
Model-based Spreadsheet Engineering

Jácome Miguel Costa da Cunha

Doutoramento em Informática

Orientadores: João Saraiva e Joost Visser

November 19, 2015

2

Acknowledgments

Four years have passed and I am finally finishing my PhD studies. These have been
times of great joy for many reasons: for start, I’m working on something that I like,
research. Also during this period I have had the time to be with my friends and family
and to enjoy the life with them. The happiness when a paper is accepted in a conference
is also quite something. Then, of course, plan the trip and enjoy the conference and
the city where it is taking place is another great reason for my happiness.

I think everyone says that to work on a thesis is only possible because we have
the support of those we love and that love us back. I will not say the same think just
because everyone says it, but because I fill it! Without the support of these people this
simply would not be impossible!

First of all I want to thank my supervisor and friend João Saraiva. He took his time
to accept me as his PhD student because, at the time, he thought I was a bit insane...
Probably he was right. I hope he has changed his mind, though! But then he decided
to trust me and that was very important to me. I am not sure if any other person would
do such a risky decision, but I am glade he made it. After he accepted to guide me
during these times, he was devoted, supportive and a real research and life guide. His
research and life experience are quite inspiring. I have no doubts that he is the best
supervisor that I could have chosen! Thank you very much for your dedication to me!

Better than having a supervisor is to have two supervisors! The wisdom, incisive
comments and brilliant mind of Joost Visser were fundamental for the good results of
this work. The fact that he left the department was a great lost to all of us, and specially
to me, but that never stopped him to help me during my work. Thank you very much
for all what you have done for me!

Martin Erwig came in the end of this work but was quite important. His expertise
is inspiring and I know that it will keep motivating me. Thank you for the inspiration!

I want to say thanks to many more people, starting by my office colleagues and

iii

iv

friends (not by any specific order): João Paulo (the one that I keep following), Vilaça
(the one always ready for everything), Paulo (the smartest and slowest one), André
(the industrial one), Ricardo (the one that do not speak, yells!), Filipe (the father one),
Mirandês (the lesiano one), João Paulo (the one with a band), Nuno (the geek and
paranoiac one), Ana (the geek girl), Xico (the professional driver one), Maia (the one
with a TV instead of a monitor), Miguel (the men in the greatcoat), Tiago (the one
with almost a Porsche) and Paulo (Jesus himself!). As expected, a very thankful word
to Os Sem Estatuto. The sharing of ideas, not research related ones, of course, was of
great help. Thank you very much!

I would like to thank all my outside work friends. Again in no special oder: Tércio,
Marta, Alice, Amadeu, Senhor Engenheiro Malheiro, Raphinha, Xana, Trofa, Zé and
Gonçalo. These are the people that are present in the important moments of my life.
Somehow, they still keep supporting me! To all of you, thank you very very much for
making me happy and enjoying my life!

Now that I’m married, yes I got married during the PhD (nice excuse for some
vacations, by the way!), I need to dedicate a paragraph to my wife (otherwise I will
have troubles at home!). Actually, I do not need to, but I want to. For many years
now, almost a decade, she has been my best friend, my shoulder to cry and basically,
my life support machine. Without her encouragement, support and trust it would be
impossible to work on something like a PhD. Actually, it would be even difficult to
live! Thank you very much for everything! I love you very very much!!!

Finally, I would like to thank my parents: Durante 27 anos tive o incondicional
apoio de 2 pessoas, Aristides Cunha e Maria Arminda. Estas são as pessoas que me
apoiaram e me ajudaram a seguir em frente em todas as situações da minha vida, não
apenas durante o doutoramento, mas também, claro. Pelo vosso amor, que eu sei ser
infinito, eu vos agradeço do fundo do meu coração! Amo-vos muito!

Some institutions supported the work presented in this thesis. The Por-

tuguese science foundation, Fundação para a Ciência e a Tecnologia, sup-

ported this work with a grant (POPH/FSE), SFRH/BD/30231/2006, for the

whole period of studies. The Department of Informatics and the Computer

Science and Technology Center of the University of Minho provided me the

conditions for my studies. The ACM SIGPLAN Professional Activities Committee supported

some conference participations. Software Improvement Group received me as a guest so I

could work closely with Joost.

SFRH/BD/30231/2006

Model-based Spreadsheet Engineering

Spreadsheets can be viewed as programming languages for non-professional program-
mers. These so-called “end-user” programmers vastly outnumber professional pro-
grammers creating millions of new spreadsheets every year. As a programming lan-
guage, spreadsheets lack support for abstraction, testing, encapsulation, or structured
programming. As a result, and as numerous studies have shown, the high rate of pro-
duction is accompanied by an alarming high rate of errors. Some studies report that
up to 90% of real-world spreadsheets contain errors. After their initial creation, many
spreadsheets turn out to be used for storing and processing increasing amounts of data
and supporting increasing numbers of users over long periods of time, making them
complicated systems.

An emerging solution to handle the complex and evolving software systems is
Model-driven Engineering (MDE). To consider models as first class entities and any
software artifact as a model or a model element is one of the basic principles of MDE.

We adopted some techniques from MDE to solve spreadsheet problems. Most
spreadsheets (if not all) lack a proper specification or a model. Using reverse engi-
neering techniques we are able to derive various models from legacy spreadsheets. We
use functional dependencies (a formalism that allow us to define how some column
values depend on other column values) as building blocks for these models. Models
can be used for several spreadsheet improvements, namely refactoring, safe evolution,
migration or even generation of edit assistance. The techniques presented in this work
are available under the framework HAEXCEL that we developed. It is composed of
online and batch tools, reusable HASKELL libraries and OpenOffice.org extensions.

A study with several end-users was organized to survey the impact of the tech-
niques we designed. The results of this study indicate that the models can bring great
benefits to spreadsheet engineering helping users to commit less errors and to work
faster.

vi

Engenharia de Folhas de Cálculo
Baseada em Modelos

Folhas de cálculo podem ser vistas como linguagens de programação para progra-
madores não profissionais, ultrapassando estes em número os profissionais, criando
milhões de folhas todos os anos. Faltam vários mecanismos às folhas de cálculo como
abstracção, encapsulamento, ou programação estruturada, resultando numa alarmante
taxa de erros. Estudos mostram que 90% das folhas de cálculo usadas no mundo
real contêm erros. Depois da sua criação, muitas folhas acabam por ser usadas para
guardar e processar grandes quantidades de dados suportando um numero elevado de
utilizadores por longos perı́odos de tempo, tornando-as assim sistemas complicados.

Uma solução para manipular sistemas de software complexos é usar Engenharia

Dirigida por Modelos (EDM), onde considerar modelos como entidades de primeira
classe e qualquer artefacto de software como um modelo é o princı́pio básico.

Neste trabalho, nós adaptamos técnicas de EDM para resolver problemas das folhas
de cálculo. A maior parte das folhas de cálculo não possui um modelo, mas fazendo
uso de engenharia reversa, nós somos capazes de derivar vários modelos a partir de
folhas existentes. Nós usamos dependências funcionais (um mecanismo que permite
definir como certas colunas dependem de outras colunas) como blocos construtores
destes modelos, que por sua vez podem ser usados para várias melhorias das folhas
de cálculo como evolução, migração ou geração de assistentes de edição. As técnicas
apresentadas neste trabalho estão disponı́veis numa plataforma, HAEXCEL, que nós
desenvolvemos. Esta é constituı́da por ferramentas online e em linha de comandos,
bibliotecas HASKELL reutilizáveis e extensões para OpenOffice.org.

Nós organizamos um estudo com várias pessoas para inferir o impacto das nossas
técnicas. Os resultados indicam que os modelos podem trazer benefı́cios à engenharia
de folhas de cálculo, ajudando os utilizadores a serem mais eficazes e eficiente.

viii

Contents

1 Introduction 1
1.1 Spreadsheets . 1
1.2 Problem Statement . 3
1.3 Some Possible Solutions . 6
1.4 Our Solution - An Example . 7
1.5 Reviewing Our Solution . 12
1.6 Research Questions . 15
1.7 Contributions . 15
1.8 Structure of the thesis . 16

2 Functional Dependencies for Spreadsheets 19
2.1 Introduction . 19
2.2 Motivational Example . 21
2.3 Relational Databases . 25
2.4 Inferring Functional Dependencies from Spreadsheet Data 28
2.5 Inferring Functional Dependencies from Spreadsheet Formulas 31
2.6 Filtering Functional Dependencies 33
2.7 Normalizing Functional Dependencies 36
2.8 SSFUN: Functional Dependencies for Spreadsheets 39
2.9 Conclusions . 41

3 Inferring Models for Spreadsheets 43
3.1 Introduction . 43
3.2 Motivational Example . 45
3.3 Deriving a Relational Schema . 48

3.3.1 Name Inference . 50
3.3.2 The Candidate Keys . 51

ix

x Contents

3.3.3 The Foreign Keys . 52
3.3.4 The Primary Keys . 54
3.3.5 The Relational Intermediate Directed Graph 54
3.3.6 Optimizing the Relational Intermediate Direct Graph 55
3.3.7 The Relational Schema . 56

3.4 Deriving a ClassSheet Specification 57
3.4.1 ClassSheets . 57
3.4.2 Generating ClassSheets . 59

3.5 Deriving a UML Class Diagram . 63
3.5.1 Mapping Blocks . 64
3.5.2 Mapping Labels . 65
3.5.3 Mapping Classes . 65
3.5.4 Mapping Sheets . 66

3.6 Evaluation . 67
3.6.1 Test Results . 67
3.6.2 Discussion . 69

3.7 Conclusions . 69

4 Spreadsheet Edit Assistance 71
4.1 Introduction . 71
4.2 Motivational Example . 73
4.3 Bidirectional Auto-completion . 77

4.3.1 Generating Visual Objects 78
4.3.2 Generating Spreadsheet Formulas 80

4.4 Formula Copying . 82
4.5 Safe Deletion . 83
4.6 Non-editable Columns . 84
4.7 Traditional Editing . 85
4.8 Evaluation . 85

4.8.1 Processed Spreadsheets . 86
4.8.2 Observations . 89
4.8.3 Discussion . 89

4.9 Conclusions . 90

5 Migration of Spreadsheets 91
5.1 Introduction . 91

Contents xi

5.2 Motivational Example . 92
5.3 A Constraint-aware Rewriting System 96

5.3.1 Data Refinements . 96
5.3.2 Two-Level Transformations with Constraints 99
5.3.3 Representing Spreadsheets and Relational Databases 102

5.4 Migration Rules . 105
5.4.1 Refining a Spreadsheet Table to a Relational Table 105
5.4.2 Refining Tables with Foreign Key in the Primary Key 107
5.4.3 Refining Tables with Foreign Key in the Non-key Attributes . 109
5.4.4 Data Refinements as a Strategic Rewrite System 111

5.5 Conclusions . 111

6 Safe Evolution of Spreadsheets 113
6.1 Introduction . 113
6.2 Motivational Example . 115
6.3 A Framework for Evolution of Spreadsheets 118

6.3.1 ClassSheets and Spreadsheets in HASKELL 118
6.3.2 Specifying Formulas . 121
6.3.3 Representing Functions . 122

6.4 Spreadsheets Evolution . 123
6.4.1 Combinators . 123
6.4.2 Semantic Rules . 124
6.4.3 Layout Rules . 129

6.5 Conclusions . 131

7 End-user Validation of Model-based Spreadsheets 133
7.1 Introduction . 133
7.2 Study Design . 135

7.2.1 Methodology . 136
7.2.2 Participants . 136
7.2.3 Tasks . 137

7.3 Analyzing End-users Performance 139
7.3.1 Effectiveness . 140
7.3.2 Efficiency . 145

7.4 Threats to Validity . 147
7.4.1 Construct Validity . 147

xii Contents

7.4.2 Internal Validity . 147
7.4.3 External Validity . 148

7.5 Conclusions . 149

8 The HAEXCEL Framework 151
8.1 Introduction . 151
8.2 Manipulating Spreadsheets in HAEXCEL 153

8.2.1 Representing Spreadsheets in HASKELL 154
8.2.2 Importing Spreadsheets . 155
8.2.3 Exporting Spreadsheets . 156

8.3 Functional Dependencies . 156
8.3.1 Extracting Schemas and Relations 156
8.3.2 Functional Dependencies in HAEXCEL 157

8.4 Computing Models . 159
8.4.1 Generating Entity-Relationship Diagrams 160
8.4.2 Generating ClassSheets . 160

8.5 Edit Assistance for Spreadsheets . 161
8.5.1 Bidirectional Auto-Completion 162
8.5.2 Safe Deletion . 164

8.6 Migration of Spreadsheets . 165
8.6.1 From Spreadsheets to Databases 165
8.6.2 From Databases to Spreadsheets 166
8.6.3 Generating Databases . 167

8.7 Evolution of Spreadsheets . 168
8.8 Conclusions . 171

9 Conclusions 173
9.1 Contributions . 173
9.2 Answers to the Research Questions 175
9.3 Future Work . 177

Bibliography 181

Index 195

List of Figures

2.3 An example of a relation representing part of our management spread-
sheet. 26

2.4 Two example tables. 27

3.1 A spreadsheet representing a sales system for dishwasher detergents. . 45

3.2 ClassSheet modeling the sales system for dishwasher detergents. . . . 47

3.3 A class diagram specifying the sales system for dishwasher detergents. 48

3.4 Graphical representation of Algorithm 4. 49

3.5 RID graph for the detergents example. 55

3.6 Optimized RID graph for our running example. 56

3.7 ER model specifying our running example. 57

3.8 An example of a ClassSheet: the income sheet. 58

3.9 Generated class for a relation A. 59

3.10 Generated ClassSheet for relations with foreign keys. 59

3.11 ClassSheet of a relationship connecting two relations. 60

3.12 ClassSheet where on entity has only key attributes. 61

3.13 ClassSheet of a relationship with all the key attributes being foreign
keys. 62

3.14 ClassSheet of a relationship composed only key attributes. 62

3.15 The ClassSheet generated by our algorithm to the detergents example. 63

3.16 Two models for the income sheet: a ClassSheet and a UML class dia-
gram. 64

3.17 Mapping default values to UML. 65

3.18 Mapping qualified access to UML. 65

3.19 A UML class diagram specifying the detergent sale system. 66

xiii

xiv List of Figures

4.1 Edit assistance is added to an existing spreadsheet based on functional
dependencies obtained by data mining. 72

5.3 The spreadsheet after applying the third normal form refactoring. . . . 94

6.1 Budget spreadsheet instance. 115
6.2 Budget spreadsheet model. 116
6.3 New spreadsheet and the model that it instantiates. 117
6.4 Coupled transformation of data type A into data type A′. 118
6.5 Spreadsheet instance of the purchase ClassSheet. 120
6.6 Coupled transformation of data type A into data type A′ with references. 121

7.1 Example of a sheet that participants received containing data for in-
serting. 138

7.2 Global effectiveness results. 140
7.3 Effectiveness results for data insertion. 142
7.4 Effectiveness results for data editing. 143
7.5 Effectiveness results for statistical calculations. 144
7.6 Global efficiency results. 145

List of Tables

3.1 Table representing the candidate keys for the detergents example. . . . 52
3.2 Table representing the foreign keys for the detergents example. 53
3.3 Table representing the primary keys for the detergents example. 54
3.4 Results of the ClassSheet inference evaluation. 68

7.1 Summary of the participants’ data. 137
7.2 Number of participants that worked on each spreadsheet/model. . . . 139
7.3 Participations graded under 50%. 141
7.4 Grading of post-session questionnaires for participations graded under

50%. 141
7.5 Average overhead results. 146

xv

xvi List of Tables

List of Algorithms

1 Algorithm to infer functional dependencies from data. 30
2 Algorithm to normalize a set of functional dependencies up to the 3NF. 37
3 Algorithm to calculate functional dependencies for spreadsheets. . . . 39
4 Algorithm to calculate a relational schema from schemas with candi-

date keys. 49
5 Algorithm to create the foreign keys’ table. 53
6 Algorithm to identify relationships. 55

xvii

xviii List of Algorithms

Chapter 1

Introduction

Summary

In this chapter we present a small introduction to the concepts that will be

studied throughout this thesis. In particular, we introduce spreadsheets, us-

ing a simple example. The problems inherent to spreadsheets are described,

as well as the solutions we propose to help solving them.

1.1 Spreadsheets

For many people, the programming language of choice is a spreadsheet. This is par-
ticularly true for non-professional programmers, often defined as “end-user” program-
mers (Nardi 1993). An end-user programmer is typically a teacher, an engineer, a
physicist, a secretary, an accountant or a manager. In fact, almost every person but a
trained programmer is considered an end user. End users’ interest in computer pro-
gramming is usually limited to get a concrete task done; often they are not interested
in programming per se.

End-user programmers outnumber professional programmers, and this difference
is projected to increase more rapidly. In fact, as a study performed in 2005 shows,
in the U.S. alone, the number of end-user programmers is conservatively estimated at
11 million, compared to only 2.75 million other, professional programmers (Scaffidi
et al. 2005). These facts suggest that the spreadsheet, which is a widely used and com-
mercially successful end-user programming language, is also a particularly significant
target for the broader application of programming-language design principles.

A spreadsheet is a digital document created with a specific software application

1

2 1 Introduction

that simulates a paper displaying multiple cells that together make up a grid consisting
of rows and columns, each cell containing alphanumeric text, numeric values or for-
mulas. A formula defines how the content of that cell is calculated from the contents
of other cells and it is updated each time those cells are changed. Constant values are
also accepted as formula parameters. For example, a formula can be used to sum all
the cells of a particular column. Moreover, a cell can be defined by a reference to
another cell, thus displaying the referenced cell content. One of the nicest features of
spreadsheets is their ability to incrementally recalculate the entire sheet automatically
after a change to a single cell is made. Figure 1.1 illustrates a simple spreadsheet.

Figure 1.1: Example of a spreadsheet.

In a spreadsheet, cells are typically identified by the pair column (usually a capital
letter) and row (usually a number). In the spreadsheet shown in Figure 1.1 the value
in cell A1 is the constant a (and alphanumeric text) while cell C3 contains the numeric
value 3. Cell D4 is a formula since it starts with the = sign. The formula adds 2 to
the value in cell A2, which is the formula is represented by the reference to such cell
trough the text A2.

Historically, Visicalc (O’Donovan 1984) is usually considered the first electronic
spreadsheet system. Later, Lotus 1-2-3 (Bookbinder 1989) led the spreadsheet market
when MS-DOS1 was the dominant operating system. Nowadays, it is Excel (Campbell
1985; O’Leary 2008) that has the largest market share both on Windows and Macintosh

platforms. The component Calc from the OpenOffice.org suite (Riley 2009) can be
seen as an open source alternative to Excel.

The advent of the internet is changing the way people interact with computers
influencing our lifestyle. Internet is also playing an important role in the context of

1The initial version of Microsoft operating system for IBM personal computers.

1.2 Problem Statement 3

spreadsheets. Indeed, spreadsheet systems usually seen as desktop applications are
becoming web-based applications. Google Docs (Google 2011) is one of the first
examples of a web-based spreadsheet system that is also influencing other systems
like the widely used Excel from Microsoft. As a consequence, spreadsheet systems
will soon be widely available in our mobile devices, like mobile phones and tablet
computers.

In spite of their huge popularity, spreadsheets still have some problems, specially
when considered from the point of view of a programming language. The purpose of
the next section is to describe some of these problems.

1.2 Problem Statement

Spreadsheet systems offer a high level of flexibility, making it easy for people to start
working with them. The downside of this freedom is that it also offers ample op-
portunity to create erroneous spreadsheets. In fact, numerous studies report that up
to 90% of real-world spreadsheets contain errors (Panko 2000; Rajalingham et al.

2001; Powell and Baker 2003; EuSpRIG 2011). This happens because, as program-
ming systems, spreadsheets lack the support provided by modern programming lan-
guages/environments, namely:

Abstraction The following definition of abstraction, extracted from (Oxford 2011),
should help the reader to understand how this term applies to computer science:

Abstract: existing in thought or as an idea but not having a physical or concrete

existence.

This definition can easily be adapted to computer science: an abstraction is a gen-
eral, non-concrete concept or idea; it is a classification of instances or objects.

A good example of an abstraction is the one of classes in the object-oriented (OO)
programming paradigm (Meyer 1997). There, it is possible to define a class repre-
senting, for example, animals. In such class, only the characteristics of all animals
are represented; one does not specify which animal or even the kind of animal it rep-
resents. Then, concrete instance of this class can be defined for concrete animals.
Unfortunately, this is not possible to accomplish in a spreadsheet environment. It is
only possible to define concrete values, not abstract concepts.

4 1 Introduction

Encapsulation Booch et al. (2007) defined encapsulation as “the process of com-

partmentalizing the elements of an abstraction that constitute its structure and behav-

ior; encapsulation serves to separate the contractual interface of an abstraction and

its implementation”.
The motivation for encapsulation is to achieve higher potential for change accom-

modation. It should be possible to improve the internal mechanisms of a component
without this having impact on others. Encapsulation also protects the integrity of a
component by preventing users from directly and without control changing its internal
state. Encapsulation also reduces a system complexity and thus increases its robust-
ness since it limits the interdependencies between software components (Booch et al.

2007).
Encapsulation is usually achieved by creating some kind of capsule, that is, some

kind of component, possibly with an internal state, which can only be accessed by
controlled methods. This is, in general, very difficult, if not impossible, to achieve in
a spreadsheet environment.

Type system A type system associates types with each computed value. It may be
defined as “a tractable syntactic framework for classifying phrases according to the

kinds of values they compute” (Pierce 2002). By examining the flow of these values,
a type system attempts to prove that no type errors can occur. The type system in
question determines what constitutes a type error, but a type system generally seeks to
guarantee that operations expecting a certain kind of value are not used with values for
which that operation does not make sense.

Although spreadsheets have a very basic type system (they can distinguish, for ex-
ample, numbers and strings), they can not detect when, for example, the user is trying
to sum shoes and ties (in a cloth stock application, for instance). The exception to this
is the work made by Abraham et al. on a system to infer unit and header information
for spreadsheets (Abraham and Erwig 2004).

Testing Software testing is a technique used to detect software failures so that defects
may be discovered and corrected. Unfortunately, this is a non-trivial task for software
in general. In fact, “program testing can be used to show the presence of bugs, but

never to show their absence” (Dijkstra 1970).
Software testing often includes examination of code as well as its execution in var-

ious environments and conditions. Moreover, information derived from software test-

1.2 Problem Statement 5

ing may be used to correct the process by which the software is developed (Huizinga
and Kolawa 2007).

The fact that data and computations are all on the same level on a spreadsheet
makes it difficult to effectively test them. As a consequence, it is difficult to distin-
guish input data and computations since there is not a way to clearly define them. An
exception to the lack of testing techniques for spreadsheets can be found in (Abraham
and Erwig 2006c).

The lack of these important features results in error-prone spreadsheets. Errors are
made during the creation of a spreadsheet as well as when it is modified. The problem
gets exacerbated when the user modifying the spreadsheet does not fully understand
its functionality. These factors make widespread reuse of spreadsheets difficult and
prone to errors.

Given this scenario, and to help researchers improving it, Panko and Aurigemma
(2010) proposed a spreadsheet error taxonomy as illustrated in Figure 1.2.

All Errors

Violations Blameless
Errors

Qualitative
Errors

Quantitative
Errors

Context Errors:
Section Algorithm,

Design,
Requirements

Formula Errors:
Wrong Algorithm,
Wrong Expression

of Algorithm

Slips: Sensory-
Motor Errors:

Typing, Pointing

Lapses: Memory
Errors

Mistakes
(incorrect intension)

Slips and Lapses
(incorrect execution)

Figure 1.2: Spreadsheet error taxonomy.

Some of these errors have high impact in company productivity (Croll 2007, 2009)
leading to companies and institutions losing millions of dollars (EuSpRIG 2011). In
fact, the Jamaican Banking System collapsed in its entirety in the late 1990’s partly due

6 1 Introduction

to the use of spreadsheets and a consequent failure to manage and control them (Le-
mieux 2002, 2008).

In the following section we will briefly present existing approaches to solve some
of the problems related to spreadsheets.

1.3 Some Possible Solutions

As explained in the previous section, there are several problems with spreadsheets.
Several researchers have realized the importance of spreadsheets and have presented
several approaches to reduce the incidence of errors in them. These approaches can
be divided in two main categories: (1) solutions not directly related to end users, but
more indicated for professionals and (2) solutions directly shaped for spreadsheet end
users, helping them closely. Category (1) can be subdivided as follows:

1. Recommendations for better spreadsheet design (Ronen et al. 1989; Yoder and
Cohn 1994; Isakowitz et al. 1995; Rajalingham et al. 2000; Powell and Baker
2003).

2. Auditing spreadsheets to detect and remove errors (Panko 1999; Sajaniemi 2000;
Mittermeir and Clermont 2002).

Although the techniques from these two subcategories can be used by end users,
they are more indicated to professionals. Recommendations can be taken into account
by a professional programmer developing a spreadsheet (that will be then used by an
end user). Auditing techniques are in principle used by professional to assess spread-
sheets.

On the other hand, category (2) intends to produce techniques to help end users in
a daily base, that is, when actually working with spreadsheets:

1. Testing (Rothermel et al. 2001; Fisher et al. 2002; Burnett et al. 2002).

2. Automatic consistency checking (Erwig and Burnett 2002; Ahmad et al. 2003;
Burnett et al. 2003; Antoniu et al. 2004; Abraham and Erwig 2004; Coblenz
et al. 2005).

3. Error prevention techniques (Erwig et al. 2005; Engels and Erwig 2005; Cunha
et al. 2009a,b; Hermans et al. 2010; Cunha et al. 2010a,b, 2011).

1.4 Our Solution - An Example 7

The first two subcategories, testing and consistency checking, should be used by
users to detect errors in their spreadsheets, that is, they give the users some feedback
on their errors. Error preventing is intended to help users not creating errors. This is
a technique that can be used before testing and checking. In fact, this should make
testing unnecessary.

Our approach is intended to work when users are working with a spreadsheet, but
in a preventive way, that is, we fit in the error prevention techniques. In the following
section we will present our solution.

1.4 Our Solution - An Example

In order to better present our work we shall consider the following example adapted
from (Berdaguer et al. 2007) and modeled in a spreadsheet as shown in Figure 1.3.

Figure 1.3: A spreadsheet representing a movie renting system.

This spreadsheet represents a movie renting system containing information about
movies, renters and the leases themselves. Columns A to E contain information about
the movies, columns F to H contain information about the renters and the remaining
columns contain information about the leases (the labels of the columns should be self
explanatory).

Having this spreadsheet data, we wish to understand its business model, that is,
the semantic of the spreadsheet, its logic. For this simple and small example it is
possible for an experienced programmer to define the business model underlying the
spreadsheet data. However, this is difficult for an end user, has shown by Abraham and
Erwig (2006a). As a consequence, we wish to define techniques to infer the business
logic model automatically with no end-user interaction.

8 1 Introduction

Functional Dependencies

The interdependencies between spreadsheet data can be captured by a powerful mech-
anism called functional dependencies, a concept from relational databases theory de-
scribing the relationship between attributes of a table/relation (Codd 1970).

Let us take as an example the following subset of attributes of the movies ex-
ample: {renterNr,movieID,rentStart,rentFinish}. Even non-experts in movie renting
systems will accept the following “business” rule: the start and end date of renting and

the rent of a movie determine the total amount to pay. This restriction is an example of
a so-called functional dependency among attributes, which can be stated more formally
as follows: attribute totalToPay is functionally dependent on rentStart,rentFinish and

rent. In the standard practice, this will be abbreviated by writing

rentStart,rentFinish,rent ⇀ totalToPay

which has the following, alternative reading: rentStart,rentFinish and rent functionally

determine totalToPay. The left-hand side of the harpoon is termed antecedent of the
functional dependency and the right-hand side consequent. Note that the consequent
can be an empty set, meaning that no repetition of antecedent values is allowed.

A second example of a functional dependency is as follows:

renterNr ⇀ renterNm

This dependency encodes the fact that the code of a renter, that is, its renterNr deter-
mines its name. In other words this means that can not exist two different codes for
two different renters. Note that, there can exist two clients with the same name, that
is, the dependency renterNm ⇀ renterNr does not hold.

By reasoning on the spreadsheet data we can discover the functional dependencies
induced by it. These techniques are usually applied in the database realm which make
them not very suitable for spreadsheets.

In our work we refine these techniques to better work with data from spreadsheets
using several heuristics to filter out the “accidental” dependencies, that is, the depen-
dencies that are in the data but do not reflect any real relationship. This may hap-
pen if the data does not represent well enough the situation. For example, if our
data would have only one renter it would be impossible to see the relationship be-
tween its number and its name. For the movies example, the functional dependency
renterNm ⇀ language exists, meaning that we can determine the language of a movie
based on a renter’s name. This happens because the language of all movies included

1.4 Our Solution - An Example 9

in the spreadsheet is English. As a consequence, not only renterNm determines the
language, but also most of the other columns determine it. These dependencies are un-
usable and should be discarded from further consideration. For our running example,
we would like to infer the following dependencies:

language ⇀ {}
rentStart,rentFinish,rent ⇀ totalToPay

renterNr ⇀ renterNm,renterPhone

movieID ⇀ title,year,director,rent

language,rentStart,rentFinish,renterNr,movieID ⇀ {}

These dependencies reflect the entities present in this system: languages of movies,
payments, renters, movies and leases themselves.

Inferring Models for Spreadsheets

From the functional dependencies previously defined we would like to compute a nor-
malized relational database schema (Codd 1970) reflecting the restrictions imposed by
the dependencies. The following schema is a possible solution:

Language (language)

Payment (rentStart,rentFinish,rent, totalToPay)

Renter (renterNr,renterNm,renterPhone)

Movie (movieID, title,year,director,rent)

<Rent> (#language,#rentStart,#rentFinish,#renterNr,#movieID)

This schema has five tables implementing the five entities we have identified above.
Notice that the underlined attributes are known as the primary keys of the tables, that
is, the columns that uniquely identify each row of a table. The symbol # marks the
foreign key columns, that is, the columns that are references to other columns.

From the inferred relational model, we would also like to devise a ClassSheet

model (Engels and Erwig 2005). ClassSheet models are a formalism to define the
model of a spreadsheet, that is, its business rules. A spreadsheet application consistent
with the model could be automatically generated, and thus, a large variety of errors
could be prevented. Figure 1.4 illustrates the desired model.

Given the similarity between ClassSheet models and Unified Modeling Language

(UML) class diagrams (Rumbaugh et al. 2004), we would like to generate class dia-

10 1 Introduction

Figure 1.4: ClassSheet model representing a movie renting system.

grams from ClassSheets. These diagrams could then be used to support other migra-
tions, for example, to the object-oriented paradigm.

Edit Assistance for Spreadsheets

Using the functional dependencies inferred before we would like to generate a new
spreadsheet similar to the original one, but with edit assistance, that is, with some
kind of help to the user when editing the spreadsheet. Figure 1.5 illustrates such an
environment.

Figure 1.5: A spreadsheet representing a movie renting system with edit assistance.

Since we know the relationship between columns, given by the functional depen-
dencies, we would like to use them to create a mechanism that automatically fills in

1.4 Our Solution - An Example 11

some columns. The columns with green2 combo boxes represent antecedents in func-
tional dependencies and the red ones, represent consequents. Since we know that
antecedents uniquely determine consequents, when the user selects a value in a green
cell, the corresponding red cells are automatically filled in. Such a mechanism is
present in the spreadsheet illustrated in Figure 1.5: when the user selected a possible
value for the movieID column (namely mv1), columns title,year,director and rent were
automatically filled in.

Spreadsheet Refactoring

From the relational schema previously inferred, we would like to create a new spread-
sheet without data redundancy, that is, without having data repeated several times.
Moreover, this spreadsheet should respect the relational schema. Figure 1.6 represents
part of a possible refactored movie renting system spreadsheet.

Figure 1.6: Refactored spreadsheet representing a movie renting system.

This spreadsheet does not contain data redundancy as opposed to the one presented
in Figure 1.3, where, for example, the phone number of Smith appears three times.

Spreadsheet Migration

Spreadsheets are applications usually created by one end user, without planning ahead
of time for maintainability or scalability. Still, after their initial creation, many spread-
sheets turn out to be used for storing and processing increasing amounts of data and
supporting increasing numbers of users over long periods of time. To turn such spread-
sheets into database-backed multi-user applications with high maintainability is not a
smooth transition, but requires substantial time and effort.

Having inferred the relational database schema and the data in the same format,
a smooth transition from spreadsheets to relational databases is possible. In fact, we
would like to be able to generate Structured Query Language (Date 1986) scripts to

2Colors are visible through the digital version of this document.

12 1 Introduction

create and populate a real relational database. Using data refinement theory, the trans-
formation between spreadsheets and databases can be achieved. Data refinement is the
systematic substitution of one data type by another in a program. Usually, the new data
type is more efficient than the old, but possibly more complex (Morgan and Gardiner
1990; Oliveira 1990, 2008). Rules between the tabular spreadsheet model and the re-
lational schema are capable of the transformation between the two models. Moreover,
we would like to define the functions that migrate the data between these two data
representations. Again, we use data refinement theory so that we can get for free the
functions to migrate the data. From this result it is easy to generate the desired scripts.

Evolution of Spreadsheets

The transformation of a spreadsheet into another one with the same data but another
layout is a particular case of an evolution step (Lämmel and Lohmann 2001). Using
the ClassSheet model presented in Figure 1.4 we would like to define a set of evolution
steps that represent usual updates that users do, for example, inserting a new column or
moving part of the spreadsheet to another sheet. When changing a spreadsheet affects
the underlying model the probability of making an error is quite high. We would like
to create several rules that allow this evolution in a safe way.

The steps described in this section can be generalized and automatized for general
spreadsheets. During this thesis we will describe in detail how this can be done. In
fact, the process described in this section for the movies example was produced by our
techniques.

In the following section we will review our solution from a Model-Driven En-

gineering (MDE) point of view. We will show that, in fact, we have followed the
principles from this field, which are well established and an active area of research.

1.5 Reviewing Our Solution

In this section we briefly introduce Model-driven Engineering (Stahl et al. 2006) and
explain how our approach follows this well-succeeded approach.

In the last years MDE has emerged as a solution to handle complex and evolving
software systems. To consider models as first class entities and any software artifact
as a model or as a model element is one of the basic principles of MDE.

1.5 Reviewing Our Solution 13

Consider as an example XML (XML 2008). An XML document can be seen as a
model while its schema (or DTD) as its metamodel. Figure 1.7 illustrates a three level
structure in an XML environment (Bézivin 2006).

Metametamodel:
XML Schema for

XML Schema

...
 <xs:element name ="element">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string"/>
 ...
 </xs:complexType>
 </xs:element>
...

Metamodel:
A Petri Net

XML Schema

...
 <xs:element name ="place">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string"/>
 ...
 </xs:complexType>
 </xs:element>
...

Model:
An XML

Document

<petrinet>
 <place name="P1"/>
 <place name="P2"/>
 <transition name="T1"/>
 <arcPT source="P1" target="T1"/>
 <arcTP source="T1" target="P2"/>
</petrinet>

conforms to

conforms to

conforms to

Figure 1.7: A three level structure in an XML environment (Bézivin 2006).

The approach we follow in this work is closely related to the MDE principles. In
fact, we consider spreadsheets as models and work with three kinds of metamodels to
specify spreadsheets: relational schemas, ClassSheet models and UML class diagrams.
Consider the illustration of our approach in Figure 1.8.

If we look at it from left to right, we can see that from the original spreadsheet
we can automatically infer functional dependencies representing the relationship be-
tween the spreadsheet data. By reasoning with this functional dependencies we can
infer a relational database schema. These schemas are used in the database realm to
model the logic of databases. We can automatically infer this kind of models from ex-
isting spreadsheets so they can have some specification of their business logic. From
these models we can generate refactored spreadsheets that are normalized (from a data
point of view), Refactored SS in the right-hand side of Figure 1.8. Moreover, from
these models we can generate scripts to automatically create and populate relational
databases (below the refactored spreadsheet). This kind of behavior is common in
the MDE approach because it produces good results. In fact, it is quite common to

14 1 Introduction

 A ⇀ B
 C D ⇀ E

Generate
safe SS

Infer
FDs

Infer CS

To UML

Original SS

Create and
populate RDB

RDB
Schema

Infer RDB
Schema

Improved SS

Safe SS
Evolution

Reasoning
about FDs

Generate
Refactored SS

Refactored SS

Generate
Visual SS

Visual SS

Relational Database

UML Class
Diagram total : Int

Income

value:Int=0

Item

*

ClassSheet
Model

Figure 1.8: Overview of the work presented in this thesis.

generate code from models, for example, to generate object-oriented code from UML
specifications.

Relational schemas are quite appropriate to model spreadsheets in a data organiza-
tion and manipulation way, but they miss some important characteristics from spread-
sheets like, for example, spatial constraints. On the other hand, ClassSheets allow us
to express business object structures within a spreadsheet using concepts from UML.
Moreover, ClassSheet models allow us to completely specify a spreadsheet. The reader
can see in the overview figure that we can automatically generate ClassSheets from
spreadsheets. In fact, a spreadsheet application consistent with the model can be auto-
matically generated, and thus, a large variety of errors can be prevented. This gener-
ated version allows only a finite and controlled set of actions, each of them respecting
the model. This is represented in Figure 1.8 as Improved SS on the right-hand side.
Once more, this is the kind of behavior one would expect when working in any MDE

1.6 Research Questions 15

setting. The ClassSheet model can also be used to generate a more generic model: a
UML class diagram (above the ClassSheet model in the figure). This allows further
transformations to others paradigms using already existing techniques from the UML
realm.

A final possible transformation in our work is the generation of a spreadsheet with
edit assistance for the user (Visual SS in Figure 1.8). This helps the user introducing
data that conforms the previously inferred set of functional dependencies. Once more,
this kind of controlled editing approach is based on MDE principles.

We have presented an overview of the solution we propose to improve the produc-
tivity of spreadsheets end users. In the next section we will state the research questions
we intend to answer with our work.

1.6 Research Questions

In previous sections we have presented some of the problems related to spreadsheets.
We have also shown the solution we engineered to solve some of these issues. Next,
we list the research questions we will try to answer with this thesis.

RQ1 Can we automatically infer the implicit logic of a spreadsheet and produce a
specification or model describing it?

RQ2 Can we use these specifications/models to improve spreadsheet environments in
such a way that end users commit less errors, that is, can these models prevent
users to commit errors?

RQ3 To which extent can we create specifications for spreadsheets and improve them
in a non-invasive way?

In the end of this thesis we will give clear answers to these questions.

1.7 Contributions

With the work presented in this thesis we have made several contributions in different
areas such as programming languages or software engineering. A summary of these
contributions is presented next:

16 1 Introduction

• We study and present techniques to infer and reason about functional dependen-
cies in the context of spreadsheets;

• Using the idiosyncrasies of spreadsheets, we present techniques to automatic
inference of relational schemas for spreadsheets, ClassSheet models and UML
class diagrams;

• Using functional dependencies we can infer edit assistance for spreadsheets in-
cluding, for example, the auto-completion of some columns;

• We calculate the formal relationship between spreadsheet models and relational
schemas. Rules for the migration between these two fields are presented;

• Based on a relational schema we are able to produce a new spreadsheet that is
more organized than the original one and thus better for handling data;

• We improve the 2LT framework (Cunha et al. 2006; Alves et al. 2008; Visser
2008) to support spreadsheet models/specifications (based on ClassSheet mod-
els). We also develop a series of common evolution steps for spreadsheets in-
cluding, for example, insertion of a column in each instance of a model;

• A study with end users validating the results of our work is presented;

• All the techniques here presented are available under an open source framework,
HAEXCEL, that can be reused in other projects.

For a more extensive description of our contributions the reader is referred to Chap-
ter 9.

1.8 Structure of the thesis

This thesis is organized as follows:

Chapter 2 presents techniques to derive functional dependencies for spreadsheets.
The filtering and normalization of those dependencies is also presented.
This chapter is based on the following paper:
Jácome Cunha, Martin Erwig, João Saraiva. Automatically inferring ClassSheet mod-

els from spreadsheets. VL/HCC ’2010. 233–241.

1.8 Structure of the thesis 17

Chapter 3 presents techniques to derive models from functional dependencies for
spreadsheets. Relational database schemas, ClassSheets and UML diagrams can be
automatically generated.

This chapter is based on the following papers:

Jácome Cunha, João Saraiva, Joost Visser. From spreadsheets to relational databases

and back. PEPM ’2009. 179–188.

Jácome Cunha, Martin Erwig, João Saraiva. Automatically inferring ClassSheet mod-

els from spreadsheets. VL/HCC ’2010. 233–241.

Chapter 4 explains how to use the functional dependencies induced in Chapter 2 to
generate edit assistance for spreadsheets.

This chapter is based on the following paper:

Jácome Cunha, João Saraiva, Joost Visser. Discovery-based edit assistance for spread-

sheets. VL/HCC ’2009. 233–237.

Chapter 5 presents methods to migrate spreadsheets to relational databases. The
inverse process is also explained.

This chapter is based on the following paper:

Jácome Cunha, João Saraiva, Joost Visser. From spreadsheets to relational databases

and back. PEPM ’2009. 179–188.

Chapter 6 shows how to specify spreadsheet models in the 2LT platform and how
to use this framework to do evolution of spreadsheet models and instances.

This chapter is based on the following paper:

Jácome Cunha, Joost Visser, Tiago Alves, João Saraiva. Type-safe evolution of spread-

sheets. FASE ’2011. to appear.

Chapter 7 presents an evaluation of the work here exposed. In this evaluation we
present an empirical study with human subjects using our techniques.

This chapter is based on the following technical report:

Jácome Cunha, Laura Beckwith, João Paulo Fernandes, João Saraiva. An empirical

study on the influence of different spreadsheet models on end-users performance. DI-

CCTC-10-10. 2010.

18 1 Introduction

Chapter 8 presents the framework developed to support all the techniques intro-
duced in this work, HAEXCEL.
This chapter is based on the papers referenced on the other chapters.

Chapter 9 exposes our conclusions and future research directions.

Chapter 2

Functional Dependencies for
Spreadsheets

Summary

The inference of functional dependencies is a data mining process used in

databases, and thus, not very suitable for other paradigms.

In this chapter we present an algorithm to extract functional dependencies

from spreadsheet data. We investigate how the idiosyncrasies of spread-

sheets can be exploited to infer functional dependencies that well charac-

terize the business model of the underlying spreadsheet. For example, the

order of columns and the semantic of their labels are considered and used

to produce more realistic functional dependencies. Moreover, formulas also

induce functional dependencies.

These dependencies can then be normalized so they can help preventing

data redundancy, for example.

2.1 Introduction

Spreadsheets are applications often created by one end user, without planning ahead
of time for maintainability or scalability. Still, after their initial creation, many spread-
sheets turn out to be used to store and process increasing amounts of data and support
increasing numbers of users over long periods of time. To turn such spreadsheets
into database-backed multi-user applications with high maintainability is not a smooth
transition. In fact, it requires substantial time and effort.

19

20 2 Functional Dependencies for Spreadsheets

In this chapter, we develop techniques to discover functional dependencies in ex-
isting spreadsheets. These dependencies will be the building blocks for further trans-
formations, for example, to migrate spreadsheet to database. Figure 2.1 illustrates the
steps necessary to infer functional dependencies from spreadsheets. Note that, octag-
onal figures represent computations, and squares, results from those computations.

Original SS

SS
Schema SS Data Formula

Columns

Filtered
FDs

FDs from
Formulas

CFDs
Final set
of FDs

FDs

Find
Formula
Columns

Find
Schema
Relation

Create
FDs from
Formulas

Find
FDs

Filter
FDs

Normal-
ized FDs

Select
Keys

Figure 2.1: Steps necessary to infer functional dependencies from spreadsheets.

We use “regular” data mining techniques to discover all the functional dependen-
cies induced by the spreadsheet data, which usually is a big set. In a database, though,
the number of functional dependencies that who designs it have in mind is usually
small. This means that the inferred functional dependencies are often polluted by “ac-
cidental” dependencies, that is, dependencies that are embedded in the data but do not

2.2 Motivational Example 21

characterize the relationships between the data. Thus, these dependencies should be
discarded.

In this chapter we also describe how to, based on the idiosyncrasies of spreadsheets,
select the relevant dependencies and how to discard the ones that do not characterize
the data. For example, we take into consideration the order of the columns and their
labels to recognize the dependencies that we should keep and the ones that we should
discard. In fact, the techniques here presented only apply to spreadsheets because they
use characteristics available only in this paradigm.

Having computed a small and very representative set of functional dependencies,
does not make it necessarily suitable to represent the spreadsheet data because it may
not be normalized. Thus, we present a technique for the normalization of functional
dependencies. Only after this step we can use these dependencies, for example, to
create a relational database to store the spreadsheet data.

As we will see in Chapter 3, the functional dependencies inferred in this chapter
can be used to construct several models specifying the business logic of spreadsheets.

This chapter is organized as follows. In Section 2.2 we present a motivational ex-
ample used throughout this chapter. In Section 2.3 we introduce some concepts from
the relational database realm. In Section 2.4 we explain how to extract functional de-
pendencies from spreadsheets. The extraction of functional dependencies from spread-
sheet formulas is presented in Section 2.5. Sections 2.6 and 2.7 describe techniques
to filter and normalize functional dependencies for spreadsheets, respectively. In Sec-
tion 2.8 we explain how to combine all the previous techniques to calculate a set of
functional dependencies characterizing a spreadsheet’s business logic. Finally, in Sec-
tion 2.9 we draw our conclusions of this chapter.

2.2 Motivational Example

Throughout this chapter we will use an example adapted from (Alhajj 2003) and illus-
trated in Figure 2.2.

This spreadsheet reproduces a project management system, gathering information
about projects (number, manager, location, delivery date, budget and institute), their
workers (name, age, nationality and supervisor) and the instruments they use (number,
capacity and number of wheels). The name of each column should give a clear idea

22 2 Functional Dependencies for Spreadsheets

Figure 2.2: A spreadsheet reproducing a project management system.

of the information it represents. The values in column L (labeled instCapacity) are
calculated multiplying the values of column M (labeled instWheels) by 6.

This spreadsheet defines a valid model to represent the information of the manage-
ment system. However, it contains redundant information. Notice that, the displayed
data specifies seven projects, but their information is included several times. In fact,
some of it is repeated three times! This kind of redundancy makes the maintenance
and update of the spreadsheet complex and error-prone. A mistake is easily made, for
example, by mistyping a name and thus corrupting the data.

The same information can be stored without redundancy. In fact, in the database
community, techniques for database normalization are commonly used to minimize
duplication of information and improve data integrity. Database normalization is based
on the detection and exploitation of functional dependencies inherent in the data (Maier
1983; Ullman 1988; Atzeni and De Antonellis 1993).

A functional dependency between two columns or sets of columns A and B, denoted
A⇀ B, means that when projecting the columns in A, if two rows are equal, then, when
projecting the columns in B the corresponding rows are also equal. For instance, the
project number functionally determines the project manager.

The following question arises: Can we leverage these database techniques for
spreadsheets?

Based on the data in our example spreadsheet, a standard data mining algorithm
will infer the following functional dependencies:

projNr ⇀ projManager,projLocation,projDelivery,projBudget,projInstitute

projManager ⇀ projInstitute

projLocation ⇀ projBudget,projInstitute

projDelivery ⇀ projInstitute

projBudget ⇀ projLocation,projInstitute

2.2 Motivational Example 23

emplName ⇀ projInstitute,emplAge,emplNation,emplSupervisor

emplAge ⇀ projInstitute,emplName,emplNation,emplSupervisor

emplNation ⇀ projInstitute

emplSupervisor ⇀ projInstitute,emplName,emplAge,emplNation

instNr ⇀ projInstitute, instCapacity, instWheels

instCapacity ⇀ projInstitute, instNr, instWheels

instWheels ⇀ projInstitute, instNr, instCapacity

projManager,projLocation ⇀ projNr,projDelivery

projManager,projDelivery ⇀ projNr,projLocation,projBudget

projLocation,projDelivery ⇀ projNr,projManager

projManager,projBudget ⇀ projNr,projDelivery

projDelivery,projBudget ⇀ projNr,projManager

projLocation,emplName ⇀ instNr, instCapacity, instWheels

projBudget,emplName ⇀ instNr, instCapacity, instWheels

projLocation,emplAge ⇀ instNr, instCapacity, instWheels

projBudget,emplAge ⇀ instNr, instCapacity, instWheels

projManager,emplNation ⇀ emplName,emplAge,emplSupervisor

projLocation,emplNation ⇀ emplName,emplAge,emplSupervisor, instNr,

instCapacity, instWheels

projDelivery,emplNation ⇀ emplName,emplAge,emplSupervisor

projBudget,emplNation ⇀ emplName,emplAge,emplSupervisor, instNr,

instCapacity, instWheels

projLocation,emplSupervisor ⇀ instNr, instCapacity, instWheels

projBudget,emplSupervisor ⇀ instNr, instCapacity, instWheels

Notice that there are 27 functional dependencies embedded in the spreadsheet data!
This big number of dependencies makes it very difficult to reason about them because
there is too much entropy, that is, too many dependencies that are not useful.

The first problem is that constant columns appear in multiple functional dependen-
cies, for example, column F, the institute. This implies that this column will appear
in most of the functional dependencies. In fact, it will appear as consequent of any
functional dependency that has as antecedent a column with two equal values in dif-
ferent rows. This situation is quite common in spreadsheets and should be handled
in a proper way. A possible solution would be to infer the functional dependencies
without considering this column and producing a single functional dependency with

24 2 Functional Dependencies for Spreadsheets

it: projInstitute ⇀ { }. In this case, the consequent of the dependency is the empty set.

From the set of inferred functional dependencies we would like to filter out the
“accidental” dependencies referred in Section 2.1, that is, the dependencies that do
not reflect true relationships among the data. We would like to discover the follow-
ing functional dependencies since they define/represent the four entities involved in a
project management system: namely projects, employees, instruments and institutes:

projNr ⇀ projManager,projLocation,projDelivery,projBudget

emplName ⇀ emplAge,emplNation,emplSupervisor

instNr ⇀ instWheels

projInstitute ⇀ { }

The second problem is that spreadsheet formulas can induce functional dependencies
too. In our running example, column L (labeled instCapacity) is calculated using col-
umn M (labeled instWheels). We can say that column L is determined by column M. So
the functional dependency instWheels ⇀ instCapacity exists in our example.

These functional dependencies can be normalized: the content of each dependency
can be such that the entire set respects certain properties ensuring data consistency.

A common property in databases is the lossless decomposition property: this prop-
erty ensures that if we decompose a relation/table into smaller relations, it is possible
to undo the process and recover the original relation (Maier 1983). To ensure that the
set of functional dependencies obeys to this property we can add a particular func-
tional dependency to the current set of dependencies. This dependency has the form
all the columns of our spreadsheet ⇀ some new column not used. For our running
example, such dependency is:

projNr,projManager,projLocation,projDelivery,projBudget,projInstitute,

emplName,emplAge,emplNation,emplSupervisor, instNr, instCapacity,

instWheels ⇀ newAtt

Normalizing our previous set we get the following new normalized set:

projNr ⇀ projManager,projLocation,projDelivery,projBudget

emplName ⇀ emplAge,emplNation,emplSupervisor

instNr ⇀ instWheels

projInstitute ⇀ { }
instWheels ⇀ instCapacity

projNr,emplName, instNr,projInstitute ⇀ { }

2.3 Relational Databases 25

In this new set, there are two new functional dependencies: the last one was originated
by the dependency introduce to ensure the lossless decomposition property; the one
but last was created based in the formula of column L.

The results presented in this section were automatically produced by the techniques
we will formalize in the following sections. With these dependencies we can construct
different models for our spreadsheets. These models can be used to generate edit assis-
tance for end users, migration techniques, evolution and refactoring of spreadsheets.
In fact, we will describe these techniques in the following chapters.

2.3 Relational Databases

In this section we briefly introduce some well established concepts from relational
database theory. Most of the definitions here presented are taken from (Maier 1983).
These definitions are essential for understanding the work we will present in the rest
of this thesis.

A relational schema R is a finite set of attributes {A1, ...,Ak}. Corresponding to
each attribute Ai is a set Di called the domain of Ai. These domains are arbitrary,
non-empty sets, finite or countably infinite. In the context of spreadsheets an attribute
usually corresponds to the label of a column, such as projNr and instCapacity.

A relation (or table) r on a relational schema R is a finite set of tuples (or rows)
of the form {t1, ..., tk}. For each t ∈ r, t(Ai) must be in Di. Our example has only one
table which corresponds to the entire spreadsheet. In general, a table is a set of rows
labeled by a row of attributes or labels.

A relational database schema is a collection of relational schemas {R1, ...,Rn}. A
relational database (RDB) is a collection of relations {r1, ...,rn}.

Each tuple is uniquely identified by a minimum non-empty set of attributes called
primary key (PK).

Some times there may be more than one set of attributes suitable for becoming
the primary key. Each of these sets is designated a candidate key (CK) and only one
is chosen to become the primary key. To represent schemas with candidate keys, we
use a pair where its first part represents a set of candidate keys and its second part
represents the rest of the attributes. For example,

({{projNr},{projNr,projManager}},{projDelivery,projBudget})

represents the project schema for the running example containing two candidate keys.

26 2 Functional Dependencies for Spreadsheets

A foreign key (FK) is a set of attributes within one relation that matches the primary
key of some relation.

A relationship is a concept from the entity-relationship modeling framework (Chen
1976): a relationship R with participant entities (or relations) R1, ...,Rn defines a set of
associations among these entities and is composed by a set of instances. Each instance
represents the fact that the entities participating on it are related. A relationship is
usually represented by a table in a database.

Some these concepts are illustrated in Figure 2.3.

Attributes

{Relation Tuples

instNr instCapacity instWheels

inst3 36 6

inst1 24 4

Figure 2.3: An example of a relation representing part of our management spreadsheet.

To represent textually a relational database schema modeling part of our running
example, we write:

Instrument (instNr, instWheels)

<Work> (#projNr,#emplName,#instNr,#projInstitute)

The first row represents instruments, so we start by writing the name of the rela-
tion/table, Instrument. We then write all its attributes within parentheses. The key
attributes are underlined. The second row represents the Work relationship. It is writ-
ten in a similar way as Instrument, but we need to mark the foreign keys, and thus we
add as prefix the symbol # to each attribute that is a foreign key. It is also necessary to
show that it is a relationship and so we surround the name with symbols < and >.

Given this representation, we now have to different definitions for a relational
schema: one where the schema is only a set of attributes, and this new representa-
tion with primary and foreign keys and with relationships. When it is unambiguous,
we will use the same term for both definitions. When necessary, we will make it clear
which one we are using.

A functional dependency between two sets of attributes A and B, written A ⇀ B,
holds in a table if for any two tuples t and t ′ in that table t[A] = t ′[A] =⇒ t[B] = t ′[B]

where t[A] yields the (sub)tuple of values for the attributes in A. In other words, if the

2.3 Relational Databases 27

tuples agree in the values for attribute set A, they agree in the values for attribute set
B. The set A is called the antecedent of the functional dependency and the set B its
consequent. The attributes in A can be called the key attributes and the ones in B can
be called non-key attributes.

For instance, in our running example the functional dependency emplName ⇀

emplAge exists, meaning that the values in column emplName uniquely determine the
values in column emplAge, that is, it models the usual notion that an employee can not
have two different names.

Let us take as another example the tables presented in Figure 2.4.

A1 A2 B1 B2

a1 a2 b1 b2

a1 a3 b1 b1

a1 a2 b1 b2

(a) Table inducing A ⇀ B.

A1 A2 B1 B2

a1 a2 b1 b2

a1 a3 b1 b1

a1 a2 b2 b2

(b) Table not inducing A ⇀ B.

Figure 2.4: Two example tables.

Let A = {A1,A2} and B = {B1,B2}. The data in the table presented in Figure 2.4a
encodes the functional dependency A ⇀ B ({A1,A2}⇀ {B1,B2}) because rows 1 and
3 have the same values in A and in B. The other row does not affect the dependency
because the values in A are different from the others. The data in the table presented in
Figure 2.4b does not encode the functional dependency A ⇀ B because, although rows
1 and 3 have the same values in A, the values in B are different. Notice that the value
in the third row in column B1 changed from b1 to b2 (in red) and thus the functional
dependency A ⇀ B does not hold anymore.

Database normalization is important to prevent data redundancy. Although, there
are more normal forms, in general, a RDB is considered normalized if it respects the
third normal form. Next, we recall the definition of three normal forms (Codd 1972).

The first normal form (1NF) is respected if each element of each tuple contains an
atomic value. This corresponds to a cell having a single value, for example, a cell with
a project number can not have two project numbers.

A relation respects the second normal form (2NF) if it respects the 1NF and its
non-key attributes are not functionally dependent on part of the key attributes. For
example, for a table with key attributes {A,B} and non-key attributes {C}, C must be
functionally dependent on the entire set {A,B}, that is, not only dependent on A or B.

28 2 Functional Dependencies for Spreadsheets

The third normal form (3NF) is respected if the 2NF is present and if the non-key
attributes are only dependent on the key attributes. For example, for a table with pri-
mary key {A} and non-key attributes {B,C}, it can not exist the functional dependency
B ⇀C or any other involving the non-key attributes.

2.4 Inferring Functional Dependencies from Spread-
sheet Data

In this section we explain how to extract functional dependencies from the data in
a spreadsheet. In fact, this process is similar to extract functional dependencies in
databases, which is a complex data mining process. There are several data mining
algorithms that perform this task in the context of databases such as TANE (Huhtala
et al. 1999), DEPMINER (Lopes et al. 2000), FUN (Novelli and Cicchetti 2001) or
FD MINE (Yao and Hamilton 2007). Since the process is similar in databases and
spreadsheets, we adapted an algorithm from databases to work with spreadsheets. Al-
though they produce the same functional dependencies, we choose to use FUN because
it is considered to be the faster and the most efficient (Novelli and Cicchetti 2001).

FUN receives as input a set of data tuples, that is, a relation. We consider each
row of a spreadsheet as a tuple. Therefore, the columns in a spreadsheet represent the
attributes of the spreadsheet. Note that, we could also consider columns as tuples and
rows as attributes, but this is a less common way to structure a spreadsheet.

A few concepts, taken from (Novelli and Cicchetti 2001), are necessary to under-
stand this algorithm.

Cardinality The cardinality of a set of attributes X in a relation r, written as |X |r, is
the number of distinct values of X in r.

Free A set X of attributes is said to be free in a relation r if and only if @X ′⊂X , |X ′|r =
|X |r. Informally, this means that if we project r with the attributes in X we get
a certain number of distinct tuples. For X to be said free, there can not exist
a subset of X , say X ′, such that the projection over r of X ′ contains the same
number of distinct tuples of the projection of X .

Maximal subset A maximal subset of X is any of its subsets with one attribute less
then itself.

2.4 Inferring Functional Dependencies from Spreadsheet Data 29

Closure The closure of a set X , subset of a schema R, in a relation r is defined as
X+

r = X∪{A∈ R\X | |X |r = |X∪A|r}. This means that the closure of X contains
all the attributes of the relation schema r functionally determined by X .

Quasi-closure The quasi-closure of a set X in a relation r is defined as X�r = X ∪⋃
A∈X(X\A)+r . Informally, the quasi-close of a set of attributes X is the union of

the closures of all its maximal subsets and X itself.

FUN is a step-wise algorithm and at each step it handles candidate attributes of
increasing length. Each candidate functional dependency is a quadruple with the list
of candidate attributes X , its cardinality, the quasi-closure and the closure. At level one
it works with candidates of length one computing their cardinality and generating a set
of free sets L0. In the next level all possible pairs of distinct attributes are considered.
If the couple in examination is not a free set then it captures at least one functional
dependency and at most two minimal functional dependencies that will be yielded by
the algorithm. If it is a free set then it is a possible source of functional dependencies
and if there is any they will be computed in the next step.

Let us assume that the algorithm is in the step k. If the considered attribute set is
proved to be free it is dealt with at level k. If not, the candidate encompasses at least
a maximal subset having a similar cardinality and the target is the additional attribute
in the candidate. Each superset of a non-free set is non-free and cannot be source
of minimal functional dependency and so it is not examined in the next step. In the
kth level all free sets with k attributes are generated as well as all minimal functional
dependencies captured by the initial candidates of such a step.

The set of all free sets yielded at each level is used to provide the next level with a
set of candidates. Free sets of length k are expanded to give new candidates of length
k+ 1 by combining two free sets sharing k− 1 attributes. This guarantees that only
possible candidates are generated. It finishes when no more candidates are generated.

Algorithm 1 shows the steps of FUN. For more detail about the algorithm, the
reader is referred to (Novelli and Cicchetti 2001).

We have expressed FUN as the HASKELL fun function1. The algorithm we are
reusing here works with static data, that is, it does not work with the formulas con-
tained in a spreadsheet. The tool we developed evaluates the cells containing formulas

1We have defined a bridge between popular spreadsheet systems and the HASKELL programming
language so that the spreadsheet data is available. This connection between spreadsheets and HASKELL
is part of the HAEXCEL framework and it is described in Chapter 8.

30 2 Functional Dependencies for Spreadsheets

Algorithm 1 Algorithm to infer functional dependencies from data.
input: a data set R
output: a set of functional dependencies

L0 =< /0,0, /0, /0 >
L1 = {< {A},Count({A}),{A},{A}>| A ∈ R} /* Count calculates cardinality */
R′ = R\{A | {A} is a key}
for (k = 1;Lk 6= /0;k = k+1) do

ComputeClosure(Lk−1,Lk) /* computes closure */
ComputeQuasiClosure(Lk,Lk−1) /* computes quasi-closure */
DisplayFD(Lk−1) /* displays a functional dependency */
PurePrune(Lk,Lk−1) /* discards unusable candidates */
Lk+1 = GenerateCandidate(Lk) /* generates candidates */

end for
DisplayFD(Lk−1)

and replaces the formulas by their results. In this way, we get a relation without for-
mulas, as required by the algorithm.

Next, we execute this function in the ghc HASKELL interpreter (Jones et al. 1993)
and show the computed result for the project management system example (the argu-
ments projectsSchema and projectsData correspond to the first and remaining rows of
the spreadsheet of our example, respectively):

∗ghci> fun [] projectsSchema projectsData

projNr ⇀ projManager,projLocation,projDelivery,projBudget,projInstitute

projManager ⇀ projInstitute

projLocation ⇀ projBudget,projInstitute

projDelivery ⇀ projInstitute

projBudget ⇀ projLocation,projInstitute

emplName ⇀ projInstitute,emplAge,emplNation,emplSupervisor

emplAge ⇀ projInstitute,emplName,emplNation,emplSupervisor

emplNation ⇀ projInstitute

emplSupervisor ⇀ projInstitute,emplName,emplAge,emplNation

instNr ⇀ projInstitute, instCapacity, instWheels

instCapacity ⇀ projInstitute, instNr, instWheels

instWheels ⇀ projInstitute, instNr, instCapacity

projManager,projLocation ⇀ projNr,projDelivery

projManager,projDelivery ⇀ projNr,projLocation,projBudget

2.5 Inferring Functional Dependencies from Spreadsheet Formulas 31

projLocation,projDelivery ⇀ projNr,projManager

projManager,projBudget ⇀ projNr,projDelivery

projDelivery,projBudget ⇀ projNr,projManager

projLocation,emplName ⇀ instNr, instCapacity, instWheels

projBudget,emplName ⇀ instNr, instCapacity, instWheels

projLocation,emplAge ⇀ instNr, instCapacity, instWheels

projBudget,emplAge ⇀ instNr, instCapacity, instWheels

projManager,emplNation ⇀ emplName,emplAge,emplSupervisor

projLocation,emplNation ⇀ emplName,emplAge,emplSupervisor, instNr,

instCapacity, instWheels

projDelivery,emplNation ⇀ emplName,emplAge,emplSupervisor

projBudget,emplNation ⇀ emplName,emplAge,emplSupervisor, instNr,

instCapacity, instWheels

projLocation,emplSupervisor ⇀ instNr, instCapacity, instWheels

projBudget,emplSupervisor ⇀ instNr, instCapacity, instWheels

In fact, our function receives as first argument a list of attributes that it should not
consider. This will be useful to handle some attributes in a special way, as it will be
explained later on. In this case this list is empty.

The functional dependencies derived by FUN depend on the quantity and quality
of the data, and thus, for small samples of data, or data that exhibits too many or
too few dependencies, it may not produce the desired functional dependencies. In fact,
even the non-natural dependency emplNation ⇀ projInstitute is inferred, implying that
the nationality of an employee determines the project institute! Note also that, the
projInstitute column occurs in most of the dependencies although only one institute
appears in that column, namely Chicago. Such single value columns are common in
spreadsheets. However, for FUN they induce redundant fields and redundant functional
dependencies. In Section 2.6 we will explain how to handle these cases.

2.5 Inferring Functional Dependencies from Spread-
sheet Formulas

Before we present the inference of dependencies from formulas, let us first define a
spreadsheet, and in particular a spreadsheet cell. A spreadsheet can be seen as a partial

32 2 Functional Dependencies for Spreadsheets

function S : A→V mapping addresses to spreadsheet values. An elements of S, that is,
a cell, is represented as a = v. A cell address a is taken from the set A = Letters ×N,
where Letters = {A, . . . ,Z,AA, . . . ,AZ,BA, . . . ,BZ, . . .}. A value v ∈ V can be a plain
value c ∈ C like a string or a number, a reference to other cell using addresses, or a
formula f ∈ F that can be applied to one or more values: v ∈V ::= c | a | f (v, . . . ,v).

Spreadsheets use formulas to define the values of some elements in terms of other
elements. For example, in the project management system example, the values in
column instCapacity (column L) are computed by multiplying the values in column
instWheels (column M) by 6; this is written as M2 = L2 × 6 (for the second row).
This formula states that the values in column M determine the values in column L, thus
inducing the following functional dependency: instWheels ⇀ instCapacity.

Since the values of the antecedent of a functional dependency can not change over
time, we do not consider columns defined by formulas as candidates to antecedents
when inferring dependencies.

In general, formulas can have references to other cells also containing formulas.
Consider, as an example, the formula A1 = B1 * C1 in column A, and the formula C1
= D1 + E1 in column C. Notice that, these formulas are for the first row of the spread-
sheet and that their row reference increments naturally throughout the rest of the rows.
Because C is defined by another formula, the values that determine C also determine A.
As a result, the two formulas induce the following functional dependencies:

B,C ⇀ A

D,E ⇀ C

Expanding the relationship between formulas, we get the following result:

B,D,E ⇀ A

D,E ⇀ C

The function forms2fds, presented below, receives the formulas in a spreadsheet and
returns all the functional dependencies induced by them. This function uses an auxil-
iary one: getCols. Suppose K and L are columns, M is a row and c a plain value. The
function getCols returns the set of columns used in a formula.

getCols :{Formula}→ Formula→{CellAddress}
getCols all c = { }
getCols all KM = getCols all (lookup KM all)

getCols (f (K1, ...,KM)) = getCols all K1 ∪ ...∪ getCols all KM

2.6 Filtering Functional Dependencies 33

If the cell is defined by a constant (c), it returns nothing; if the cell is a reference to
another cell (KM), it will search for the definition of such cell (lookup KM all) and
recursively applies itself to this result. If it is defined by a function, it recursively
applies itself to the arguments of this function returning the union of these results.

The function forms2fds receives a set of formulas and returns all the functional
dependencies induced by them.

forms2fds :{Formula}→ {Formula}→ {FD}
forms2fds all ({LN = c} ∪ rs) = forms2fds all rs

forms2fds all ({LN = KM} ∪ rs) = {getCols all KM ⇀ LN} ∪ forms2fds all rs

forms2fds all ({LN = f } ∪ rs) = {getCols all f ⇀ LN} ∪ forms2fds rs

In the case a formula is a plain value (first alternative in the definition of function
forms2fds), the function recursively gets the dependencies in the remaining cells rs. In
the second case, the cell contains a reference to cell KM, and so, the function will use
getCols to get all the cells referenced by KM. This result is then used as the antecedent
of a functional dependency, whilst its consequent will be the LN cell. The function will
then try to find the rest of the functional dependencies. In the case the cell is defined
by a function, it dereferences all references in the formula and creates from that an
antecedent. As expected, the consequent of the resulting functional dependency is the
cell LN. The function then continues working on the remaining cells rs.

2.6 Filtering Functional Dependencies

As we explained before, there are some functional dependencies that are inferred from
the data, but they do not reflect any valid relationship in the data. For example, the
dependency emplNation ⇀ projInstitute is induced by the data in the spreadsheet ex-
ample illustrated in Figure 2.2. This dependency implies that the nationality of an
employee determines the project’s institute! Therefore, dependencies like this should
be discarded of further reasoning. In fact, we want the functional dependencies that
better characterize the business logic of the underlying spreadsheet.

The amount of “accidental” functional dependencies heavily depends on the data
and how well the relationships among it are represented. Usually, spreadsheets with
little data induce more “accidental” functional dependencies.

The knowledge about the functional dependencies in a spreadsheet provides the
basis to identify relationships among the data. In fact, they are the building blocks for

34 2 Functional Dependencies for Spreadsheets

the models we will produce in the following chapters. The more accurate we can make
this filtering step, the better the inferred models will reflect the actual business logic of
the spreadsheets.

The process of identifying the “valid” functional dependencies is, of course, am-
biguous in general. Therefore, we employ a series of heuristics to evaluate dependen-
cies. Each of them can add support to a functional dependency. Note that, the smaller
the number attributed to the support the better (this made the implementation of the
heuristics simpler). In the following paragraphs we describe the employed heuristics.

Label semantics This heuristic is used to classify antecedents in functional depen-
dencies. Most keys in databases are labeled as “code” or “number” or are a combi-
nation of these labels with a label more related to the subject. For example, in our
projects spreadsheet, the label projNr is used to label the column with the projects
unique identifiers. Therefore, we consider labels “id”, “code”, “number”, “nr”, “no”
and combinations of them with other labels. A functional dependency with an ante-
cedent attribute of this kind receives higher support than the others. Each attribute
considered as a possible key decreases or increases the support number of the func-
tional dependency in one value, depending if it is on the antecedent or consequent of
the functional dependency, respectively.

Label arrangement It is common to have columns with unique identifiers before
the rest of the data related to some entity. Take as an example the instrument entity
of the projects spreadsheet: the instrument unique number appears before its capacity
and number of wheels. This can be indicative of that column being a key. As ex-
pected the algorithm gives more support to the functional dependencies that respect
the order of the columns in the spreadsheet. In our running example, the functional
dependency instNr ⇀ instCapacity has more priority than the functional dependency
instCapacity ⇀ instNr. The support for each functional dependency is calculated as
follows: imagine that we arrange all the attributes of the functional dependency in a
list starting with the antecedent attributes and then the consequent ones. Starting from
the end of this list, we verify if the last element has a bigger index than the one be-
fore in the schema under consideration. If so, we increase the support number of this
functional dependency in one unit. We do the same for all the attributes in the list.

2.6 Filtering Functional Dependencies 35

Distance between labels It is reasonable to think that a spreadsheet user adds col-
umns in such a way that related things are close to each other. It is also reasonable to
think that the further apart the columns are, the less related they are. Based on these
principles we calculate the distance between the attributes of a functional dependency
and give more priority to those dependencies that have a smaller distance. To calcu-
late this support number, we calculate the indexes of the attributes in the functional
dependency in the schema and create a sorted list with them. If this indexes are all
consecutive, the functional dependency receives support number 0. Otherwise, the dif-
ference between each two consecutive indexes is calculated and added to the support
number.

After sorting we subtract the index of the first index to the second, the second to
the third, and so on, until the end of the list. If the result is negative, we return it as a
positive number and add 10 to it. These numbers have been used in several examples
and have produced good results.

Antecedent size Good keys often consist of a small number of attributes (Connolly
and Begg 2001). In fact, most keys in databases are composed by a single attribute.
Therefore, the smaller the number of antecedent attributes, the higher the support for a
functional dependency. The support number for a functional dependency is the length
of its antecedent: the bigger it is, the less support it will have.

Ratio between antecedent and consequent sizes In general, functional dependen-
cies with smaller antecedents and bigger consequents are stronger and thus more likely
to be a reflection of the underlying data model. Therefore, a functional dependency
receives a higher support, the smaller the ratio between the number of consequent at-
tributes and the number of antecedent attributes is. The support number is calculated
dividing the length of the antecedent by the length of the consequent.

Note that several of these heuristics are possible only in the context of spread-
sheets. This observation supports the contention that end-user software engineering
can benefit greatly from the context information that is available in a specific end-user
programming domain. In the spreadsheet domain, rich context is provided through the
spatial arrangement of cells and through labels (Erwig 2009).

After the algorithm has calculated these supports for the functional dependencies,
they are all summed and the dependencies sorted according to their support. The

36 2 Functional Dependencies for Spreadsheets

algorithm then selects the functional dependencies from that list in the order of their
support until all the attributes of the schema are at least in one functional dependency.

Based on these heuristics, our algorithm produces the following dependencies for
the projects application:

projNr ⇀ projManager,projLocation,projDelivery,projBudget

emplName ⇀ emplAge,emplNation,emplSupervisor

instNr ⇀ instWheels

projInstitute ⇀ { }
instWheels ⇀ instCapacity

This result contains five functional dependencies representing the entities one would
expect to see in project system. Projects, employees, instruments and their character-
istics and institutes are all represented. In fact, what is messing is the relationships
between all of them, which will be handled in the next section.

In the next section we explain how to normalize a set of functional dependencies.
This normalization step is crucial to avoid insertion, modification and deletion anoma-
lies.

2.7 Normalizing Functional Dependencies

One of the purposes of having data in databases is to avoid some problems like data in-
consistence or corruption. Unfortunately, a database per se is not enough to guarantee
this: it is necessary that the database is normalized. Although there are more normal
forms, the third normal form (3NF) is usually enough to guarantee that a database is
well structured. In particular this avoids three major problems: insertion, modification

and deletion anomalies (Codd 1972). The first problem occurs when we need to insert
data, but not a complete row (in the context of spreadsheets, for example). Suppose we
want to add a new employee to our projects spreadsheet. If he is supposed to work in
some existing project, we need to insert again the data about the project. If a mistake
is made, data will become corrupted. If we were working with a normalized database,
there would exist a table for employees, and thus, there would be no need to reinsert
the project’s data. The second problem occurs when we change information in one
row but leave the same information unchanged in the others or modify it in a non-
consistent way. In our example, this may happen if we change the number of wheels
of instrument inst3 in row 2 and do not update the others in the exactly same way. In

2.7 Normalizing Functional Dependencies 37

a normalized database that value occurs only once in the instrument table and so the
problem will never occur. The third problem happens when we delete some row and
lose other information as a side effect. For example, if we delete row 14 in the projects
spreadsheet all the information about the employee Jone will be lost. In a normalized
database, this will be avoided since each entity will have in its own table.

Maier developed an algorithm, SYNTHESIZE , that normalizes a set of functional
dependencies (Maier 1983). It receives a set of functional dependencies as argument
and returns a relational database schema respecting the 3NF. In fact, it returns a set
of compound functional dependencies: a compound functional dependency (CFD) has
the form (X1, . . . ,Xn)⇀ Y , where X1, . . . ,Xn are all distinct sets of attributes and Y is
also a set of attributes. A relation r holds the CFD (X1, . . . ,Xn) ⇀ Y if it holds the
functional dependencies Xi ⇀ X j and Xi ⇀ Y , where 1 6 i and j 6 k. In this CFD
(X1, . . . ,Xn) is the left side, X1, . . . ,Xn are the left sets and Y is the right side. In fact,
a compound functional dependency is nothing more than a shorthand way of writing a
set of functional dependencies with equivalent antecedents (Maier 1983).

Algorithm 2 describes SYNTHESIZE.

Algorithm 2 Algorithm to normalize a set of functional dependencies up to the 3NF.
input: a set of functional dependencies F
output: a set of compound functional dependencies

G = a reduced, minimum annular cover for F
for all CFD (X1,X2, ...,Xn)⇀ Y in G do

G′ = G′ ∪ {relational schema R = X1X2...XnY with CKs {X1,X2, ...,Xn}}
end for
return the set of relational schemas G′

The algorithm works as follows: it finds a reduced, minimum annular cover G

for the input set of dependencies F . Then, for each compound functional depen-
dency (X1,X2, ...,Xn) ⇀ Y in the G set, it creates a relational schema with attributes
{X1,X2, ...,Xn,Y} and candidate keys {X1,X2, ...,Xn}. More detail about this algorithm
can be found in (Maier 1983).

We have implemented this algorithm in HASKELL as the synthesize function. It
receives as argument a set of functional dependencies (list of functional dependencies
in HASKELL) and returns a set of compound functional dependencies. Next, we exe-
cute synthesize with the functional dependencies induced by our running example and
show its result:

38 2 Functional Dependencies for Spreadsheets

({{projNr}},{projManager,projLocation,projDelivery,projBudget})
({{emplName}},{emplAge,emplNation,emplSupervisor})
({{ instNr}},{instWheels})
({{ instWheels}},{instCapacity})
({{projInstitute}},{ })

An important property to guarantee in a set of relational schemas is the lossless decom-

position property. Lossless decomposition means that if we decompose a relation into
smaller relations, it is possible to undo the process and recover the original relation.

Moreover, it is possible that some columns of our spreadsheet are not included in
any functional dependency.

To guarantee that they appear in the final schema and to ensure the lossless decom-
position property we need to give an extra functional dependency to the SYNTHESIZE

algorithm. In fact, we use Maier’s strategy (Maier 1983): we generate an additional
functional dependency which contains all the columns of our spreadsheet as antecedent
(the exception are the ones defined by formulas). The consequent of the dependency is
a newly introduced attribute and the attributes representing formulas. For our example
such functional dependency is as follows:

projNr,projManager,projLocation,projDelivery,projBudget,emplName,

emplAge,emplNation,emplSupervisor, instNr, instWheels,projInstitute

⇀ instCapacity,newAttribute

The final set of schemas in the 3NF is as follows:

({{projNr}},{projManager,projLocation,projDelivery,projBudget})
({{emplName}},{emplAge,emplNation,emplSupervisor})
({{ instNr}},{instWheels})
({{ instWheels}},{instCapacity})
({{projInstitute}},{ })
({{projNr,emplName, instNr,projInstitute}},{ })

In the next section, we will explain how to combine the techniques introduced in the
previous sections to compute functional dependencies from a spreadsheet.

2.8 SSFUN: Functional Dependencies for Spreadsheets 39

2.8 SSFUN: Functional Dependencies for Spreadsheets

In the previous sections we described how to infer functional dependencies from spread-
sheet data, how to filter these dependencies and how to normalize them. In this section,
we explain how to compose all these techniques to calculate a set of functional depen-
dencies that completely characterize a spreadsheet, as shown in Algorithm 3.

Algorithm 3 Algorithm to calculate functional dependencies for spreadsheets.
input: a spreadsheet s
output: a set of sets of functional dependencies

schemasAndRelations = findSchemaAndRelation s
for all (schema,relation) in schemasAndRelations do

onesAtts = get1col (schema,relation)
oneFDs = map (λatt→ (att,{ })) onesAtts
formulaAtts = findFormulaCols schema relation
formulaFDs = createFormulaFDs formulaAtts schema relation
f = fun (onesAtts ∪ formulaAtts) schema relation
g = filter (f ∪ onesFDs ∪ formulaFDs) schema relation
h = synthesize relation (lossless?) g
j = selectKeys h
k = toFDs j

end for
return set of functional dependencies k

The first step of our algorithm is to find the schemas and relations of the spread-
sheet. To perform this step we use an algorithm from the UCheck project (Abraham
and Erwig 2007b) that can infer tables in spreadsheets. For each table in the spread-
sheet, the algorithm assumes that the first row contains the labels and the remaining
rows contain the data. If references exist from one table to another, the functional
dependencies are handled as a unique set since these references lead to dependencies
between the two schemas. Otherwise, each table is handled on its own. The next steps
are executed for each schema and relation.

As we explained before, columns that have the same value in all rows are problem-
atic and should be handled properly. To do so, the algorithm finds these columns, and
for each one it produces a functional dependency where the its label is the antecedent.
The consequent is the empty set. These columns are also argument of fun so it does
not try to find functional dependencies containing them.

The next phase is to find the columns that are defined by formulas. For each col-

40 2 Functional Dependencies for Spreadsheets

umn, the algorithm verifies if the second row (remember that the first one contains the
column label) is defined by a formula. If this is the case, it verifies the remaining rows
and collects all the columns of the references that are used to define the formula. These
columns are then passed as argument to the function fun so it does not search for de-
pendencies with antecedents on this list. Next, the algorithm constructs the functional
dependencies based on these columns and their formulas.

The algorithm then runs fun with formula and single value columns, the schema
and the relation as arguments. The result set of functional dependencies f is then
concatenated with the dependencies constructed based on the columns defined by for-
mulas. The result functional dependencies are the argument of synthesize. It will also
receive a flag indicating if it should normalize respecting the lossless decomposition
property or not.

The next step is to select the keys from the candidate keys produced by synthesize.
The algorithm chooses the smallest candidate key to become the key of the schema
since good keys are usually small. This set of schemas is then transformed into a set
of functional dependencies: each schema of the form (key,attributes) results in the
functional dependency key ⇀ attributes. This set of functional dependencies is the
result of our algorithm.

For our project management system, the result set of functional dependencies is
listed next:

projNr ⇀ projManager,projLocation,projDelivery,projBudget

emplName ⇀ emplAge,emplNation,emplSupervisor

instNr ⇀ instWheels

instWheels ⇀ instCapacity

projInstitute ⇀ { }
projNr,emplName, instNr,projInstitute ⇀ { }

Notice that, each of the schemas produced by synthesize has a single candidate key
which makes the choice for a key obvious. This happens because the set of depen-
dencies that is given to the synthesize function is small and thus less likely to be not
normalized. Nevertheless, we must guarantee the normalization of the set of depen-
dencies, and thus, we must always run SYNTHESIZE.

2.9 Conclusions 41

2.9 Conclusions

In this chapter we have described how to infer, filter and normalize functional depen-
dencies for spreadsheets. In fact, we have described how to calculate a set of functional
dependencies that completely characterize a spreadsheet business logic.

The first step is to infer the functional dependencies. We have reused an exist-
ing and efficient algorithm, FUN, developed in the context of databases. However, it
produces too many functional dependencies. Algorithms like this produce all the de-
pendencies existing in a data set, but many of them are unexpected. For our running
example, there exists the dependency emplNation ⇀ projInstitute that implies that the
nationality of an employee determines the project’s institute, which does not make
sense. This kind of dependencies has to be discarded.

So, the next logic step is to filter the dependencies that do not reflect any valid
relationship among the spreadsheet data. Using spreadsheets idiosyncrasies like the
order of columns or the meaning of labels we can calculate a set of dependencies
that describe the relationships between columns of a spreadsheet. We also used other
heuristics, such as the number of attributes both in the antecedent and in the consequent
of dependencies, to produce a set of functional dependencies that more precisely define
the business logic of the spreadsheet.

Finally, these functional dependencies must be normalized so they can be useful.
Otherwise, the models produced from them may allow corrupted data. In this step
we reused an algorithm from Maeir that produces a set of schemas normalized up
to the third normal form. We then transform these schemas into a set of normalized
functional dependencies. These dependencies can then be used to several purposes,
namely the creation of several models representing the spreadsheet business logic.

In the following chapters we will show the different models we can compute using
these dependencies and, further on, the possibilities that these models bring to spread-
sheet end users.

42 2 Functional Dependencies for Spreadsheets

Chapter 3

Inferring Models for Spreadsheets

Summary

Many errors in spreadsheet formulas can be avoided if spreadsheets are

built automatically from higher-level models that can encode and enforce

consistency constraints. However, designing such models is time consuming

and requires expertise beyond the knowledge to work with spreadsheets.

To address these problems and to support the model-driven spreadsheet en-

gineering approach, we have developed a technique to automatically infer

relational database schemas, ClassSheet models and UML class diagrams

from spreadsheets. We have integrated our techniques with the HAEXCEL

framework, which allows the automatic generation of refactored spread-

sheets from the inferred ClassSheet model. The resulting spreadsheet guides

further changes and safeguards the spreadsheet against a large class of for-

mula errors.

3.1 Introduction

In recent years the spreadsheet research community has recognized the need to sup-
port end-user model-driven software development, and to provide spreadsheet devel-
opers and end users with methodologies, techniques and the necessary tool support
to improve their productivity: in fact, several techniques have been proposed to al-
low end users to safely edit spreadsheets, like, for example, the use of spreadsheet
templates (Abraham et al. 2005) and ClassSheets (Engels and Erwig 2005). All these
approaches aim at a form of model-driven software development: a spreadsheet “busi-

43

44 3 Inferring Models for Spreadsheets

ness model” is defined from which a customized spreadsheet application is generated
to guarantee the consistency of the spreadsheet with the underlying model.

Despite of its benefits, model-driven software development is sometimes diffi-
cult to realize in practice. For example, in the context of spreadsheets, the use of
model-driven software development requires that the developer is familiar both with
the spreadsheet domain and with model-driven software development. As some stud-
ies suggest, defining the business model of a spreadsheet can be a complex task for end
users (Abraham and Erwig 2006a). As a result, end users are unable (or reluctant) to
follow this spreadsheet development discipline. Things get even more complex when
end users need to modify a large (legacy) spreadsheet developed by others and whose
functionality they do not understand.

Legacy spreadsheets pose a particular challenge to the approach of controlling
spreadsheet evolution through higher-level models, because the need for a model might
be overshadowed by two problems:

1. there are no large short-term benefits, since the spreadsheet is already created,
but only smaller longer term benefits, when making future changes to the spread-
sheets;

2. the existing data must be transferred into the new model-generated spreadsheet.

In this chapter, we propose reverse engineering techniques to derive relational data-
base schemas, ClassSheet models and UML class diagrams from existing spreadsheets.
The algorithm to compute functional dependencies from spreadsheet data introduced
in Chapter 2 is the main building block to construct a relational database schema. The
induced functional dependencies and this schema are then used to produce a Class-

Sheet model representing the business logic of the spreadsheet. Since ClassSheet

models are similar to UML class diagrams we also introduce a transformation from
the former to the latter.

We build three different model because they have different purposes: the relational
model is necessary to support the migration to databases, as it will be presented in
Chapter 5; the ClassSheet is a more specific model for spreadsheets and thus better to
represent spreadsheet evolution as we will expose in Chapter 6; finally, the UML model
is more generic and well know among different communities supporting migrations
between different paradigms. Although we do not make a specific use of this model in
this thesis, this gives support for further migrations of spreadsheets.

3.2 Motivational Example 45

This chapter is organized as follows. In Section 3.2 we present a motivational
example. In Section 3.3 we present the technique to construct a relational database
schema from functional dependencies. The algorithm for the automatic derivation of
ClassSheets for spreadsheets is explained in Section 3.4. The transformation of Class-

Sheets into UML class diagrams is exposed in Section 3.5. In Section 3.6 we present
an evaluation of our techniques and Section 3.7 concludes the chapter.

3.2 Motivational Example

Consider the example spreadsheet illustrated in Figure 3.1, adapted from (Powell and
Baker 2003).

Figure 3.1: A spreadsheet representing a sales system for dishwasher detergents.

This spreadsheet represents a sales system for dishwasher detergents. The labels
have the following meanings: com code stands for the commercial code of the deter-
gent, upc for universal product code, description for the description of the detergent,
size for the size of the detergent’s case, case for number of cases, nitem for the item
number, store for the store where the sale took place, week for the week the sale was
done, move for sales quantity, qty for the transaction quantity (always set to 1), price
for the price of each unit, onsale for an indicator of advertised sale, profit for the store
profit per case and ok for a confirmation code. Notice that profit is calculated using
the formula that multiplies the sale’s quantity (column I) by the price (column K) and
taking 20% of this: =I2*K2*0.2 (for the first row).

The business logic underlying this spreadsheet is not immediately clear and it is
quite difficult to infer for a non-expert in this domain. In this section, we will infor-
mally describe a strategy to infer such a business logic from the spreadsheet data.

Entities contained in such a spreadsheet and relationships between them are re-
flected by the presence of functional dependencies between spreadsheet columns. For

46 3 Inferring Models for Spreadsheets

example, using the techniques presented in Chapter 2 we can infer the following func-
tional dependencies:

ok ⇀ { }
qty ⇀ { }
move,price ⇀ profit

store,week ⇀ onsale

upc ⇀ com code,description,size,case,nitem

ok,qty,move,week,upc,store ⇀ { }

From these functional dependencies, we would like to generate the following relational
schema:

Ok (ok)

Quantity (qty)

Profit (move,price,profit)

StoreWeek (store,week,onsale)

Detergent (upc,com code,description,size,case,nitem)

<Sale> (#upc,#move,#price,#store,#week,#qty,#ok)

The model has several relations: the Profit relation stores information about the profit
based on the movements and prices; StoreWeek contains information that varies for
each store every week such as the advertised products; Detergent contains all the in-
formation about the detergents. Sale is a relationship that stores the information on
the sales themselves. This relationship is also responsible for guaranteeing the lossless
decomposition property. Finally, the relation Ok and Quantity contain a single value
(1 in both cases) which is then referenced from the Sale relation.

Although this relational model is very expressive, it can not completely specify
spreadsheets since they need to have a layout specification. In contrast, the Class-

Sheet modeling framework offers high-level, object-oriented formal models to spec-
ify spreadsheets and thus presents a promising alternative (Engels and Erwig 2005).
ClassSheets allow users to express business object structures within a spreadsheet us-
ing concepts from UML. A spreadsheet application consistent with the model can be
automatically generated, and thus, a large variety of errors can be prevented.

We therefore employ ClassSheets as the underlying modeling approach for spread-
sheets and transform the inferred relational model into a ClassSheet model. Notice
that, all the information represented in the relational model can be represented in the

3.2 Motivational Example 47

ClassSheet. In Figure 3.2 we present the ClassSheet specifying our running example.

Figure 3.2: ClassSheet modeling the sales system for dishwasher detergents.

To present ClassSheets we start by considering the simplest table in our example:
between rows 28 and 32 (row 32 is the one after row 31 with the ellipsis instead of
the row number) is represented the entity to store the Ok values. This kind of entity
is designated a class and, in some cases, represents a table from the relational model.
The Ok class is represented by the column in which it will be in a spreadsheet, A in
this case, the label of the table, Ok, the label of the columns, in this case just one, ok,
and the default value for each new row, 0 in this case. If the column represents a key
in the relational model, it is underlined, as is the case of ok. Notice that, what should
be row 32 has ellipses meaning that this column can be vertically expandable, that is,
new rows can be added. The Quantity class is quite similar to Ok.

The Detergent table/class is specified in a similar way, but in this case it is com-
posed by six columns.

48 3 Inferring Models for Spreadsheets

The top part (rows 1 to 6 plus the following row) represents the sales relation. Since
Sale is a relationship between two other relations, namely Profit and StoreWeek it is
represented as a cell class (blue table) and the two related classes Profit and StoreWeek

in red. This will be explained in detail in the coming sections.
ClassSheets carry information rich enough to allow the automatic generation of

UML class diagrams. Figure 3.3 shows the UML class diagram that can be derived
from this ClassSheet.

upc : Int=0
com_code : Int=0
description : string=""
size : Int=0
case : Int=0
nitem : Int=0

Detergent

store : Int=0
week : Int=0

StoreWeekKey Sale
* *

move : Int=0
price : Int=0

ProfitKey

ok : Int=0
Ok

qty : Int=0
Quantity

=move*price

upc : Int
qty : Int
ok : Int

*

1

*

1

*

1

store : Int=0
week : Int=0
onsale : string=""

StoreWeek
move : Int=0
price : Int=0
profit : Int

Profit
1 1

Figure 3.3: A class diagram specifying the sales system for dishwasher detergents.

Although the business logic of the spreadsheet can be represented in the UML
model, its layout is lost since it is not possible to represent it using this language. The
major implication is that, if a spreadsheet is generated from one of these specifications,
a new layout must be created.

In this section, we have described our approach to derive relational schemas, Class-

Sheets, and UML class diagrams for spreadsheets through an example. In fact, these
models were automatically computed by the tool that we have implemented based on
our approach. In the coming sections we will describe these steps in a general way for
any spreadsheet.

3.3 Deriving a Relational Schema

In this section we explain how to use functional dependencies extracted from spread-
sheet data, as exposed in Chapter 2, to compute a complete relational schema. Algo-

3.3 Deriving a Relational Schema 49

rithm 4 shows the main steps of this process.

Algorithm 4 Algorithm to calculate a relational schema from schemas with candidate
keys.
input: a set of schemas with candidate keys
output: a complete relational schema

1: Infer relations’ names
2: Classify candidates keys
3: Infer foreign keys
4: Infer primary keys
5: Create a relational intermediate direct graph
6: Optimize the relational intermediate direct graph
7: Map the relational intermediate direct graph to a relational schema

Algorithm 4 is illustrated in a graphical way in Figure 3.4.

Schemas with
candidate

keys

Named
schemas with
candidate keys

Infer
names

Table with
candidate

keysCreate
CKs'
table

Table with
foreign keys

Create
FKs'
table

Table with
primary

keys

Create PKs'
table

RID graph

Improved
RID graph

Relational
schema

Create
PK's
table

Create
relational
schema

Improve
RID

graph
Create
RID

graph

Figure 3.4: Graphical representation of Algorithm 4.

Algorithm 4 receives a set of schemas with candidate keys, but the final result com-
puted in Chapter 2 is a set of functional dependencies, so we can not use it directly. In
fact, we must use an intermediate result containing the required set of schemas contain-
ing candidate keys. This result is the output of the SYNTHESIZE algorithm presented
in Section 2.7. We show next the schema with candidate keys for our running example.

({{ok}},{ })
({{qty}},{ })
({{move,price}},{profit})
({{store,week}},{onsale})
({{upc}},{com code,description,size,case,nitem})
({{ok,qty,move,week,upc,store}},{ })

50 3 Inferring Models for Spreadsheets

This set of attributes with candidate keys will be used throughout this section to com-
pute a relational schema. This algorithm has seven steps; each of them is presented in
detail in the next sections. Note that, the steps 2 through 6 are based on the algorithm
presented by Alhajj (2003). Since it was designed in the context of databases, we had
to adapt it to better work in the spreadsheet realm.

We present next the first step of our algorithm, that is, the inference of names for
relations.

3.3.1 Name Inference

To generate models and subsequent spreadsheets similar to the ones a human would
produce, we perform name analysis on the schema attributes. To give the correct name
to each part of the model should improve its understandability.

Let us take as an example the functional dependency clientNr ⇀ clientNm. One
could say that it represents something about client, since both column names have
“client” as prefix.

To infer names for relations, we apply several heuristics, as described next:

Usual names We have a set of words that are usually used to name databases, tables,
keys and attributes. These words are divided in several categories:

Schemas/databases “dvds”, “houses”, “clients”, “customers”, etc.

Relations/tables “client”, “customer”, “house”, “dvd”, “artist”, etc.

Relationships “sale”, “enrollment”, “works”, “studies”, etc.

Primary keys “id”, “code”, “number”, a noun concatenated with the previous
words, etc.

Attributes “name”, “address”, “age”, “duration”, etc.

These names are organized in a hierarchical way, for example, if the name of the
database is “dvds”, the relations’ names are reduced to the set with “dvds” and “rent-
ing”. Consequently, the names of keys and attributes are also restricted. We try to
match the labels used in the spreadsheet with these lists to give the best possible name
to each part of the model. A similar approach is used in (Ram 1995).

3.3 Deriving a Relational Schema 51

Intersection In the example shown before, if we try to intersect both names we get
client. In this case this would be used as the name of the schema. If the intersection
of attributes is a string in the list of words we have, it becomes the name of the table
we are considering. For the cases where no name can be used, we concatenate the first
letter of each attribute and use it as the name of the table/relation.

Connection table Usually, there is a table connecting other tables in a schema. The
key of this table is usually composed by the keys of the tables it connects, and possibly
by other attributes. This table is usually termed with the name of the relation, for ex-
ample, “rent”, “sell”, “invoice row”, etc. Since this is very specific for each problem,
and very difficult to infer, we name this table the concatenation of the names of the
tables from which the key is composed.

Using these heuristics, the names inferred for our running are the following:

Ok ({{ok}},{ })
Quantity ({{qty}},{ })
Profit ({{move,price}},{profit})
StoreWeek ({{store,week}},{onsale})
Detergent ({{upc}},{com code,description,size,case,nitem})
Sale ({{ok,qty,move,week,upc,store}},{ })

For this particular example, it was difficult to infer meaningful names and thus we gave
names manually for all schemas, except for Ok. The inferred name for Quantity was
Qty, for Profit was MPP, for StoreWeek was SWO, for Detergent was UCDSCN and
for Sale was OkQuantityProfitStoreWeekUCDSCN.

3.3.2 The Candidate Keys

The second step of the algorithm is to compute a table with numbered candidate keys
based on the schemas and candidate keys inferred from the spreadsheet’s data. Ta-
ble 3.1 presents the numbered candidates keys for our running example.

To construct the table for the candidate keys, an entry is added for each attribute
of a candidate key. Each row has the name of the attribute, the corresponding schema
and a number. Within a schema, this number must be the same for each attribute of a
candidate key but unique for each candidate key.

52 3 Inferring Models for Spreadsheets

Schema Attribute Candidate Key #

Ok ok 1
Quantity qty 1
Profit move 1
Profit price 1
StoreWeek store 1
StoreWeek week 1
Detergent upc 1
Sale ok 1
Sale qty 1
Sale move 1
Sale week 1
Sale upc 1
Sale store 1

Table 3.1: Table representing the candidate keys for the detergents example.

To better understand this table let us look at a couple of examples. As we can see in
Table 3.1, the Profit schema has one candidate key with two attributes and so it has the
same number for each attribute, 1. If we had a schema with more than one candidate
key, say ({{A,B},{C,D,E},{F}},{G}), A and B would have the number 1, C, D

and E would have 2, and F would have 3.

3.3.3 The Foreign Keys

The next step of our algorithm is to compute a table with foreign keys. Each entry in
this table must have the schema and the attribute to which the candidate key points to,
the schema and the attribute of the foreign key, and a link number. The link number
represents the number of correspondences between a candidate key and foreign keys
in different schemas. For example, if a candidate key has two attributes, each one
corresponding to candidate keys in different schemas, the link number will be 1 for the
first attribute and 2 for the second one.

The foreign keys for our running example are represented in Table 3.2.

As the reader may have noticed, there are several foreign keys in Table 3.2. In
fact, there is a foreign key from each schema to Sale. Algorithm 5 produces this table:

3.3 Deriving a Relational Schema 53

Candidate Key Attribute Foreign Key Attribute
Link #

Schema Attribute Schema Attribute

Ok ok Sale ok 1
Quantity qty Sale qty 1
Profit move Sale move 1
Profit price Sale price 1
StoreWeek store Sale store 1
StoreWeek week Sale week 1
Detergent upc Sale upc 1

Table 3.2: Table representing the foreign keys for the detergents example.

it receives a set of schemas with candidate keys and creates a table with the existing
foreign keys.

Algorithm 5 Algorithm to create the foreign keys’ table.
input: a set of schemas with candidate keys schemas
output: table with all foreign keys table

table = new empty table
consider CKs from schemas in ascending order by their number of attributes
for all ck in CKs do

n = number of attributes in ck
consider schemas in ascending order by their number of attributes
for all schema in schemas do

consider s ∈P (schema) containing the same number of attributes as ck
link# = 1
for all s do

for i=1 to n do
if ck schema name 6= schema name ∧ ck(i) 6= s(i) then

/* ck schema name: name of the schema of the CK in use
schema name: name of the schema under consideration */
add (ck schema name, ck(i), schema name, s(i), link#) to table

end if
end for
link# = link# + 1

end for
end for

end for
return table

54 3 Inferring Models for Spreadsheets

This algorithm iterates over the set of candidate keys of the schemas in an ascending
order of their number of attributes. For each candidate key, it considers the schemas
in an ascending order of their number of attributes. For each of these schemas, it
iterates over the elements of its power set with the same number of attributes of the
candidate key under consideration. For different schemas and attributes, it adds the
tuple (ck relation name, ck attribute, fk schema name, fk attribute, link#). The link
number is incremented for each part of a schema considered.

3.3.4 The Primary Keys

Having computed the candidate keys and the foreign keys, a table with the primary key
for each schema can now be computed. If the schema has only one candidate key, then
it is chosen to be the primary key. If it has more then one candidate key, the selected
one is the first that appears in the first column of the foreign keys’ table.

Table 3.3 represents the primary keys for our running example. Notice that, Ta-
ble 3.3 is a subset of the first two columns of Table 3.1.

Schema Attribute

Ok {ok}
Quantity {qty}
Profit {move, price}
StoreWeek {store, week}
Detergent {upc}
Sale {ok, qty, move, week, upc, store}

Table 3.3: Table representing the primary keys for the detergents example.

For each schema, the candidate key is unique and so it was chosen to be the primary
key.

3.3.5 The Relational Intermediate Directed Graph

The next step in the reverse engineering process is to produce a Relational Intermediate

Directed (RID) Graph (Alhajj 2003). This graph includes all the relationships between
a given set of schemas. Nodes in the RID graph represent schemas and directed edges

3.3 Deriving a Relational Schema 55

represent foreign keys between those schemas. For each schema, a node in the graph
is created, and for each foreign key, an edge is added to the graph.

Sale

*

Ok

*

Quanity

*

Profit

*

*

StoreWeek

*

*

Detergent

*

*
*

Figure 3.5: RID graph for the detergents example.

Figure 3.5 represents the RID graph for the detergents sales system. This graph
can in general be improved in several ways. We explain this in the next section.

3.3.6 Optimizing the Relational Intermediate Direct Graph

It is possible to optimize and improve the RID graph by detecting relationships, that
is, schemas that represent relationships connecting other schemas. In such cases, the
schema is transformed into a relationship. Algorithm 6 detects these cases: it receives
the foreign keys’ table, the RID graph and classifies schemas as relationships, if any
exist.

Algorithm 6 Algorithm to identify relationships.
input: the foreign keys’ table f ks and the RID graph rid
output: improved RID graph

for all relation r that appears only in the third column in f ks do
let w be the number of links connected to r
if w > 2 then

let r1,r2, ...,rw be the relations connected to r
if the only candidate of r is a combination of the PKs of r1,r2, ...,rw then

r is a relationship between r1,r2, ...,rw
the cardinality is ∗ to all references of r

end if
end if

end for

Since the only candidate key of Sale is the combination of all other schemas’ primary
keys, it represents a relationship between all the other schemas and is therefore trans-
formed into a relationship. The improved RID graph is illustrated in Figure 3.6.

56 3 Inferring Models for Spreadsheets

Sale

Ok

*

Quanity

*

Profit

*

StoreWeek

*

Detergent

*

Figure 3.6: Optimized RID graph for our running example.

The RID graph shown in Figure 3.6 represents 5 entities: Ok, Quantity, StoreWeek,
Profit and Detergent. All of them have the cardinality “*” as assigned by Algorithm 6.
The relationship Sale connects them all.

3.3.7 The Relational Schema

Using the results from the previous sections it is now possible to compute a relational
schema. We express the generated schema using standard Entity-Relationship (ER)
diagrams (Chen 1976). We choose to express the complete database schema as a
ER model since it is still considered the dominant method of conceptual data mod-
eling (Muller 1999; Davies et al. 2006).

We use the improved RID graph as the basis for the ER model: each schema node
is transformed in a ER entity and the each relationship node in a ER relationship. The
directed arrows with “*” cardinality are transformed in one-to-n connections. We add
the corresponding keys and remaining attributes to each relation.

Figure 3.7 illustrates the ER model for our running example.
As we can see in the ER diagram illustrated in Figure 3.7, attributes are represented

by circles; the ones underlined represent the key of the corresponding entity.
Using the textual representation we described in Section 2.3, this model is repre-

sented as shown next:

Ok (ok)

Quantity (qty)

Profit (move,price,profit)

StoreWeek (store,week,onsale)

Detergent (upc,com code,description,size,case,nitem)

<Sale> (#upc,#move,#price,#store,#week,#qty,#ok)

Although ER diagrams are visually very expressive, in this thesis we prefer to use

3.4 Deriving a ClassSheet Specification 57

Sale

Ok Quanity

ProfitStoreWeek

Detergent

case

profit

size description

onsale

com_code

price

store

upc

ok qty

move

week

nitem

Figure 3.7: ER model specifying our running example.

the textual representation, since it is more compact, and in our case, has the same
expressiveness.

3.4 Deriving a ClassSheet Specification

In the previous section we have described how to automatically infer a relational
schema from spreadsheet data. This kind of specification is mostly used is the da-
tabase realm since it is very appropriate to model data. Unfortunately, is some cases,
this may not be enough for spreadsheets since this model discards, for example, the
layout of a spreadsheet.

In this section, we explain in detail the steps to automatically extract a ClassSheet

model from a spreadsheet. These specifications can model all the aspects of a spread-
sheet, including its layout. We start by presenting in more detail the ClassSheet model.

3.4.1 ClassSheets

The ClassSheet modeling framework offers high-level, object-oriented formal models
to specify spreadsheets (Engels and Erwig 2005). ClassSheets allow users to express
business object structures within a spreadsheet using concepts from UML. From this
specification, a spreadsheet application consistent with the model can be automatically
generated. This new spreadsheet has mechanisms to guide the user interaction with the
spreadsheet preventing in this way a significant amount of errors.

58 3 Inferring Models for Spreadsheets

Let us look at the example illustrated in Figure 3.8, the so-called income sheet,
consisting of a list of values, which are summed up and the result shown in a separate
cell.

Figure 3.8: An example of a ClassSheet: the income sheet.

From an object-oriented point of view, one can see a summation object, which
aggregates a list of objects containing single values. Looking at the layout structure,
and starting by the blue part, we have a class labeled Item, consisting of a value for
which has as default 0. In fact, this is not a single value, but a list, since the row after
is labeled by the ellipses.

The summation object, in red, is defined by the label Income, a footer with the
label Total and an aggregation formula assigned to an attribute named total. Such
an object-oriented extended template is called a ClassSheet since it defines classes
together with their attributes and aggregational relationships.

As we can see, ClassSheets consist of a list of attribute definitions grouped by
classes and arranged on a two dimensional grid. Additional labels are used to annotate
the concrete representation. References to other entries are defined by using attribute
names, as shown in the SUM formula in the example.

The formal language of ClassSheets is defined as follows (Engels and Erwig 2005):

f ∈ Fml ::= ϕ | n.a | ϕ(f , . . . , f) (f ormulas)

b ∈ Block ::= ϕ | a = f | b p b | bˆb (blocks)

l ∈ Lab ::= h | v | .n (classlabels)

h ∈ Hor ::= n | p n (horizontal)

v ∈Ver ::= p n | p n (vertical)

c ∈Class ::= l : b | l : b↓ | cˆc (classes)

s ∈ Sheet ::= c | c→ | s p s (sheets)

3.4 Deriving a ClassSheet Specification 59

3.4.2 Generating ClassSheets

The relational schema generated in Section 3.3.7 can be translated into a ClassSheet

diagram. By default, each relation is translated into a class with the same name as
the relation and a vertically expanding block. In general, for a relation A with at-
tributes A1, . . . ,An,An+1, ...,Am and default values da1, . . . ,dan,dn+1, ...,dm, a Class-

Sheet class/table is generated as shown in Figure 3.91.

Figure 3.9: Generated class for a relation A.

This ClassSheet represents a spreadsheet “table” with name A. For each attribute,
a column is created and is labeled with the attribute’s name. The default values depend
on the attribute’s domain. This table expands vertically, as indicated by the ellipses.
The key attributes become underlined labels.

A special case occurs when there is a foreign key from one relation to another.
The two relations are created basically as described above but the attributes that com-
pose the foreign key do not have default values, but references to the corresponding
attributes in the other class. Let us use as an example the following relations:

M (M1, ...,Mr,Nt,Nt+1,Mr+1, ...,Ms)

N (N1, ...,#Nt,#Nt+1, ...,Nu)

The corresponding ClassSheet is illustrated in Figure 3.10:

Figure 3.10: Generated ClassSheet for relations with foreign keys.

1We omit here the column labels, whose names depend on the number of columns in the generated
table.

60 3 Inferring Models for Spreadsheets

Relationships are treated differently and will be translated into cell classes. We
distinguish between two cases: (A) relationships between two schemas, and (B) rela-
tionships between more than two schemas.

For case (A), let us consider the following set of schemas:

M (M1, ...,Mr,Mr+1, ...,Ms)

N (N1, ...,Nt,Nt+1, ...,Nu)

<R> (M1, ...,Mr,N1, ...,Nt,R1, ...,Rx,Rx+1, ...,Ry)

The ClassSheet that is produced by this translation is shown in Figure 3.11 and
explained next. For both nodes M and N a class is created as explained before (lower
part of the ClassSheet). The top part of the ClassSheet is divided in two classes and
one cell class. The first class, NKey, is created using the key attributes from the N
class. All its values are references to N. For example, n1 = N.N1 references the values
in column A in class N. This makes the spreadsheet easier to maintain while avoiding
insertion, modification and deletion anomalies. Class Mkey is created using the key
attributes of the class M and the rest of the key attributes of the relationship R. The cell
class (with blue border) is created using the rest of the attributes of the relationship R.

Figure 3.11: ClassSheet of a relationship connecting two relations.

In principle, the positions of M and N are interchangeable and we have to choose
which one expands vertically and which one expands horizontally. We choose which-
ever combination minimizes the number of empty cells created by the cell class, that
is, the number of key attributes from M and R should be similar to the number of
non-key attributes of R. Three special cases can occur with this configuration.

3.4 Deriving a ClassSheet Specification 61

The first case occurs when one of the relations M or N might have only key at-
tributes. Let us assume that M is in this situation:

M (M1, ...,Mr)

N (N1, ...,Nt,Nt+1, ...,Nu)

<R> (M1, ...,Mr,N1, ...,Nt,R1, ...,Rx,Rx+1, ...,Ry)

In this case, and since all the attributes of that class are already included in the class
MKey or NKey, no separated class is created for it. The resultant ClassSheet would be
similar to the one presented in Figure 3.11, but a separated class would not be created
for M or for N or for both. Figure 3.12 illustrates this situation.

Figure 3.12: ClassSheet where on entity has only key attributes.

The second case occurs when the key of the relationship R is only composed by
the keys of M and N (defined as before), that is, R is defined as follows:

M (M1, ...,Mr,Mr+1, ...,Ms)

N (N1, ...,Nt,Nt+1, ...,Nu)

<R> (M1, ...,Mr,N1, ...,Nt,R1, ...,Rx)

The resultant ClassSheet is shown in Figure 3.13.
The difference between this ClassSheet model and the general one is that the MKey

class on the top does not contain any attribute from R: all its attributes are contained
in the cell class.

Finally, the third case occurs when the relationship is composed only by key at-
tributes as illustrated next:

M (M1, ...,Mr,Mr+1, ...,Ms)

N (N1, ...,Nt,Nt+1, ...,Nu)

<R> (M1, ...,Mr,N1, ...,Nt)

62 3 Inferring Models for Spreadsheets

Figure 3.13: ClassSheet of a relationship with all the key attributes being foreign keys.

In this situation, the attributes that appear in the cell class are the non-key attributes of
N and no class is created for N. Figure 3.14 illustrates this case.

Figure 3.14: ClassSheet of a relationship composed only key attributes.

For case (B), that is, for relationships between more than two tables, we choose
between the candidates to span the cell class using the following criteria: (1) M and N
should have small keys; (2) the number of empty cells created by the cell class should
be minimal. After having chosen the two relations (and the relationship), the genera-
tion proceeds as described above. The remaining relations are created as explained in

3.5 Deriving a UML Class Diagram 63

the beginning of this section.

In Figure 3.15 we present the ClassSheet model that is generated by our approach
for the detergent application.

Figure 3.15: The ClassSheet generated by our algorithm to the detergents example.

In this case, we have a relationship, namely Sale, connecting several relations.
From these relations, we choose StoreWeek and Profit to complete the cell class.

3.5 Deriving a UML Class Diagram

The unified modeling language (UML) is one of the most used languages to specify
and document (software) systems (Rumbaugh et al. 2004). In particular, the class
diagram component is very useful to design business applications. In this section we
explain how to map a ClassSheet into one of these diagrams. We provide a class
diagram as a tool to allow transformations to other paradigms, such as, for example,

64 3 Inferring Models for Spreadsheets

the objected-oriented one (Meyer 1997).

Let us first look at the Income example illustrated in Figure 3.16.

(a) Income ClassSheet.

total : Int

Income

value : Int = 0

Item

SUM(Item.value

*

(b) Income UML class diagram.

Figure 3.16: Two models for the income sheet: a ClassSheet and a UML class diagram.

This example illustrates the similarities between a ClassSheet and a UML class
diagram. The class Item is represented in UML as a class with the same name and
one attribute, value, of type Int and initial value 0. The Income class is defined in
a similar way but its attribute, total, is defined as the sum of the values of the Item
class. These two classes are connected: Income is composed by Item that can be
repeated many times.

In the following sections we systematize the transformation of ClassSheet models
into UML class diagrams. We translate each of the elements that compose the Class-

Sheet language, as shown in Section 3.4.

3.5.1 Mapping Blocks

Remember that, blocks are defined as follows: b ∈ Block ::= ϕ | a = f | b p b | bˆb.

ϕ Used in the ClassSheet to label cells. Since in UML we will not have this spread-
sheet specificity, this is not translatable to UML.

a = f Used to define attributes: the attribute a is defined by the formula f . This is
mapped into a class attribute associated to the corresponding class. The attribute
name is a and its associated formula is f . Since f can assume several forms,
we detail each of them next. f is defined as follows: f ∈ Fml ::= ϕ | n.a |
ϕ(f , . . . , f).

3.5 Deriving a UML Class Diagram 65

ϕ Used to represent default values of an attribute. This is mapped without any
translation. For the class under consideration, the attribute is created as
represented in Figure 3.17.

a:type = φ
Class Name

Figure 3.17: Mapping default values to UML.

n.a Used to qualified access to attributes: get attribute a from class n. In this
case the definition of the attribute is different since it is not defined by a de-
fault value, but through a reference to another class. Figure 3.18 represents
the attribute definition for the corresponding class.

a:type
Class Name

n.a

Figure 3.18: Mapping qualified access to UML.

This ClassSheet element is also mapped to an association between the class
where it is being used and the class it references.

ϕ(f , . . . , f) Used to represent n-ary functions. The mapping is done in the same
way has to qualified attribute access. The formula associated to the attribute
does not change from the original one.

b p b and bˆb All these bs are recursively used to compute all the attributes and labels
for the classes under consideration.

3.5.2 Mapping Labels

From a class label we simply use the label itself. For .n we use n; for the other cases,
that is, h or v we use the corresponding horizontal or vertical label.

3.5.3 Mapping Classes

ClassSheet classes are defined as follows: c ∈Class ::= l : b | l : b↓ | cˆc.

66 3 Inferring Models for Spreadsheets

l : b Used to create a ClassSheet class with label l and block b. From the label l we
extract the name to the UML class as explained in Section 3.5.2. The block b

is used to attach all the attributes to the just created UML class. If a class with
the same name already exists, no new class is created. Instead, the attributes are
attached to the existing class.

l : b↓ Used to express blocks that expand vertically. This is mapped in the same way
as the previous one. The difference is in the associations: they have type ∗.

cˆc Both classes are handled recursively to create UML classes.

3.5.4 Mapping Sheets

Sheets are defined as follows: s ∈ Sheet ::= c | c→ | s p s.

c This is a class, and this, it is handled as explained before.

c→ This class is mapped in a similar way to a regular class. The relationships it has
have cardinality ∗.

s p s Both sheets are recursively handled.

For our running example, Figure 3.19 illustrates the UML class diagram generated
from the ClassSheet computed in Section 3.4.

upc : Int=0
com_code : Int=0
description : string=""
size : Int=0
case : Int=0
nitem : Int=0

Detergent

store : Int=0
week : Int=0

StoreWeekKey Sale
* *

move : Int=0
price : Int=0

ProfitKey

ok : Int=0
Ok

qty : Int=0
Quantity

=move*price

upc : Int
qty : Int
ok : Int

*

1

*

1

*

1

store : Int=0
week : Int=0
onsale : string=""

StoreWeek
move : Int=0
price : Int=0
profit : Int

Profit
1 1

Figure 3.19: A UML class diagram specifying the detergent sale system.

3.6 Evaluation 67

3.6 Evaluation

In order to evaluate the applicability of our approach, we have implemented it in the
HAEXCEL framework (see Chapter 8). Using the results of this tool, we have per-
formed an experiment on the spreadsheets that are made available (through a CD)
with (Powell and Baker 2003). This set consists of 27 spreadsheets, each containing
between 1 and 16 worksheets, with a total of 121 worksheets2. More than half of
worksheets, 66 out of the 121, contain formulas.

With this experiment we want to test whether the ClassSheet inference approach
works in practice. Specifically, we want to know how well the system is able to identify
table and relationship structures and for which kinds of spreadsheets it works and when
it fails. We also want to know the quality of the ClassSheet models generated.

More precisely, we seek to answer the following research questions:

RQ1 In how many cases is ClassSheet inference applicable?

RQ2 How many of the table and relationship structures that can be identified in the
data can be successfully captured by ClassSheets inferred by our tool?

RQ3 In which cases does ClassSheet inference fail?

3.6.1 Test Results

To answer the first two research questions we manually inspected all the spreadsheets
to see how many tables could be identified and what relationships exist.

We present in Table 3.4 the results of this evaluation. Four of the tables in spread-
sheet “c9/Options.xls” contained spreadsheet errors (reported by Excel); these tables
were excluded from the further analysis.

Through manual inspection of the spreadsheets, we were able to identify 176 ta-
bles. In the best case, ClassSheet inference would be able to identify all 176 tables and
create a ClassSheet representation for them.

The results in Table 3.4 show that the tool could identify all but 13 tables. The
tool failed mainly in those cases when no layout in the spreadsheets was available.
Although through manual inspection we could recognize a table structure, the tool
was unable to derive sufficient constraints from layout to support the heuristics for the

2One spreadsheet, c6/Adbudget6.xls, was unreadable, as reported by Excel.

68 3 Inferring Models for Spreadsheets

Spreadsheet sheets tables rec. manually fail bad accept good

c4/SS Kuniang.xls 1 2 2
c5/AdBudget.xls 8 13 6 7
c5/Delta.xls 5 5 2 3
c7/Bundy.xls 10 44 2 42
c7/Forecasting.xls 7 10 6 4
c7/Analgesics.xls 3 5 1 4
c7/Applicants.xls 6 6 2 1 3
c7/Dish.xls 2 2 2
c7/Executives.xls 6 11 2 1 8
c7/Population.xls 3 4 4
c7/Tissue.xls 1 1 1
c8/AdBudget8.xls 8 8 2 2 4
c8/IP.xls 7 1 1
c8/LP.xls 16 7 2 5
c8/NLP.xls 5 5 5
c9/AdBudget9.xls 7 6 1 1 4
c9/Butson.xls 2 4 4
c9/Data.xls 2 10 10
c9/Diffusion.xls 2 4 1 3
c9/Hastings1.xls 3 4 2 2
c9/Hastings2.xls 2 1 1
c9/Netscape.xls 5 8 7 1
c9/Options.xls 8 4 1 3
c9/Plants.xls 2 10 10
c9/Portfolio.xls 3 1 1
c9/Veerman.xls 1 0
Total 121 176 13 12 27 124

Table 3.4: Results of the ClassSheet inference evaluation.

successful detection of functional dependencies. Note that, the heuristics used are the
same for all the spreadsheets.

Inspection of the 163 successfully produced ClassSheet models suggested that they
should be classified into three different levels of quality: bad, acceptable, and good.

3.7 Conclusions 69

A ClassSheet is classified as bad if the underlying relational model is not realistic.
In some cases it is not possible to infer a model that is similar to the one an expert
would create. Although from a data point of view it is correct and normalized, we
consider that an expert would produce a better model. We found that 12 ClassSheets

fall under this classification.
The classification acceptable was given to ClassSheets that do not completely char-

acterize the corresponding table or relationship; while capturing many or most of its
essential aspects, it left out some important parts. We classified 27 ClassSheets as
acceptable.

Finally, a good ClassSheet is a model that closely represents the tables and rela-
tionships under consideration. The relational model inferred is very realistic, and the
produced ClassSheet model is well structured. From the 163 tables that ClassSheet

inference was able to process, the tool produced 124 good ClassSheets.

3.6.2 Discussion

The test results are quite encouraging: with our techniques we are able to compute
ClassSheets for more then 92% of the existing tables. Of these models, more then
76% are classified as good.

The failure to generate good models in about 1/4th of the cases was mostly due to
two facts: (1) lack of layout to inform the heuristics and (2) some functional depen-
dencies that do hold for the models did not appear in the data.

Although our process is completely automatic, we believe that the above observa-
tions point to the fact that the method could be more effective if it was helped by a
human. For example, if additional functional dependencies or headers were explicitly
provided by the user, the generated models could be improved.

In fact, if in the end of the process the user is not happy with the result, model
evolution, as explained in Chapter 6, can be applied so the model completely satisfies
the user. The model evolution will yield a migration function to transform the original
spreadsheet into the new model.

3.7 Conclusions

We have developed techniques to automatically infer relational database schemas,
ClassSheets and UML class diagrams from spreadsheets, based on functional depen-

70 3 Inferring Models for Spreadsheets

dencies induced by the spreadsheet data. These models can be of great help for the
maintenance of spreadsheets since knowledge about the underlying model can, for ex-
ample, prevent erroneous operations. In fact, this process is quite useful specially for
legacy spreadsheets that could not take advantage of the techniques based on models,
such as the ones we will present in the next chapters. To automatically infer models
specifying the business logic of spreadsheets is important also because it is a difficult
process for users (Abraham and Erwig 2006a).

The work we presented in this chapter is closely related to the one presented
in (Abraham and Erwig 2006a) where a technique to infer templates from spread-
sheets is presented and evaluated. The technique presented by Abraham et al. is based
on similarity of groups of cells and depends on the discovery of repeating patterns in
spreadsheets. This technique works very well for spreadsheets that do exhibit such re-
peating blocks. Our approach is more suitable when relationships exist between data.
Another difference is that the target modeling languages are not the same: while they
only compute templates in the ViTSL language (Abraham et al. 2005), we can generate
three different models for different purposes.

We have adapted and extended a method to infer relational models from the data-
base realm to work with spreadsheets. The exploitation of layout information that is
specific to spreadsheets was instrumental in the successful working of the technique.

An evaluation of our approach on real-world spreadsheets showed encouraging
results and demonstrated that the approach is viable and should be pursued further in
future work.

The developed technique is a significant contribution to spreadsheet (reverse) en-
gineering, because it fills an important gap and allows a promising design method
(ClassSheets) to be applied to a huge collection of legacy spreadsheets with minimal
effort.

Chapter 4

Spreadsheet Edit Assistance

Summary

In this chapter, we demonstrate how implicit structural properties of spread-

sheet data can be exploited to offer edit assistance to spreadsheet users. Our

approach is based on the functional dependencies that we can infer from

spreadsheet data, as explained in Chapter 2. From these functional depen-

dencies, new formulas and visual objects are embedded in the spreadsheet

to offer features for auto-completion, guarded deletion, and controlled in-

sertion. The inference of functional dependencies and spreadsheet enhance-

ment are carried out automatically in the background and do not disturb

normal user experience.

4.1 Introduction

Recent advances in programing languages extend naive editors, to powerful language-
based environments (Reps and Teitelbaum 1984; Kuiper and Saraiva 1998; van den
Brand et al. 1999; Holzner 2004). Language-based environments use the knowledge

of the programming language to provide the users with more powerful mechanisms
to develop their programs. This knowledge is based on the structure and the meaning

of the language. To be more precise, it is based on the syntactic and (static) semantic
characteristics of the language. Having this knowledge about a language, the language-
based environment is not only able to highlight keywords and beautify programs, but
it can also detect features of the programs being edited that, for example, violate the
properties of the underlying language. Furthermore, a language-based environment

71

72 4 Spreadsheet Edit Assistance

may also give information to the user about properties of the program under consid-
eration. Consequently, language-based environments guide the user in writing correct
programs.

Spreadsheet systems can be viewed as programming environments for end users,
that is, non-professional programmers. In this chapter, we propose a technique to
enhance a spreadsheet system with mechanisms to guide end users to introduce correct
data. An overview of the approach is shown in Figure 4.1.

User

FDs

Spreadsheet functional
dependencies mining

Embed FDs as formulas
and visual objects

Figure 4.1: Edit assistance is added to an existing spreadsheet based on functional
dependencies obtained by data mining.

Based on functional dependencies, a background process adds formulas and visual
objects to an existing spreadsheet. To obtain these functional dependencies, we follow
the approach used in language-based environments: we use the knowledge about the
data already existing in the spreadsheet to guide end users to introduce correct data.
The knowledge about the spreadsheet under consideration is based on the meaning of
its data that we infer by using data mining and database normalization techniques as
presented in Chapter 2.

Knowing the functional dependencies that characterize the data, we construct a
new spreadsheet environment that not only contains the data of the original one, but
that also includes advanced features which provide information to the end user about
correct data that can be introduced. We consider several types of advanced features:
bidirectional auto-completion, formula copying, non-editable columns and safe dele-

tion of rows.

Like in modern programming language environments, the refactored spreadsheet
system offers the possibility of using traditional editing, that is, the introduction of data
by editing each of the columns. When using traditional editing the end user is able to
introduce data that may violate the functional dependencies inferred from the previous
spreadsheet data. The spreadsheet environment includes a mechanism to recalculate

4.2 Motivational Example 73

the functional dependencies after traditional editing. These dependencies are used to
guide the end user in future non-standard editing of the spreadsheet.

This chapter is organized as follows. Section 4.2 presents a motivational example
used throughout the chapter. Sections 4.3 to 4.7 discuss how to embed modern pro-
gramming environments in spreadsheets. In Section 4.8 we present an evaluation of
our technique and Section 4.9 concludes the chapter.

4.2 Motivational Example

In order to present our approach we shall consider the following example adapted
from (Berdaguer et al. 2007) and modeled in a spreadsheet as shown in Figure 4.2.

Figure 4.2: A spreadsheet representing a movies renting system.

The labels in the first row have the following meaning: movieID is a unique identi-
fier for each movie; title, year, director and language are the common attributes of a
movie; clientNr is a unique code for each client and clientNm represents the name of
the client; rentStart denotes the starting date of the renting, days the number of days
that the movie was rented, rent is the rent per day for a movie and total is the amount
the client paid.

This spreadsheet defines a valid model to represent the information of the renting
system, however, it contains redundant information. For example, the displayed data
specifies the information about the movie with identifier mv23 twice. This kind of
redundancy makes the maintenance and update of the spreadsheet complex and error-
prone. A mistake is easily made, for example by mistyping a name and thus corrupting
the data.

As we said before, three common problems exist in redundant data: insertion, mod-

ification and deletion anomalies. The database community has developed techniques,
such as data normalization, to eliminate such redundancy and improve data integrity.

74 4 Spreadsheet Edit Assistance

Database normalization is based on the detection and exploitation of functional depen-
dencies inherent in the data.

Can we leverage these database techniques for spreadsheet systems so that the
system eliminates the referred anomalies by guiding the end user introducing correct
data?

Based on the data in our spreadsheet example, we would like to discover the fol-
lowing functional dependencies, which represent the entities involved in our movie
renting system: language of the movies, clients and movies.

language ⇀ { }
clientNr ⇀ clientNm

movieID ⇀ title,year,director,rent

The reader may have noticed that, no dependencies related to formulas are included
in this set. In fact, the formula columns are handled by formula copying feature, and
thus, such dependencies are not necessary.

Using these functional dependencies we would like to construct a spreadsheet en-
vironment that respects those dependencies. For example, this spreadsheet would not
allow the user to introduce two different movies with the same identifier movieID.
Instead, we would like that the spreadsheet offers to the user a list of possible prop-
erties, such that he can choose the value to fill in the cell. For our running example,
we would like to have a spreadsheet environment where the possible movie identifiers
could be chosen from a combo box, that is, a button that when clicked shows a list of
possible selection values, and where the value of columns title, year and director were
automatically filled in after the selection of movie identifier is performed.

Based on functional dependencies we would like that our movie renting system
spreadsheet would offer the following features to the end user:

• bidirectional auto-completion;

• formula copying;

• non-editable columns;

• safe deletion of rows;

• traditional editing;

• recalculation of the functional dependencies.

4.2 Motivational Example 75

Bidirectional auto-completion We know that a functional dependency antecedent
uniquely determines its consequent. Based on this principle, we wish that the spread-
sheet environment automatically fills in the columns corresponding to functional de-
pendency consequents provided the end user defines the value of the columns corre-
sponding to the antecedents.

Moreover, if we look at a functional dependency the other way around, we can
observe that, after selecting a value in the consequent, the values of the antecedent that
can determine such value are restricted to a smaller set. So, we also would like that
our system permits that, when selecting values from consequent columns, the values
from the corresponding antecedent columns become restricted.

For example, the value of the movie number (movieID, column A) determines the
values of the title (column B), year (column C), director (column D) and rent (column
J). Consequently, the spreadsheet environment should be able to automatically fill in
the values of columns B, C, D and J, given the value of column A. On the other hand,
if we select the movie year 2005 we would like to see in the combo box of column A

only the values mv1 and mv21.

Formula copying A very common error done when editing spreadsheets is to replace
a formula by a static value (Panko 2000). To avoid it, we make the columns with
formulas non-editable. In the new rows, the formula is replaced by another formula
that verifies if at least one of the cells referenced by the original formula already has a
value, and when this is true, it applies the original formula.

Non-editable columns Columns that are part of the functional dependency anteced-
ent should be non-editable. For example, column A, that contains the movieID values,
is the antecedent of the movie’s functional dependency. Thus, it should be protect
from edition. This feature prevents the end user from introducing potential incorrect
data and, thus, producing modification anomalies.

Safe deletion of rows An usual problem with non-normalized data it the deletion
problem. Suppose in our running example that row 3 is deleted. All the information
about the movie with identifier mv1 (i.e., movieID, title, year and director) will be
lost since it is not represented elsewhere. Probably the user only wants to delete that
renting transaction. To correctly delete rows in the spreadsheet, a button per row could
be added as the last column of each row (column L in our example).

76 4 Spreadsheet Edit Assistance

This button, when pressed, would detect if the end user was removing important
information, that is, information only included in the button’s row. In such a case, then,
a new window warning the user should be displayed.

Traditional editing Advanced programming language environments provide both
advanced editing mechanisms and traditional ones, that is, text editing. In a similar
way, a spreadsheet environment should allow the user to perform traditional spread-
sheet editing too. In traditional editing the end user is able to introduce data that may
violate the functional dependencies that the spreadsheet data induces.

Recalculation of the functional dependencies Because standard editing allows the
end user to introduce data violating the underlying functional dependencies, we would
like that the spreadsheet environment would allow enable/disable the advanced fea-
tures described in this section. When advanced features are disabled, then the end
user would be able to introduce data that violates the (previously) inferred functional
dependencies. However, when the end user returns to advance editing, then the spread-
sheet should infer a new set of functional dependencies that would be used in future
(advanced) interactions.

In this section we have described an instance of our techniques. In fact, the spread-
sheet programming environment shown was automatically computed from the original
spreadsheet displayed in Figure 4.2. Figure 4.3 illustrates the complete advanced edit
assistant for our running example.

Figure 4.3: Complete edit assistant environment to the movies example.

On the left part of Figure 4.3 we can see three buttons representing the features just
described. From the top, the first button enable edit assistance calculating the func-
tional dependencies and creating the new environment; the second button recalculates

4.3 Bidirectional Auto-completion 77

the dependencies and the possible new objects; the last button disables the advanced
editing assistance.

In the following sections we will present in detail the technique to perform such an
automatic spreadsheet refactoring.

4.3 Bidirectional Auto-completion

This section presents techniques to refactor spreadsheets into powerful spreadsheet
programming environments. The functional dependencies induced by the data in-
cluded in the original spreadsheet are the building blocks for such a refactoring. In
fact, the spreadsheet refactoring is implemented as the embedding of the functional
dependencies in the spreadsheet. This embedding is modeled in the spreadsheet itself
by standard formulas and visual objects: additional formulas and visual objects are
included in the spreadsheet to guide the user to introduce correct data.

In the bidirectional auto-completion mechanism, when the user chooses one ante-
cedent value of a functional dependency, the consequent values are automatically filled

in. For example, the movie’s code column, movieID, determines the movie’s title, year,
director and rent. Consequently, the spreadsheet environment is able to automatically
fill in the values of the columns title, year, director and rent given the value of col-
umn movieID. This happens only for existing movies. For new movies the user must
introduce all the data via standard editing.

As shown in Figure 4.4, if the user selects the movie’s code mv23, the programming
environment automatically fills in the title Little Man, year 2006 and so on.

Figure 4.4: Selecting possible values of columns using a combo box.

By selecting a value of a consequent column the programming environment fil-
ters all other antecedent columns in the functional dependency. Figure 4.5 presents

78 4 Spreadsheet Edit Assistance

such mechanism where the end user selected the year 2005 of a movie (a consequent
column) and the combo box of the movie’s id only contains the movies mv1 and mv21.

Figure 4.5: Back propagation of the auto-completion feature.

Next, we present the details of the embedding of the functional dependencies both
as spreadsheet formulas and as visual objects.

4.3.1 Generating Visual Objects

Because our embedding relies on introducing visual objects, we need to carefully
choose our target spreadsheet system, since they differ in the scripting language used
to express the visual objects and their interaction. The spreadsheet system chosen
was Calc (OOoAuthors 2010a) from the OpenOffice.org (OOoAuthors 2010b) suite
because it is a free, open source and platform independent product. We chose the
BASIC (Pitonyak 2004) scripting language to implement it since it is a very simple
language and can easily be migrated to other languages such as Visual Basic for Appli-

cations (Roman 2002), the Excel (Campbell 1985; O’Leary 2008) scripting language.
Let us consider the dependency clientNr ⇀ clientNm from our running example.

In the spreadsheet, clientNr is in column F and clientNm in column G. To embed this
functional dependency in the spreadsheet we first introduce a combo box containing
the existing values in column F and another in G. This is achieved as follows: let minr

be the very next row after the existing data in the spreadsheet, maxr the last row in
the spreadsheet, and r1 the first row with already existing data. Each dependency
a1...an ⇀ c1...cm, with a1, ...,an,c1, ...,cm column indexes of the spreadsheet induces
a set of combo boxes defined as follows:

∀ c ∈ {a1, ...,an},r ∈ {minr,maxr} :
S (c,r) = combobox :={ linked cell :=(c,r) ;

source cells :=(c,r1) : (c,r−1) ;
backgoundColor :=green }

4.3 Bidirectional Auto-completion 79

Notice that, this formula is for the columns composing the functional dependency
antecedent. To the consequent columns the combo boxes are defined as follows:

∀ c ∈ {c1, ...,cm},r ∈ {minr,maxr} :
S (c,r) = combobox :={ linked cell :=(c,r) ;

source cells :=(c,r1) : (c,r−1) ;
backgoundColor := red }

For each attribute in a functional dependency, a combo box is generated. Its linked cell

is the cell where we want the value, that is, the cell where it is positioned. The source

cells, that is, its possible choices, are all the cells in the same column with a lower row
index. The color is used to distinguish the antecedent from the consequent columns.

To implement this we developed a front-end written in BASIC and a back-end in
HASKELL. The front-end sends to the back-end the entire spreadsheet and it responds
with the antecedent and consequent combo boxes and the formulas (explained later
on). This result will be mainly handled by the front-end function createCB. It starts by
creating and positioning a drawing zone to place the combo box (pink code). Then, it
creates the combo box itself (blue code) and finally it creates the source cells (red code)
and the linked cell (green code). The following code implements (part of) createCB:

Sub createCB (c as int,r as int,minr as int,maxr as int,x as int,y as int,bgc)

oControlShape . setPosition (x,y)

oCtrlMd = oDoc . createInstance ("ComboBox")

CellRange = Sheet . getCellRangeByPosition (c,minr,c,maxr)

oCellRangeListSource = oDoc . createInstanceWithArguments (

"CellRangeListSource",CellRange . RangeAddress)

oCtrlMd . setListEntrySource (oCellRangeListSource)

oCtrlMd . BackgroundColor = bgc

oLinkedCell . Sheet = oSheet . RangeAddress . Sheet

oLinkedCell . Row = r

oLinkedCell . Column = c

oNamedValue .Value = oLinkedCell

oCVB = oDoc . createInstance ("com.sun...CellValueBinding")

oCtrlMd . setValueBinding (oCVB . Initialize (Array (oNamedValue)))

Notice that, the red, the green and the gray code correspond to the definition presented
above in the same colors.

80 4 Spreadsheet Edit Assistance

4.3.2 Generating Spreadsheet Formulas

To produce the bidirectional auto-completion feature we must generate some formulas.
Let us consider once more the functional dependency clientNr ⇀ clientNm from our
running example. In the spreadsheet, clientNr is in column F and clientNm in column
G. To achieve auto-completion, we introduce the following formula in cell G7:

S (G,7) = if (isna (vlookup (F7;F2 : G6;2;0));"";vlookup (F7;F2 : G6;2;0))

The formula if is the usual conditional control structure. vlookup searches for its first
argument in the first column of its second argument (an array of columns). When it
finds a match, it returns the value in the cell in the same row and in the column (given
in the second argument) indexed by the third argument. The last argument states if
the column to search is sorted or not. isna verifies if its argument is available. For
example, if the vlookup fails, it returns a “non available” result. For more information
on these and other formulas, the reader is referred to (OOoAuthors 2010a).

When a value is inserted in the client’s number column (F), vlookup searches
for the corresponding value in the client’s name column (G). If something is found
(checked by isna), it means that this correspondence exists. In this case, it returns the
corresponding name (second vlookup). Otherwise, it returns the empty string.

We have just presented a particular case of the formula induced by a functional
dependency. Next, we present the general formula:

∀ c ∈ {c1, ...,cm},∀ r ∈ {minr, ...,maxr} :
S (c,r) = if (if (isna (vlookup ((a1,r),(a1,r1) : (c,r−1),r−a1 +1,0)),

"",

vlookup ((a1,r),(a1,r1) : (c,r−1),r−a1 +1,0))
==

if (isna (vlookup ((a2,r),(a2,r1) : (c,r−1),r−a2 +1,0)),
"",

vlookup ((a2,r),(a2,r1) : (c,r−1),r−a2 +1,0))
== ...==

if (isna (vlookup ((an,r),(an,r1) : (c,r−1),r−an +1,0)),
"",

vlookup ((an,r),(an,r1) : (c,r−1),r−an +1,0)),
vlookup ((a1,r),(a1,r1) : (c,r−1),r−a1 +1,0),
"")

4.3 Bidirectional Auto-completion 81

This formula is created for each functional dependency to embed in the spreadsheet.
Each if (in red) inside the main if (in green) is responsible for checking an antecedent
attribute. In the case of an antecedent column value is chosen, isna (vlookup (...)),
the formula calculates the corresponding consequent column value, vlookup (...). If
the values chosen by the antecedent columns are all equal, then the found value is used
in the consequent column.

An interesting case occurs when, for example, we have the functional dependencies
A ⇀ B and B ⇀ C. When the user inserts a value in column A, column B is automat-
ically filled in. Since now column B also as a value, this causes the mechanism to
automatically fill in column C too.

These formulas are generated in the HASKELL back-end using the functions shown
next. For each consequent column it generates an inner if (code in red color) generat-
ing then the global if condition (green color).

genLookup :: Sheet Fml→ FD String→ [(String, Int, Int)]

genLookup sh (ant,cons) = let antpos = map (whereLabel sh) (atts ant)

conspos = map (whereLabel sh) (atts cons)

in map (genLU antpos) conspos

The auxiliary functions are defined as follows:

genLU :: [(Col,Row,Row)]→ (Col,Row,Row)→ ([Char],Col,Row)

genLU ant (col,minr,maxr) =

let vls = map (genVLS col maxr) ant

vls′ = map (λv→ "IF(ISNA("++ v++ ");\"\";"++ v++")") vls

vls′′ = drop 2 (foldr (λv r→ " = " ++ v++ r) "" vls′)

in ("=IF("++ vls′′++"; "++ head vls ++"; \"\")",col,maxr+1)

genVLS :: Col→ Row→ (Col,Row,Row)→ [Char]

genVLS col maxr (cola,row1a,row2a) =

let a1 = show (Indx cola (maxr+1))
a2 = "$"++ intersperse ’$’ (show (Indx cola row1a))

a3 = show (Indx col row2a)

in "VLOOKUP("++a1++"; "++a2++":"++a3++"; "++

show (col− cola+1)++"; "++"0)"

The function whereLabel receives an attribute from a functional dependency and a
spreadsheet and returns a triple with the column in which it is, the row after the label

82 4 Spreadsheet Edit Assistance

and the last row with data.

Notice that, the colors in this HASKELL fragment are coincident with the colors in
the general formula present above.

The bidirectional use of functional dependencies can be embedded straightfor-
wardly by using standard spreadsheet formulas. It works as follows: if a value is
chosen in one of the non-key columns, the system will use this selected value to re-
moved from the corresponding key combo boxes the values that do not determine the
selected value.

4.4 Formula Copying

A very common error done when editing spreadsheets is to replace a formula by a
static value (Panko 2000). To avoid this, we make the columns with formulas non-
editable. In the new rows, the formula is replaced by another formula that verifies if at
least one of the cells referenced by the original formula already has a value, and when
this is true it applies the original formula.

If the user needs to change the formula itself, that is, its definition, the traditional
mode must be activated (see Section 4.7).

As expected, this feature only works for regular formulas, that is, formulas that
are virtually the same in all rows. Two formulas in two vertically consecutive cells
are equal if the one in the row with greater index is equal to the other except the row
indexes which are incremented by one unit. This is a very common way of using
formulas in spreadsheets and is usually done dragging a formula throughout part of a
column (or row). For example, the cell K2 has the formula =J2*I2 and the cell K3 the
formula =J3*I3. The same happens to all the other rows and thus this column is not
editable in our running example.

The following formula defines the first empty cell in column K, namely K7:

= if (∧ (isBlank (I7); isBlank (J7));""; I7 ∗ J7)

It verifies if any of the cells used in the formula is different from blank, and, in that
case, it returns the result from the original formula.

4.5 Safe Deletion 83

4.5 Safe Deletion

As we said before, a common problem with non-normalized data is the deletion anomaly.
This problem happens because there is no separation of the entities involved in the
spreadsheet. When data is normalized, the entities are isolated and thus this kind of
problems do not occur. To prevent this problem it is essential to correctly delete rows
in the spreadsheet. To achieve such safety, a button is added to each row, in the last
column, of the spreadsheet. Figure 4.6 illustrates such buttons for our running exam-
ple.

Figure 4.6: The delete button is used to prevent the user for deleting crucial informa-
tion.

The buttons work as follows: for each functional dependency s, ..., t ⇀ u, ...,v each
button checks, on its corresponding row, the columns that are part of the antecedent,
s, ..., t. For each antecedent column, it verifies if the value that is being removed is the
last one, proceeding as follows: let c∈ {s, ..., t}, r be the button row, r1 be the first row
of column c with data and rn be the last row of column c with data. The test is defined
using the following formula:

if (isLast ((c,r),(c,r1) : (c,rn)),showMessage,deleteRow (r))

The function isLast was defined by us and verifies if the row that is being deleted
contains the last entry for some of the entities in that row. If the value is the last one,
the spreadsheet warns the user, showMessage, as can be seen in Figure 4.7.

Figure 4.7: Window to warn the end user that crucial information may be deleted.

If the user presses the OK button, the row will be removed, deleteRow. In the other

84 4 Spreadsheet Edit Assistance

case, Cancel, no action will be performed. In the case the value is not the last one, the
row will be removed, deleteRow.

For example, in column movieID of our running example, the row 3 contains the
only data about the movie with code mv1. If the user tries to delete such row, the
warning message will be triggered.

4.6 Non-editable Columns

To prevent modification anomalies, we protect some columns from being edited. Fig-
ure 4.8 illustrates such restriction.

Figure 4.8: Columns are not editable to prevent the modification anomalies.

Suppose the user changes in our running example cell B2, that is, the title of movie
Little Man. If the user does not change the cell B6 (the other cell with the same title)
or changes it in a different way, the data will be corrupted. Moreover, the functional
dependencies will not be respected anymore.

Thus, a functional dependency s, ..., t ⇀ u, ...,v induces that columns u, ...,v be-
come non-editable. That is to say that columns that are part of the consequent of a
functional dependency are non-editable. When the user is inserting new rows, this re-
striction may not apply; if he is insert data where the antecedent is new, the consequent
can not be automatically filled in. In these cases, the user can add new data to this kind
of columns.

In case the end user needs to change the value of such protected columns, then we
provide traditional editing as described in the next section.

4.7 Traditional Editing 85

4.7 Traditional Editing

Advanced programming language environments provide both advanced editing mecha-
nisms and traditional ones, that is, text editing. In a similar way, the generated spread-
sheet environment allows the user to perform traditional spreadsheet editing too. It
provides a mechanism to enable/disable the advanced features described in the previ-
ous sections. When advanced features are disabled, the end user is able to introduce
data that violates the (previously) inferred functional dependencies. However, when
the end user returns to advanced editing, the spreadsheet infers new functional depen-
dencies that will be used in future interactions.

4.8 Evaluation

In order to evaluate the applicability of our approach, we have performed an exper-
iment on the EUSES Corpus (Fisher and Rothermel 2005). It contains more than
4500 spreadsheets gathered from different sources and developed for different do-
mains. These spreadsheets are assigned to eleven different categories. Among the
spreadsheets in the corpus, only 4.4% contain macros, 2.3% contain charts, and about
56% do not have formulas being only used to store data.

In our experiment we have selected the first ten spreadsheets from each of the
eleven categories of the corpus. We then applied our tool to each spreadsheet, with
different results (see also Table 4.1) as explained next:

• A few spreadsheets failed to parse. This was due to glitches in the Excel to
OpenOffice.org conversion.

• Some spreadsheets were parsed, but no tables could be recognized in them, that
is, their users did not adhere to any of the supported layout conventions. We
support the layout conventions presented in the UCheck project (Abraham and
Erwig 2007b). This was the case for about 30% of the spreadsheets in our selec-
tion.

• The other spreadsheets were parsed, tables were recognized, and edit assistance
was generated for them.

We will focus on the last two groups in the upcoming sections.

86 4 Spreadsheet Edit Assistance

4.8.1 Processed Spreadsheets

The results of processing our sample of spreadsheets from the EUSES corpus are sum-
marized in Table 4.1. The rows of the table are grouped by category as documented
in the corpus. After the first column with the name of each spreadsheet, the following
three columns contain size metrics of the spreadsheets. They indicate how many tables
were recognized, how many columns are present in these tables, and how many cells.

File name Recog.
tables

Nr.
Cols.

Cells SSFUN Auto-
compl.
& safe
delete

Filter

cs101

Act4 023 capen 5 24 402 0 0 0

act3 23 bar... 6 21 84 1 1 0

act4 023 ba... 6 23 365 0 0 0

meyer Q1 2 8 74 0 0 0

posey Q1 5 23 72 0 0 0

database

%5CDepart... 2 4 3463 0 0 0

00061r0P80... 23 55 491 3 4 4

00061r5P80... 30 83 600 9 9 5

0104Texas... 5 7 77 1 1 1

01BTS fr... 52 80 305 5 5 0

03-1-rep... 20 150 1599 13 16 3

filby

BROWN 5 14 9047 1 1 1

financial

03PFMJOU... 15 65 242 0 0 0

Continues on the next page

4.8 Evaluation 87

Table 4.1: – continued from previous page

File name Recog.
tables

Nr.
Cols.

Cells SSFUN Auto-
compl.
& safe
delete

Filter

03Q4fins... 100 288 948 15 17 17

10-formc 12 20 53 6 6 0

111802... 166 200 356 6 6 0

forms3

ELECLAB3... 1 4 44 0 0 0

burnett-cloc... 3 8 14 0 0 0

chen-heapS... 1 2 24 0 0 0

chen-insert... 1 2 22 0 0 0

chen-lcsTimes 1 2 22 0 0 0

chen-quickS... 1 2 24 0 0 0

cs515 npe... 7 9 93 0 0 0

cs515 pol... 6 12 105 0 0 0

cs515 run... 2 6 45 0 0 0

grades

0304deptcal 11 41 383 17 18 9

03 04ballots1 4 20 96 2 2 2

030902 5 20 110 0 0 0

031001 5 20 110 0 0 0

031501 5 15 51 1 1 1

homework

01 Intro ... 6 15 2115 0 0 0

01readsdis 4 16 953 4 4 3

02%20fbb... 1 7 51 0 0 0

Continues on the next page

88 4 Spreadsheet Edit Assistance

Table 4.1: – continued from previous page

File name Recog.
tables

Nr.
Cols.

Cells SSFUN Auto-
compl.
& safe
delete

Filter

022timeli... 28 28 28 0 0 0

026timelin... 28 28 30 0 0 0

03 Stocha... 4 6 48 0 0 0

04-05 pro... 79 232 2992 0 0 0

inventory

02MDE fra... 50 83 207 6 6 0

02f202assi... 37 72 246 2 2 0

03-1-rep... 5 31 111 6 6 5

03singap... 9 45 153 4 4 2

0038 10 22 370 0 0 0

modeling

%7B94402d... 1 3 561 0 0 0

%EC%86%9... 1 10 270 7 8 4

%EC%9D%9... 1 7 1442 4 4 5

%EC%A1%... 2 17 534 5 8 4

%ED%99%9... 3 7 289 4 4 1

0,10900,0-0... 4 14 6558 6 7 4

00-323r2 24 55 269 7 8 6

00000r6xP... 3 13 3528 4 5 3

003 4 25 50 2090 0 0 0

Table 4.1: Results of processing the selected spreadsheets.

The fifth column shows how many functional dependencies SSFUN generated for
the recognized tables. The last two columns are metrics on the generated edit assis-

4.8 Evaluation 89

tance. In some cases, no edit assistance was generated, indicated by zeros in these
columns. This situation occurs when no (non-trivial) dependencies are induced from
the recognized tables. In other cases, the two columns indicate for how many columns
bidirectional auto-completion/safe deletion and filtering was generated, respectively.

For example, for the first spreadsheet of the grades category, bidirectional auto-
completion/safe deletion has been activated for 18 columns, and filtering has been
applied to 9 columns. Notice that, for the categories jackson and personal, no results
were obtained due to absent or unrecognized layout conventions or to the size of the
spreadsheets.

4.8.2 Observations

On the basis of these results for our sample of spreadsheets, a number of interesting
observations can be made. For some categories, edit assistance is successfully added to
almost all spreadsheets (for example, inventory and database), while for others almost
none of the spreadsheets lead to results (for example, the forms/3 category). The latter
may be due to the small sizes of the spreadsheets in this category. The percentage of
columns for which auto-completion was generated varies. The highest percentage was
obtained for the second spreadsheet of the modeling category, with 8 out of 10 columns
(80%). On the other hand, the second of the grades category gets edit assistance for
only 2 out of 20 columns (10%). The percentage for columns with filtering, also varies.
The highest percentage is obtained by the third spreadsheet in the modeling category
with 5 out of 7 (71%). On the other hand, the last spreadsheet in the grades category
gets 1 out of 15 columns with filtering (6.7%).

4.8.3 Discussion

Our experiment justifies two conclusions. Firstly, the tool is able to successfully
add edit assistance to a series of non-trivial spreadsheets. Secondly, in the enhanced
spreadsheets a large number of columns are generally affected by the generated edit
assistance, which indicates that the user experience can be impacted in a significant
manner. Thus, a validation experiment can be started to evaluate how users experience
the additional assistance and to which extent their productivity and effectiveness can
be improved. In Chapter 7 we will present an empirical study performed by real end
users to validate our approach.

90 4 Spreadsheet Edit Assistance

4.9 Conclusions

We have demonstrated how implicit structural properties of spreadsheet data can be
exploited to offer edit assistance to spreadsheet users. To discover these properties,
we have made use of our previously developed approach for mining, filtering and nor-
malizing functional dependencies from spreadsheets. On this basis, we have made the
following contributions:

• Derivation of formulas and visual elements that capture the knowledge encoded
in a set of functional dependencies;

• Embedding of these formulas and visual elements into the original spreadsheet
in the form of features for auto-completion, guarded deletion, and controlled
insertion;

• Integration of the algorithms for manipulation of functional dependencies, for
derivation of corresponding formulas and visual elements, and for their embed-
ding into an extension for spreadsheet environments.

A spreadsheet environment enhanced with our extension compensates to a signif-
icant extent for the lack of the structured programming concepts in spreadsheets. In
particular, it assists users to prevent common modification and deletion anomalies dur-
ing edit actions.

There are several extensions of our work that we would like to explore. The algo-
rithms running in the background need to recalculate the functional dependencies and
the ensuing formulas and visual elements every time new data is inserted. For larger
spreadsheets, this recalculation may incur waiting time for the user. Several optimiza-
tions of our algorithms can be attempted to eliminate such waiting times. In particular,
incremental recomputation could be used.

Our approach could be integrated with complementary approaches to cover a wider
range of possible user errors. In particular, the work of Abraham et al. (Abraham and
Erwig 2006a,b) for preventing range, reference, and type errors could be combined
with our work for preventing data loss and inconsistency.

Chapter 5

Migration of Spreadsheets

Summary

This chapter presents techniques to transform spreadsheets into relational

databases and back. A set of data refinement rules is introduced to map

a tabular data type into a relational database schema. Having expressed

the transformation of the two data models as data refinements, we obtain

for free the functions that migrate the data. We use well-known relational

database techniques to optimize and query the data. Because data refine-

ments define bidirectional transformations we can map such databases back

to optimized spreadsheets.

5.1 Introduction

Spreadsheets are applications created by single end users, without planning ahead of
time for maintainability or scalability. Still, after their initial creation, many spread-
sheets turn out to be used for storing and processing increasing amounts of data and
supporting increasing numbers of users over long periods of time. To turn such spread-
sheets into database-backed multi-user applications with high maintainability is not a
smooth transition, requiring substantial time and effort.

In this chapter, we develop techniques for smooth transitions between spreadsheets
and relational databases. The basis of these techniques is the fundamental insight that
spreadsheets and relational databases are formally connected by data refinement rules.
To find this relationship we use functional dependencies inferred from the spreadsheet
data as explained in Chapter 2. These functional dependencies can be exploited to

91

92 5 Migration of Spreadsheets

derive a relational database schema as described in Chapter 3. We then apply data
calculation laws to the derived schema in order to reconstruct a sequence of refinement
steps that connects the relational database schema back to the tabular spreadsheet.
Each refinement step at the schema level is witnessed by bidirectional conversion steps
at the data level, allowing data to be converted from spreadsheet to database and vice
versa, as shown in Figure 5.1.

input
spreadsheet

model

output
relational
schema

original
spreadsheet

document

migrated
database

forward migration

backward migration

forward model evolution

backward model evolution

Figure 5.1: Model evolution is coupled with migration function back and forward.

Our approach is to employ techniques for bidirectional transformation of types,
values, functions, and constraints (Visser 2008), based on data refinement theory (Mor-
gan and Gardiner 1990; Oliveira 1990, 2008).

We have implemented data refinement rules in HASKELL for converting between
tabular and relational data types as a framework. This framework migrates not only
values between the two data models, but also formulas.

This chapter is organized as follows. Section 5.2 presents a motivational exam-
ple used throughout the chapter. In Section 5.3 we define data refinements and a
framework for constraint-aware two-level transformation. Section 5.4 presents the
refinement rules to map spreadsheets into databases and in Section 5.5 we draw our
conclusions.

5.2 Motivational Example

Throughout this chapter we will use a well-known example adapted from (Connolly
and Begg 2001) and reproduced in the spreadsheet illustrated in Figure 5.2. This
spreadsheet implements a property renting system, gathering information about renters,
owners and rents. It also stores prices and dates of renting.

5.2 Motivational Example 93

Figure 5.2: A spreadsheet representing a property renting system.

The labels in the first row have the following meaning: renterNr represents a
unique code for each renter, propNr a unique code for each property, renterNam the
name of the renter, propAddress the address of each property, country the country
of the property, rentStart and rentFinish the date of the beginning and ending of the
renting, nrDays the number of renting days, rent the rent per day of a property, total
the total amount to pay by the renting, ownerNr a unique code for the owner of a
property and ownerNm the name of the owner.

Notice that column nrDays is defined by a formula, = rentFinish−rentStart, which
is instantiated in the second row as =G2-F2. Column total is also defined by a formula,
= nrDays∗ rent, which is instantiated in the second row as =I2*H2.

Like in the movie renting example presented in Chapter 4, this spreadsheet defines
a valid model to represent the information of the renting system. However, it contains
redundant information. For example, the displayed data specifies the house renting of
two renters only, but their names are included 5 times. This kind of redundancy makes
the maintenance and update of the spreadsheet complex and error-prone. A mistake is
easily made, for example by mistyping a name and thus corrupting the data. As we
explained before, the same information can be stored without redundancy.

Based on the data in our example spreadsheet and using the techniques presented
in Chapter 3, we can discover the following relational database schema:

Country (country)

Renter (renterNr,renterNam)

Owner (ownerNr,ownerNm)

Property (propNr,propAddress,rent,#ownerNr)

<Renting> (#renterNr,#propNr,#country,rentStart,rentFinish,nrDays, total)

This schema defines the entities involved in the property renting system: namely prop-
erty countries, renters, properties and their owners and the renting action itself.

From this schema we would like to, either store the data in a relational database
management system, or create an improved spreadsheet. Figure 5.3 presents such

94 5 Migration of Spreadsheets

an optimized and a modular spreadsheet for our running example. Notice that, these
figures are from the same sheet, but for presentation reasons they are separated. In
fact, all tables could be stored in separated sheets in a single workbook.

(a) First part of the refactored properties spreadsheet.

(b) Second part of the refactored properties spreadsheet.

Figure 5.3: The spreadsheet after applying the third normal form refactoring.

This new spreadsheet consists of five tables/modules (each one delimited by the
empty column). In Figure 5.3a, from left to right, we have a table for countries, another
for renters, for owners and for properties. Figure 5.3b contains the table for the renting

action itself.

As we explained before, the obtained modularity solves three well-known prob-
lems in databases, namely the insertion, modification and deletion anomalies. These
problems do not exist in the generated spreadsheet because data is normalized.

Moreover, we would like that the generated spreadsheet would respects the schema.
For example, in the renters table, the generated spreadsheet would not allow the user
to introduce two renters with the same code, that is, the same renterNr. If that error
occurs, the spreadsheet system should warn the user as shown in Figure 5.4. Obviously,
it is not possible to perform this validation in the original spreadsheet.

Figure 5.4: If the user introduces a new row in a table with a previously used renterNr
the spreadsheet will immediately produce an error.

5.2 Motivational Example 95

The reader may have noticed that, for example, column L (for example, Figure 5.3)
contains combo boxes on the cells. From the relational schema, we can see that this
column, ownerNr, is a foreign key to the owner code in the owners table. In these
cases, we would like that the new spreadsheet guarantees that the user only inserts
values that already exist in the referenced table, since this is the definition of a foreign
key. In fact, these columns should be locked for editing. This feature is illustrated in
Figure 5.5.

Figure 5.5: Foreign key columns are filled in using combo boxes.

The refactored spreadsheet not only improves modularity and detects the introduc-
tion of incorrect data, but also eliminates redundancy: indeed, the redundancy present
in the original spreadsheet has been eliminated. As expected, the names of the two
renters occur only once. As we will demonstrate in the remaining sections of this
chapter, the process of converting the data to the new format can be formalized and
automated.

After establishing a mapping between the original spreadsheet and a relational da-
tabase schema, we may want to use SQL (Date 1986) to query the spreadsheet. Re-
garding the properties renting information, one may want to know who are the renters
of the properties that where rented between January, 2000 and January, 2002? Such
queries are difficult to formulate in the spreadsheet environment. In SQL, the above
question can be formulated as follows:

select renterNr from renting

where rentStart between ’01-01-00’ and ’01-01-02’

In the next sections, we will formalize the correspondence between spreadsheets and
relational schemas using data refinement rules. Moreover, we will present a framework
that implements the transformation rules. In fact, the example presented in this section
was automatically processed by our framework.

96 5 Migration of Spreadsheets

5.3 A Constraint-aware Rewriting System

As we explained in the previous section, given the relational schema, we want to derive
conversion functions to migrate data from a spreadsheet to a database with the synthe-
sized schema, and vice versa. Thus, we are confronted with a two level-transformation

problem, where a transformation at the level of types (schemas) is coupled with trans-
formations at the level of values (data), as illustrated in Figure 5.1.

Such two-level transformations can be formalized as data refinements (Morgan and
Gardiner 1990; Oliveira 1990, 2008) and can be supported with a term rewriting sys-
tem (Lämmel and Visser 2003; Visser and Saraiva 2004; Visser 2005) where type rep-
resentations are rewritten and conversion functions are synthesized at each rewrite step.
For this purpose, we make use of the Two-Level Transformation (2LT) system1 (Cunha
et al. 2006; Cunha and Visser 2007a,b; Visser 2008; Alves et al. 2008). In this section,
we provide the necessary background.

5.3.1 Data Refinements

Data refinement theory provides an algebraic framework for calculating with data
types. Refining a data type A to a data type B can be captured by the following di-
agram:

A

to
''

6 B

f rom

gg where

to : A→ B is an injective function;

f rom : B→ A a surjective function;

f rom◦ to = idA (identity function on A);

Notice that in general, to does not need to be a function, but can be a total rela-
tion (Morgan and Gardiner 1990; Oliveira 1990, 2008).

Refinements can be composed, that is,

if A

to
''

6 B

f rom

gg and B

to′

''
6 C

f rom′

gg then A

to′ ◦ to
''

6 C

f rom ◦ f rom′

gg

Also, transformations in specific parts of a data type can be propagated to the global
data type in which they are embedded, that is,

1This system is available at http://code.google.com/p/2lt.

http://code.google.com/p/2lt

5.3 A Constraint-aware Rewriting System 97

if A

to
''

6 B

f rom

gg then FA

F to
((

6 FB

F f rom

hh

where F is a functor that models the context of the transformation. A functor captures
i) the embedding of local data types inside global data types and ii) the lifting of value-
level functions to and f rom on the local data types to value-level transformations on
the global data types.

In the particular case where a refinement works in both directions we have an
isomorphism A∼= B:

if A

to
''

6 B

f rom

gg and A

to
''

> B

f rom

gg then A

to
''∼= B

f rom

gg

A common example of a refinement (Cunha et al. 2006) is that maps from natural
numbers to some type, N⇀ A, are the implementation of lists of that type, A?:

A?

seq2index
**

6 N⇀ A

list

hh

The function seq2index creates a map (or finite function) where the keys are the in-
dexes of the elements of the list. list collects the elements in the map. For example,

seq2index [’a’,’z’,’x’,’k’] = {1 7→ ’a’,2 7→ ’z’,3 7→ ’x’,4 7→ ’k’}

list {1 7→ ’a’,2 7→ ’z’,3 7→ ’x’,4 7→ ’k’}= [’a’,’z’,’x’,’k’]

Data Types with Constraints

A constraint on a data type can be modeled as a unary predicate, that is, a boolean func-
tion which distinguishes between legal values and values that violate the constraint. A
constraint is associated to a type writing it as a subscript: Aφ, where φ : A→ B is a
total function (Oliveira 1998). For example, the following data type represents two
relational tables with a foreign key constraint:

((A ⇀ B)× (A ⇀C))δ◦π1⊆δ◦π2

98 5 Migration of Spreadsheets

The projection functions π1 ::A × B→ A and π2 ::A × B→ B are used to select the left
or right table and δ :: (A ⇀ B)→ (Set A) to select the domain of a map. Additionally,
a variant of the set inclusion operator lifted to point-free functions is also used:

⊆ : (A→ Set B)→ (A→ Set B)→ (A→ B)

When a second constraint is added to a constrained data type, both constraints can be
composed with logical conjunction:

(Aφ)ψ ≡ Aφ∧ψ

When a constraint is present on a data type under a functor, the constraint can be pulled
up through the functor (for a categorical proof, see (Oliveira 1998)):

F(Aφ)≡ (FA)(Fφ)

For example, a constraint on the elements of a list can be pulled up to a constraint on
the list:

(Aφ)
? ≡ (A?)φ?

A concrete example for this type is as follows:

(Int>0)
? ≡ (Int?)(>0)?

This means that it is equivalent to allow only integers greater than zero to be part
of a list (left part of the equation) and to have a list of all integers and then filter out
the ones greater than zero (right part of the equation).

Data Type Refinement with Constraints

The laws of the data refinement calculus must be enhanced to deal with constrained
data types. Firstly, if a constrained data type is refined with a “classic” law, i.e. a law
that does not involve constraints, the constraint must be properly propagated through
the refinement:

if A

to
''

6 B

f rom

gg then Aφ

to
**

6 Bφ◦ f rom

f rom

hh

5.3 A Constraint-aware Rewriting System 99

Thus, the constraint of the source data type is propagated to the target data type, where
it is post-composed with the backward conversion function from. Such compositions
can give rise to opportunities for point-free program transformation, as we will see
further on.

Several refinement laws can be changed from inequations to isomorphisms by
adding a constraint to the target type. For example, the law for sum elimination,
A + B 6 A? + B?, can be enhanced as to A + B 6 A? + B?(ε◦π1)⊕(ε◦π2). Notice the
use of point-free variants of exclusive disjunction (⊕) and a test for emptiness of an
optional (ε).

When applying a law that introduces a constraint to a data type that already has a
constraint, the new and existing constraints must be combined:

if A

to
((

6 Bψ

f rom

gg then Aφ

to
++

6 (Bψ)φ◦ f rom

f rom

ii ≡ Bψ∧(φ◦ f rom)

This is the invariant pulling theorem of (Oliveira 1998). A more general case arises
when not only the target, but also the source is constrained in the law that is applied:

if Aχ

to
((

6 Bψ

f rom

hh and φ⇒ χ then Aφ

to
++

6 Bψ∧(φ◦ f rom)

f rom

ii

Here it is used a point-free variant on logical implication (⇒) to state that the actual
constraint φ on A must imply the required constraint χ.

In addition to introduction and propagation, constraints can also be weakened or
even eliminated, by virtue of the following: if φ⇒ χ then Aφ 6 Aχ.

In the special case that ψ is the constant true predicate, such weakening boils down
to elimination of a constraint.

5.3.2 Two-Level Transformations with Constraints

The data refinement theory presented in the previous section was implemented in
HASKELL as a rewriting system named two-level transformation (2LT) (Cunha et al.

2006; Alves et al. 2008). We will now briefly introduce this system. A type-safe rep-
resentation of types and functions is constructed using Generalized Algebraic Data

Types (GADT) (P. Jones et al. 2004; Hinze et al. 2006), which allows to assign more

100 5 Migration of Spreadsheets

precise types to data constructors by restricting the variables of the data type in the
constructors’ result types. To represent types, the following GADT is used:

data Type t where
Int :: Type Int -- representation of integer
String :: Type String -- representation of string
[·] :: Type a→ Type [a] -- representation of list
Maybe :: Type a→ Type (Maybe a) -- representation of optional
·× · :: Type a→ Type b→ Type (a,b) -- representation of product
·⇀ · :: Type a→ Type b→ Type (a ⇀ b) -- representation of map
aφ :: Type a→ PF (Pred a)→ Type a -- representation of invariants

Notice that the HASKELL type Map a b for finite maps is rendered as a ⇀ b.

The following type is used to encode the type constraints:

type Pred a = a→ Bool

That is, Pred a is a shorthand for a→ Bool. The notation aφ denotes a representation
of type a, constrained by a boolean function represented by φ.

Functions are represented in a point-free style, that is, without any variables. Their
representation is accomplished by the following GADT:

data PF a where
id :: PF (a→ a) -- identity function
pnt :: a→ PF (One→ a) -- constant
π1 :: PF ((a,b)→ a) -- left projection of a pair
π2 :: PF ((a,b)→ b) -- right projection of a pair
list2set :: PF ([a]→ Set a) -- list to set
ρ :: PF ((a ⇀ b)→ Set b) -- range of a map
δ :: PF ((a ⇀ b)→ Set a) -- domain of a map
CompList :: PF ([(a,b)]→ [(b,b)]) -- composition of lists of pairs
ListId :: PF ([(a,b)]→ [(b,b)]) -- list of pairs
·? :: PF (a→ b)→ PF ([a]→ [b]) -- list function map
·? :: PF (a→ b)→ PF (Set a→ Set b) -- set function map

-- logical operator
·∧ · :: PF (Pred a)→ PF (Pred a)→ PF (Pred a)

-- product of functions
·× · :: PF (a→ b)→ PF (c→ d)→ PF ((a,c)→ (b,d))

5.3 A Constraint-aware Rewriting System 101

-- split of functions
·4 · :: PF (a→ b)→ PF (a→ c)→ PF (a→ (b,c))

-- composition of functions
· ◦ · :: Type b→ PF (b→ c)→ PF (a→ b)→ PF (a→ c)

-- set inclusion
· ⊆s · :: Type b→ PF (a→ Set b)→ PF (a→ Set b)→ PF (Pred a)

-- list inclusion
· ⊆l · :: Type b→ PF (a→ Set b)→ PF (a→ Set b)→ PF (Pred a)

Sstable2table :: PF ([(a,b)]→ (a ⇀ b)) -- SS table to RDB table
Table2sstable :: PF ((a ⇀ b)→ [(a,b)]) -- RDB table to SS table

This GADT represents the types of the functions used in the transformations. For
example, π1 represents the type of the function that project the first part of a pair. The
comments should clarify which function each constructor represents.

Given these representations of types and functions, we can turn to the encoding of
refinements. Each refinement is encoded as a two-level rewriting rule:

type Rule = ∀ a . Type a→Maybe (View (Type a))

data View a where
View :: Rep a b→ Type b→ View (Type a)

data Rep a b = Rep {to = PF (a→ b), from = PF (b→ a)}

Although the refinement is from a type a to a type b, this can not be directly encoded
since the type b is only known when the transformation completes, so the type b is
represented as a view of the type a. A view means that a type a can be represented
by a type b, denoted Rep a b, if both a function to :: a→ b and an inverse function
from :: b→ a are given.

The following code implements a rule to transform a list into a map:

listmap :: Rule

listmap ([a]) = Just (View (Rep {to = seq2index, from = tolist}) (Int ⇀ a))

listmap = mzero

The witness functions have the following signature (their code here is not important):

tolist :: (Int ⇀ a)→ [a]

seq2index :: [a]→ (Int ⇀ a)

This rule receives the type of a list of a, [a], and returns a view over the type map of

102 5 Migration of Spreadsheets

integers to a, Int ⇀ a. The witness functions are returned in the representation Rep. If
other argument than a list if received, the rule fails, returning mzero. This combinator
is the identity in a monad; for example, if we were working with lists, mzero would
be the empty list. All the rules contemplate this case and so we will not show it in the
other rules.

Given this encoding of individual rewrite rules, a complete rewrite system can be
build via the following constructors:

nop :: Rule -- identity
. :: Rule→ Rule→ Rule -- sequential composition
� :: Rule→ Rule→ Rule -- left-biased choice
many :: Rule→ Rule -- repetition
once :: Rule→ Rule -- arbitrary depth rule application

Details on the implementation of these combinators can be found elsewhere (Cunha
et al. 2006).

After a two-level rewriting system has been constructed and applied to a type a to
arrive at a type b, the synthesized conversion function can be applied with the following
convenience HASKELL functions:

forth :: View (Type a)→ Type b→ a→Maybe b

back :: View (Type a)→ Type b→ b→Maybe a

Thus, the forth function will perform the forward conversion to a value of type a, while
back performs the backward conversion.

5.3.3 Representing Spreadsheets and Relational Databases

In our approach, spreadsheets are represented by a product of tables. A table is a list of
rows and each row is a product of values. For example, the code shown next represents
a spreadsheet with a single table containing three rows and three columns. Its type is
(String,(String,String))?:

[("cr76",("John","5554434")),

("cr56",("Aline","5552122")),

("cr56",("Aline","5552122"))]

The reader may notice that this model does not directly represent the definition of
spreadsheets given in Chapter 2. In this chapter we choose this type to specify spread-

5.3 A Constraint-aware Rewriting System 103

sheets because it facilitates the migration to and from databases.

To represent a relational database table we use a map from the key to the non-key
attributes. A product of maps defines a database. The database representation of the
above spreadsheet is shown next. Its type is String ⇀ (String,String):

{"cr76" 7→ ("John","5554434"),

"cr56" 7→ ("Aline","5552122")}

We will see in the next section that these representations are not sufficient to ensure that
no data is lost during the transformations. Thus, we will show how to use invariants to
guarantee that no data is lost.

Correctly Representing Spreadsheets

It is possible to transform a spreadsheet table, (A×B)?, into a relational table, A ⇀ B

(see Section 5.4), but the spreadsheet type must have a constraint imposing that there
exists a functional dependency between the elements in the column of type A and the
column of type B (both A and B can be sets of columns). Thus, the type that we will
use to represent spreadsheets is (A×B)?CompList⊆lListIdB

. To better understand how the
invariant works, we explain the meaning of the functions used to define it:

CompList Uses a list of pairs as a relation (in the mathematical sense) and composes
its inverse with it. For example, suppose it receives the list [(1,2),(3,6)]. Its
inverse is [(2,1),(6,3)]. The composition results in [(2,2),(6,6)].

ListId Is the list resulting from transforming the identity (mathematical) relation into
a list. For example, for integers it would be [...,(1,1),(2,2),(3,3),(4,4), ...].

· ⊆l · Tests for list inclusion.

This definition of functional dependency is based on the one presented in (Oliveira
2005). The intuition behind this invariant is that if there is a functional dependency,
CompList will produce a subset of the identity relation. Let us look at a couple of
examples. Suppose we start with the middle list of data shown bellow. Its inverse is
shown on the left and their composition on the right. As the reader may have noticed,
the composition is a subset of the identity relation, and thus, the inclusion test will pass
yielding that the list encodes a functional dependency.

104 5 Migration of Spreadsheets

[(b1,a1),

(b1,a1),

(b2,a2)]

[(a1,b1),

(a1,b1),

(a2,b2)]

[(b1,b1),

(b1,b1),

(b1,b1),

(b1,b1),

(b2,b2)]

On the other hand, starting with the relation shown bellow in the middle, its inverse
on the left and their composition on the right, we can see that this composition is not a
subset of the identity relation. Thus, the inclusion test will fail showing that the initial
data does not encode a functional dependency.

[(b1,a1),

(b2,a1),

(b3,a2)]

[(a1,b1),

(a1,b2),

(a2,b3)]

[(b1,b1),

(b1,b2),

(b2,b1),

(b2,b2),

(b3,b3)]

From now on this invariant will be designated fd.

In the next section we will explain how to correctly represent relational databases.
As we will see, the basic type shown before is not enough; some constraints on the
type are necessary.

Correctly Representing Relational Databases

The most interesting rules are the ones that are isomorphisms since they allow us to
move between both types without restrictions (apart from the ones imposed by the
invariants). In fact, the type shown above for database tables, A ⇀ B, is enough to
guarantee that transformations form databases to spreadsheets do not lose any data.
Unfortunately, this is not enough: we need to ensure the identity when doing a round
trip, that is, if we apply a transformation from a spreadsheet to a database and back, we
want to have the same spreadsheet we started with. With the current representation, if
we have repeated rows in the spreadsheet, this repetition is lost, and thus, we need to
improve the database type. In this case, we need to store in the database representation
the number of times a certain row is repeated. To ensure we keep this information,
we use the following type to represent a database: A ⇀ (B×N). The N component
encodes the number of times a row is repeated in the spreadsheet.

This improved type ensures that we do not lose data on a round trip, but now we can

5.4 Migration Rules 105

not ensure that a transformation from a database to a spreadsheet is correct. Suppose
we have the database table {"a" 7→ (1,−1)}. We can not represent less one tuple
in a spreadsheet. Once more, we need a better type: we need to guarantee that N is
always greater than zero. Thus, the type used to represent relational database tables in
our setting is A ⇀ (B×N>0).

In the following section we will present a set of rules to transform a spreadsheet
into a relational database. Since we designed reach types to represent both spread-
sheets and databases, all the rules are isomorphisms, and thus, we can apply the inverse
transformation without losing data.

5.4 Migration Rules

In this section we will describe several data refinements needed to transform a spread-
sheet into a relational database and vice versa. We also present a strategy to combine
these refinements in order to obtain a single rules that can transform any spreadsheet
into a database and vice versa.

5.4.1 Refining a Spreadsheet Table to a Relational Table

The simplest rule is the one that transforms a single spreadsheet table into a relational
table and vice versa. Given a table with data that respects a functional dependency, the
forward transformation will produce a relational table. This forward transformation is
accompanied by an inverse backward one. The following diagram represents this rule:

(A×B)?CompList⊆lListIdB

Sstable2table
--

∼= A ⇀ (B×N>0)

Table2sstable
nn

The transformation Table2sstable, that is, from the database to the spreadsheet, does
not lose any information because each element of the map is transformed into a pair
(an element of the list) with the key being transposed to the first element of the pair
and the value (except the N component) to the second element of the pair. The N
component will be represented in the number of times that row will appear repeated in
the spreadsheet.

The other transformation, Sstable2table, from spreadsheets to databases is more
dangerous in the sense that data could be lost. Suppose we have the list [(1,2),(1,3)].

106 5 Migration of Spreadsheets

This is valid in the spreadsheet representation, but it can not be represented in the
database (at least directly). In fact, the invariant in the spreadsheet type prevents that
the transformation is applied to cases like this. It could be applied if the 2 and the
3 were equal, which clearly is not the case. It could also be applied if the 1s were
different, which is also not the case.

As we explained before, a round trip also does not lose any data. Thus, and since
no information is lost in either of the transformations, this rule is an isomorphism.

The rule is a directly implemented in HASKELL as follows:

sstable2table :: Rule

sstable2table [a×b]CompList⊆lListId = return (View rep (a ⇀ (b× Int>0)))

where
rep = Rep {to = Sstable2table, from = Table2sstable}

sstable2table = mzero

It receives a list of pairs, [a×b], with the functional dependency invariant (CompList⊆l

ListId), representing the spreadsheet data encoding a functional dependency. It returns
a view of the map type, a ⇀ (b× Int>0), representing the database, with the repre-
sentation (rep) given by the two functions Sstable2table and Table2sstable. For all the
other inputs, the function fails, returning mzero.

Let us use this rule to map the table with information about renters of our running
example. For now, let us assume that we have the renters’ data isolated, that is, in its
own table. This will be discussed later on.

∗ghci> sstable2table [renterNr× renterNam]CompList⊆lListId

Just (View (Rep< to><from>) (renterNr ⇀ (renterNam× Int>0)))

The invariant CompList⊆l ListId guarantees that the functional dependency is present
in the spreadsheet data type. It will be used later to guarantee that the data to migrate
indeed encodes the functional dependency. Moreover, the returned to and from func-
tions are the migration functions needed to map the data between the two models. To
use the to and from function one can use the forth and back functions described in
Section 5.3. Let us assume the following HASKELL definitions:

rentersData = [("cr76","John"),

("cr76","John"),

("cr56","Aline"),

("cr56","Aline"),

5.4 Migration Rules 107

("cr56","Aline")]

renterNr = "renterNr"

renterNam = "renterNam"

rentersType = [renterNr× renterNam]CompList⊆lListId

Just viewt = sstable2table rentersType

targetRDBSchema = renterNr ⇀ (renterNam× Int>0)

Executing the forward transformation, we obtain the following result:

∗ghci> forth viewt targetRDBSchema rentersData

Just (fromList [("cr76",("John",2)),("cr76",("John",2)),
("cr56",("Aline",3)),("cr56",("Aline",3)),("cr56",("Aline",3))])

The result can be a bit cryptic: since the forth function is partial and since in this case
it did not fail, it returns Just the result. This is the way HASKELL has to express that
the function succeeded returning something. Unfortunately, HASKELL does not have
a very nice way of showing maps. It shows a list of pairs where the first component is
the key of the map and the second component the value. This list is preceded by the
function fromList which receives a list and returns a map. If we execute the result, we
get the following new result:

∗ghci> fromList [("cr76",("John",2)),("cr76",("John",2)),
("cr56",("Aline",3)),("cr56",("Aline",3)),("cr56",("Aline",3))]

fromList [("cr56",("Aline",2)),("cr76",("John",3))]

As the reader can see, it will show the map in the same format, but now without
the repeated values, which is exactly what we want in the database. For a matter of
presentation, we wrote a function that shows the maps in a more usual way. For our
example it returns the following result:

{"cr56" 7→ ("Aline",2),"cr76" 7→ ("John",3)}

5.4.2 Refining Tables with Foreign Key in the Primary Key

A pair of spreadsheet tables where the primary key of the first table contains a foreign
key to the primary key of the second table, can be refined to a pair of relational tables
using the following law, termed sstables2tables:

108 5 Migration of Spreadsheets

((A×B)?f d× (C×D)?f d)(πAE◦π1)?◦π1⊆(πCE◦π1)?◦π2

Sstable2table×Sstable2table

��

∼=

((A ⇀ (B×N>0))× (C ⇀ (D×N>0)))πAE◦δ◦π1⊆πCE◦δ◦π2

Table2sstable×Table2sstable

HH

The invariant guarantees the existence of a foreign key from the primary key of the first
table to the primary key of the second one. The projection πAE has type πAE : A→ E

and πCE the type πCE : C→ E. The type A must be a tuple of the form A1× . . .×E×
. . .×An and C of the form C1× . . .×E × . . .×Cm. This allows that just part of the
primary key of each table is used in the foreign key definition, but it also allows that
the whole key is used.

When transforming the spreadsheet model into the relational schema, the invariant
must be updated to work on the new type. Thus, instead of writing (πAE ◦π1)

? we write
πAE ◦δ which selects the values of the columns that are foreign keys in the spreadsheet
and in the database, respectively. The selection of the referenced columns is analogous
to this one. A particular instance of this refinement occurs when πAE degenerates on
the identity function. In this case all the attributes of the primary key of the first table,
are foreign keys to part of the attributes of the primary key of the second table. The
diagram of this rule is shown next:

((A×B)?f d× (C×D)?f d)π?
1◦π1⊆(πCE◦π1)?◦π2

Sstable2table×Sstable2table

��

∼=

((A ⇀ (B×N>0))× (C ⇀ (D×N>0)))δ◦π1⊆πCE◦δ◦π2

Table2sstable×Table2sstable

HH

In this case, A = E and thus the projection π1 in the first table is enough to get the
necessary values. On the database side, the domain of the first table is enough get the
correct values.

Another instance of this refinement is when πCE degenerates on the identity func-
tion, that is, part of the attributes of the primary key of the first table reference all the
attributes of the primary key of the second one. The diagram of this instance is shown
next:

5.4 Migration Rules 109

((A×B)?f d× (C×D)?f d)(πAE◦π1)?◦π1⊆π?
1◦π2

Sstable2table×Sstable2table

��

∼=

((A ⇀ (B×N>0))× (C ⇀ (D×N>0)))πAE◦δ◦π1⊆δ◦π2

Table2sstable×Table2sstable

HH

In this case, C = E and once more, the projection π1 and the domain are enough to
get the correct values. An example of a situation like this can be found in our running
example. Remember tables Renting and Renter:

Renter (renterNr,renterNam)

<Renting> (#renterNr,#propNr,#country,rentStart,rentFinish,nrDays, total)

In this case, part of the key of Renting, namely renterNr, is a foreign key to the entire
key of Renter, namely renterNr.

A final instance of this rule occurs when both πAE and πCE degenerate on the
identity function, meaning that all the attributes of the primary key of the first table are
foreign keys to all the attributes of the primary key of the second table. In this case,
the refinement changes as we show next:

((A×B)?f d× (C×D)?f d)π?
1◦π1⊆π?

1◦π2

Sstable2table×Sstable2table

��

∼=

((A ⇀ (B×N>0))× (C ⇀ (D×N>0)))δ◦π1⊆δ◦π2

Table2sstable×Table2sstable

HH

In this instance, A = E =C, and thus both πA and πC are not necessary.

Notice that, for each rule refining a pair A×B there exists a dual one refining the
pair B×A, with the appropriate invariant.

5.4.3 Refining Tables with Foreign Key in the Non-key Attributes

In the previous section we have introduced refinement rules to manipulate tables with
foreign keys on the primary key. In this section we present another set of rules to deal
with foreign keys on the non-key attributes. The diagram of the general rule, termed
sstables2tables′, is presented next:

110 5 Migration of Spreadsheets

((A×B)?f d× (C×D)?f d)(πBE◦π2)?◦π1⊆(πCE◦π1)?◦π2

Sstable2table×Sstable2table

��

∼=

((A ⇀ (B×N>0))× (C ⇀ (D×N>0)))πBE◦ρ◦π1⊆πCE◦ρ◦π2

Table2sstable×Table2sstable

HH

As in the previous rule, when transforming the spreadsheet into the database, the in-
variant must be updated to work on the new type. Thus, instead of writing (πBE ◦π1)

?

we write πBE ◦ δ which selects the values of the columns that are foreign keys in the
spreadsheet and in the database, respectively. The selection of the referenced columns
is analogous.

Once more, the projection πBE has type πBE : B→ E and πCE the type πCE : C→ E.
The type B must be a tuple of the form B1× . . .× E × . . .× Bn and C of the form
C1× . . .×E× . . .×Cm.

As in the previous set of rules, this refinement has three particular cases:

• The first one occurs when πBE degenerates in the identity function, that is, when
all the non-key attributes are foreign keys. In this case, the projection πBE dis-
appears from the invariants.

• The second case occurs when πCE degenerates in the identity function, that is,
all the attributes in the primary key of the second table are referenced by some
foreign key. In this case, πCE is removed from the invariants.

An example of a situation like this can be found in our running example. Re-
member tables Owner and Property:

Owner (ownerNr,ownerNm)

Property (propNr,propAddress,rent,#ownerNr)

In this case, the entire key of Owner, namely ownerNr, is referenced by part of
the non-key attributes of the table Property, namely ownerNr.

• The third and final case occurs when both πBE and πCE degenerate on the identity
function. As expected, both projection functions disappear from the invariants.

Notice also that, in the three cases the types of the spreadsheet and database do
not suffer any change to the original types. Only the invariants need to be updated as
explained before.

5.5 Conclusions 111

5.4.4 Data Refinements as a Strategic Rewrite System

The individual refinement rules presented in the previous sections can be combined
into compound rules and in a full transformational system using the strategy combi-
nators (Lämmel and Visser 2003; Visser and Saraiva 2004; Visser 2005) as shown in
Section 5.3.2. In particular, we define a compound rule to map a spreadsheet into a
relational database:

ss2rdb :: Rule

ss2rdb = simplifyInv B

(many ((aux sstables2tables)B (aux sstables2tables′)))B

(many (aux sstable2table))

where
aux :: Rule→ Rule

aux r = ((once r)B simplifyInv)B ((many (once r))B simplifyInv)

This rule starts by simplifying the invariants through the rule simplifyInv. After that,
the rules sstables2tables (Section 5.4.2) and sstables2tables′ (Section 5.4.3) are ap-
plied using the auxiliary rule aux which applies a rule and then simplifies the invariants
repeatedly until it fails. In a final step, the remaining tables are transformed using the
sstable2table (Section 5.4.1) rule.

This strategy requires the simplification of the invariants because pattern matching
is performed not only on the type representations, but also on the invariants.

Another strategy is to transform directly each spreadsheet table into a relational
table:

direct ss2rdb :: Rule

direct ss2rdb = many (once sstable2table)

This rule applies the transformation exhaustively until all the tables are migrated to the
relational model.

Remember that, since our rules are isomorphism, they can be used in both direc-
tions.

5.5 Conclusions

In this chapter, we have shown how a bidirectional mapping can be established between
a spreadsheet and an equivalent relational database. We have provided the formal

112 5 Migration of Spreadsheets

foundations for such a mapping.
In Chapter 8 we will use this basis to enhanced the HAEXCEL framework to trans-

form a tabular schema into a relational schema and on the fly to derive conversion
functions between these schemas. Furthermore, our techniques also migrate the for-
mulas between the models. Moreover, we have connected importers and exporters for
SQL and spreadsheet formats to the HAEXCEL framework.

In particular, we have made the following contributions.

• We have extended the 2LT framework with new constraint-aware two-level re-
finements;

• We have defined conversion rules between tabular and relational data structures.
Moreover, we have shown how these rules can be combined into a strategic
rewrite system;

• We have combined this rewrite system with methods for discovering relational
schemas in spreadsheets as explained in Chapter 3;

• Finally, we have shown how the resulting system can be employed to convert
spreadsheets to relational databases and back. This allows refactoring of spread-
sheets to reduce data redundancy and improve error detection and migration of
spreadsheet applications.

Notwithstanding these contributions, our approach presents a number of limitations
that we hope to remove in future. For example, we are currently only supporting a set
of commonly used formulas, which remains to be enlarged to a wider range.

We did not present the formal proofs of the refinement rules. Nevertheless, these
rules are simple, well designed and well tested in several spreadsheets/databases.

In the two-level rewrite system, syntactic matching is performed on representations
of constraints. Such syntactic matching could be generalized to verification of logical
implication of the actual constraint and the required constraint.

With respect to formulas and queries, we are not yet exploiting some interesting op-
portunities. For example, a formula or query expressed in terms of the source spread-
sheet may be composed with the backward conversion function to obtain a query on the
target database or refactored spreadsheet. The migration of queries has been explored
in (Cunha and Visser 2007a) in the context of XML and SQL.

Chapter 6

Safe Evolution of Spreadsheets

Summary

To help avoid the introduction of errors when changing spreadsheets, mod-

els that capture the structure and interdependencies of spreadsheets at a

conceptual level have been proposed. Thus, spreadsheet evolution can be

made safe within the confines of a model.

As in any other model/instance setting, evolution may not only require

changes at the instance level but also at the model level. When model

changes are required, the safety of instance evolution can not be guarded by

the model alone.

In this chapter we design an appropriate representation of spreadsheet mod-

els, including the fundamental notions of formulæ and references. For these

models and their instances, we have designed coupled transformation rules

that cover specific spreadsheet evolution steps, such as the insertion of col-

umns in all occurrences of a repeated block of cells. Each model-level trans-

formation rule is coupled with instance level migration rules from the source

to the target model and vice versa. These coupled rules can be composed

to create compound transformations at the model level inducing compound

transformations at the instance level. This approach guarantees safe evolu-

tion of spreadsheets even when models change.

6.1 Introduction

In order to improve spreadsheet end-users productivity, several techniques have been
recently proposed, which guide end users to safely/correctly edit spreadsheets, like, for

113

114 6 Safe Evolution of Spreadsheets

example, the use of spreadsheet templates (Abraham et al. 2005), ClassSheets (Engels
and Erwig 2005; Cunha et al. 2010b), and the inclusion of visual objects to provide
editing assistance in spreadsheets (Cunha et al. 2009b). All these approaches propose
a form of end user model-driven software development: a spreadsheet business model
is defined, from which a customized spreadsheet application is generated guarantee-
ing the consistency of the spreadsheet data with the underlying model. In Chapter 7,
we show an empirical study demonstrating that the use of model-based spreadsheets
improves, in some conditions, end-users productivity.

Despite of its huge benefits, model-driven software development is sometimes dif-
ficult to realize in practice due to two main reasons: first, as some studies suggest,
defining the business model of a spreadsheet can be a complex task for end users (Abra-
ham and Erwig 2006a). As a result, they are unable to follow this spreadsheet develop-
ment discipline. Second, things get even more complex when the spreadsheet model
needs to be updated due to new requirements of the business model. End users need
not only to evolve the model, but also to migrate the spreadsheet data so that it remains
consistent with the model. To address the first problem, in Chapter 3 we have proposed
a technique to derive the spreadsheet’s business model, represented as a ClassSheet,
from the spreadsheet data. In this chapter we address the second problem, that is, the
co-evolution of the spreadsheet model and the spreadsheet data (that is, the instance
of the model). Co-evolution of models and instances are supported by the two-level
coupled transformation framework (Cunha et al. 2006).

In this chapter we present an appropriate representation of a spreadsheet model,
based on the ClassSheet business model, including the fundamental notions of for-
mulæ, references, and expandable blocks of cells. The representation we present in
this chapter is different from the one presented in the previous one. For the migration
to databases, the previous model, defined as lists of tuples, was ideal since it had a
nice match with the representation of databases (maps). In the evolution scenario, this
is not sufficient, though. For example, if the evolution also changes formulas, a more
advanced model is necessary.

For this model and its instance, we design coupled transformation rules that cover
specific spreadsheet evolution steps, such as extraction of a block of cells into a sepa-
rate sheet or insertion of columns in all occurrences of a repeated block of cells. Each
model-level transformation rule is coupled with instance level migration rules from the
source to the target model and vice versa. Moreover, these coupled rules can be com-

6.2 Motivational Example 115

posed to create compound transformations at the model level that induce compound
transformations at the instance level. With this approach, spreadsheet evolution can
be made type-safe, also when model changes are involved. To make these techniques
available, we have implemented them in the HAEXCEL framework as will be described
in Chapter 8.

This chapter is organized as follows. In Section 6.2 we discuss spreadsheet refac-
toring as our motivational example. In Section 6.3 we describe the framework to model
and manipulate spreadsheets. Section 6.4 defines the rules to perform the evolution of
spreadsheets and Section 6.5 concludes the chapter.

6.2 Motivational Example

Suppose a researcher’s yearly budget for travel and accommodation expenses is kept
in the spreadsheet shown in Figure 6.1 taken from (Engels and Erwig 2005).

Figure 6.1: Budget spreadsheet instance.

Note that throughout the years, cost and quantity are registered for three types of
expenses: travel, hotel and local transportation. Formulas are used to calculate the total
expense for each type in each year as well as the total expense in each year. Finally, a
grand total is calculated over all years, both per type of expense and overall.

At the end of 2010, this spreadsheet needs to be modified to accommodate 2011
data (already in it). A novice spreadsheet user would typically take four steps to per-
form the necessary modifications:

• insert three new columns;

• copy all the labels;

• copy all the formulas (at least two);

116 6 Safe Evolution of Spreadsheets

• update all the necessary formulas in the last column.

A more advanced user would shortcut these steps by copy-inserting the 3-column
block of 2010 and changing the label “2010” to “2011” in the copied block. If the
insertion is done behind the last year, the range of the multi-year totals columns must
be extended to include the new year. If the insertion is done in between the last and
one-but-last year, the spreadsheet system automatically extends the formulas for the
multi-year totals. Apart from these two strategies, a mixed strategy may be employed.
In any case, a conceptually unitary modification (add year) needs to be executed by an
error-prone combination of steps.

As presented in Chapter 3, Erwig et al. have introduced ClassSheets as models of
spreadsheets that allow spreadsheet modifications to be performed at the right concep-
tual level. For example, the ClassSheet in Figure 6.2 provides a model of our budget
spreadsheet.

Figure 6.2: Budget spreadsheet model.

Before we present our techniques, let us briefly recall the definition of the Class-

Sheets. In this model, the repetition of a block of columns for each year is captured
by the gray column labeled with the ellipsis. The horizontal repetition is marked in
a analogous way. This makes it possible (i) to check whether the spreadsheet after
modification still instantiates the same model, and (ii) to offer the user an unitary op-
eration. Apart from (horizontal) block repetitions that support the extension with more
years, this model features (vertical) row repetitions that support the extension with new
expense types.

Unfortunately, situations may occur in which the model itself needs to be modified.
For example, if the researcher needs to report expenses before and after tax, additional
columns need to be inserted in the block of each year. Figure 6.3 shows the new
spreadsheet as well as the new model that it instantiates.

Note that, a modification of the year block in the model (inserting various columns)
captures modifications to all repetitions of the block throughout the instance.

6.2 Motivational Example 117

(a) New budget model. (b) New budget instance.

Figure 6.3: New spreadsheet and the model that it instantiates.

In this chapter, we will demonstrate that modifications to spreadsheet models can
be supported by an appropriate combinator language, and that these model modifica-
tions can be propagated automatically to the spreadsheets that instantiate the models.
In case of the budget example, the model modification is captured by the following
expression:

addTax = once (

inside "Year" (before "Total" (

insertCol "Tax Tariff"B insertCol "After tax"

)))

The actual column insertions are done by the innermost sequence of two insertCol

steps. The before and inside combinators specify the location constraints of applying
these steps. The once combinator traverses the spreadsheet model to search for a single
location where these constraints are satisfied and the insertions can be performed.

Applying the addTax transformation to the initial model (Figure 6.2) will yield:

• The modified model (Figure 6.3a);

• A spreadsheet migration function that can be applied to instances of the initial
model (Figure 6.1) to produce instances of the new model (Figure 6.3b);

• An inverse spreadsheet migration function to backport instances of the modified
model to instances of the initial model;

In the remainder of this chapter, we will explain the machinery required for this
type of coupled transformation of spreadsheet instances and models. As models, we
will use a variation on ClassSheets where references are modeled by projection func-
tions. Model transformations propagate references by composing instance-level trans-
formations with these projection functions.

118 6 Safe Evolution of Spreadsheets

6.3 A Framework for Evolution of Spreadsheets

Our approach to safe evolution of spreadsheets is, once more, based on data refinement
theory, which provides an algebraic framework for calculating with data types and cor-
responding values (Morgan and Gardiner 1990; Oliveira 1990, 2008). As explained in
the previous chapter, it consists of type-level coupled with value-level transformations.
The type-level transformations deal with the evolution of the model and the value-level
transformations deal with the instances of the model. Figure 6.4 depicts the general
scenario of a transformation in this framework.

A

to
&&

6 A′

from

ff
A, A′ data type and transformed data type
to witness function of type A→ A′ (injective)
from witness function of type A′→ A (surjective)

Figure 6.4: Coupled transformation of data type A into data type A′.

Remember that, each transformation is coupled with witness functions to and
f rom, which are responsible for converting values of type A into type A′ and back.

The 2LT framework is an HASKELL implementation of this theory (Cunha et al.

2006; Cunha and Visser 2007a,b; Visser 2008; Alves et al. 2008). It provides the
basic combinators to define and compose transformations for data types and witness
functions. Since 2LT is statically typed, transformations are guaranteed to be type-safe
ensuring consistency of data types and data instances. For more details the reader is
referred to Section 5.3 of this thesis.

6.3.1 ClassSheets and Spreadsheets in HASKELL

The 2LT was originally designed to work with algebraic data types. However, this
representation is not expressive enough to represent ClassSheet specifications or their
spreadsheet instances. To overcome this issue, we extended the 2LT representation
presented on the previous chapter so it could support ClassSheet models, by intro-
ducing the following constructors in the existing GADT representation presented in
Section 5.3.2:

data Type a where
...

6.3 A Framework for Evolution of Spreadsheets 119

Value ::Value→ Type Value -- plain value
-- references

Ref :: Type b→ PF (a→ RefCell)→ PF (a→ b)→ Type a→ Type a

RefCell :: Type RefCell -- reference cell
Formula :: Formula→ Type Formula -- formulas

LabelB :: String→ Type LabelB -- block label
·= · :: Type a→ Type b→ Type (a,b) -- attributes
· p · :: Type a→ Type b→ Type (a,b) -- block horizontal composition
· ˆ · :: Type a→ Type b→ Type (a,b) -- block vertical composition
EmptyB :: Type EmptyB -- empty block
· :: String→ Type HorH -- horizontal class label
| · :: String→ Type VerV -- vertical class label
| · :: String→ Type Square -- square class label
LabRel :: String→ Type LabS -- relation class

· : · :: Type a→ Type b→ Type (a,b) -- labeled class
· : (·)↓ :: Type a→ Type b→ Type (a, [b]) -- labeled expandable class
· ˆ · :: Type a→ Type b→ Type (a,b) -- class vertical composition

SheetC :: Type a→ Type (SheetC a) -- sheet class
·→ :: Type a→ Type [a] -- sheet expandable class
· p · :: Type a→ Type b→ Type (a,b) -- sheet horizontal composition
EmptyS :: Type EmptyS -- empty sheet

The comments should clarify what the constructors represent. Remember that, the val-
ues of type Type a are representations of type a. For example, if t is of type Type Value,
then t represents the type Value. The following types are needed to construct values of
type Type a:

data EmptyBlock -- empty block
data EmptySheet -- empty sheet
type LabelB = String -- label
data RefCell = RefCell1 -- referenced cell
type LabS = String -- square label
type HorH = String -- horizontal label
type VerV = String -- vertical label
data SheetC a = SheetCC a -- sheet class

120 6 Safe Evolution of Spreadsheets

data SheetCE a = SheetCEC a -- expandable sheet class
-- values

data Value =V Int Int |V String String |V Bool Bool |V Double Double

-- formulas
data Formula1 = FValue Value | FRef | FFormula String [Formula1]

Once more, the comments should clarify what each type represents.

To explain this representation we will use as an example a reduced version of the
budget model presented in Figure 6.2. For this reduced model only three columns are
defined: quantity, cost per unit and total cost (product of quantity by cost per unit).

purchase =

| Price List : Qnty p Cost p Totalˆ
| PriceList : (qnty = 0 p cost = 0 p total = FFormula × [FRef ,FRef])↓

This ClassSheet specifies a class called Price List composed by two parts vertically
composed as indicated by the ˆ operator. The first part is defined in the first row and
defines the labels for three columns: Qnty, Cost and Total. The second row defines the
rest of the class containing the definition of the three columns. The first two columns
have as default value 0 and the third is defined by a formula (explained latter on).
Note that, this part is vertically expandable, that is, it can be vertically repeated. In a
spreadsheet instance this corresponds to the possibility of adding new rows. Figure 6.5
represents a spreadsheet instance of this model.

Figure 6.5: Spreadsheet instance of the purchase ClassSheet.

Note that in the definition of Type a, the constructors combining parts of the spread-
sheet return pairs (for example, the operators to vertical and horizontally combine
blocks, ·ˆ· and · p ·, return a pair each). Thus, a spreadsheet instance is written as nested
pairs of values. The spreadsheet illustrated in Figure 6.5 is encoded in HASKELL as
follows:

((Qnty,(Cost ,Total)),

[(2 ,(1500,FormulaFF × [FRef ,FRef])),

(5 ,(45 ,FormulaFF × [FRef ,FRef]))])

6.3 A Framework for Evolution of Spreadsheets 121

The HASKELL type checker statically ensures that the pairs are well formed and are
constructed in the correct order.

6.3.2 Specifying Formulas

Having defined a GADT to represent ClassSheet models, we now need a mechanism
to define spreadsheet formulas. The safer way to specify formulas is making them
strongly typed. Figure 6.6 depicts the scenario of a transformation with references.
A reference from a cell s to the a cell t is defined using a pair of projections, source

and target. These projections are statically-typed functions traversing the data type
A to identify the cell defining the reference (s), and the cell to which the reference is
pointing to (t). In this approach, not only the references are statically typed, but also
always guaranteed to exist, that is, one can not create a reference from/to a cell that
does not exist.

s

A

to
&&

target ..

source 00

T +3 A′

from

ff

source′nn

target ′ppt

source Projection over A identifying the reference
target Projection over A identifying the referenced cell

source′ = source◦ f rom
target ′ = target ◦ f rom

Figure 6.6: Coupled transformation of data type A into data type A′ with references.

The projections defining the reference and the referenced type, in the transformed
type A′, are obtained by post-composing the projections with the witness function from.
When source′ and target ′ are normalized they work on A′ directly rather than via A.
The formula specification, as previously shown, is specified directly in the GADT.
However, the references are defined separately by defining projections over the data
type. This is required to allow any reference to access any part of the GADT.

Using the spreadsheet illustrated in Figure 6.5, an instance of a reference from the
formula total to cost is defined as follows:

purchaseWithReference =

Ref Int (f head ◦head ◦ (π2 ◦π2)
? ◦π2) (head ◦ (π1 ◦π2)

? ◦π2) purchase

Remember that, the second argument of Ref is the source (reference cell) and that the
third is the target (referenced cell).

122 6 Safe Evolution of Spreadsheets

The source function refers to the first FRef in the HASKELL code shown after
Figure 6.5. The target projection defines the cell it is pointing to, that is, it defines
a reference to the the value 1500 in column Cost. Since the use of GADTs requires
the definition of models combining elements in a pairwise fashion, it is necessary
to descend into the structure using π1 and π2. The operator ·? (map in functional
programming) applies a function to all the element of a list and f head gets the first
reference in a list of references.

Note that, our reference type has enough information about the cells and so we
do not need value-level functions, that is, we do not need to specify the projection
functions themselves, just their types. In the cases we reference a list of values, for
example, constructed by the class expandable operator, we need to be specific about
the element within the list we are referencing. For these cases, we use the type-level
head (first element of a list) and tail (all but first) to get the intended value in the list.

6.3.3 Representing Functions

At this point we are able to represent ClassSheet models, including formulas. In this
section we discuss the definition of the witness functions from and to. Once again we
rely on the definition of the GADT defined in Section 5.3.2:

data PF a where
id :: PF (a→ a) -- identity function
π1 :: PF ((a,b)→ a) -- left projection of a pair
π2 :: PF ((a,b)→ b) -- right projection of a pair
pnt :: a→ PF (One→ a) -- constant

-- split of functions
·4 · :: PF (a→ b)→ PF (a→ c)→ PF (a→ (b,c))

-- product of functions
·× · :: PF (a→ b)→ PF (c→ d)→ PF ((a,c)→ (b,d))

-- composition of functions
· ◦ · :: Type b→ PF (b→ c)→ PF (a→ b)→ PF (a→ c)

·? :: PF (a→ b)→ PF ([a]→ [b]) -- map of functions
head :: PF ([a]→ a) -- head of a list
tail :: PF ([a]→ [a]) -- tail of a list
f head :: PF (Formula1→ RefCell) -- head of the arguments of a formula
f tail :: PF (Formula1→ Formula1) -- tail of the arguments of a formula

6.4 Spreadsheets Evolution 123

This GADT represents the types of the functions used in the transformations. For
example, π1 represents the type of the function that projects the first part of a pair. The
comments should clarify which function each constructor represents.

6.4 Spreadsheets Evolution

In this section we define rules to perform spreadsheet evolution, which can be divided
in three main categories: Combinators, used as helper rules, Semantic rules, intended
to change the model itself (for example, add a new column), and Layout rules, designed
to change the visual arrangement of the spreadsheet (for example, swap two columns).

6.4.1 Combinators

The semantic and the layout rules are defined to work on a specific part of the data
type. The combinators defined next are then used to apply those rules in the desired
places.

Pull Up All the References To avoid having references in different levels of the
models, all the rules pull all the references to the topmost level of the model. To pull a
reference in a particular place we use the following rule (we show just its first case):

pullUpRef :: Rule

pullUpRef ((Ref tb fRef tRef ta) p b2) =

return (View idrep (Ref tb (fRef ◦π1) (tRef ◦π1) (ta p b2)))

The representation idrep has the identity (id) function in both directions. If part of
the model (in this case the left part of a horizontal composition) of a given type has a
reference, it is pulled to the top level. This is achieved by composing the existing
projections with the necessary functions, in this case π1. This rule has two cases
(left and right hand side) for each binary constructor (for example, horizontal/vertical
composition).

To pull up all the references in all levels of a model we use the rule pullUpAllRefs=

many (once pullUpRef). The once operator applies the pullUpRef rule somewhere in
the type and the many ensures that this is applied everywhere in the whole model.

124 6 Safe Evolution of Spreadsheets

Apply After and Friends The combinator after finds the correct place to apply the
argument rule (second argument) by comparing the given string (first argument) with
the existing labels in the model. When it finds the intended place, it applies the rule to
it. This works because our rules always do their task on the right-hand side of a type.

after :: String→ Rule→ Rule

after label r (label′ p a) | label≡ label′ = do
View s l′← r label′

return (View (Rep {to = to s× id, from = from s× id}) (l′ p a))

Note that this definition is only part of the complete version since it only contemplates
the case for horizontal composition of blocks (· p ·).

Other combinators were also developed, namely, before, bellow, above, inside and
at. Their implementations are not shown since they are similar to the after combinator.

6.4.2 Semantic Rules

In this section we present rules that change the semantics of the model like, for exam-
ple, by adding columns to a model.

Insert a Block One of the most fundamental rules is the insertion of a new block
into a spreadsheet, formally defined as follows:

Block

id4(pnt a)
++

6 Block p Block
π1

jj

This diagram means that a horizontal composition of two blocks refines a block when
witnessed by two functions, to and from. The to function, id4(pnt a), is a split: it
injects the existing block in the first part of the result without modifications (id) and
injects the given block instance a into the second part of the result. The from function
is π1 since it is the one that allows the recovery of the previously existent block. The
HASKELL version of the rule is presented next.

insertBlock :: Type a→ a→ Rule

insertBlock ta a tx | isBlock ta ∧ isBlock tx = do
let rep = Rep {to = (id4(pnt a)), from = π1}

6.4 Spreadsheets Evolution 125

View s t← pullUpAllRefs (tx p ta)

return (View (comprep rep s) t)

The function comprep composes two representations. This rule receives the type of
the new block ta, its default instance a, and returns a Rule. The returned rule is itself
a function that receives the block to modify tx and returns a view of the new type.
The first step is to verify if the given types are blocks, using the function isBlock. The
second step is to create the representation rep with the witness functions given in the
above diagram. Then, the references are pulled up in result type tx p ta. This returns
a new representation s and a new type t (in fact, the type is the same t = tx p ta). The
result view has as representation the composition of the two previous representations,
rep and s, and the corresponding type t.

Rules to insert classes and sheets were also defined, but since these rules are similar
to the rule for inserting blocks, we omit them.

Insert a Column To insert a column in a spreadsheet, that is, a cell with a label lbl

and the cell bellow with a default value df and vertically expandable, we first need
to create a new class representing it: clas =| lbl : lbl ˆ(lbl = df ↓). The label is used
to create the default value (lbl, []). Note that, since we want to create an expandable
class, the second part of the pair must be a list. The final step is to apply insertSheet:

insertCol :: String→ Formula1→ Rule

insertCol lbl df @(FFormula name fs) tx | isSheet tx = do
let clas =| lbl : lblˆ(lbl = df ↓)

((insertSheet clas (lbl, []))B pullUpAllRefs) tx

Note the use of the rule pullUpAllRefs as explained before. The case shown in the
above definition is for a formula as default value and it is similar to the value case. The
case with a reference is more interesting and is shown next:

insertCol lbl FRef tx | isSheet tx = do
let clas =| lbl : Ref ⊥⊥⊥ (lblˆ((lbl = RefCell)↓))

((insertSheet clas (lbl, []))B pullUpAllRefs) tx

Recall that our references are always local, that is, they can only exist within the type
they are associated with. So, it is not possible to insert a column that references a
part of the existing spreadsheet. To overcome this, we first create the reference with

126 6 Safe Evolution of Spreadsheets

undefined functions and auxiliary type (⊥) and then we set these values to the intended
ones.

setFormula :: Type b→ PF (a→ RefCell)→ PF (a→ b)→ Rule

setFormula tb fRef tRef (Ref t) = return (View idrep (Ref tb fRef tRef t))

This rule receives the auxiliary type, tb, the two functions representing the reference
projections, fRef and tRef , and adds them to the type existing type t. A complete rule
to insert a column with a reference is defined as follows:

insertFormula =

(once (insertCol "After Tax" FRef))B (setFormula auxType fromRef toRef)

Following the original idea described in Section 6.2, we want to introduce a new col-
umn with the tax tariff. In this case, we want to insert a column in an existing block
and thus our previous rule will not work. For these cases we write a new rule:

insertColIn :: String→ Formula1→ Rule

insertColIn lbl (FValue v) tx | isBlock tx = do
let block = lblˆ(lbl = v)

((insertBlock block (lbl,v))B pullUpAllRefs) tx

This rule is similar to the previous one but it creates a block (not a class) and inserts it
also after a block. The reasoning is analogous to the one in insertCol.

To add the two columns "Tax tariff" and "After tax" we can use the rule
insertColIn, but applying it directly to our running example will fail since it expects a
block and we have a spreadsheet. We can use the combinator once to achieve the de-
sired result. This combinator tries to apply a given rule somewhere in a type, stopping
after it succeeds once. Although this combinator already existed in the 2LT frame-
work, we extended it to work for spreadsheet models. Assuming that the column
"Tax tariff" was already inserted, we can run the following functions:

∗ghci> let formula = FFormula × [FRef ,FRef]

∗ghci> once (after "Tax tarif" (once (insertColIn "After Tax" formula)))

budget

...

("Cost" p "Tax tariff" p "After tax"ˆ("after tax"= formula) p "Total")
ˆ("cost"= 0 p "tax tarif"= 0 p "total"= totalFormula)

...

6.4 Spreadsheets Evolution 127

Note that, above result is not quite right. The block inserted is a vertical composition
and is inserted in a horizontal composition. The correct would be to have its top and
bottom part on the top and bottom part of the result, as defined below:

("Cost" p "Tax tariff" p "After tax" p "Total")ˆ
("cost"= 0 p "tax tarif"= 0 p "after tax"= formula p "total"=

totalFormula)

To correct these cases, we designed a layout rule, normalize, explained in Section 6.4.3.

Make it Expandable It is possible to make a block in a class expandable. For this,
we created the rule expandBlock. Its formal definition is shown next:

(label : clas)

id×tolist
--

6 (label : (clas)↓)

id×head
ll

Its implementation is as follows:

expandBlock :: String→ Rule

expandBlock str (label : clas) | compLabel label str = do
let rep = Rep {to = id× tolist, from = id×head}
return (View rep (label : (clas)↓))

It receives the label of the class to make expandable and updates the class to allow
repetition. The result type constructor is · : (·)↓; the to function wraps the existing
block into a list, tolist; and the from function takes the head of it, head. We developed
a similar rule to make a class expandable. This corresponds to promote a class c to c→.
We do not show its implementation here since it is quite similar to this one.

Split It is quite common to move a column in a spreadsheet from one place to an-
other. The rule split copies a column to another place and substitutes the original
column values by references to the new column (similar to create a pointer). The rule
to move part of the spreadsheet is presented in Section 6.4.3. The first step of split is
to get the column that we want to copy:

getColumn :: String→ Rule

getColumn h t (l′ ˆb1) | h≡ l′ = return (View idrep t)

128 6 Safe Evolution of Spreadsheets

If the corresponding label is found, the vertical composition is returned. Note that,
as in other rules, this rule is intended to be applied using the combinator once. As
we said, we aim to write local rules that can be used at any level using the developed
combinators.

In a second step, the rule creates a new a class containing the retrieved block:

do View s c′← getBlock str c

let nsh =| str : (c′)↓

The last step is to transform the original column that was copied into references to
the new column. The rule makeReferences :: String→ Rule receives the label of the
column that was copied (the same as the new column) and creates the references. We
do not shown the rest of the implementation because it is quite complex and it is not
essential to understand our techniques.

Let us consider the following part of our example:

budget =

... ("Cost" p "Tax tariff" p "After tax" p "Total")ˆ
("cost"= 0 p "tax tarif"= 0 p "after tax"= formula p "total"=

totalFormula) ...

If we apply the split rule (with the help of once) to it we get the following new model:

∗ghci> once (split "Tax tariff") budget

...

("Cost" p "Tax tariff" p "After tax" p "Total")ˆ
("cost"= 0 p "tax tarif"= 0 p RefCell p "total"= totalFormula)

p
(| "Tax tariff" : (("Tax tariff"ˆ"tax tarif"= 0))↓)

Split Functional Dependencies As we saw in previous chapters, it is quite common
to have columns with repeated data and inducing functional dependencies (see, for
example, Figure 5.2). This duplication of data can be the source of errors and incon-
sistencies in the spreadsheet. A possible solution is to refact the spreadsheet creating a
new table with the repeated information cleaned and substitute the existing columns by
references to the new table. We defined and present a rule that automates this process,
splitFD :: [String]→ [String]→ Rule.

6.4 Spreadsheets Evolution 129

Given two lists of column names, the antecedent and the consequent of the func-
tional dependency, this rule creates a new class with the given columns and composes
the existing sheet with the new class. At the value-level, the repeated data in the new
table is removed. The old consequent columns are all removed, and the antecedent
ones are updated to reference the new table. This is possible because we know that
there is a functional dependency imposing a relationship between antecedent and con-
sequent columns.

Although this is a complex operation, this will facilitate the maintenance of the
spreadsheet. In fact we still can improve this result. Remember that, in a database
setting the relationship that we create when we update the antecedent columns to ref-
erences to the new table is called a foreign key. Since 2LT has the expressibility of
the invariants, we can add one invariant to this spreadsheet imposing that the columns
updated to references just have references to the new column where the antecedent is,
that is, a foreign key.

Moreover, given the flexibility of the invariants, we can add any kind of constraints
to spreadsheet models, for example primary keys. In fact, the splitFD rule ensures that
the new table created has as primary key the antecedent columns.

6.4.3 Layout Rules

In this section we describe rules focused on the layout of spreadsheets, that is, rules
that do not add/remove information to/from the model.

Change Orientation The rule toVertical changes the orientation of a block from
horizontal to vertical.

toVertical :: Rule

toVertical (a p b) = return (View idrep (aˆb))

Note that, since our value-level representation of these compositions are pairs, the to

and the from functions are simply the identity function. The needed information is
kept in the type-level with the different constructors. A rule to do the inverse was also
designed but since it is quite similar to this one, we do not show it here.

Normalize Blocks When applying some transformations, the resulting types may
not have the correct shape. A common example is to have as result the following type:

130 6 Safe Evolution of Spreadsheets

A p BˆC p Dˆ
E p F

Most of the times, the correct result is the following:

A p B p Dˆ
E p C p F

The rule normalize tries to match these cases and correct them. The types are the ones
presented above and the witness functions are combinations of π1 and π2.

normalize :: Rule

normalize (a p bˆc p d ˆe p f) =

let tof = id×π1× id ◦π14π1 ◦π24π2 ◦π1 ◦π2×π2

fromf = π1 ◦π14π1 ◦π2×π1 ◦π24π2 ◦π2 ◦π14id×π2 ◦π2

return (View (Rep {to = tof , from = fromf }) (a p b p d ˆe p c p f))

Although the migration functions seem complex, they just rearrange the order of the
pair so they have the correct order.

Shift It is quite common to move parts of the spreadsheet across it. We designed a
rule to shift parts of the spreadsheet in the four possible directions. We show here part
of the shitRight rule, which, as suggested by its name, shifts part of the spreadsheet to
the right. In this case, a block is moved and an empty block is left in its place.

shitRight :: Type a→ Rule

shitRight ta b1 | isBlock b1 = do
Eq← teq ta b1

let rep = Rep {to = pnt (⊥ :: EmptyBlock)4id, from = π2}
return (View rep (EmptyBlock p b1))

The function teq verifies if two types are equal. This rule receives a type and a block,
but we can easily write a wrapper function to receive a label in the same style of
insertCol.

Another interesting case of this rules occurs when the user tries to move a block
(or a sheet) that has a reference.

shitRight ta (Ref tb frRef toRef b1) | isBlock b1 = do
Eq← teq ta b1

6.5 Conclusions 131

let rep = Rep {to = pnt (⊥ :: EmptyBlock)4id, from = π2}
return (View rep (Ref tb (frRef ◦π2) (toRef ◦π2) (EmptyBlock p b1))

As we can see in the above code, the existing reference projections must be composed
with the selector π2 to allow to retrieve the existing block b1. Only after this, it is
possible to apply the defined selection reference functions.

Move Blocks A more complex task is to move a part of the spreadsheet to another
place. We present next a rule to move a block.

moveBlock :: String→ Rule

moveBlock str c = do View s c′← getBlock str c

let nsh =| str : c′

View r sh← once (removeRedundant str) (c p nsh)

return (View (comprep s r) sh)

After getting the intended block and creating a new class with it, we need to remove
the old block using removeRedundant.

removeRedundant :: String→ Rule

removeRedundant s (s′) | s≡ s′ = return (View rep EmptyBlock)

where rep = Rep {to = pnt (⊥ :: EmptyBlock), from = pnt s′}

This rule will remove the block with the given label leaving an empty block in its place.

6.5 Conclusions

In this chapter we have presented an approach for disciplined model-driven evolution
of spreadsheets. The approach takes as starting point the observation that spreadsheets
can be seen as instances of a ClassSheet models capturing the business logic of the
spreadsheet. We have extended the calculus for coupled transformations of the 2LT
platform to this spreadsheet model. An important novel aspect of this extension is the
treatment of references. In particular, we have made the following contributions:

• We have provided a model of spreadsheets in the form of a GADT with em-
bedded point-free function representations. This model is reminiscent of the
ClassSheet;

132 6 Safe Evolution of Spreadsheets

• We have shown how to represent references and transform references in a type-
safe way. This result can lead to future applications of 2LT variants that target,
for example, object-oriented languages;

• We have defined a coupled transformation system in which transformations at
the level of spreadsheet models are coupled with corresponding transformations
at the level of spreadsheet data/instances. This system combines strategy com-
binators known from strategic programming with spreadsheet-specific transfor-
mation rules;

• We have illustrated our approach with a number of specific spreadsheet refactor-
ings to perform the evolution of spreadsheets.

The rules here presented are implemented in the HAEXCEL framework consisting
of a set of libraries providing functionality to load (from different formats), trans-
form, infer spreadsheet models (for example, ClassSheet), and, now, perform the co-
evolution of such models their (spreadsheet) instances.

Chapter 7

End-user Validation of Model-based
Spreadsheets

Summary

Spreadsheets are widely used by end users, and studies have shown that

most end-user spreadsheets contain non-trivial errors. To improve end-

users productivity, recent research proposes the use of a model-driven engi-

neering approach to spreadsheets.

In this chapter we conduct a systematic empirical study to assess the effec-

tiveness and efficiency of this approach. A number of end users worked with

two different model-based spreadsheets, and we present and analyze here

the results achieved.

7.1 Introduction

Spreadsheets are prone to errors: numerous studies have shown that the high rate of
production of spreadsheets is accompanied by an alarming high rate of errors (Panko
2000; Powell and Baker 2003; EuSpRIG 2011). Some studies report that up to 90% of
real-world spreadsheets contain errors (Rajalingham et al. 2001).

The human-computer interaction community has recently done some work to make
spreadsheets safer, less error-prone, and to improve end-users productivity (Engels
and Erwig 2005; Erwig et al. 2005; Abraham and Erwig 2006a; Cunha et al. 2009a,b,
2010b). One of the promising solutions advocates the use of a Model-Driven Engi-

neering (MDE) approach to spreadsheets. In such an approach, a business model of

133

134 7 End-user Validation of Model-based Spreadsheets

the spreadsheet data is defined, and then end users are guided to introduce data that
conforms to the defined model. Indeed, several models to represent the business logic
of the spreadsheet have been proposed, namely, templates (Erwig et al. 2005; Abra-
ham and Erwig 2006a), ClassSheets (Engels and Erwig 2005), or relational models as
we propose in Chapter 3. In fact, we proposed in Chapter 3 several techniques to infer
such models from a (legacy) spreadsheet.

Although all these works claim that by using a MDE approach end-users produc-
tivity is improved, the reality is that there is no detailed evaluation study that supports
this claim. In this chapter, we present an empirical study that we have conducted with
the aim of analyzing the practical influence of using models in end-users spreadsheet
productivity. In this study we consider two different model-based spreadsheets: refac-

tored spreadsheets, as we propose in Chapter 5 and spreadsheets with edit assistance,
as we propose in Chapter 4. From now on, the former will be referred as refactored and
the latter as visual, as apposed to the original, more usual model, referred as original.
We assess the productivity of end users when introducing, updating and querying data
in those two model-based spreadsheets and in a traditional one.

In this chapter we wish to answer the following research questions:

RQ1 Do end users introduce fewer errors when they use one of the model-based

spreadsheet versus the original unmodified spreadsheet?

RQ2 Are end users more efficient using the model-based spreadsheets?

RQ3 Do particular models support particular tasks better, leading to fewer errors in

those tasks?

The study we conducted to answer these questions is necessary and useful, since it
is based on a sound experimental setting, and thus, allow us to draw sound conclusions
for further studies on how to improve spreadsheet end-users productivity.

This chapter is organized as follows. In Section 7.2 we describe the design of our
study. We present and analyze in detail the results of our study in Section 7.3. Several
threats to validity are discussed in Section 7.4. Finally, we draw our conclusions in
Section 7.5.

7.2 Study Design 135

7.2 Study Design

As suggested in (Perry et al. 2000) we organized the study as follows:

1. Formulating hypothesis to test: we spent a considerable amount of time organiz-
ing our ideas and finally formulating the hypothesis presented in this work: we
hypothesize that model-based spreadsheets can help end users to commit less
errors when editing and querying spreadsheets.

2. Observing a situation: next, we gathered participants willing to be involved in
the study and we ran the study itself, once we got enough and appropriate quali-
fied participants. During the study, we screen casted the participants’ computers
and afterwards we collected the spreadsheets they worked on.

3. Abstracting observations into data: we computed a series of statistics, that we
present in Section 7.3, over the spreadsheets participants developed during the
study: we graded their performance and measured the time they took to perform
the proposed tasks. All the data we used is available at the SpreadSheets as

a Programming Paradigm project web page http://ssaapp.di.uminho.pt.
The tasks and the spreadsheets participants received are also available in that
page.

4. Analyzing the data: the enormous collection of data that we gathered was later
systematically analyzed. This analysis is also presented in this chapter, in Sec-
tion 7.3.

5. Drawing conclusions with respect to the tested hypothesis: based on the results
obtained, we finally drawn some conclusions. We were also able to suggest some
future research paths based on our work, which are presented in Section 7.5.

Our study aimed to answer if participants were able to perform their tasks with
more accuracy and/or faster given the experimental environments. We used a within
subjects design, meaning that each participant received a task list for each of three
spreadsheet environments. Participants were asked to do various tasks in each spread-
sheet like, for example, data entry, modifications to existing data, and calculations of
the data in the spreadsheet. They were encouraged to work as quickly as possible, but
were not given time limits for any specific spreadsheet.

http://ssaapp.di.uminho.pt

136 7 End-user Validation of Model-based Spreadsheets

7.2.1 Methodology

Participants started the study by filling out a background questionnaire so we could
collect their area of study and previous experience with spreadsheets, other program-
ming languages and English comfort (because Portuguese was the mother language
for all participants). An introduction to the study was given orally in English, this
was explicitly not a tutorial for the different environments because the goal was to
see if even without any introduction to the various experimental spreadsheets the par-
ticipants would still be able to understand and complete the spreadsheet tasks. The
participants were asked to work as quickly and accurately as possible. Since the order
of the spreadsheets was randomized, they were told that the others sitting around them
might appear to be moving faster, but that some tasks were shorter than others. After 2
hours participants were stopped if they were not already finished. Following the tasks
they had a post session questionnaire which contained questions assessing their under-
standing of the different spreadsheet environments, (3 questions for refactored and 4
for visual), plus their own preference. We also asked how confident they were that they
had correctly completed the tasks in the three task lists. Correct answers could only
be given by participants having understood the running models. Grading the question-
naires was done as follows: a correct answer receives total points; an incorrect answer
receives zero points and an answer that is not incorrect nor (totally) correct receives
half of the points. We recorded the users screens using screen capture technology. At
the end of the study the users completed spreadsheets were saved and graded for later
analysis.

7.2.2 Participants

Recruitment was conducted through a general email message to the university, asking
for students with spreadsheet experience and comfort with English. Of the hundreds
that responded (there was a compensation involved), participants were selected based
on spreadsheet experience, comfort with English, and majors outside of computer sci-
ence and engineering. In total, 38 participants finished the study with data we were
able to use (25 females, 11 males, and 2 who did not answer about their gender).
Two participants did not try to solve one of the proposed tasks; for these participants,
we included in the study only the tasks they undertook. A few participants’ machines
crashed and therefore they were eliminated from the study. The majority of participants

7.2 Study Design 137

were between 20-29 years of age, with the remaining under 20. All were students at
the university. About 2/3 were working on their Bachelor’s degree and the remain-
ing on their Masters. None were studying computer science or engineering and the
most represented majors were medicine, economics, nursing and biology. A variety
that is good for representing the end-user population of spreadsheet users. Table 7.1
summarizes our participants.

What How many

Participants 38
Female 25
Male 11
Not answer 2
In baccalaureate 25
In masters 13

Table 7.1: Summary of the participants’ data.

7.2.3 Tasks

The tasks were designed to highlight both the areas which the spreadsheet environ-
ments may be an advantage in, and areas where spreadsheets are known to be prob-
lematic. The tasks were 1) add new information to the spreadsheet, 2) edit existing
data in the spreadsheets and 3) do some calculations using the data in the spreadsheets.
Figure 7.1 illustrates an example of a sheet that participants received containing data
for inserting.

Some of the tasks asked the users to add many new rows of data, with the aim of
a repetitive task being common in real-world situations. As we were designing the
tasks, we imagined a type of data entry office scenario, where an office worker might
receive on paper data which was initially filled out on a paper form and needed to be
entered into a spreadsheet. This first task of data entry, in theory, should be fastest
(and done with fewest entry errors) in the refactored spreadsheet environment. The
second task, of making changes to existing data within a spreadsheet should also be
easier within a refactored spreadsheet environment, since the change only needs to be
made in one location, and therefore there would be less chance of forgetting to change
it. The final task was to do some calculations using the data in the spreadsheet, such as

138 7 End-user Validation of Model-based Spreadsheets

Figure 7.1: Example of a sheet that participants received containing data for inserting.

averages, etc. This task was added because of the frequency of problems with formulas
in spreadsheets.

One of the spreadsheets used in the study, PROPERTIES, stores information about a
properties renting system and was adapted from (Connolly and Begg 2001) (also used
in Chapter 5). This spreadsheet has information about renters, properties and their
owners as well as the dates and prices of the rents.

A second spreadsheet, DISHES, contains information about sells of detergents to
dishwashers. Information about the detergents, prices and the stores where they are
sold is present on this spreadsheets. This spreadsheet was adapted from (Powell and
Baker 2003) (also used in Chapter 3).

The last spreadsheet, PROJECTS, stores information about projects, like the man-
ager and delivery date, employees assigned to them and the instruments used. This
spreadsheet was adapted from (Alhajj 2003) (also used in Chapter 2).

In the task list for DISHES, 82% of the tasks consist of inserting new data, 3% are
editing tasks and 15% involve calculations over the data in the spreadsheet. In the task
list for PROJECTS, 98% of the tasks are for inserting new data, 1% for edition and 1%

7.3 Analyzing End-users Performance 139

for calculations. Finally, for PROPERTIES, inserting data tasks are 67% of the total,
whereas data editing and calculation tasks are 2% and 31% of the total, respectively.

Grading the participants’ performance was done as follows. For tasks involving
adding new data to the spreadsheet or performing calculations over spreadsheet data,
whenever a participant executes a task as we asked him/her to, he/she is awarded 100%
of the total score for that task; on the contrary, if the participant does not at all try to
solve a particular task, he/she gets no credit for that. An intermediate situation occurs
when participants try to solve a task, but fail to successfully conclude it in its entirety.
In this case, the participant is awarded 50% of the score for that task. For tasks involv-
ing editing spreadsheet data, a value in the interval 0%−100% is awarded according
to the participants’ success rate in such tasks (that we can accurately measure).

Table 7.2 presents the number of participants that worked on each spreadsheet and
each model.

original refactored visual Total

DISHES 12 13 12 37
PROJECTS 11 13 13 37
PROPERTIES 14 11 13 38
Total 37 37 38

Table 7.2: Number of participants that worked on each spreadsheet/model.

As expected, the distribution of the models and spreadsheet applications by the
participants is quite homogeneous.

7.3 Analyzing End-users Performance

We divide the presentation of our empiric results under two main axes: effectiveness
and efficiency. In studying effectiveness we want to compare the three running models
for the percentage of correct tasks that participants produced in each one. In studying
efficiency we wish to compare the time that participants took to execute their assigned
tasks in each of the different models. We start by effectiveness.

140 7 End-user Validation of Model-based Spreadsheets

7.3.1 Effectiveness

Each participant was handed three different lists of tasks (inserting, editing and query-
ing data) to perform on three different spreadsheets (DISHES, PROJECTS and PROPER-
TIES). Each spreadsheet, for the same participant, was constructed under a different
model (original, refactored or visual).

For each spreadsheet, and for each model, we started by analyzing the average of
the scores obtained by participants. We shown in Figure 7.2 those results.

original refactored visual

DISHES 86% 76% 78%
PROJECTS 73% 68% 78%
PROPERTIES 75% 64% 62%

Figure 7.2: Global effectiveness results.

We notice that no spreadsheet model is the best for all spreadsheets in terms of
effectiveness. Indeed, we may even notice that spreadsheets in the traditional style,
the original model, turned out to be the best for both the DISHES and PROPERTIES

spreadsheets. The visual model suited the best for the PROJECTS spreadsheet.

In the same line of reasoning, there is no worst model: refactored spreadsheets
achieved the worst results for the DISHES and PROJECTS spreadsheets and the visual

model got the lowest average scores for PROPERTIES. Nevertheless, these results seem
to indicate that the models that we have developed in Chapter 4 and in Chapter 5 are
not effective in reducing the number of errors in spreadsheets, since one of them is

7.3 Analyzing End-users Performance 141

always the model getting the lowest scores. This first intuition, however, deserves
further development.

For once, on the theoretical side, one may argue that the original spreadsheet model
is, without a doubt, the model that end users are accustomed to. Recall that in the
study, we opted to leave out participants with computer science backgrounds, who
could be more sensible to the more complex models refactored and visual, preferring
to investigate such models on traditional users of spreadsheets. On the other hand, we
remark that these more complex models where given no introductory explanation; a
part of our study was also to learn whether or not they could live on their own.

Our next step was then to investigate whether the (apparent) poor results obtained
by complex models are due to their own nature or if they result from participants not
having understood them. In order to fully realize this, we studied the participations that
did not achieve a score of at least 50%, which are distributed by spreadsheet model as
shown in Table 7.3:

original 0%
refactored 25%
visual 21%

Table 7.3: Participations graded under 50%.

While in the original model no participation was graded under 50%, we can see
that this was not the case for refactored and visual, which may have degraded their
overall average results. For these participations, we then analyzed the questionnaire
that they were asked to fill in after the session. In Table 7.4, we present the average
classifications, in percentage, for the post session questionnaires, for participations in
the study that were graded under 50%.

refactored 24%
visual 31%

Table 7.4: Grading of post-session questionnaires for participations graded under 50%.

These results show that participants obtaining poor gradings on their effectiveness
also got extremely poor gradings for their answers to the questions assessing how they
understood the models. Indeed, we can see that such participants were not, in average,
able to answer correctly to (at least) two thirds of the questions raised in the post

142 7 End-user Validation of Model-based Spreadsheets

session questionnaire. From such results we can read that 1/4 of participants was not
able to understand the more complex models, which might have caused a degradation
of the global effectiveness results for these models. This also suggests that, if these
models are to be used by an organization, it is necessary to take some time to introduce
them in order to achieve maximum effectiveness. Nevertheless, even without giving
this introduction in our study, the results show that the models are competitive in terms
of effectiveness: at most, they are 13% worst than the original model, and for one of
the spreadsheets, the visual model even got the best global effectiveness results.

Effectiveness by Task Type

Next, we wanted to realize how effective the models are to perform each of the different
types of tasks that we have proposed to participants: adding new data to a spreadsheet,
or data insertion, changing the data on a spreadsheet, or data editing and performing
some calculations over the spreadsheet data, or statistics.

i) Data insertion: The results presented in Figure 7.3 show, for each model, how
effective participants were in adding new information to the spreadsheets.

original refactored visual

DISHES 91% 90% 81%
PROJECTS 76% 60% 75%
PROPERTIES 86% 67% 68%

Figure 7.3: Effectiveness results for data insertion.

7.3 Analyzing End-users Performance 143

The original model revealed to be the most effective, for all three spreadsheets,
being closely followed by refactored and visual for DISHES, and by visual for
PROJECTS. The refactored model, for PROJECTS, and the models refactored and
visual, for PROPERTIES, proved not to be competitive for data insertion, in the
context of the study. Again, we believe that this in part due to these models
not having been introduced previously to the study: the insertion of new data is
the task that is most likely to benefit from totally understanding of the running
model, and also the one that can be otherwise most affected. This is confirmed
by the effectiveness results observed for other task types, that we present next.

ii) Data editing: Now, we analyze the effectiveness of the models for editing spread-
sheet data. The results presented in Figure 7.4 show that once a spreadsheet is
populated, we can effectively use the models to edit its data.

original refactored visual

DISHES 91% 82% 82%
PROJECTS 54% 62% 50%
PROPERTIES 65% 98% 48%

Figure 7.4: Effectiveness results for data editing.

This is the case of the refactored model for PROJECTS and specially for PROPER-
TIES. The original model is the most effective in data editing for DISHES. The
visual model is comparable to refactored for DISHES, but for all other spread-
sheets, it always achieves the lowest scores among the three models.

144 7 End-user Validation of Model-based Spreadsheets

iii) Statistics: Finally, we have measured the effectiveness of the models for per-
forming calculations over spreadsheet data, obtaining the results shown in Fig-
ure 7.5.

original refactored visual

DISHES 52% 37% 57%
PROJECTS 19% 76% 13%
PROPERTIES 44% 57% 51%

Figure 7.5: Effectiveness results for statistical calculations.

We can see that visual obtained the best results for DISHES and that refactored

obtained the best results for both PROJECTS and PROPERTIES. We can also see
that, all models obtained the worst results for exactly one spreadsheet.

Results from i), ii) and iii) confirm that the models are competitive against the
original model. On the other hand, these results allow us to draw some new conclu-
sions: if the models are going to be used within an organization, it may not always be
necessary to introduce them prior to their use. Indeed, if an organization mostly edits
spreadsheet data or computes new values from such data, and does not insert new data,
then the models, and specially refactored, may deliver good results even when they are
not explicitly explained (as it was the case in our study). These results also show that it
is in the data insertion tasks that the models need to be better understood by end users
in order to increase effectiveness.

7.3 Analyzing End-users Performance 145

7.3.2 Efficiency

In this section, we analyze the efficiency results obtained in our study by the models
that we have been considering in this chapter.

We started by measuring, for each participant, and for each spreadsheet, the time
elapsed from the moment participants started reading the list of tasks to undertake un-
til the moment they completed the tasks proposed for that particular spreadsheet and
moved on to a different spreadsheet or concluded the study. We are able to calcu-
late these times by looking at the individual screen activity that was recorded during
the study, for each participant: the participant stopping interacting with the computer
signals the end of his/her work on a spreadsheet. The measured period therefore in-
cludes the time that participants took trying to understand the models they received
each spreadsheet in. Figure 7.6 presents the average of the overall times, for each
spreadsheet and for each model.

original refactored visual

DISHES 35′ 32′ 28′

PROJECTS 39′ 40′ 41′

PROPERTIES 37′ 36′ 40′

Figure 7.6: Global efficiency results.

We can see that the models refactored and visual are competitive in terms of ef-
ficiency against the original model. Indeed, participants performed fastest for the
DISHES spreadsheets in the visual model, and fastest, by a marginal factor, for the

146 7 End-user Validation of Model-based Spreadsheets

PROPERTIES spreadsheet in the refactored model. The original model got the best
efficiency measurements for the PROJECTS spreadsheets, also by a marginal factor.
Again, note that no introduction to refactored or visual preceded the study. Therefore,
it is reasonable to assume that, for these models, the results in Figure 7.6 include some
time overhead. In an attempt to measure this overhead, which is a consequence of
participants having to analyze a new model, we extracted some more information out
of the results of our study (particularly from the participants’ individual screen activity
record). Indeed, we measured the time elapsed from the moment participants started
reading, for each spreadsheet, the list of tasks to perform, until the moment they ac-
tually began editing the spreadsheet. We assume that this period corresponds exactly
to the overhead of understanding each model (obviously increased by the time spent
reading the list of tasks, which we are not able to isolate further, but that should be con-
stant for any spreadsheet model, since the task list does not change with the model).
The average results obtained are presented in Table 7.5.

original refactored visual

DISHES 2′ 6′ 1′

PROJECTS 2′ 4′ 2′

PROPERTIES 2′ 2′ 2′

Table 7.5: Average overhead results.

We notice that there is a constant average overhead of 2 minutes for almost all
models and all spreadsheets, with the most significant exceptions occurring for the
refactored model, for both the DISHES and the PROJECTS spreadsheets. In these cases,
we can clearly notice an important time gap, which provides some evidence that refac-

tored is most likely the hardest model to understand. This also comes in line with
previous indications that the merits of the spreadsheet models can be maximized if
we take the time to explain them to end users. For the particular case of efficiency,
this means that the results shown in Figure 7.6 could be further improved for the more
complex models, and particularly for the refactored model.

7.4 Threats to Validity 147

7.4 Threats to Validity

As suggested by Perry et al. (2000), we discuss three types of influences that might
limit the validity of our study.

7.4.1 Construct Validity

Do the variables and hypotheses of our study accurately model the research questions?

• Measuring the time overhead: When studying efficiency, we measured the over-
head of understanding each model as the period of time that participants stopped
interacting with a particular spreadsheet and started editing the following one.
In this period, it might have been the case that participants, instead of being
really focused on understanding the new model, took the time to do something
else, like resting, for example. This could affect the conclusions that we draw, in
terms of efficiency. However, during the entire study, participants where always
supervised by at least two authors, who observed that this was not the case. Even
if we were not able to spot a small number of such occurrences, the differences
in the results computed should be minimal and therefore they should not affect
our conclusions.

• Original model: In our study, we have used three spreadsheets that we have as-
sumed to be in the original model. What we are saying is that these three spread-
sheets are representative of the spreadsheets normally defined by end users. Al-
though this set of spreadsheets may be too large to be represented by (any) three
spreadsheets, we have taken DISHES, PROJECTS and PROPERTIES directly, or
with small changes, from other works on general purpose.

7.4.2 Internal Validity

Can changes in the dependent variables be safely attributed to changes in the indepen-

dent variable?

• Accuracy of the analysis: Some of the inferences we make in this chapter deserve
further analysis. To some extent, we assume that our models could achieve better
results if a tutorial has been given to the participants. In fact, we have no proof

148 7 End-user Validation of Model-based Spreadsheets

of this, but the evidences from the study seem to strongly indicate this fact. A
new study is required to prove this, though.

• Accuracy of measurements: Each task proposed to participants was graded indi-
vidually according to the participants’ performance. For most of the cases, this
was done automatically using OpenOffice.org BASIC scripts. These scripts and
their results were exhaustively tested and checked. The cases for which an auto-
matic grading was not possible were carefully graded by hand. All grades were
validated by two authors and were randomly rechecked. Since we have more
than 1400 grades, it is virtually impossible to guarantee full grading accuracy.
This could affect the results observed for dependent variables (efficiency and
effectiveness) without really the independent variables (the models considered)
having changed. Nevertheless, if imprecisions exist in the grades, they should
be equally distributed by the three models and thus they should not affect the
overall results or our conclusions.

The measurement of times that lead to the results presented earlier was achieved
by individually visualizing the screen cast made during the study for each partic-
ipant. Being a manual task, and a repetitive one, this is subject to imprecisions.
Also, not being able to visualize the actual participants’ behavior now may lead
us to imprecise measurements. We are confident that, even if the observed re-
sults are in fact subject to imprecisions, such imprecisions should be distributed
evenly by all measurements and thus do not influence the efficiency results or
the conclusions that we draw based on them.

7.4.3 External Validity

Can the study results be generalized to settings outside the study?

• Generalization: In this study we used three different spreadsheets from different
domains. We believe that the results can be generalized to other spreadsheets,
although probably not to all. The models we developed are not restricted to any
particular spreadsheet, and thus, the results should be the same if the study was
run with a different set of spreadsheets.

• Industrial usage: Participants in our study were students who were asked to
simulate industrial activity: they received some data on paper that they had to

7.5 Conclusions 149

register in a spreadsheet, and to further manipulate. Although we have tried to
create conditions similar as possible to reality, it is likely that people could act
differently in an industrial/real environment. Nevertheless, we believe that no
particular spreadsheet or model should be affected by this. Indeed, if this would
really be the case, then it probably would affect all spreadsheets and all models
in the same way and thus the overall results apply. We believe that if the study
was conducted on an industrial environment, the conclusions should be similar.

7.5 Conclusions

In this chapter, we have presented the results of an empirical study that we conducted
in order to assess the practical interest of models for spreadsheets.

According to (Perry et al. 2000), three topics deserve further analysis, namely,
accuracy of interpretation, relevance of our study and its impact.

• Accuracy of interpretation: This study was prepared carefully and a significantly
large number of end users participated in it. Our goal here was to guarantee that
the results are not unknowingly influenced. For this, it also contributes the fact
that we make all the elements of this study available, both in this chapter and
online.

• Relevance: MDE is one of the most significant research areas in software engi-
neering. We adapted some techniques from this field to spreadsheets and showed
that they can bring benefit to end users, and possibly for professional users too.

• Impact: Our first results show that MDE can bring benefits for spreadsheet end
users. This is a promising research direction, that we believe can be further
explored, particularly in contexts similar to the one of this chapter.

From the preparation of the study, from running it and from its results, we can
summarize our main contributions as follows:

• We have shown that MDE techniques can be adapted for end-users software;

• We proved empirically that models can bring benefits for spreadsheet end users;

• We proposed a methodology that can be reused in studies similar to the one we
have conducted.

150 7 End-user Validation of Model-based Spreadsheets

Finally, we seek to answer the research questions that we presented in the introduc-
tion of this chapter, which correspond exactly to the questions our study was designed
to answer.

RQ1 Do end users introduce fewer errors when they use one of the model-based

spreadsheet versus the original unmodified spreadsheet?

Our observations indicate that model-based spreadsheets can improve end-user
effectiveness. Even if this is not always the case, our results also indicate that
deeper insight on the spreadsheet models is required to maximize effectiveness.
Indeed, we believe that the effectiveness results for refactored and visual could
have been significantly better if these models had been preliminary presented to
the participants of our study.

RQ2 Are end users more efficient using the model-based spreadsheets?

We observed that, frequently, the more elaborate spreadsheet models allowed
users to perform faster. Nevertheless, we were not fully able of isolating the
time that participants took trying to understand the models they were working
with. So, we believe that the observed efficiency results could also be better for
refactored and visual if they had been previously introduced.

RQ3 Do particular models support particular tasks better, leading to fewer errors in

those tasks?

Although this was not observed for inserting tasks, the fact is that, for editing
and querying data the models did help end users. Furthermore, the results seem
to indicate that the inserting data task is the one that benefits the most from better
understanding the models.

With this study we have shown that there is potential in MDE techniques for help-
ing spreadsheet end users. The study of these techniques for professional users of
spreadsheets seems a promising research topic. Moreover, the use of MDE techniques
in other non-professional softwares should also be investigated.

Chapter 8

The HAEXCEL Framework

Summary

In this chapter we present HAEXCEL, an open source framework we have

developed to support the techniques presented in the previous chapters of

this thesis. This framework consists of a set of libraries, tools built on top of

such libraries and an extension to an open source, widely used spreadsheet

system: OpenOffice.org. It allows the users to manipulate, transform and

query spreadsheets. We explain in this chapter its architecture and each of

its components.

8.1 Introduction

In the previous chapters we have presented a series of theories and techniques to ma-
nipulate spreadsheets. In this section, we present the framework HAEXCEL that we
have developed to make all these techniques available for other researchers and end
users.

The framework was developed in the HASKELL programming language (Hudak
and Fasel 1992; Jones 2003) and its main component is a series of reusable HASKELL

libraries capable of manipulating spreadsheets. An overview of the framework can be
seen in Figure 8.1.

The arrows in the figure denote HASKELL components that implement various
analyses, transformations, and generators. Next, we describe succinctly each compo-
nent of the framework.

151

152 8 The HAEXCEL Framework

 A ⇀ B
 C D ⇀ E

Detect
FDs

Infer CS

To UML

Create &
populate

RDB

RDB
schema

Infer RDB
schema

Reasoning
about FDs

Generate
refactored SS

Generate
visual objects

Haskell
representation

Parse
SS file

External FDs

Inject
external FDs

Basic

Safe SS evolution Generate
safe SS

An Excel,
Calc or

Gnumeric
spreadsheet

total : Int
Income

value:Int=0
Item

*

UML class
diagram

Relational
database

ClassSheet model

Figure 8.1: Architecture of HAEXCEL.

Manipulating spreadsheets We use the UMinho Haskell Libraries (UMHL) to im-
port and export spreadsheets to and from HASKELL. This is represented in Figure 8.1
by the parse SS (spreadsheet) file, the generate safe SS and the generate refactored SS

components.

Functional dependencies After importing a spreadsheet, we can use the libraries to
infer functional dependencies. A series of functions are available for reasoning about
them and to produce a reduced or a normalized set. In Figure 8.1 this is represented by
the detect FDs and the inject external FDs components.

Models From functional dependencies, we can construct a relational model for the
spreadsheet. A ClassSheet model can also be produced by the framework. From the
ClassSheet, a UML class diagram can also be obtained. This is represented in the
overview picture by the ClassSheet model, the RDB schema and the UML class dia-

gram components.

Edit assistance Using again the libraries and functional dependencies, edit assis-
tance can be generated. An OpenOffice.org extension is available so this can be used
directly in a spreadsheet. The generate visual objects component represents this fea-
ture in Figure 8.1.

8.2 Manipulating Spreadsheets in HAEXCEL 153

Refactoring Using a relational schema, the framework can generate a new spread-
sheet reflecting the relational constraints. Notice that, the data from the original spread-
sheet is included in the resulting spreadsheet. An online tool is also available: given
a spreadsheet, it will return a new refactored spreadsheet. From the RDB schema to
the spreadsheet is represented the generate refactored SS component, as illustrated in
Figure 8.1.

Migration Using the same relational schema as before, the framework can generate
an SQL script that can be imported by any relational database management system. It
will create and populate the database with the data from the spreadsheet. An online
version is also available: for an input spreadsheet it will return the corresponding
SQL script. The create & populate RDB component shows this part of the tool in the
overview picture.

Evolution We reused the 2LT platform for the implementation of this component.
A set of rules is available so spreadsheets can be changed in a safe way. The safe SS

evolution represents this component in the above figure.

This chapter is organized as follows. In Section 8.2 we explain how to parse spread-
sheets into HASKELL and how to export them back to spreadsheet files. In Section 8.3
we explain how to extract and manipulate functional dependencies from the imported
spreadsheets. These dependencies are used to infer models as explained in Section 8.4.
The generation of edit assistance is presented in Section 8.5. The migration of spread-
sheets to databases and the generation of refactored spreadsheets is explained in Sec-
tion 8.6. Section 8.7 presents the spreadsheet evolution component and Section 8.8
concludes this chapter.

8.2 Manipulating Spreadsheets in HAEXCEL

In order to read spreadsheets into HASKELL, we need to be able to import the formats
used by popular spreadsheet systems. Before we discuss how to import/export spread-
sheets to HASKELL, let us explain our HASKELL representation for spreadsheets.

154 8 The HAEXCEL Framework

8.2.1 Representing Spreadsheets in HASKELL

The representation we present here is based on the UCheck project (Abraham and
Erwig 2007b). In fact, we reuse part of their HASKELL representation. Columns and
rows are represented by integers, starting at 1 (that is, column 1 in HASKELL represents
column A in a spreadsheet, column 2 represents column B, and so on). An address is
composed by a column and by a row.

type Col = Int

type Row = Int

data Indx = Indx Col Row

A value of a cell is represented by the Fml data type which assumes several shapes:

data Fml = Inp Val -- input (by user)
| Ref Indx -- direct reference to another cell
| Ref ′ (String,Row) -- reference using the label and the row
| Bin BinOp Fml Fml -- application of binary operation
| Log LogOp Fml Fml -- logic formula
| Agg BinOp Rng -- aggregation formulas
| AggL LogOp Rng -- logic aggregation formulas
| If Fml Fml Fml -- conditional formula
| Func String [Fml] -- general case of formula with name and args.
| UnkFml -- unknown type

Next, wee explain each part of this data type representation:

Input values This type, Inp Val, represents the plain values such as integers or strings
which are represented by the Val type.

type Date = (Int, Int, Int) -- (dd, mm, yyyy)

data Val = I Int -- integers
| F Double -- floating points
| S String -- strings
| B Bool -- booleans
| E String -- error / undefined
| D Date -- dates
| Unused -- block out “dead parts”

8.2 Manipulating Spreadsheets in HAEXCEL 155

Ref Indx Represents a reference to another cell given by the reference Indx.

Ref’ (String, Row) Another kind of reference by the column label, represented by the
string, and by the row number.

Bin BinOp Fml Fml Binary operation BinOp application to two other values. BinOp

is defined as follows:

data BinOp = Plus |Minus |Mult | Div | Avg | Exp -- binary operations

Log LogOp Fml Fml Binary operation LogOp application to two other values:

data LogOp = Eq | Neq | Lt | Gt | And | Or -- logic operations

Agg BinOp Rng Aggregation formula BinOp applied to a range Rng. The range is
defined as type Rng = [Fml].

AggL LogOp Rng Logic aggregation.

If Fml Fml Fml Conditional operator.

Func String [Fml] Formula termed by the string and with arguments given by the
list.

UnkFml Unknown type.

A cell is a pair with an address and a value as explained before. A sheet is a list of
cells.

type Cell a = (Indx,a)

newtype Sheet a = Sheet [Cell a]

Usually, we represent a spreadsheet by a list of cell of type Fml, that is, by Sheet Fml.

8.2.2 Importing Spreadsheets

Having defined a HASKELL data type to store spreadsheets, we need to define func-
tions to read spreadsheets from popular formats. There are two options to import
spreadsheets into HASKELL:

156 8 The HAEXCEL Framework

Gnumeric files HAEXCEL can read Gnumeric (2011) spreadsheet files through the
UMinho Haskell Libraries using its XML representation. This XML spreadsheet front-
end was defined in the context of a graduation final assignment (Miranda 2004). In the
context of this thesis, we have integrated the construction of a sheet value into such a
front-end. To read this kind of files, the user can use the following function:

readSS :: FilePath→ IO [Sheet Fml]

This function receives a Gnumeric file and returns a list with the tables contained in
such spreadsheet.

Other formats HAEXCEL can read any kind of spreadsheet files if they are repre-
sented as Comma Separated Values (CSV) files. The function csv2ss has the same
signature as readSS and thus produces the same result, but receiving a CSV file.

8.2.3 Exporting Spreadsheets

Although we read several formats, we export only to one: Gnumeric. The function

ss2SSa :: [Sheet Fml]→ FilePath→ IO ()

receives a list of sheets, a file to write the spreadsheets and creates a new spreadsheet in
the Gnumeric format. If the user wants to change the spreadsheet to a different format,
the Gnumeric can create, both in batch or interactively, different formats such as Excel

or OpenOffice.org.

8.3 Functional Dependencies

In this section, we explain how to use HAEXCEL to infer and manipulate functional
dependencies for spreadsheets. First, we introduce the HASKELL representation for
schemas and relations.

8.3.1 Extracting Schemas and Relations

The HAEXCEL functions work mainly with schemas and relations, not with spread-
sheets as represented before. So, we need to convert the Sheet values into the correct
ones. To represent attributes, schemas and relations we use the following types:

8.3 Functional Dependencies 157

data Attribute a = Att a -- one attribute

data Attributes a = Atts [Attribute a] -- a list of attributes

type R a = Attributes a -- a schema

type Relation a = [[a]] -- a relation: each row/tuple is a list

An attribute (Attribute) can be of any type and it is wrapped with the Att constructor.
A list of attributes (Attributes) is composed by elements of type Attribute and it is
also wrapped with a constructor: Atts. A relational schema R is a list of attributes. A
table/relation (Relation) is a list of rows/tuples of the corresponding elements.

The function sheet2relation receives a spreadsheet with one table and returns a pair
with the relation schema and with the relation:

sheet2relation :: Sheet Fml→ (R String,Relation String)

If the spreadsheet consists of more than one table or sheet, we use another function,
sheets2relation, because references between relations may exist.

sheets2relation :: [Sheet Fml]→ [(R String,Relation String)]

As the reader may have noticed, the relations are of type String. In fact this is enough
for our functions. We calculate the formulas existing in the spreadsheet and replace
them by the result values. When formulas are needed, we use the original value of type
Sheet, which contains the representation of formulas.

8.3.2 Functional Dependencies in HAEXCEL

Functional dependencies are represented in HASKELL as follows:

type FD a = (Attributes a,Attributes a)

type FDS a = [FD a]

type CFD a = ([Attributes a],Attributes a)

type CFDS a = [CFD a]

A functional dependency FD is a pair of attributes, that is, the antecedent and the
consequent. A list of functional dependencies is represents by FDS and is constructed
using the predefined HASKELL lists.

A compound functional dependency CFD is a pair with left sets (candidate keys)
and with the right side (rest of the attributes).

158 8 The HAEXCEL Framework

Finding functional dependencies We have implemented the FUN algorithm as the
fun function in HASKELL. This function has the following signature:

fun :: [Attribute a]→ R a→ Relation b→ FDS a

It receives a list of attributes that should not be considered when finding functional
dependencies, a schema and a relation and computes the list of all functional depen-
dencies induced by the data.

Filtering functional dependencies To filter “accidental” dependencies, we use the
following function:

filtering :: Weights→ FDS String→ R String→ Relation String→ FDS String

The first argument, of type Weights is defined as a tuple with numbers representing
the weight each of the heuristics presented in Section 2.6 have in the final result. The
second argument is the set of functional dependencies to filter. The last two arguments
are the schema and the relation. Using the techniques explained in Section 2.6 the
function will filter out the wrong dependencies and return the relevant ones.

Normalizing functional dependencies To normalize a set of functional dependen-
cies we use the SYNTHESIZE algorithm that is implemented by the function synthesize:

synthesize :: Bool→ R String→ FDS String→ CFDS String

The first argument is a boolean to encode the need of producing a set of dependencies
respecting the lossless decomposition property or not. Its second argument is the rela-
tional schema since it may need the attributes to guarantee the lossless decomposition
property. The third argument is the list of functional dependencies. It returns a set of
normalized, up to the third normal form, compound functional dependencies.

SSFUN The algorithm ssfun exposed in Section 2.8, is defined in HASKELL as fol-
lows:

ssfun :: FilePath→ R String→ Relation String→ IO (FDS String)

ssfun f r rl = do
sheet← csv2ss f >>= return◦head -- assuming that the SS has one table
formulaAtts← findFormulaAtts f -- find the columns defined by formulas
let formulaFDs = fdsFromForms sheet -- create FDs from formulas

8.4 Computing Models 159

onesAtts = get1col (schema,relation) -- one value columns are separated
-- create FDs for one value columns

onesFDs = map (λatts→ (Atts [atts],Atts [])) onesAtts

f = fun (onesAtts++ formulaAtts) r′ rl′ -- discover FDs
-- filtering FDs

g = filtering (1,1,1,1,1) (f ++ formulaFDs++onesFDs) r′ rl′

h = synthesize True r g -- normalizing FDs
i = selectKeys h -- selecting keys

return i

It receives a spreadsheet (stored in a file), a relational schema and a relation and returns
a set of functional dependencies. Its first task is to get the spreadsheet representation.
In this simpler version we assume that the spreadsheet contains a single table.

Next, it finds the columns defined by formulas (formulaAtts). It then computes
functional dependencies based in the columns defined by formulas (formulaFDs).

After this, the columns with the same value in all rows are separated from the others
(onesAtts). These columns are then used to create functional dependencies with empty
consequent (onesFDs). The others are used to calculate the functional dependencies
induced by the spreadsheet data (f). Note that, the first argument of the fun function is
the list of columns defined by formulas (formulaAtts) plus the columns containing the
same value in all rows (onesAtts).

Filtering is the next step: the weights are all the same and the functional depen-
dencies are the ones from fun (f), plus the ones from the formulas (formulaFDs), plus
the ones from the columns with always the same value (oneFDs). After filtering the
functional dependencies we can now normalize them using the function synthesize.
Finally, the keys are selected and the resulting functional dependencies are returned.

8.4 Computing Models

In this section we will explain how to use the HAEXCEL libraries to devise models
from a spreadsheet. We start by explaining how to generate an ER diagram.

160 8 The HAEXCEL Framework

8.4.1 Generating Entity-Relationship Diagrams

As explained in Chapter 3 we can infer an ER diagram from a spreadsheet. For this
purpose, the HAEXCEL library includes two functions: fds2ergraph and ss2ergraph.

The first function receives the original schema of the spreadsheet and a set of func-
tional dependencies (in principle, the output of ssfun).

fds2ergraph :: R String→ FDS String→ String

This function will return a string that encodes an ER diagram in the DOT (2011) no-
tation. This language can be interpreted by Graphviz (2011) based tools. The function
fds2ergraph makes use of two functions:

fds2er :: FDS String→ ER Entity X

ss2eraux :: ER Entity X→ R String→ String

In fact, fds2er does the hard work: it computes the ER diagram from the functional de-
pendencies. The other one, ss2eraux, computes the string from our ER representation.

The second function creates a DOT file directly from a spreadsheet file.

ss2ergraph :: FilePath→ FilePath→ IO ()

This function will infer all the tables in the spreadsheets, compute the schemas and
relations, use ssfun to compute the functional dependencies and produce the string
encoding the ER diagram. In a final step it will create the output file and write on it
the diagram.

8.4.2 Generating ClassSheets

As we saw in Chapter 3, it is possible to construct a ClassSheet model from a ER
diagram/relational model. The function genCS implements this process.

genCS :: ER Entity X→ ClassSheet

The function receives an ER representation and returns the corresponding ClassSheet.
The ClassSheet language is implemented in HASKELL as a new data type. As an
example, we show its first construct here:

data ClassSheet = ShClass Class -- a class
| ExtCl Class -- an expandable class
| ClassSheet : || : ClassSheet -- pairs of classes
| NoSheet -- empty ClassSheet

8.5 Edit Assistance for Spreadsheets 161

As in the original language, a ClassSheet can be a class, an expandable class or a hor-
izontal composition of two ClassSheets. The last constructor in necessary to represent
the empty ClassSheet.

There are functions available for parsing and unparsing text files using this lan-
guage. As an example, we list a textual representation of a simple ClassSheet:

|Income

|Item

|Item:(value=0)^

|Income:Total

total=SUM(Item.value)

As the reader may have noticed, this text representation is quite similar to the
original language presented in (Engels and Erwig 2005).

8.5 Edit Assistance for Spreadsheets

In Chapter 4 we have described a technique to add edit assistance to spreadsheets.
In this section, we will explain how we implemented this technique so it can be used
by a spreadsheet end user. To this end, we have created an OpenOffice.org extension.
The platform chosen to implement this work was the OpenOffice.org, in particular the
Calc component, since it is an open source, platform independent product. It offers
some scripting languages such as Python or BASIC. We chose the last one since it is
a very simple language and can easily be migrated to the widely used Excel scripting
language Visual Basic for Applications (VBA).

As in other components of HAEXCEL, most of the work is done by the HASKELL

libraries. In a first step, the BASIC is responsible for sending the spreadsheet data to
the HASKELL back end through a text file in the following format: each cell is a row
in a file; each row has four white space separated values: a c character starting a new
cell, the cell column, the cell row and its content. A sample of such file is listed next:

c 1 1 "movieID"

c 1 2 "mv23"

c 1 3 "mv1"

162 8 The HAEXCEL Framework

c 1 4 "mv21"

...

This is received and manipulated in the HAEXCEL back end: it reads and parses the
file sent by BASIC, computes the normalized set of dependencies and sends the result
back to BASIC. This work is done by the function addon, which receives several files
to read the input and write the results.

addon :: FilePath→ FilePath→ FilePath→ FilePath→ FilePath→ IO ()

8.5.1 Bidirectional Auto-Completion

To accomplish the bidirectional auto-completion described in Chapter 4, it is necessary
to generate combo boxes, that is, a button that when clicked shows a list of possible
selection values. It also needs to generate some additional formulas. We describe these
two steps next.

Generating Combo Boxes Remember from Section 4.3 that for each functional de-
pendency a1, ...,an ⇀ c1, ...,cm, are generated n+m combo boxes, that is, each at-
tribute/column has its own combo box. Let r be the new row, the row that we are
introducing data now, and minr be the first row with data. Then, to the antecedent
attributes/columns, the following combo boxes are generated:

∀ c ∈ {a1, ...,an} :
S (c,r) = combobox :={linked cell :=(c,r);

source cells :=(c,minr) : (c,r−1);
backgoundColor :=green}

For the consequent attributes/columns, the formula is:

∀ c ∈ {c1, ...,cm} :
S (c,r) = combobox :={linked cell :=(c,r);

source cells :=(c,minr) : (c,r−1);
backgoundColor := red}

The combo box is linked to the cell under it, linked cell. The source cells, that is, its
possible choices, are all the previous cells with data in the same column, source cells.
The combo boxes representing antecedents have green background (backgoundColor)
and the others red.

8.5 Edit Assistance for Spreadsheets 163

To send this information back to the spreadsheet, we use a text file. Each row in
this file is used to create a combo box, where the first value is the column to place it,
the second (third) value is the lower (upper) bound of its cell range.

Note that there are two different sets of combo boxes: one to the antecedent at-
tributes/columns and another to the consequent attributes/columns. These two sets
must be separated since they will have different characteristics in the spreadsheet.

For each row in the referred files, BASIC generates a combo box using the routine
createCB. The main function tests if the file with the HAEXCEL result was already
created and then reads each line, parses it and sends to createCB the column and the
row to draw the combo box, the start and end rows of the data, the combo box position
(this value is a pair of drawing coordinates) and the background color of the combo
box. If the back end is not finished yet, it waits half of a second and tries again. When
it finishes, it deletes the file. The createCB function starts by creating and positioning
a drawing zone to place the combo box. Then, it creates the combo box itself. After
that, it creates the cell range and the linked cell.

Sub createCB (col as int,row as int,minr as int,maxr as int,px as int,py as int)

The routine createCB receives the column col and the row row where to insert the
combo box, the interval minr–maxr of the choice values that the combo box will show
and the coordinates px and py where to draw the combo box. As a result it will draw
the combo box with the intended attributes.

Formulas Auto-completion cannot be accomplished just by the use of combo boxes:
we need extra formulas in the spreadsheet too. After choosing a value in an antecedent
column, the other columns of the same dependency must be informed of such a change.
Remember the formula introduced in Section 4.3:

∀ c ∈ {c1, ...,cm},∀ r ∈ {minr, ...,maxr} :
S (c,r) = if (if (isna (vlookup ((a1,r),(a1,r1) : (c,r−1),r−a1 +1,0)),

"",

vlookup ((a1,r),(a1,r1) : (c,r−1),r−a1 +1,0))
==

if (isna (vlookup ((a2,r),(a2,r1) : (c,r−1),r−a2 +1,0)),
"",

vlookup ((a2,r),(a2,r1) : (c,r−1),r−a2 +1,0))
== ...==

164 8 The HAEXCEL Framework

if (isna (vlookup ((an,r),(an,r1) : (c,r−1),r−an +1,0)),
"",

vlookup ((an,r),(an,r1) : (c,r−1),r−an +1,0)),
vlookup ((a1,r),(a1,r1) : (c,r−1),r−a1 +1,0),
"")

For each consequent combo box, the HASKELL back end will compute a string con-
taining the formula which is then passed to the BASIC front end throw a file. Each
formula is accompanied by the row and column where to put it. The BASIC front end
will copy it to the correct cell.

8.5.2 Safe Deletion

Deletion is a concern when dealing with data. One can easily destroy data that is not
represented elsewhere. For instance, in our running example of Chapter 4, Figure 4.2,
if the user deletes the third row, all the information about the movie The OH in Ohio

will disappear! Since this is a renting system, probably the user only wants to delete
the renting transaction.

As explained in Section 4.5, to avoid this problem we introduce a new a button for
each row with data. This button tests if there is risk of loosing data, by checking for
each relational table, if there is other row that contains the same information that is
being deleted. If it is the case, the row is deleted, otherwise the system asks the user
for confirmation.

The following formula assigns to each row with data an a button with an event
listener that checks for the explained deletion anomalies. Let col be the column after
the data and a1, ...,an ⇀ c1, ...,cm be a functional dependency.

∀ r ∈ {minr, ...,maxr},ants ∈ {a1, ...,an} :
S (col,r) = delete :={onClick :=delete (r,ants); }

The delete routine receives the row that is assigned to it and the columns that are
antecedents.

Sub delete (row as integer,cols)

It will check if the values in that row are unique. If this is the case, it will trigger a
message to user warning him. The user then decides to continue or to stop the deletion.

8.6 Migration of Spreadsheets 165

8.6 Migration of Spreadsheets

In this section we present the HAEXCEL component capable of refactoring a spread-
sheet: based on a relational schema, it can produce a new spreadsheet with the same
data as the original, but normalized as a relational database. Moreover, this component
can generate SQL scripts to create and populate a normalized database.

8.6.1 From Spreadsheets to Databases

As we said, this system is intended to migrate spreadsheets to normalized spreadsheets
(or databases). In fact, we can calculate a normalized schema based on a spreadsheet,
but we can not make the system transform the original spreadsheet into a new one
based on the computed schema. To overcome this problem, we use a little tweak:
we calculate the type of the normalized database based on the relational schema, re-
arrange the data to fit this new model, and then use the transformation rule (ss2rdb)
defined to migrate between databases and spreadsheets. Remember that the rule is an
isomorphism and so it can be freely used in both directions.

To make our tool easier to understand, remember the spreadsheet example used in
Chapter 5 shown in Figure 8.2:

Figure 8.2: A spreadsheet representing a property renting system.

Remember also that, based on the data in our example spreadsheet and using the
techniques presented in Chapter 2, we can discover the following relational database
schema:

Country (country)

Renter (renterNr,renterNam)

Owner (ownerNr,ownerNm)

Property (propNr,propAddress,rent,#ownerNr)

<Renting> (#renterNr,#propNr,#country,rentStart,rentFinish,nrDays, total)

166 8 The HAEXCEL Framework

Using the function fds2type, we can transform the above schema into the following
representation in the 2LT framework:

"country"⇀ (One× Int)×
"renterNr"⇀ ("renterNam"× Int)×
"ownerNr"⇀ ("ownerNam"× Int)×
"propNr"⇀ ("propAddress"×"rent"×"ownerNr"× Int)×
"renterNr"×"propNr"×"country"×"rentStart"×
"rentFinish"⇀ ("nrDays"×"total"× Int)

Each table is represented by a map from the primary key attributes to the non-key ones.
For example, the table Renter is transformed into the map from the renter number to
its name. If a table has only key attributes, the map is from the key attributes to the nil

object (One).

In fact, the above type is not complete because the foreign keys are still missing,
which are represented by the four invariants show next:

inv1 = πownerNr ◦ρ◦πProperty ⊆s δ◦πOwner

inv2 = πrenterNr ◦δ◦πRenting ⊆s δ◦πRenter

inv3 = πpropNr ◦δ◦πRenting ⊆s δ◦πProperty

inv4 = πcountry ◦δ◦πRenting ⊆s δ◦πCountry

To understand these invariants, we must understand some functions: πA represents
the projection of the map representing the table A; πa represents the projection of the
attribute a; δ represents the domain of a map and ρ its range.

The invariant inv1 represents the foreign key from property to owner. It can be
read as follows: the result from projecting our database by its property table, taking
its range and then projecting the owner number, must be included in the domain of
the projection of the owner table. This is one way of expressing a foreign key. The
others work in an analogous way. Apart from these invariants, there is another per
table guaranteeing that the integer is greater than zero, as explained in Section 5.3.

8.6.2 From Databases to Spreadsheets

Since we now have the type of the database, we can use the strategy direct ss2rdb

(defined in Section 5.4.4) to migrate our data to a new refactored spreadsheet. We
show the migrated data next:

8.6 Migration of Spreadsheets 167

([(UK,())],

([(cr76,John),

(cr56,Aline)],

([(co40,Tina),

(co93,Tony),

(co12,Anne)],

([(pg4,(6 Lawrence,(50,co40))),

(pg16,(5 Nuvar Dr .,(70,co93))),

(pg36,(2 Manor Rd,(60,co12)))],

[((cr76,(pg4,(UK,(01−07−2000,31−08−2001)))),(426,21300)),
((cr76,(pg16,(UK,(01−09−2001,01−09−2002)))),(365,25550)),
((cr56,(pg4,(UK,(01−09−1999,10−06−2000)))),(283,14150)),
((cr56,(pg36,(UK,(10−10−2000,01−09−2001)))),(326,19560)),
((cr56,(pg16,(UK,(01−11−2002,10−10−2003)))),(343,24010))]))))

It is composed by four lists of data, one per table. Each element of the lists is a pair:
in the first component it contains the data of the key columns and in the second the
non-key attributes.

To make the use of this tool more easy, we implemented the function ss2SS.

ss2SS :: FilePath→ FilePath→ IO ()

It receives a file with the original spreadsheet, and a second file to save the new refac-
tored and normalized one. All the steps presented before are done in an automatic way
using this function.

To make this feature available to a larger audience, we created an online form
where the user can submit a spreadsheet and receives a new refactored spreadsheet.

8.6.3 Generating Databases

The HAEXCEL libraries also generate SQL code which creates the database according
to the derived schema. This is basically a simple SQL create instruction based on
the relational schema. Furthermore, it produces SQL code to insert the migrated data
in the database, and, again, this corresponds to a SQL insert instruction with the mi-
grated data as argument. Because some values of the spreadsheet are defined through
formulas, we generate also SQL triggers, that model the spreadsheet formulas, which

168 8 The HAEXCEL Framework

are used to update the database and guarantee its integrity. We can also generate func-
tions to compute such values. Next, we present the trigger induced by the two formulas
of our running example:

create trigger ssformulas before insert on tbl

for each row begin

set new.nrDays = new.rentFinish - new.rentStart;

set new.total = new.rent * new.nrDays;

end;

As an example, we show the SQL code to create and populate the client table.

create table tbl (renterNr varchar(256),

renterNam varchar(256),

primary key (renterNr));

insert into tbl values ("cr76","John"),("cr56","Aline");

The generated script can be imported by any relational database schema and create and
populate the database.

As in the generation of a refactored spreadsheet, an online version of this feature
is available. Given a spreadsheet, the tool will calculate the relational schema and
generate a SQL script to create and populate a database.

8.7 Evolution of Spreadsheets

In this section we will present the last component of HAEXCEL: safe evolution of
spreadsheets . As we said before, it is difficult to keep changes in models and instances
synchronized. To solve this problem for spreadsheets we reuse an existing framework,
2LT, for coupled software transformations. In 2LT it is possible to design rules to
evolve models and instances in general. Unfortunately, the existing implementation
does not work for spreadsheets. So, our first step was to improve the framework so it
could support spreadsheet models and their instances.

To encode spreadsheet models, we based our work on ClassSheets. We remember
now the combinators created to encode these models, as presented in Section 6.3 next:

8.7 Evolution of Spreadsheets 169

data Type a where
...

Value ::Value→ Type Value -- plain value
-- references

Ref :: Type b→ PF (a→ RefCell)→ PF (a→ b)→ Type a→ Type a

RefCell :: Type RefCell -- reference cell
Formula :: Formula→ Type Formula -- formulas

LabelB :: String→ Type LabelB -- block label
·= · :: Type a→ Type b→ Type (a,b) -- attributes
· p · :: Type a→ Type b→ Type (a,b) -- block horizontal composition
· ˆ · :: Type a→ Type b→ Type (a,b) -- block vertical composition
EmptyB :: Type EmptyB -- empty block
· :: String→ Type HorH -- horizontal class label
| · :: String→ Type VerV -- vertical class label
| · :: String→ Type Square -- square class label
LabRel :: String→ Type LabS -- relation class

· : · :: Type a→ Type b→ Type (a,b) -- labeled class
· : (·)↓ :: Type a→ Type b→ Type (a, [b]) -- labeled expandable class
· ˆ · :: Type a→ Type b→ Type (a,b) -- class vertical composition

SheetC :: Type a→ Type (SheetC a) -- sheet class
·→ :: Type a→ Type [a] -- sheet expandable class
· p · :: Type a→ Type b→ Type (a,b) -- sheet horizontal composition
EmptyS :: Type EmptyS -- empty sheet

As an example of how to use this type, we show how to encode the renter table of the
example given in the previous section:

renter = "Renter" :"Renter Nr" p "Renter Nam"ˆ
("renterNr"= "norenternr" p "renterNam"=

"norenternam")↓

The class Renter is defined as a labeled expandable class, · : (·)↓, with label "Renter"
and is composed by a vertical block composition, · ˆ ·, where the top block contains
the labels for the columns, "Renter Nr" and "Renter Nam". The bottom part is a
horizontal block composition, · p ·, that on the left has the renter’s number default value,
"norenternr", and on the right has the default renter’s name, "norenternam".

170 8 The HAEXCEL Framework

The values from the previous section for renters are encoded as follows:

renterData = ("Renter",(("Renter Nr","Renter Nam"),

[("cr76","John"),

("cr56","Aline")]))

Suppose now we want to add the phone number to the renters. The rule to add a new
column could be defined as follows:

insertPhone = insertColIn "renterPhone" (FValue ("norenterphon"))

This function will create a vertical block composition with label renterPhone (on top)
and default value "norenterphon" (on the bottom) and will try to insert it in the
existing renter model. In fact, we know that it will fail because it tries to insert a block
after another block, but it receives a class. To correctly execute this function, we need
to use the combinator once: it will try to find one place to apply the given rule in the
received model. So, its correct usage would be

insertPhone2 =

once (insertColIn "renterPhone" (FValue ("norenterphon")))

To apply the forward transformation of such rule, we need to define the new model, as
shown next:

newRenterModel = "Renter" :
"Renter Nr" p "Renter Name" p "Renter Phone"ˆ
("renterNr"= "norenternr" p "renterNam"= "norenternam" p
"renterPhon"= "norenterphon")↓

The HASKELL code to apply the transformation is as follows:

go = forth (fromJust ((insertPhone2 B normalize) renter))

newRenterModel

renterData

Note that, the rule insertPhone2 is not applied alone, but followed by the normalize

rule. This is necessary because the output of insertColIn has a bad format, that is, it
does not represent the spreadsheet we want to have. The layout rule normalize will fix
this.

Now, if we apply the forward transformation of the rule to the above renter’s data,
we get the following new data:

8.8 Conclusions 171

newRenterData =

("Renter",(("Renter Nr",("Renter Nam","Renter Phon")),

[("cr76",("John","norenterphon")),

("cr56",("Aline","norenterphon"))]))

As the reader may have noticed, the component of the tool just described is very low
level, which is not ideal for end users. As feature work, we intend to create an exten-
sion for a spreadsheet system to make this available for end users. All this machinery
would be replaced by buttons to add columns, normalize models, etc. These buttons
would run this HASKELL functions on the background and change the spreadsheet ac-
cording to their output. One can imagine a spreadsheet with two sheet, one for the
model, that would need to be embedded in the spreadsheet language, and another with
an instance of such model. Changes in the model would be automatically reflected on
the instance.

8.8 Conclusions

In this chapter we have presented in detail the framework we developed, HAEXCEL.
This framework has several components, each of them implementing part of the tech-
niques introduced in this thesis. Although the framework already makes available all
the techniques, we would like to make them more usable. In particular, we would like
to fully integrate it with OpenOffice.org or Excel and also to make it available through
a web page so users could upload a spreadsheet and get back all the spreadsheets we
can generate. The HAEXCEL framework is available from the homepage of the author:
http://www.di.uminho.pt/~jacome.

http://www.di.uminho.pt/~jacome

172 8 The HAEXCEL Framework

Chapter 9

Conclusions

Summary

In this thesis we have developed a number of techniques for model-based

engineering of spreadsheets that are intended to help users to avoid some

of the drawbacks of spreadsheets. In this chapter, we look back at the tech-

niques we developed and assess to what extent they provide answers to the

research questions we have proposed in Chapter 1.

9.1 Contributions

The overall contribution of this thesis is the development of theories and tools for
extracting models from spreadsheets and using these models to make it more safe to
edit, refactor, and migrate spreadsheets. In more detail, the contributions of the thesis
are the following:

Inference of functional dependencies for spreadsheets (Chapter 2) Functional de-
pendencies are widely used in the context of relational databases and their adop-
tion in other areas is not straightforward. We studied and presented techniques
to automatically infer and reason about functional dependencies in the context
of spreadsheets.

Inference of relational schemas for spreadsheets (Chapter 3) We explored the id-
iosyncrasies of spreadsheets to automatically derive relational database schemas
for spreadsheets. In fact, we use the functional dependencies inferred from the

173

174 9 Conclusions

data as the basis for this computation. These schemas can be used, for example,
to migrate spreadsheets.

Inference of ClassSheets for spreadsheets (Chapter 3) Although relational schemas
are very expressive for databases, they can not capture, for example, the layout
of a spreadsheet. Even though they are enough for a migration to databases, for
tasks like evolution of spreadsheets, more expressive models are necessary. To
this end and from the inferred functional dependencies we were able to automat-
ically compute ClassSheet models. This is particularly important for existing
spreadsheets since it is difficult for an end user to define a specification for an
already created spreadsheet.

Mapping ClassSheets into UML class diagrams (Chapter 3) Since ClassSheets are
based on the OO paradigm, a smooth transition between ClassSheets and UML
class diagrams is possible and we have done it. From these class diagrams, mi-
grations to other paradigms are now possible.

Generation of edit assistance (Chapter 4) Using functional dependencies we were
able to infer edit assistance for spreadsheets. This includes, for example, the
auto-completion of some columns in a spreadsheet based on the values of other
columns. Using this assistance, users can insert data in a spreadsheet with less
effort since part of the data is automatically introduced.

Migration of spreadsheets to databases and vice versa (Chapter 5) We calculated
the formal relationship between spreadsheet models and relational database sche-
mas. Rules to migrate between these two formalisms were designed.

Techniques to generate refactored spreadsheets (Chapter 5) Based on a relational
schema we were able to produce a new spreadsheet that is more organized, from
a data point of view, than the original one and thus better for handling data. In
fact, this new spreadsheet is normalized and so it prevents data inconsistencies,
data corruption and data redundancy.

Improved the 2LT framework to support spreadsheets (Chapter 6) We improved
the Two Level Transformation platform to support spreadsheet models (based on
ClassSheets). We also presented a technique to encode spreadsheet instances
under this framework.

9.2 Answers to the Research Questions 175

Rules for evolution and refactoring of spreadsheets (Chapter 6) On top of the 2LT
framework we developed a series of common evolution steps for spreadsheets.
These steps include insertion of a column in each instance of a model or the
factorization of common parts of the spreadsheet.

Empirical validation (Chapter 7) We validated the techniques presented in the pre-
vious chapters in a study with human end users proving the validity of our work.
In particular, we proved that, in certain conditions, users make less errors and
are faster when using spreadsheets based on our models.

The HAEXCEL framework (Chapter 8) All the techniques presented in this thesis
are implemented and available under an open source framework termed HAEX-
CEL. This framework includes online and batch tools, reusable HASKELL li-
braries and extensions to spreadsheet environments. This framework is available
from the homepage of the author: http://www.di.uminho.pt/~jacome.

9.2 Answers to the Research Questions

In this section we discuss the work presented in this thesis answering the research
questions posed in Chapter 1.

RQ1: Can we automatically infer the implicit logic of a spreadsheet and produce
a specification or model describing it?

We used a strong concept from relational databases theory, functional dependen-
cies, to deduce relationships between the data in a spreadsheet, as explained in Chap-
ter 2. These dependencies are the building blocks for the specifications that we can
automatically infer from spreadsheets. A relational schema, a ClassSheet model and a
UML class diagram can also be inferred as explained in Chapter 3. Therefore, we can
say that it is possible to infer the business logic of a spreadsheet from its content. In
fact, we are able to derive three different models: one more related to the data itself,
the relational schema, one more specific to spreadsheets allowing its full specification,
the ClassSheet, and one more general, the UML class diagram.

In fact, we did even more: the migration between relational databases and spread-
sheets and vice versa was discussed in Chapter 5. The relational schema inferred for a

http://www.di.uminho.pt/~jacome

176 9 Conclusions

spreadsheet can be used to migrate that spreadsheet to a relational database. Since we
used the 2LT framework to do this task, the inverse process is also possible.

Furthermore, we can also generate SQL scripts. This generation is quite useful
because one can very easily generate a script that can be used to create and populate a
database with the same data contained in the spreadsheets.

Although all the available features are automatic, in some cases, results may not
always be perfect. For example, in Chapter 3, the inference of names for relations was
not very good and we actually changed them by hand. Furthermore, our techniques
work better for spreadsheets that are data intensive oriented.

RQ2: Can we use these specifications/models to improve spreadsheet environ-
ments in such a way that end users commit less errors?

The models inferred can be used to generate new spreadsheets. One kind of spread-
sheet contains edit assistance for end users, as discussed in Chapter 4. Helping end
users editing a spreadsheet, for example, auto completing some columns, is one of the
features of this spreadsheet.

Another kind of spreadsheet that we can generate from the models is one that is
refactored in such a way that it enforces the usage of a relational schema and thus
eliminates update and delete anomalies, as explained in Chapter 5.

The former spreadsheet should be used when the user wants to keep the original
layout of the spreadsheet, but still wants some help. The latter spreadsheet can be
used in cases without this constraint. If the user is willing to have a new format, the
refactored spreadsheet is more appropriate.

These two spreadsheets were subject of an empirical study with human end users
and proved, in some situations, to help the end users to commit less errors, as discussed
in Chapter 7. Moreover, these models can be used for safe evolution of spreadsheets as
proposed in Chapter 6. The editing of spreadsheets is a very error prone task, specially
when the underlying model also needs to be changed. Allowing safe editing of models
and instances guarantees that the spreadsheets always conform to the specification.
Thus, we can say that models/specifications can be used to help spreadsheet end users
to make less mistakes.

In fact, our techniques not only improved end-users’ error rate, but they also allow
users to manipulate spreadsheets faster. Our models help end users to insert, edit and

9.3 Future Work 177

query spreadsheets faster than before, as discussed in Chapter 7.

RQ3: To which extent can we create specifications for spreadsheets and improve
them in a non-invasive way, that is, not disturbing the end user?

All the techniques developed during this study are automatic, that is, all the infer-
ence of functional dependencies and models and the generation of new spreadsheets is
completely autonomous. This is quite important since it does not require the user to
learn anything new or to explicitly give new knowledge to the system. We believe that
this kind of techniques are easier to adopt by users. Therefore, we can say that it is
possible to infer models for spreadsheets and use them to make spreadsheets safer in a
non-invasive way, that is, without interfering or interrupting the user’s work flow.

The techniques we developed have all been implemented as part of a framework,
HAEXCEL. It is an open source HASKELL based tool composed by online tools,
batch tools that can be compiled for any platform (supported by HASKELL), reusable
HASKELL libraries and OpenOffice.org extensions. Since it is open source, it can be
reused for other projects.

9.3 Future Work

In this section we discuss some interesting future work directions related to the work
presented in this thesis.

Spreadsheets meet the Web

Nowadays, more and more applications are being ported to work online, as web appli-
cations. This trend is also being adopted by spreadsheet applications makers, such as
Microsoft or Google. Unfortunately, our tools can not work directly with this new way
of using spreadsheets. Nevertheless, we believe our techniques still apply, although
probably not without changes, given that the interaction with the users is slightly dif-
ferent. It would be of great interest to study the applicability of the work we presented
in this thesis to this web world.

Furthermore, this new way of using spreadsheets makes it easier to do collabora-
tive work. This poses several problems, such as, for example, the synchronization of
spreadsheets. Imagine a situation in a company where one department works on part

178 9 Conclusions

of a spreadsheet, a view, and another department on a second view. The administration
probably needs to view the complete spreadsheet. The synchronization of two or more
software artifacts is not an easy task (Antkiewicz and Czarnecki 2008). In particular,
the synchronization of spreadsheets stands in the same difficulty standard. Techniques
to achieve this purpose should be studied and proposed.

Spreadsheets meet MDE Again

In this thesis we have provided a series of theories, techniques and tools based on
models to help end users when using spreadsheets. We have shown that, in some
cases, this MDE approach can help users being more effective and efficient. Despite
this result, we can also see that MDE is a very complex concept and it is very difficult
for end users to understand it and take full advantage of it. Therefore, we believe that
more research is necessary to make MDE techniques available in a broader way for
the end-users community. How to effectively construct tools for end users is still an
open issue and, given the more and more relevance of non-professional programmer,
deserves further studies.

The work we presented was done mostly thinking of end users and how to help
them. The results achieved could have been different if professional users were the
main target. The idiosyncrasies of spreadsheets like, for example, the layout restric-
tions or the non-separation between data and computations, pose a particular challenge.
Although software engineering techniques work well for programming languages for
professionals, to assess their use by professionals in spreadsheets is an interesting re-
search path. To improve or adapt these techniques for this realm should be an interest-
ing work to do, possibly with good results.

Spreadsheets meet Bidirectional Transformations

An interesting area is to explore bidirectional transformations between a model of a
spreadsheet and its instances. One can imagine a situation where a professional pro-
grammer would define a formal model for a spreadsheet using, for example, ClassSheet

models. On the other hand, end users would have their own spreadsheet to work on. In
our work we have defined ways of changing the models and instances at the same time,
but it would be interesting to define techniques to propagate changes on models to the
spreadsheet instances. Moreover, to reflect changes in the spreadsheet in the model

9.3 Future Work 179

could also be an objective. In fact, the bidirectional interaction between the model and
the instances should be the goal.

A final proposal of future work is to study debugging of spreadsheets, also using
bidirectional transformations. For this end, we can observe that spreadsheets have
two possible views: one view contemplates the formulas and another focuses on the
results of these formulas. One of the biggest sources of errors in spreadsheets is the
replacement of a formula by a value, involuntarily or to have the correct value in such
cell. In fact, this could be useful: if this change was back-propagated to the rest
of the spreadsheet, the user could have the perception of the reason why that result
is wrong. In fact, a similar approach is followed in (Abraham and Erwig 2007a).
Bidirectional transformations (Czarnecki et al. 2009) could be used to achieve this
goal. A transformation between the entire spreadsheet to the result of its formulas and
an inverse could be used to understand the impact of changes in certain cell/formulas.
The proposed approaches in Chapters 5 and 6 for bidirectional transformations should
give some insight to solve this problem.

180 9 Conclusions

Bibliography

Robin Abraham and Martin Erwig. Header and unit inference for spreadsheets through
spatial analyses. In VLHCC ’04: Proceedings of the 2004 IEEE Symposium on

Visual Languages - Human Centric Computing, pages 165–172, Washington, DC,
USA, 2004. IEEE Computer Society. ISBN 0-7803-8696-5. Cited on pages 4 and 6.

Robin Abraham and Martin Erwig. Inferring templates from spreadsheets. In ICSE

’06: Proceedings of the 28th International Conference on Software Engineering,
pages 182–191, New York, NY, USA, 2006a. ACM. ISBN 1-59593-375-1. Cited
on pages 7, 44, 70, 90, 114, 133 and 134.

Robin Abraham and Martin Erwig. Type inference for spreadsheets. In Annalisa Bossi
and Michael J. Maher, editors, Proceedings of the 8th International ACM SIGPLAN

Conference on Principles and Practice of Declarative Programming, July 10-12,

2006, Venice, Italy, pages 73–84. ACM, 2006b. ISBN 1-59593-388-3. Cited on
page 90.

Robin Abraham and Martin Erwig. AutoTest: A tool for automatic test case generation
in spreadsheets. In VL/HCC, pages 43–50. IEEE Computer Society, 2006c. ISBN
0-7695-2586-5. Cited on page 5.

Robin Abraham and Martin Erwig. GoalDebug: A spreadsheet debugger for end users.
In ICSE ’07: Proceedings of the 29th International Conference on Software Engi-

neering, pages 251–260, Washington, DC, USA, 2007a. IEEE Computer Society.
ISBN 0-7695-2828-7. Cited on page 179.

Robin Abraham and Martin Erwig. UCheck: A spreadsheet type checker for end
users. Journal of Visual Languages and Computing, 18(1):71–95, 2007b. ISSN
1045-926X. Cited on pages 39, 85 and 154.

181

182 Bibliography

Robin Abraham, Martin Erwig, Steve Kollmansberger, and Ethan Seifert. Visual spec-
ifications of correct spreadsheets. In VLHCC ’05: Proceedings of the 2005 IEEE

Symposium on Visual Languages and Human-Centric Computing, pages 189–196,
Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2443-5. Cited
on pages 43, 70 and 114.

Yanif Ahmad, Tudor Antoniu, Sharon Goldwater, and Shriram Krishnamurthi. A type
system for statically detecting spreadsheet errors. In ASE ’03: Proceedings of the

18th IEEE International Conference on Automated Software Engineering, pages
174–183, October 2003. Cited on page 6.

Reda Alhajj. Extracting the extended entity-relationship model from a legacy relational
database. Information Systems, 28(6):597–618, 2003. ISSN 0306-4379. Cited on
pages 21, 50, 54 and 138.

Tiago L. Alves, Paulo F. Silva, and Joost Visser. Constraint-aware Schema Transfor-
mation. In The Ninth International Workshop on Rule-Based Programming, 2008.
Cited on pages 16, 96, 99 and 118.

Michał Antkiewicz and Krzysztof Czarnecki. Design space of heterogeneous synchro-
nization. In Generative and Transformational Techniques in Software Engineering

II: International Summer School, GTTSE 2007, Braga, Portugal, July 2-7, 2007.

Revised Papers, pages 3–46, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-
3-540-88642-6. Cited on page 178.

Tudor Antoniu, Paul A. Steckler, Shriram Krishnamurthi, Erich Neuwirth, and
Matthias Felleisen. Validating the unit correctness of spreadsheet programs. In
ICSE ’04: Proceedings of the 26th International Conference on Software Engineer-

ing, pages 439–448, Washington, DC, USA, 2004. IEEE Computer Society. ISBN
0-7695-2163-0. Cited on page 6.

Paolo Atzeni and Valeria De Antonellis. Relational database theory. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA, 1993. ISBN 0-8053-
0249-2. Cited on page 22.

Pablo Berdaguer, Alcino Cunha, Hugo Pacheco, and Joost Visser. Coupled schema
transformation and data conversion for XML and SQL. In Michael Hanus, editor,

Bibliography 183

Practical Aspects of Declarative Languages, volume 4354 of Lecture Notes in Com-

puter Science, pages 290–304. Springer Berlin / Heidelberg, 2007. Cited on pages 7
and 73.

Jean Bézivin. Model driven engineering: An emerging technical space. In Ralf
Lämmel, João Saraiva, and Joost Visser, editors, Generative and Transformational

Techniques in Software Engineering, volume 4143 of Lecture Notes in Computer

Science, pages 36–64. Springer Berlin / Heidelberg, 2006. Cited on page 13.

Grady Booch, Robert Maksimchuk, Michael Engle, Bobbi Young, Jim Conallen, and
Kelli Houston. Object-oriented analysis and design with applications. Addison-
Wesley Professional, third edition, 2007. ISBN 9780201895513. Cited on pages 3
and 4.

David J. Bookbinder. The Lotus guide to 1-2-3: Release 3. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1989. ISBN 0-201-15038-7. Cited on
page 2.

Margaret Burnett, Andrei Sheretov, Bing Ren, and Gregg Rothermel. Testing homo-
geneous spreadsheet grids with the “What You See Is What You Test” methodology.
IEEE Transactions on Software Engineering, 28(6):576–594, Jun 2002. ISSN 0098-
5589. Cited on page 6.

Margaret Burnett, Curtis Cook, Omkar Pendse, Gregg Rothermel, Jay Summet, and
Chris Wallace. End-user software engineering with assertions in the spreadsheet
paradigm. In ICSE ’03: Proceedings of the 25th International Conference on Soft-

ware Engineering, pages 93–103, Washington, DC, USA, 2003. IEEE Computer
Society. ISBN 0-7695-1877-X. Cited on page 6.

Mary V. Campbell. Using Excel. Que Corp., Indianapolis, IN, USA, 1985. ISBN
0880222093. Cited on pages 2 and 78.

Peter Pin-Shan Chen. The entity-relationship model — toward a unified view of data.
ACM Transactions on Database Systems, 1:9–36, March 1976. ISSN 0362-5915.
Cited on pages 26 and 56.

Michael J. Coblenz, Andrew J. Ko, and Brad A. Myers. Using objects of measure-
ment to detect spreadsheet errors. In VLHCC ’05: Proceedings of the 2005 IEEE

184 Bibliography

Symposium on Visual Languages and Human-Centric Computing, pages 314–316,
Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2443-5. Cited
on page 6.

Edgar F. Codd. A relational model of data for large shared data banks. Communi-

cations of the ACM, 13:377–387, June 1970. ISSN 0001-0782. Cited on pages 8
and 9.

Edgar F. Codd. Further Normalization of the Data Base Relational Model. In Rustin
(ed). Englewood Cliffs, NJ: Prentice-Hall, 33–64, 1972. Cited on pages 27 and 36.

Thomas M. Connolly and Carolyn Begg. Database Systems: A Practical Approach to

Design, Implementation, and Management. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001. ISBN 0201708574. Cited on pages 35, 92
and 138.

Grenville J. Croll. The importance and criticality of spreadsheets in the city of London.
CoRR, abs/0709.4063, 2007. Cited on page 5.

Grenville J. Croll. Spreadsheets and the financial collapse. CoRR, abs/0908.4420,
2009. Cited on page 5.

Alcino Cunha and Joost Visser. Strongly typed rewriting for coupled software trans-
formation. Electronic Notes on Theoretical Computer Science, 174:17–34, April
2007a. ISSN 1571-0661. Cited on pages 96, 112 and 118.

Alcino Cunha and Joost Visser. Transformation of structure-shy programs: Applied
to XPath queries and strategic functions. In G. Ramalingam and Eelco Visser, edi-
tors, Proceedings of the 2007 ACM SIGPLAN Workshop on Partial Evaluation and

Semantics-based Program Manipulation, 2007, Nice, France, January 15-16, 2007,
pages 11–20. ACM, 2007b. ISBN 978-1-59593-620-2. Cited on pages 96 and 118.

Alcino Cunha, José N. Oliveira, and Joost Visser. Type-safe two-level data transfor-
mation. In J. Misra et al., editors, Proceedings of the 14th International Symposium

on Formal Methods Europe, volume 4085 of LNCS, pages 284–299. Springer, 2006.
Cited on pages 16, 96, 97, 99, 102, 114 and 118.

Bibliography 185

Jácome Cunha, João Saraiva, and Joost Visser. From spreadsheets to relational
databases and back. In PEPM ’09: Proceedings of the 2009 ACM SIGPLAN Work-

shop on Partial Evaluation and Program Manipulation, pages 179–188, New York,
NY, USA, 2009a. ACM. ISBN 978-1-60558-327-3. Cited on pages 6 and 133.

Jácome Cunha, João Saraiva, and Joost Visser. Discovery-based edit assistance for
spreadsheets. In VLHCC ’09: Proceedings of the 2009 IEEE Symposium on Visual

Languages and Human-Centric Computing, pages 233–237, Washington, DC, USA,
2009b. IEEE Computer Society. ISBN 978-1-4244-4876-0. Cited on pages 6, 114
and 133.

Jácome Cunha, Laura Beckwith, João Paulo Fernandes, and João Saraiva. An empiri-
cal study on the influence of different spreadsheet models on end-users performance.
Technical Report DI-CCTC-10-10, CCTC, Departamento de Informática, Universi-
dade do Minho, 2010a. Cited on page 6.

Jácome Cunha, Martin Erwig, and João Saraiva. Automatically inferring ClassSheet
models from spreadsheets. In VLHCC ’10: Proceedings of the 2010 IEEE Sympo-

sium on Visual Languages and Human-Centric Computing, pages 93–100, Wash-
ington, DC, USA, 2010b. IEEE Computer Society. Cited on pages 6, 114 and 133.

Jácome Cunha, Joost Visser, Tiago Alves, and João Saraiva. Type-safe evolution of
spreadsheets. In FASE ’11: Proceedings of the 13th International Conference on

Fundamental Approaches to Software Engineering: Held as Part of the Joint Euro-

pean Conferences on Theory and Practice of Software, ETAPS 2011, Berlin, Hei-
delberg, 2011. Springer-Verlag. to appear. Cited on page 6.

Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy Schürr,
and James F. Terwilliger. Bidirectional transformations: A cross-discipline perspec-
tive. In ICMT ’09: Proceedings of the 2nd International Conference on Theory

and Practice of Model Transformations, pages 260–283, Berlin, Heidelberg, 2009.
Springer-Verlag. ISBN 978-3-642-02407-8. Cited on page 179.

Christopher J. Date. A guide to the SQL standard. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 1986. ISBN 0-201-05777-8. Cited on pages 11
and 95.

186 Bibliography

Islay Davies, Peter Green, Michael Rosemann, Marta Indulska, and Stan Gallo. How
do practitioners use conceptual modeling in practice? Data & Knowledge Engineer-

ing, 58:358–380, September 2006. ISSN 0169-023X. Cited on page 56.

Edsger W. Dijkstra. Notes on Structured Programming. circulated privately, April
1970. Cited on page 4.

DOT. The DOT Language. http://www.graphviz.org/doc/info/lang.html,
2011. Cited on page 160.

Gregor Engels and Martin Erwig. ClassSheets: Automatic generation of spread-
sheet applications from object-oriented specifications. In ASE ’05: Proceedings of

the 20th IEEE/ACM International Conference on Automated Software Engineering,
pages 124–133, New York, NY, USA, 2005. ACM. ISBN 1-59593-993-4. Cited on
pages 6, 9, 43, 46, 57, 58, 114, 115, 133, 134 and 161.

Martin Erwig. Software engineering for spreadsheets. IEEE Software, 26(5):25–30,
2009. ISSN 0740-7459. Cited on page 35.

Martin Erwig and Margaret M. Burnett. Adding Apples and Oranges. In PADL ’02:

Proceedings of the 4th International Symposium on Practical Aspects of Declara-

tive Languages, pages 173–191, London, UK, 2002. Springer-Verlag. ISBN 3-540-
43092-X. Cited on page 6.

Martin Erwig, Robin Abraham, Irene Cooperstein, and Steve Kollmansberger. Auto-
matic generation and maintenance of correct spreadsheets. In ICSE ’05: Proceed-

ings of the 27th International Conference on Software Engineering, pages 136–145,
New York, NY, USA, 2005. ACM. ISBN 1-59593-963-2. Cited on pages 6, 133
and 134.

EuSpRIG. European Spreadsheet Risks Interest Group. http://www.eusprig.org/,
2011. Cited on pages 3, 5 and 133.

Marc Fisher and Gregg Rothermel. The EUSES spreadsheet corpus: A shared re-
source for supporting experimentation with spreadsheet dependability mechanisms.
In Proceedings of the First Workshop on End-user Software Engineering, WEUSE
I, pages 47–51, New York, NY, USA, 2005. ACM. ISBN 1-59593-131-7. Cited on
page 85.

http://www.graphviz.org/doc/info/lang.html
http://www.eusprig.org/

Bibliography 187

Marc Fisher, Mingming Cao, Gregg Rothermel, Curtis R. Cook, and Margaret M.
Burnett. Automated test case generation for spreadsheets. In ICSE ’02: Proceedings

of the 24th International Conference on Software Engineering, pages 141–153, New
York, NY, USA, May 2002. ACM. ISBN 1-58113-472-X. Cited on page 6.

Gnumeric. The Gnome Office Spreadsheet. http://projects.gnome.org/

gnumeric/, 2011. Cited on page 156.

Google. Google docs. http://docs.google.com/, 2011. Cited on page 3.

Graphviz. The Graphviz Tool. http://www.graphviz.org/, 2011. Cited on
page 160.

Felienne Hermans, Martin Pinzger, and Arie van Deursen. Automatically extracting
class diagrams from spreadsheets. In ECOOP ’10: Proceedings of the 24th Euro-

pean Conference on Object-Oriented Programming, pages 52–75, Berlin, Heidel-
berg, 2010. Springer-Verlag. ISBN 3-642-14106-4, 978-3-642-14106-5. Cited on
page 6.

Ralf Hinze, Andres Löh, and Bruno Oliveira. ”Scrap your boilerplate” reloaded. In
Masami Hagiya and Philip Wadler, editors, Functional and Logic Programming,
volume 3945 of Lecture Notes in Computer Science, pages 13–29. Springer Berlin /
Heidelberg, 2006. Cited on page 99.

Steven Holzner. Eclipse Cookbook. O’Reilly Media, Inc., May 2004. ISBN
0596007108. Cited on page 71.

Paul Hudak and Joseph H. Fasel. A gentle introduction to Haskell. ACM SIGPLAN

Notices, 27:1–52, May 1992. ISSN 0362-1340. Cited on page 151.

Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. TANE: An effi-
cient algorithm for discovering functional and approximate dependencies. Computer

Journal, 42(2):100–111, 1999. Cited on page 28.

Dorota Huizinga and Adam Kolawa. Automated Defect Prevention: Best Practices

in Software Management. Wiley-IEEE Computer Society Press, 2007. ISBN
0470042125, 9780470042120. Cited on page 5.

http://projects.gnome.org/gnumeric/
http://projects.gnome.org/gnumeric/
http://docs.google.com/
http://www.graphviz.org/

188 Bibliography

Tomas Isakowitz, Shimon Schocken, and Henry C. Lucas Jr. Toward a logical/physical
theory of spreadsheet modelling. ACM Transactions on Information Systems, 13(1):
1–37, January 1995. Cited on page 6.

Simon P. Jones. Haskell 98 Language and Libraries: The Revised Report. Cambridge
University Press, May 2003. ISBN 0521826144. Cited on page 151.

Simon P. Jones, Cordelia V. Hall, Kevin Hammond, Will Partain, and Philip Wadler.
The Glasgow Haskell compiler: A technical overview. In Proceedings UK Joint

Framework for Information Technology (JFIT) Technical Conference, 1993. Cited
on page 30.

Matthijs F. Kuiper and João Saraiva. Lrc - A generator for incremental language-
oriented tools. In Proceedings of the 7th International Conference on Compiler

Construction, pages 298–301, London, UK, April 1998. Springer-Verlag. ISBN
3-540-64304-4. Cited on page 71.

Ralf Lämmel and Wolfgang Lohmann. Format Evolution. In Proceedings of the 7th

International Conference on Reverse Engineering for Information Systems (RETIS

2001), volume 155 of books@ocg.at, pages 113–134. OCG, 2001. Cited on page 12.

Ralf Lämmel and Joost Visser. A Strafunski application letter. In Proceedings of the

5th International Symposium on Practical Aspects of Declarative Languages, PADL
’03, pages 357–375, London, UK, UK, 2003. Springer-Verlag. ISBN 3-540-00389-
4. Cited on pages 96 and 111.

Victoria Lemieux. Competitive Viability, Accountability and Record Keeping: A The-

oretical and Empirical Exploration Using a Case Study of Jamaican Commercial

Bank Failures. PhD thesis, University College London, 2002. Cited on page 6.

Victoria Lemieux. Archiving: The overlooked spreadsheet risk. CoRR, abs/0803.3231,
2008. Cited on page 6.

Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Efficient discovery of functional
dependencies and armstrong relations. In EDBT ’00: Proceedings of the 7th Inter-

national Conference on Extending Database Technology, pages 350–364, London,
UK, 2000. Springer-Verlag. ISBN 3-540-67227-3. Cited on page 28.

Bibliography 189

David Maier. The Theory of Relational Databases. Computer Science Press, 1983.
ISBN 0-914894-42-0. Cited on pages 22, 24, 25, 37 and 38.

Bertrand Meyer. Object-oriented software construction (2nd ed.). Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1997. ISBN 0-13-629155-4. Cited on pages 3
and 64.

Cupertino M. Miranda. Spreadsheets in Haskell. Graduation final assigment, Depar-
tamento de Informática, Universidade do Minho, 2004. Cited on page 156.

Roland Mittermeir and Markus Clermont. Finding high-level structures in spreadsheet
programs. In WCRE ’02: Proceedings of the Ninth Working Conference on Re-

verse Engineering (WCRE’02), pages 221–232, Washington, DC, USA, 2002. IEEE
Computer Society. Cited on page 6.

Carroll Morgan and P. H. B. Gardiner. Data refinement by calculation. Acta Infor-

matica, 27:481–503, January 1990. ISSN 0001-5903. Cited on pages 12, 92, 96
and 118.

Robert J. Muller. Database design for smarties: using UML for data modeling. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999. ISBN 1-55860-515-
0. Cited on page 56.

Bonnie A. Nardi. A Small Matter of Programming: Perspectives on End User Com-

puting. MIT Press, Cambridge, MA, USA, 1993. ISBN 0262140535. Cited on
page 1.

Noel Novelli and Rosine Cicchetti. FUN: An efficient algorithm for mining functional
and embedded dependencies. In ICDT ’01: Proceedings of the 8th International

Conference on Database Theory, pages 189–203, London, UK, 2001. Springer-
Verlag. ISBN 3-540-41456-8. Cited on pages 28 and 29.

Thomas M. O’Donovan. VisiCalc Made Simple. John Wiley & Sons, Inc., New York,
NY, USA, 1984. ISBN 0471904570. Cited on page 2.

Linda O’Leary. Microsoft Office Excel 2007 Introduction. McGraw-Hill, Inc., New
York, NY, USA, 2008. ISBN 0073294527, 9780073294520. Cited on pages 2
and 78.

190 Bibliography

José N. Oliveira. A reification calculus for model-oriented software specification. For-

mal Aspects of Computing, 2(1):1–23, 1990. Cited on pages 12, 92, 96 and 118.

José N. Oliveira. ”Fractal” Types: An Attempt to Generalize Hash Table Calculation.
In Workshop on Generic Programming (WGP’98), Marstrand, Sweden, June 1998.
Cited on pages 97, 98 and 99.

José N. Oliveira. Functional dependency theory made ’simpler’. Technical Report
PURe-05.01.01, DI-Research, January 2005. Cited on page 103.

José N. Oliveira. Transforming data by calculation. In Ralf Lämmel, Joost Visser, and
João Saraiva, editors, GTTSE 2007, volume 5235 of Lecture Notes in Computer Sci-

ence, pages 134–195. Springer, 2008. ISBN 978-3-540-88642-6. Cited on pages 12,
92, 96 and 118.

OOoAuthors. OpenOffice.org 3 Calc Guide. Friends of OpenDocument Inc., 2010a.
ISBN 978-1-921320-08-8. Cited on pages 78 and 80.

OOoAuthors. Getting Started with OpenOffice.org 3. CreateSpace, 2010b. ISBN
978-1440451775. Cited on page 78.

Oxford. Oxford dictionaries. http://oxforddictionaries.com, 2011. Cited on
page 3.

Simon P. Jones, Geoffrey Washburn, and Stephanie Weirich. Wobbly types: Type
inference for generalised algebraic data types. Technical Report MS-CIS-05-26,
University of Pennsylvania, July 2004. Cited on page 99.

Raymond R. Panko. Applying code inspection to spreadsheet testing. Journal of

Management Information Systems, 16(2):159–176, 1999. ISSN 0742-1222. Cited
on page 6.

Raymond R. Panko. Spreadsheet errors: What we know. What we think we can do.
Proceedings of the Spreadsheet Risk Symposium, European Spreadsheet Risks In-

terest Group (EuSpRIG), July 2000. Cited on pages 3, 75, 82 and 133.

Raymond R. Panko and Salvatore Aurigemma. Revising the Panko-Halverson taxon-
omy of spreadsheet errors. Decision Support Systems, 49(2):235–244, 2010. ISSN
0167-9236. Cited on page 5.

http://oxforddictionaries.com

Bibliography 191

Dewayne E. Perry, Adam A. Porter, and Lawrence G. Votta. Empirical studies of
software engineering: A roadmap. In ICSE ’00: Proceedings of the Conference on

The Future of Software Engineering, pages 345–355, New York, NY, USA, 2000.
ACM. ISBN 1-58113-253-0. Cited on pages 135, 147 and 149.

Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge, MA,
USA, 2002. ISBN 0-262-16209-1. Cited on page 4.

Andrew Pitonyak. OpenOffice.org macros explained. Hentzenwerke Publishing Inc.,
2004. ISBN 978-1930919518. Cited on page 78.

Stephen G. Powell and Kenneth R. Baker. The Art of Modeling with Spreadsheets.
John Wiley & Sons, Inc., New York, NY, USA, 2003. ISBN 0471209376. Cited on
pages 3, 6, 45, 67, 133 and 138.

Kamalasen Rajalingham, David Chadwick, Brian Knight, and Dilwyn Edwards. Qual-
ity control in spreadsheets: A software engineering-based approach to spreadsheet
development. In HICSS ’00: Proceedings of the 33rd Hawaii International Confer-

ence on System Sciences-Volume 4, page 4006, Washington, DC, USA, 2000. IEEE
Computer Society. ISBN 0-7695-0493-0. Cited on page 6.

Kamalasen Rajalingham, David Chadwick, and Brian Knight. Classification of spread-
sheet errors. European Spreadsheet Risks Interest Group (EuSpRIG), 2001. Cited
on pages 3 and 133.

Sudha Ram. Deriving functional dependencies from the entity-relationship model.
Communications of the ACM, 38(9):95–111, 1995. ISSN 0001-0782. Cited on
page 50.

Thomas Reps and Tim Teitelbaum. The synthesizer generator. In Proceedings of

the First ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical

Software Development Environments, SDE 1, pages 42–48, New York, NY, USA,
1984. ACM. ISBN 0-89791-131-8. Cited on page 71.

Jeffery A. Riley. Introduction to OpenOffice.org. Prentice Hall Press, Upper Saddle
River, NJ, USA, 2009. ISBN 0135073979, 9780135073971. Cited on page 2.

Steven A. Roman. Writing Excel Macros with VBA. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2nd edition, 2002. ISBN 0596003595. Cited on page 78.

192 Bibliography

Boaz Ronen, Michael Palley, and Henry Lucas Jr. Spreadsheet analysis and design.
Communications of the ACM, 32(1):84–93, January 1989. Cited on page 6.

Gregg Rothermel, Margaret Burnett, Lixin Li, and Andrei Sheretov. A methodology
for testing spreadsheets. ACM Transactions on Software Engineering and Method-

ology, 10:110–147, 2001. Cited on page 6.

James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language

Reference Manual, The (2nd Edition). Pearson Higher Education, 2004. ISBN
0321245628. Cited on pages 9 and 63.

Jorma Sajaniemi. Modeling spreadsheet audit: A rigorous approach to automatic vi-
sualization. Journal of Visual Languages and Computing, 11:49–82, 2000. Cited
on page 6.

Christopher Scaffidi, Mary Shaw, and Brad Myers. Estimating the numbers of end
users and end user programmers. In VLHCC ’05: Proceedings of the 2005 IEEE

Symposium on Visual Languages and Human-Centric Computing, pages 207–214,
Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2443-5. Cited
on page 1.

Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven Software

Development: Technology, Engineering, Management. John Wiley & Sons, 2006.
ISBN 0470025700. Cited on page 12.

J.D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I. Com-
puter Science Press, 1988. ISBN 0-7167-8158-1. Cited on page 22.

UMHL. UMinho Haskell Software. http://haskell.di.uminho.pt/UMHS. Cited
on page 152.

Mark G. J. van den Brand, Paul Klint, and Pieter A. Olivier. Compilation and memory
management for ASF+SDF. In Proceedings of the 8th International Conference

on Compiler Construction, Held as Part of the European Joint Conferences on the

Theory and Practice of Software, ETAPS’99, pages 198–213, London, UK, 1999.
Springer-Verlag. ISBN 3-540-65717-7. Cited on page 71.

http://haskell.di.uminho.pt/UMHS

Bibliography 193

Eelco Visser. A survey of strategies in rule-based program transformation systems.
Journal of Symbolic Computation, 40:831–873, July 2005. ISSN 0747-7171. Cited
on pages 96 and 111.

Joost Visser. Coupled transformation of schemas, documents, queries, and constraints.
Electronic Notes on Theoretical Computer Science, 200:3–23, May 2008. ISSN
1571-0661. Cited on pages 16, 92, 96 and 118.

Joost Visser and João Saraiva. Tutorial on strategic programming across program-
ming paradigms. In 8th Brazilian Symposium on Programming Languages, Niteroi,
Brazil, May 2004. Cited on pages 96 and 111.

XML. Extensible Markup Language (XML) 1.0 (Fifth Edition). http://www.w3.

org/TR/REC-xml/, 2008. Cited on page 13.

Hong Yao and Howard J. Hamilton. Mining functional dependencies from data. In
M. J. Zaki, editor, Data Mining and Knowledge Discovery. Springer Netherlands,
2007. Cited on page 28.

Alan Yoder and David Cohn. Real spreadsheets for real programmers. In Henri E. Bal,
editor, Proceedings of the IEEE Computer Society 1994 International Conference on

Computer Languages, pages 20–30. IEEE Computer Society, May 1994. Cited on
page 6.

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/

194 Bibliography

Index

1NF, see first normal form
2LT, see two-level transformation
2NF, see second normal form
3NF, see third normal form

anomalies
deletion, 36
insertion, 36
modification, 36

attribute, 25
in HASKELL, 157
key attribute, 27
non-key attribute, 27

ClassSheet, 57
generation, 59, 160
in HASKELL, 118
inference, 57

candidate key, 25
CFD, see compound functional dependency
CK, see candidate key
compound functional dependency, 37

in HASKELL, 157
left sets, 37
right side, 37

data refinement, 96, 118
with constraints, 98

data type
with constraints, 97

edit assistance, 10

bidirectional auto-completion, 77, 162

formula copying, 82

non-editable columns, 84

safe deletion, 83, 164

traditional editing, 85

end user, 1

entity-relationship diagram, 56

generation, 160

ER, see entity-relationship diagram

evaluation

effectiveness, 140

data editing, 143

data insertion, 142

data querying, 144

efficiency, 145

evolution rules, 123

combinators, 123

layout, 129

semantic, 124

functional dependency, 8, 26

antecedent, 27

consequent, 27

filtering, 33, 158

for spreadsheets, 39

in HASKELL, 157

inference from data, 28

inference from formulas, 31

195

196 Index

normalizing, 36, 158
FUN, 28, 29

implementation, 29
first normal form, 27
FK, see foreign key
foreign key, 26
formulas

in HASKELL, 121

GADT, see generalized algebraic data type
generalized algebraic data type, 99, 118

HAEXCEL, 151
HASKELL, 151

lossless decomposition, 24, 38

MDE, see model-driven engineering
migration

database generation, 167
databases to spreadsheets, 166
spreadsheet generation, 167
spreadsheets to databases, 165

migration rules, 105
single table, 105
strategy, 111
tables with candidate keys, 107, 109

model-driven engineering, 12
models for spreadsheets, 9

ClassSheet, 9
relational schema, 9
UML class diagram, 9

PK, see primary key
primary key, 25

RDB, see relational database

refactoring

spreadsheet generation, 167

relation, see also table, 25

in HASKELL, 157

relational database, 25

HASKELL representation, 104

relational database schema, 25

with relationships, 26

relational intermediate directed graph, 54

relational schema, 25

in HASKELL, 157

inference, 48

relationship, 26

RID, see relational intermediate directed
graph

row, see also tuple, 25

spreadsheet, 1, 31

edit assistance, 10

error taxonomy, 5

evolution, 12, 168

export, 156

HASKELL representation, 103

import, 155

migration, 11

refactoring, 11

spreadsheet system

Google Docs, 3

Lotus 1-2-3, 2

Visicalc, 2

Excel, 2

Gnumeric, 156

OpenOffice.org Calc, 2

SSFUN, 39

implementation, 158

Index 197

SYNTHESIZE, 37
implementation, 37

second normal form, 27

table, see also relation, 25
third normal form, 28
tuple, see also row, 25
two-level transformation, 99, 118

UMinho Haskell Libraries, 152
UML, see Unified Modeling Language
UML class diagram

inference, 63
Unified Modeling Language, 63

mapping, 64

	Introduction
	Spreadsheets
	Problem Statement
	Some Possible Solutions
	Our Solution - An Example
	Reviewing Our Solution
	Research Questions
	Contributions
	Structure of the thesis

	Functional Dependencies for Spreadsheets
	Introduction
	Motivational Example
	Relational Databases
	Inferring Functional Dependencies from Spreadsheet Data
	Inferring Functional Dependencies from Spreadsheet Formulas
	Filtering Functional Dependencies
	Normalizing Functional Dependencies
	SSFun: Functional Dependencies for Spreadsheets
	Conclusions

	Inferring Models for Spreadsheets
	Introduction
	Motivational Example
	Deriving a Relational Schema
	Name Inference
	The Candidate Keys
	The Foreign Keys
	The Primary Keys
	The Relational Intermediate Directed Graph
	Optimizing the Relational Intermediate Direct Graph
	The Relational Schema

	Deriving a ClassSheet Specification
	ClassSheets
	Generating ClassSheets

	Deriving a UML Class Diagram
	Mapping Blocks
	Mapping Labels
	Mapping Classes
	Mapping Sheets

	Evaluation
	Test Results
	Discussion

	Conclusions

	Spreadsheet Edit Assistance
	Introduction
	Motivational Example
	Bidirectional Auto-completion
	Generating Visual Objects
	Generating Spreadsheet Formulas

	Formula Copying
	Safe Deletion
	Non-editable Columns
	Traditional Editing
	Evaluation
	Processed Spreadsheets
	Observations
	Discussion

	Conclusions

	Migration of Spreadsheets
	Introduction
	Motivational Example
	A Constraint-aware Rewriting System
	Data Refinements
	Two-Level Transformations with Constraints
	Representing Spreadsheets and Relational Databases

	Migration Rules
	Refining a Spreadsheet Table to a Relational Table
	Refining Tables with Foreign Key in the Primary Key
	Refining Tables with Foreign Key in the Non-key Attributes
	Data Refinements as a Strategic Rewrite System

	Conclusions

	Safe Evolution of Spreadsheets
	Introduction
	Motivational Example
	A Framework for Evolution of Spreadsheets
	ClassSheets and Spreadsheets in Haskell
	Specifying Formulas
	Representing Functions

	Spreadsheets Evolution
	Combinators
	Semantic Rules
	Layout Rules

	Conclusions

	End-user Validation of Model-based Spreadsheets
	Introduction
	Study Design
	Methodology
	Participants
	Tasks

	Analyzing End-users Performance
	Effectiveness
	Efficiency

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusions

	The HaExcel Framework
	Introduction
	Manipulating Spreadsheets in HaExcel
	Representing Spreadsheets in Haskell
	Importing Spreadsheets
	Exporting Spreadsheets

	Functional Dependencies
	Extracting Schemas and Relations
	Functional Dependencies in HaExcel

	Computing Models
	Generating Entity-Relationship Diagrams
	Generating ClassSheets

	Edit Assistance for Spreadsheets
	Bidirectional Auto-Completion
	Safe Deletion

	Migration of Spreadsheets
	From Spreadsheets to Databases
	From Databases to Spreadsheets
	Generating Databases

	Evolution of Spreadsheets
	Conclusions

	Conclusions
	Contributions
	Answers to the Research Questions
	Future Work

	Bibliography
	Index

