’Push’ de uma versão?

© O repositório local é atualizado com as mudanças novas.

© O repositório remoto é atualizado com as mudanças novas.

© Ambos os repositórios são atualizados devido à ação.

11. Qual dos seguintes comandos serve o mesmo objetivo que o comando ’Rebase’?

© Checkout

© Merge

© Reset

12. Escreva o seu email da faculdade para ser notificado caso ganhe o sorteio.

Email:

Page 2
55

A
p
p
e
n
d
i
x

B
Tutorial for Spreadsheet Compare

57

Tutorial - Spreadsheet Compare

Introdução

No contexto desta investigação poderá utilizar uma ferramenta, designada Spreadsheet
Compare, criada pela Microsoft para efetuar comparações entre folhas de cálculo.

Neste estudo, pretendemos analisar até que ponto é vantajoso utilizar o Spreadsheet Com-
pare para um número de tarefas em prol de outras alternativas.

Se tiver alguma dúvida durante este tutorial, por favor diga ao supervisor, para que
o mesmo o possa esclarecer.

APPENDIX B. TUTORIAL FOR SPREADSHEET COMPARE

58

Por favor abra as folhas de cálculo Southpoint1, Southpoint2 e Southpoint3 dispońıveis
na pasta SC → Tutorial → Pergunta 1. Estes três ficheiros são três versões da mesma
folha de cálculo. Sendo a ’Southpoint1’ a mais antiga, e a ’Southpoint3’ a mais recente.

Escolher as folhas de cálculo

Clique no icone Spreadsheet Compare no Ambiente de Trabalho, e siga os seguintes
passos:

1. Clique no botão Compare Files no canto superior esquerdo, como é possivel ver na
Figura 1.

2. Clique no icone da pasta mais acima, ao lado de Compare, e selecione South-
point2

3. Clique no icone da pasta mais abaixo, ao lado de To, e selecione Southpoint3

4. Clicar no botão OK.

Figure 1: Botões da ferramenta

Visualizar diferenças

O programa coloca as duas folhas lado a lado com as suas diferenças viśıveis ao uti-
lizador. As células com diferenças são as que têm uma cor diferente do branco. Cada
cor tem um significado diferente, como uma mudança de apenas texto ou uma mudança
de fórmula. Na Figura 2 podemos ver que a verde escuro são células cujos valores foram
mudados, o azul turquesa refere-se a células com fórmulas cujo valor final foi alterado. A
legenda está sempre viśıvel no canto inferior esquerdo, como pode ver na Figura 3.

Page 2
59

Figure 2: A aparência de uma folha de cálculo no Spreadsheet Compare

Figure 3: Tipos de mudança suportados pela aplicação

Mostrar fórmulas

Por defeito, as folhas de cálculo apresentadas no Spreadsheet Compare mostram os
resultados finais das fórmulas nas células, tal como o Microsoft Excel. É possivel ver as
fórmulas das células clicando no botão Show Formulas, como aparece em Figura 1, que
faz as células apresentar as suas fórmulas em vez do resultado final. Se clicar no botão
novamente, a aplicação volta a mostrar os resultados finais.

Page 3

APPENDIX B. TUTORIAL FOR SPREADSHEET COMPARE

60

Perguntas

Para responder à pergunta seguinte, use as mesmas folhas de cálculo que utilizou anteri-
ormente.

Pergunta 1) Assuma que está na versão mais recente da folha de cálculo,
a Southpoint3, e o seu patrão diz-lhe que parece existe um erro na folha de
cálculo, mas lembra-se que já tinha sido corrigido anteriormente. Procure e
corrija o erro.

Ińıcio: Fim:
Responda à pergunta seguindo os seguintes passos.

1. Escreva a hora, minutos e segundos atual à frente do campo Ińıcio acima. Pode
ver a hora no seu computador.

2. É necessário encontrar a versão antiga com o erro corrigido.

3. Abra o Spreadsheet Compare e selecione as folhas de cálculo Southpoint2 e
Southpoint3. Isto para verificar se o erro ocorreu entre as duas versões.

4. Verifique se existe um erro nas diferenças uma a uma. Não existe nenhum erro
óbvio.

5. Abra o Spreadsheet Compare e selecione as folhas de cálculo Southpoint1 e
Southpoint2. Talvez o erro esteja entre estas versões.

6. Verifique se existe um erro nas diferenças uma a uma. Na célula I5 a fórmula foi
alterada entre a Southpoint1 e a Southpoint2, e está errada. A fórmula está a
calcular sobre os valores da linha de baixo, e não da sua própria linha.

7. Abra a Southpoint3 no Microsoft Excel, altere a célula I5 para o valor que
encontrou na Southpoint1. Nós queremos o erro corrigido na versão mais recente,
caso contrário perdemos toda a informação entre a Southpoint1 e Southpoint3.

8. Guarde a folha de cálculo com o nome Southpoint4.

9. Escreva a hora, minutos e segundos atual à frente do campo Fim acima. Pode ver
a hora no seu computador.

10. Feche quaisquer janelas do Spreadsheet Compare e Microsoft Excel que tenha
abertas.

Page 4
61

Na próxima pergunta, utilize as folhas de cálculo dentro da pasta Pergunta 2

Pergunta 2) Assuma que esteve a trabalhar sobre a folha de cálculo South-
point4, e como resultado criou uma nova versão, a Southpoint5B, mas o seu
colega disse-lhe que também esteve a trabalhar sobre a mesma folha e tem
agora uma folha denominada Southpoint5A.
Junte o seu trabalho com o do seu colega, numa folha de cálculo só. Em caso
de dúvida, utilize os valores da sua folha de cálculo.

Ińıcio: Fim:
Responda à pergunta seguindo os seguintes passos.

1. Escreva a hora, minutos e segundos atual à frente do campo Inicio acima. Pode
ver a hora no seu computador.

2. Abra os ficheiros Southpoint5A e Southpoint5B no Spreadsheet Compare.

3. Abra o Southpoint5B e Southpoint4 no Microsoft Excel. Vamos usar o South-
point5B como base para unir as mudanças do Southpoint5A. Necessitamos do
Southpoint4 também aberto para passos seguintes.

4. No Spreadsheet Compare, note que o seu colega adicionou a Linha 30 à South-
point5A. Como nada foi adicionado por si nesse local na Southpoint5B, em prin-
cipio podemos afirmar que é uma mudança nova do seu colega.

5. Mas a linha pode já ter existido no Southpoint4. Veja no Microsoft Excel se
a linha existia originalmente. Se sim, então não foi alterada pelo seu colega, foi
apagada por si. Caso contrário foi mesmo adicionada pelo seu colega.

6. Neste caso a linha não existia originalmente, logo copie a Linha 30 da South-
point5A para a Southpoint5B no Microsoft Excel.

7. Existe outra diferença, a célula D19 tem uma diferença entre a Southpoint5B e
a Southpoint5A

8. Veja o estado original da célula no Southpoint4. Como está igual à versão South-
point5A, então a célula foi alterada só por si. Como estamos a usar a sua folha como
base, não é necessário fazer alterações. Pode ver este caso ilustrado na Figura 4.

9. Existe uma última diferença, a célula E20. Note que neste caso, nenhum dos
valores das novas folhas de cálculo é equivalente à do Southpoint4.

10. Podemos concluir que a célula foi alterada em ambas as versões. Como a pergunta
menciona que em caso de dúvida, para utilizar os seus próprios dados, não necessita
de fazer alterações. Se o enunciado dissesse o contrário, teria de copiar a célula para
a sua folha de cálculo. Pode ver este caso ilustrado na Figura 5.

11. Guarde a Southpoint5B, com estas novas alterações, como uma nova folha de
cálculo com o nome Southpoint6

12. Escreva a hora, minutos e segundos atual à frente do campo Fim acima. Pode ver
a hora no seu computador.

Page 5

APPENDIX B. TUTORIAL FOR SPREADSHEET COMPARE

62

13. Feche quaisquer janelas do Spreadsheet Compare e Microsoft Excel que tenha
abertas.

Page 6
63

"150"

"150" "137"

"137"

Célula D19

Versão 2BVersão 2A

Versão 1

Versão 3

Escolher o valor
diferente do

original

Apenas uma versão é
diferente da Versão 1

Figure 4: Resolução de conflitos na célula D19

Page 7

APPENDIX B. TUTORIAL FOR SPREADSHEET COMPARE

64

"160"

"162" "150"

"150"

Célula E20

Versão 2BVersão 2A

Versão 1

Versão 3

Escolher segundo
o enunciado

Ambas as versões são
diferentes da Versão 1

Figure 5: Resolução de conflitos na célula E20

Page 8
65

A
p
p
e
n
d
i
x

C
Tasks for Spreadsheet Compare

67

Para as perguntas seguintes, utilize as folhas de cálculo

na pasta SC → Grades

Perguntas da folha de cálculo Grades

1. Para esta pergunta utilize as folhas dentro da pasta Pergunta 1.
Assuma que é um professor e que criou uma folha de cálculo para calcular as notas
dos seus alunos. De repente notou que uma das notas tem um erro. Procure o erro e
corrija-o numa folha de cálculo chamada ’Grades7’

A folha Grades1 é a versão mais antiga, enquanto a Grades6 é a mais recente.

Ińıcio: Fim:

2. Para esta pergunta utilize as folhas dentro da pasta Pergunta 2.
Assuma novamente que é um professor e que alterou a pauta das notas, mas outro
professor da mesma cadeira efetuou alterações ao mesmo tempo que você. Junte as
alterações do seu colega com as suas numa folha de cálculo chamada ’Grades3’. Em
caso de dúvida, os valores da sua folha devem tomar precedência.

A folha Grades1 é a versão base, enquanto a GradesA pertence ao cliente e a GradesB
a si.

Ińıcio: Fim:

APPENDIX C. TASKS FOR SPREADSHEET COMPARE

68

Para as perguntas seguintes, utilize as folhas de cálculo

na pasta SC → Markets.

Perguntas da folha de cálculo Markets

1. Para esta pergunta utilize as folhas dentro da pasta Pergunta 1.
Criou e entregou uma folha de cálculo as finanças de uma empresa. No entanto, o seu
cliente disse que existem erros pois os resultados não estão certos com os cálculos do
lado dele, mas que em versões anteriores estavam corretos. Sabe também que o erro
está especificamente numa fórmula. Procure o erro e corrija-o numa folha de cálculo
chamada ’Markets7’

A folha Markets1 é a versão mais antiga, enquanto a Markets6 é a mais recente.

Ińıcio: Fim:

2. Para esta pergunta utilize as folhas dentro da pasta Pergunta 2.
Esteve a criar uma nova versão da folha de cálculo, mas o seu cliente acabou de-lhe
enviar uma versão nova com alterações. Junte as mudanças feitas pelo seu cliente
com as da sua nova versão numa folha de cálculo nova chamada ’Markets3’. Em caso
de conflito, utilize os dados da sua versão para os resolver.

A folha Markets1 é a versão base, enquanto a MarketsA é a do cliente e a MarketsA
é a sua.

Ińıcio: Fim:

Feche o Microsoft Excel após terminar.

Obrigado pela sua participação :)

Page 2
69

A
p
p
e
n
d
i
x

D
Tutorial for SheetGit

71

Tutorial - SheetGit

Introdução

No contexto desta investigação produzimos uma ferramenta, designada Sheet-
Git, que procura criar e gerir versões de folhas de cálculo.

Na prática, a ferramenta cria versões da folha de cálculo enquanto trabalha,
podendo posteriormente regressar a versões antigas, efetuar comparações e até
partilhar o seu trabalho com colegas de forma segura e automática.

Neste estudo, pretendemos analisar até que ponto é vantajoso utilizar a fer-
ramenta que nós desenvolvemos em alguns tipos de tarefa e averiguar se a nossa
interface é fácil de compreender e utilizar.

Se tiver alguma dúvida durante este tutorial, por favor diga ao supervisor, para
que o mesmo o possa esclarecer.

1

APPENDIX D. TUTORIAL FOR SHEETGIT

72

Funcionalidades do SheetGit

Esta secção irá explicar algumas das funcionalidades da aplicação. Por favor
abra a pasta SG → Tutorial → Pergunta 1 e finalmente o ficheiro no interior
usando o Microsoft Excel.

Árvore de versões

No lado direito da aplicação irá ver um painel novo, dedicado ao SheetGit, e
em particular um gráfico igual à Figura 1. A figura representa a lista de versões
guardadas pela aplicação. O ponto mais acima é a versão mais antiga en-
quanto o ponto mais abaixo é a versão mais recente, como também pode ver
pelo texto ao seu lado, V1, V2, V3 significam Versão 1, 2 e 3. Este gráfico é
automaticamente atualizado consoante o SheetGit crie versões.

Figura 1: Árvore de versões do ficheiro Southpoint

Mudança de versões

É posśıvel mudar entre as várias versões sem ter de fechar o Excel. Clique
no ponto ao lado do texto V2 na árvore.áa‘àa

A folha de Excel muda imediatamente para como estava na altura da versão
2. O ponto branco, agora situado no V2, mostra qual é a versão atual em que
nos situamos.

Visualizar diferenças

A nossa aplicação permite ver as diferenças entre versões. Clique no botão
Comparison Mode seguido do ponto V3.

Agora está no modo de comparação. O slider começa na posição mais acima,
que se refere à versão V2, a atual. Conforme este é movimentado para baixo,
a folha de cálculo transforma-se na versão V3, porque cada passo do slider
refere-se a uma diferença entre as duas versões. Quando o slider chega ao ponto
mais baixo, o que tem o valor 0 ao lado direito, a folha de cálculo estará igual
à versão V3.

2
73

Agora clique no botão Exit Comparison, depois em Normal Mode se-
guido do ponto V3 e passe à secção seguinte de perguntas.

Perguntas

Pergunta 1) Suponha que o seu patrão mandou-lhe um email a dizer
que parece existir um erro na versão mais recente da folha de cálculo
Southpoint, mas lembra-se que este erro já tinha sido corrigido ante-
riormente. Procure e corrija o erro.

Ińıcio: Fim:

Responda à pergunta seguindo os seguintes passos.

1. Escreva a hora, minutos e segundos atual à frente do campo Inicio acima.
Pode ver a hora no seu computador.

2. É necessário encontrar a versão antiga com o erro corrigido.

3. Clique no botão Comparison Mode.

4. Clique no ponto da versão V2.

5. Movimente o slider para baixo ou clique no botão com a seta para baixo
até chegar ao ponto 0, vendo as diferenças entre as duas versões. Não
existe nenhum valor suspeito entre estas duas versões.

6. Clique no botão Exit Comparison, depois em Normal Mode seguido
do ponto V2.

7. Clique novamente no botão Comparison Mode seguido do ponto V1

8. Movimente novamente o slider para baixo e veja as diferenças que surgem.
Na célula I5 a fórmula está incorreta e após o slider passar essa célula, o
valor é corrigido. Logo o valor está errado em V2 mas estava correto em
V1

9. Clique no botão Exit Comparison, depois em Normal Mode seguido
do ponto V1.

10. Clique na célula I5 e depois selecione e copie a fórmula no topo do Excel,
não copie a célula diretamente.

11. Clique no ponto V3, a versão mais recente.

12. Cole a fórmula correta na célula I5. Note que apareceu uma versão nova,
a V4.

13. Escreva a hora, minutos e segundos atual à frente do campo Fim acima.
Pode ver a hora no seu computador.

14. Guarde o ficheiro e feche o Microsoft Excel.

3

APPENDIX D. TUTORIAL FOR SHEETGIT

74

Ramos da árvore

Quando um utilizador faz alterações, a aplicação coloca estas em ramos
diferentes, impercet́ıveis a outros utilizadores. Na Figura 2, temos o tronco
cinzento e um ramo a roxo.

O ramo a cinzento, o mais à esquerda denominamos de Trunk (significa
’tronco’ em português) e é um ramo especial porque é um ramo partilhado com
outros utilizadores da mesma folha de cálculo.

No fundo, os utilizadores fazem alterações em ramos pequenos alternativos
e quando estiverem prontas a mostrar a outros, estas são colocadas no trunk,
tal como na Figura 2.

Figura 2: As mudanças do ramo vermelho a serem integradas no trunk.

Pergunta 2) Assuma que esteve a trabalhar sobre a folha de cálculo
SouthpointB, e como resultado criou uma nova versão, mas o seu co-
lega disse-lhe que também esteve a trabalhar sobre a mesma folha e
tem agora a sua própria versão.
Junte o seu trabalho com o do seu colega, numa folha de cálculo só.
Em caso de dúvida, utilize os valores da folha de cálculo do seu colega.

Ińıcio: Fim:
Responda à pergunta seguindo os seguintes passos.

1. Escreva a hora, minutos e segundos atual à frente do campo Inicio acima.
Pode ver a hora no seu computador.

2. Abra o ficheiro Southpoint dentro da pasta Pergunta 2.

3. Note que existe no gráfico da árvore duas cores, o tronco cinzento e um
ramo roxo. A versão V5 do ramo roxo pertence-lhe enquanto o V6 cin-
zento pertence ao seu colega pois está no tronco.

4. Clique no ponto da versão V5.

5. Clique no botão Place versions in trunk. Este botão serve para colocar
as mudanças do ramo roxo no tronco partilhado por todos.

4
75

6. Note que apareceu a Linha 30, feita pelo seu colega. Mas como a sua
versão não tinha nada lá, foi automaticamente colocada.

7. A célula E20 contêm um conflito pois ambas as versões V5 e V6 alteraram
esse campo. Clique na célula com o conflito e selecione no dropdown a
escolha que começa por T:, que significa trunk. Isto porque o enunciado
pede que em caso de dúvida para escolher as alterações do colega.

8. Escreva a hora, minutos e segundos atual à frente do campo Fim acima.
Pode ver a hora no seu computador.

9. Salve a folha de cálculo e encerre o Microsoft Excel.

5

APPENDIX D. TUTORIAL FOR SHEETGIT

76

A
p
p
e
n
d
i
x

E
Tasks for SheetGit

77

Para as perguntas seguintes, utilize a folha de cálculo

na pasta SG → Grades.

Perguntas da folha de cálculo Grades

1. Abra a folha de cálculo Grades dentro da pasta Pergunta 1.
Assuma que é um professor e que criou uma folha de cálculo para calcular as notas dos
seus alunos. De repente notou que uma das notas tem um valor claramente errado.
Procure o erro e corrija-o.

Ińıcio: Fim:

Encerre o Microsoft Excel antes de continuar.

2. Abra a folha de cálculo Grades dentro da pasta Pergunta 2.
Assuma novamente que é um professor e que alterou a pauta das notas, mas outro
professor da mesma cadeira efetuou alterações ao mesmo tempo que você. Junte as
alterações do seu colega com as suas numa folha de cálculo só. Em caso de dúvida,
os valores da sua folha devem tomar precedência.

Ińıcio: Fim:

Feche o Microsoft Excel após concluir.

APPENDIX E. TASKS FOR SHEETGIT

78

Para as perguntas seguintes, utilize a folha de cálculo

na pasta SG → Markets.

Perguntas da folha de cálculo Markets

1. Abra a folha de cálculo Markets dentro da pasta Pergunta 1.
Criou uma folha de cálculo sobre as finanças de uma empresa. No entanto, o seu
cliente disse que existem erros pois os resultados não estão certos com os cálculos do
lado dele, mas que em versões anteriores estavam corretos. Sabe também que o erro
está especificamente numa fórmula. Procure o erro e corrija-o.

Encerre o Microsoft Excel antes de continuar.

Ińıcio: Fim:

2. Abra a folha de cálculo Markets dentro da pasta Pergunta 2.
Esteve a criar uma nova versão da folha de cálculo que criou para o seu cliente, mas
ele acabou de lhe enviar uma versão nova com alterações. Junte as mudanças feitas
pelo seu cliente com as da sua nova versão. Em caso de conflito, utilize os dados da
sua versão para os resolver.

Ińıcio: Fim:

Feche o Microsoft Excel após terminar.

Obrigado pela sua participação :)

Page 2
79

A
p
p
e
n
d
i
x

F
Post-Questionnaire

81

Questionário Pós-Sessão

1. Selecione a resposta que corresponde ao quanto concorda ou discorda com as seguintes
frases.

(a) Estou confiante que respondi corretamente a todas as tarefas da folha de cálculo
Markets. (Selecione uma)

© Concordo plenamente.

© Concordo.

© Nem concordo nem discordo.

© Discordo.

© Não se aplica.

(b) Estou confiante que respondi corretamente a todas as tarefas da folha de cálculo
Grades. (Selecione uma)

© Concordo plenamente.

© Concordo.

© Nem concordo nem discordo.

© Discordo.

© Não se aplica.

2. A ferramenta ajudou-o a desempenhar as tarefas propostas com maior facilidade?

© Sim.

© Não.

3. Pensa que a ferramenta deveria ajudar mais quando estava a desempenhar as tarefas?

© Sim.

© Não.

4. Pensa que era necessária a existência de uma ferramenta como a nossa?

© Concordo plenamente.

© Concordo.

© Nem concordo nem discordo.

© Discordo.

5. A interface da ferramenta é de fácil compreensão?

© Sim.

© Não.

6. O que acha da nossa ferramenta?

APPENDIX F. POST-QUESTIONNAIRE

82

7. Sugestoes de melhoria:

Page 2
83

A
p
p
e
n
d
i
x

G
Version list JSON schema

1 {

2 "type": "object",

3 "$schema": "spreadsheetsunl.github.io/sheetgit",

4 "required": true,

5 "patternProperties": {

6 "^([a-zA-Z0-9])+$": {

7 "type": "object",

8 "required": false,

9 "properties": {

10 "author": {

11 "type": "object",

12 "required": true,

13 "properties": {

14 "email": {

15 "type": "string",

16 "required": true

17 },

18 "name": {

19 "type": "string",

20 "required": true

21 }

22 }

23 },

24 "branchChanges": {

25 "type": "object",

26 "required": false,

27 "patternProperties": {

28 "^(\$[A-Z]+\$[0-9]+(?:\:\$[A-Z]+\$[0-9]+)?)$": {

29 "type": "object",

30 "required": true,

31 "properties": {

85

APPENDIX G. VERSION LIST JSON SCHEMA

32 "Original": {

33 "type": "string",

34 "required": false

35 },

36 "ExcelDatatype": {

37 "type": "string",

38 "required": false,

39 "$ref":"#/definitions/datatypes"

40 }

41 },

42 "definitions":{

43 "datatypes":["Value","Formula"]

44 }

45 },

46 }

47 },

48 "branch": {

49 "type": "string",

50 "required": true

51 },

52 "changes": {

53 "type": "object",

54 "required": false,

55 "patternProperties": {

56 "^(\$[A-Z]+\$[0-9]+(?:\:\$[A-Z]+\$[0-9]+)?)$": {

57 "type": "object",

58 "required": true,

59 "properties": {

60 "Original": {

61 "type": "string",

62 "required": false

63 },

64 "ExcelDatatype": {

65 "type": "string",

66 "required": false,

67 "$ref":"#/definitions/datatypes"

68 }

69 },

70 "definitions":{

71 "datatypes":["Value","Formula"]

72 }

73 },

74 }

75 }

76 "message": {

77 "type": "string",

78 "required": false

79 },

80 "parent": {

81 "type": "string",

86

82 "required": false

83 },

84 "timestamp": {

85 "type": "string",

86 "required": true

87 }

88 }

89 }

90 }

91 }

87

	List of Figures
	Introduction
	Motivation
	Challenges
	Approach
	Contributions
	Thesis structure

	State of the Art
	Microsoft Excel
	Coopy
	Google Sheets
	XLTools
	Pathio

	Version Control for Spreadsheets
	Version listing
	Creating versions
	Moving between versions
	Creating branches
	Version messages and tags
	Diffing
	Collaboration
	Conflict resolution

	SheetGit: A Version Control System for Spreadsheets
	Overview
	Backend
	Ribbon tab
	Main Pane
	Settings Pane
	Diff Pane
	Conflicts Pane
	Availability

	Empirical Validation
	Design
	Hypothesis
	Variables
	Subjects and Objects
	Instrumentation
	Data Collecting Procedure
	Analysis Procedure and Evaluation of Validity

	Execution
	Analysis
	Descriptive Statistics
	Hypothesis Testing

	Interpretation
	Threats to validity
	Inferences

	Discussion

	Conclusions
	Concluding Observations
	Future Work

	Bibliography
	Pre-Questionnaire
	Tutorial for Spreadsheet Compare
	Tasks for Spreadsheet Compare
	Tutorial for SheetGit
	Tasks for SheetGit
	Post-Questionnaire
	Version list JSON schema

