
Towards Systematic
Spreadsheet Construction Processes

Jorge Mendes∗, Jácome Cunha†, Francisco Duarte§, Gregor Engels‡, João Saraiva∗ and Stefan Sauer‡
∗HASLab, INESC TEC & Universidade do Minho, Portugal, email: {jorgemendes,saraiva}@di.uminho.pt

†NOVA LINCS, DI, FCT, Universidade NOVA de Lisboa, Portugal, email: jacome@fct.unl.pt
§Bosch Car Multimedia, Portugal, email: Francisco.Duarte@pt.bosch.com

‡Universität Paderborn, Germany, email: {engels,sauer}@upb.de

Abstract—Spreadsheets are used in professional business con-
texts to make decisions based on collected data. Usually, these
spreadsheets are developed by end users (e.g. accountants) in
an ad-hoc way. The effect of this practice is that the business
logic of a concrete spreadsheet is not explicit to them. Thus, its
correctness is hard to assess and users have to trust.

We present an approach where structure and computational
behavior of a spreadsheet are specified by a model with a
process-like notation based on combining pre-defined functional
spreadsheet services with typed interfaces. This allows for a
consistent construction of a spreadsheet by defining its structure
and computational behavior as well as filling it with data and
executing the defined computational behavior. Thus, concrete
spreadsheets are equipped with a specification of their con-
struction process. This supports their understanding and correct
usage, even in case of legacy spreadsheets.

The approach has been developed in cooperation with an
industrial partner from the automotive industry.

Keywords-model-driven engineering; situational method engi-
neering; construction process; spreadsheet

I. INTRODUCTION

Spreadsheets are used in professional business contexts to
make calculations and decisions based on collected data: it is
estimated that 95% of all U.S. organizations use spreadsheets
for financial reporting [15], 90% of all analysts in industry
perform calculations in spreadsheets [15], and 50% of all
spreadsheets are the basis for decisions [13]. Spreadsheets are
not only used to define worksheets containing data and formu-
las, but also to collect information from different systems, to
adapt data produced from one system to the format required
by another, to perform operations to enrich/simplify data, to
present data in a graphical (visual) representation, etc.

It has been observed that, despite admitting serious risks,
many organizations manipulate large spreadsheets in a fright-
ening ad-hoc way: they are adapted/enriched/evolved by using
an unspecified/undocumented process, usually performed by
users directly updating the computational structure or data of
a spreadsheet. This is even more frightening as the business

This work is financed by the ERDF – European Regional Development
Fund through the Operational Programme for Competitiveness and Interna-
tionalisation - COMPETE 2020 Programme within project POCI-01-0145-
FEDER-016718, and by FCT as part of project UID/CEC/04516/2013. This
work is also financed by the bilateral project FCT/DAAD with ref. 441.00.
The first author is funded by FCT grant SFRH/BD/112651/2015.

logic of a concrete spreadsheet is hidden, baffling and diffi-
cult to understand by end users. Thus, the correctness of a
spreadsheet is hard to assess and users have to trust.

A careful analysis of this situation reveals a few shortcom-
ings in the ad-hoc construction of spreadsheet applications:

• Spreadsheets do not have the notion of a type level.
Thus, spreadsheets are developed on the instance level
where no type checking is possible. This leads quite
often to structural changes, like insertion of rows and
columns, that are not complete and consistent as certain
dependencies are only implicit and cannot be detected
by the spreadsheet system. This situation occurred in the
spreadsheet used for an economical study on the level of
austerity that countries should comply with [2].

• The missing concept of types can lead to inconsistent
computation sequences where the data flow between two
computation steps is not appropriate [12].

• The internal data and control flow of computation steps
within a spreadsheet is only implicitly defined by a
spreadsheet developer. The missing explicitness and doc-
umentation hinders any kind of development traceability
and understandability of a given, often legacy, spreadsheet
as well as any kind of maintenance [12].

We combine several approaches from the literature to pro-
pose a novel solution which enables precise, understandable
and repeatable construction of spreadsheets.

First, ClassSheets which have been previously intro-
duced [10], [5], [6], [7], allow developers to define the logic
and structure of a spreadsheet on the type level. However, so
far only the specific part of the spreadsheet cells and formulas
has been targeted, leaving out several features commonly used
in industrial situations (e.g. pivot tables).

Second, Model-Driven Engineering (MDE) has been intro-
duced as a methodology to specify structural and behavioral
aspects of a system on an abstract model level, before it is
implemented [14]. MDE is also applied for process-modeling
tasks, e.g. in business or production process modeling. Having
a fully-fledged process allows to enact it and to automate the
execution of individual steps of the process. In fact, MDE has
been previously adapted for spreadsheet [4], [9], [3], [8], but
again only to address the issues related to cells.

Third, Situational Method Engineering is an approach to
define processes for a certain development task by composing



predefined parameterized building blocks (i.e., method ser-
vices) with typed interfaces to a consistent process [11].

The combination and adoption of these three approaches
yields our novel and integrated approach to define the con-
struction process of spreadsheets for business applications.
This construction process comprises (a) defining structure and
computational behavior of a spreadsheet (construction process
design) as well as (b) filling it with data and executing the
defined computational behavior (construction process enacte-
ment). The basic idea of our approach is to equip a spread-
sheet with an operational specification based on functional
spreadsheet services. This yields consistent spreadsheets with
a documented internal computation structure.

The proposed framework as been developed in collaboration
with an industrial partner, Bosch Car Multimedia Portugal,
where we endeavored a large and complex case study.

II. SPREADSHEET CONSTRUCTION FRAMEWORK

The framework we propose aims to provide a safe way to
design and construct spreadsheets. The key concepts behind it
are the specification of the actions that are to be undertaken
to create and use a spreadsheet, which we call functional
services, and the artifacts and their types that are required
by or originate from these actions.

The functional services referred in this work are the ones
that users have available in common spreadsheet systems (e.g.
insert a pivot table). This work provides a way to specify
existing actions, but also new features that may be introduced
in the future in spreadsheet systems, by proving generic
types to define them. The functional services are described
as activities that can receive and produce artifacts as input
and output.

The artifacts are typed, that is, we make a distinction
between any two artifacts that are not compatible with each
other or that do not serve the same purpose. For instance, a
chart is a different type than a pivot table. This allows us to
restrict the inputs of the actions to be performed since they
usually only work on specific artifacts.

The actions and artifacts are combined in an UML activity
diagram [1], indicating the control and data flows of the
spreadsheet construction process.

The process of creating and executing a construction pro-
cess for spreadsheets is organized in three distinct phases as
illustrated in Figure 1:

Requirements
Elicitation

Toolbox
Design

Construction Process Design

Construction Process Enactment

Fig. 1. The three phases of creating and executing the spreadsheet construc-
tion process.

In the first phase, two distinct and parallel tasks are per-
formed. On the one hand, requirements elicitation for the
spreadsheet application is executed. Since this is a task well
studied, we will not discuss it further. On the other hand,
a toolbox of reusable, parameterizable, and typed functional
spreadsheet services (e.g. insert a pivot table, insert a chart) has
to be provided by experts in information/spreadsheet systems.
In this task the functional services are identified as well as
their input and output (types). We provide a first version of
the toolbox which can later be extended. The toolbox also
supports data types which typically occur in a spreadsheet
(e.g. pivot table, chart).

In the next step – construction process design – the func-
tional spreadsheet services from the toolbox are instantiated
and integrated in the construction process. The types avail-
able in the toolbox are used in interface definitions of the
parameterized functional services. These building blocks are
composed by a spreadsheet designer during the construction
process design. As we are focusing here on professional busi-
ness spreadsheets, we assume that this role of a spreadsheet
designer exists. It might be assigned to an experienced end
user or a dedicated spreadsheet expert.

Finally, the construction process is (automatically) enacted
by the spreadsheet user, which means that a spreadsheet is
created, filled with data and its functional services executed.
This enactment of the construction process can be repeated by
an end user regularly with e.g. new data. Such procedure is
typical when spreadsheets are used for business applications
which are regularly, e.g. daily, weekly, or monthly, reused for
certain monitoring or controlling tasks.

The proposed framework has been developed in collabo-
ration with an industrial partner: the Bosch Car Multimedia.
We have been conducting a large and complex case study:
their quality report spreadsheet-based system. In this system
large amounts of data are collected from two SAP systems.
The data is then manually transformed by Bosch engineers
so that a monthly report is delivered to the administration in
Germany. In our study, we have shown how such an ad-hoc,
error-prone and time-consuming task is documented/specified
and automated using our approach.

III. CONCLUSION

In this paper we present a systematic construction process to
make the computation flow within a spreadsheet explicit. This
process is composed of predefined typed functional services,
thus making the structure and internal computation flow of
spreadsheets observable. This process also allows to automate
the construction of spreadsheets and to ease auditing.

The proposed approach originated from ideas gathered
within an industrial case at Bosch Car Multimedia, Portugal.
A prototype is being developed to evaluate the approach with
this industrial case. The evaluation will further be enlarged to
other case studies and to re-engineering existing spreadsheets
used in commercial and industrial applications. This will be
done in close cooperation with industrial partners from the
Software Innovation Campus Paderborn (SICP).



REFERENCES

[1] J. Arlow and I. Neustadt. UML 2.0 and the Unified Process: Practical
Object-Oriented Analysis and Design (2Nd Edition). Addison-Wesley
Professional, 2005.

[2] P. Coy. Faq: Reinhart, rogoff, and the excel error that changed history.
Bloomberg: http://www.bloomberg.com/news/articles/2013-04-18/
faq-reinhart-rogoff-and-the-excel-error-that-changed-history, 2013
April.

[3] J. Cunha. Model-Based Spreadsheet Engineering. PhD thesis, University
of Minho, March 2011.

[4] J. Cunha, J. P. Fernandes, J. Mendes, H. Pacheco, and J. Saraiva.
Bidirectional transformation of model-driven spreadsheets. In Z. Hu
and J. de Lara, editors, Theory and Practice of Model Transformations,
volume 7307 of Lecture Notes in Computer Science, pages 105–120.
Springer, 2012.

[5] J. Cunha, J. P. Fernandes, J. Mendes, R. Pereira, and J. Saraiva.
Embedding model-driven spreadsheet queries in spreadsheet systems.
In Proceedings of the 2014 IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC ’14, pages 151–154, Washington,
DC, USA, 2014. IEEE Computer Society, IEEE Computer Society.

[6] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva. MDSheet: A
Framework for Model-driven Spreadsheet Engineering. In Proceedings
of the 34rd International Conference on Software Engineering, ICSE’12,
pages 1395–1398. ACM, 2012.

[7] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva. Embedding, evo-
lution, and validation of model-driven spreadsheets. IEEE Transactions
on Software Engineering, 41(3):241–263, March 2015.

[8] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva. Spreadsheet
engineering. In V. Zsók, Z. Horváth, and L. Csató, editors, Central
European Functional Programming School: 5th Summer School, CEFP
2013, Cluj-Napoca, Romania, July 8-20, 2013, Revised Selected Papers,
pages 246–299. Springer International Publishing, Cham, 2015.

[9] J. Cunha, J. Mendes, J. Saraiva, and J. Visser. Model-based programming
environments for spreadsheets. Science of Computer Programming, 96,
Part 2:254–275, 2014.

[10] G. Engels and M. Erwig. Classsheets: Automatic generation of spread-
sheet applications from object-oriented specifications. In Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’05, pages 124–133. ACM, 2005.

[11] B. Henderson-Sellers, J. Ralyté, P. J. Ågerfalk, and M. Rossi. Situational
Method Engineering. Springer, 2014.

[12] F. Hermans. Analyzing and visualizing spreadsheets. PhD thesis, Delft
University of Technology, 2012.

[13] F. Hermans, M. Pinzger, and A. van Deursen. Supporting professional
spreadsheet users by generating leveled dataflow diagrams. In Pro-
ceedings of the 33rd International Conference on Software Engineering,
ICSE’11, pages 451–460, New York, NY, USA, 2011. ACM.

[14] S. Kent. Model Driven Engineering, pages 286–298. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2002.

[15] R. R. Panko and N. Ordway. Sarbanes-oxley: What about all the
spreadsheets? CoRR, abs/0804.0797, 2008.


