
Combining Smells and Fault Localization in

Spreadsheets

Rui Abreu, Jácome Cunha, João Paulo Fernandes,
Pedro Martins, Alexandre Perez, João Saraiva

Abstract

Despite being staggeringly error prone, spreadsheets are a highly flex-
ible programming environment that is widely used in industry. In fact,
spreadsheets are widely adopted for decision making, and decisions taken
upon wrong (spreadsheet-based) assumptions may have serious economi-
cal impacts on businesses, among other consequences.

This paper proposes a technique to automatically pinpoint potential
faults in spreadsheets. It combines a catalog of spreadsheet smells that
provide a first indication of a potential fault, with a generic spectrum-
based fault localization strategy in order to improve (in terms of accuracy
and false positive rate) on these initial results. Our technique has been
implemented in a tool which helps users detecting faults.

To validate the proposed technique, we consider a well-known and
well-documented catalog of faulty spreadsheets. Our experiments yield
two main results: i) we were able to distinguish between smells that can
point to faulty cells from smells and those that are not capable of doing so,
and ii) we provide a technique capable of detecting a significant number
of errors: two thirds of the cells labeled as faulty are in fact (documented)
errors.

1 Introduction

Spreadsheet systems are a landmark in the history of generic software products.
They have achieved an astonishing success in terms of both the number of users
and the variety of domains in which they are nowadays used. Just as an indica-
tion, it is estimated that 95% of all U.S. companies use spreadsheets for financial
reporting [1], and that 90% of all analysts in the industry perform calculations
in spreadsheets [1]. Furthermore, as shown in a recent study performed at an
asset management company, 52% of all spreadsheets were used for calculation
tasks, and are the basis for decisions within that company [2].

This importance, however, has not been coupled with effective mechanisms
for error prevention, as shown by several studies [3, 4], and by a long list of
horror stories with huge social and economic impact1.

1This list is available at: http://www.eusprig.org/horror-stories.htm

1

One particularly regrettable example in this list involves Portugal, which
currently undergoes a financial rescue plan based on intense austerity whose
merit was co-justified upon [5]. The fact is that the conclusions drawn there
have been publicly questioned given that a formula range error was found in the
spreadsheet supporting the authors’ calculations. While the authors have later
re-affirmed their original conclusions, the public pressure was so intense that a
few weeks later they felt the need to publish an errata of their 2010 paper. It
is furthermore unlikely that the concrete social and economical impacts of that
particular spreadsheet error will ever be determined.

In practice, all these evidences seem to suggest that spreadsheet error preven-
tion, detection and debugging techniques are much needed. The natural trend
of incorporating well-established programming language features under spread-
sheets has been witnessed, for example, by the integration of spectrum-based
fault localization methods under a spreadsheet system [6] and the identifica-
tion of spreadsheet bad smells [7, 8, 9, 10]. Note that both these techniques
are well established for general purpose programming languages: [11] and [12],
respectively.

In this paper, we combine bad smell detection and fault localization tech-
niques to create a new debugging framework for spreadsheets. We proceed in
three distinct phases.

Firstly, we analyze the extensive catalog of spreadsheet smells that has been
published in the literature [7, 8, 9, 10]. Indeed, as a smell does not necessarily
correspond to an error, we seek to divide this catalog into two: i) the one of
fault-inducing smells, i.e., the smells that are capable, on their own, of signaling
spreadsheet errors and ii) the one of perceived smells, that by nature do not
contribute to this goal. This analysis relies on the independent spreadsheet
corpus [13], which is composed of 73 spreadsheets that contain errors that have
previously been documented in detail.

Secondly, the cells that are signaled by fault-inducing smells are provided
as input to a fault localization algorithm, that is, such cells are given to the
algorithm as potentially being faulty. In this step, we seek to confirm the faulty
nature of certain cells, or otherwise discard them as faults. Moreover, we also
attempt to identify other spreadsheet cells that may have contributed to the
faults identified in the previous cells (e.g. referenced cells may not be marked
by the smell algorithms, but may be used in a faulty cell, making them potential
faults). In the end of this step our technique has identified all the potential faults
in a spreadsheet.

Finally, we have extensively evaluated the debugging method that we pro-
pose, again by using the corpus of [13]. Our results show that, on average, two
out of three cells identified by our techniques are (documented) errors, and that
we are able to locate ∼70% of the existing errors.

This paper is an extension of previous work [14], where the combination
of spreadsheet smell detection and spectrum-based fault localization was first
introduced. It improves our conference submission in the following:

1. We incorporated in our studies, and in our tool, two new smells from the

2

(a) Spreadsheet with errors. (b) Spreadsheet with faults located.

Figure 1: The same spreadsheet before and after our fault detection technique
is applied.

literature; these smells were included since they signal potential problems
in spreadsheet cells;

This addition can be seen in Sections 3 and 5;

2. We provided a more detailed introduction to the application of spectrum-
based fault localization to the spreadsheet domain, supported by a running
example explaining the focal steps. Also presented is a sensibility analysis
evaluating the diagnostic approach’s ability to handle misclassified input;

This addition can be seen in Section 4;

3. We analyzed the error detection nature of these smells, in the line of what
we have done in the past with all other smells in our catalog, and classified
them as either Fault-inducing or Perceived;

This addition can be seen in Section 6;

4. We included the one that is indeed Fault-inducing in the combination of
smells that our technique is based on;

This addition can be seen in Section 7;

5. We validated our technique considering a totally new case study; we have
taken a well know, error free, repository of spreadsheets from the liter-
ature, with the aim on finding how many false positives our technique
signals. We observed numbers of around 1,5%;

3

This addition can be seen in Section 8;

6. We updated the related work section to feature the latest work on spread-
sheet debugging.

This addition can be seen in Section 9;

This paper is organized as follows. We start by presenting an example to
motivate our approach in Section 2. In Section 3 we briefly review the smells
proposed for spreadsheets. We continue in Section 4 introducing the current
techniques for spectrum-based fault localization. The tool we have implemented
is explained in detail in Section 5. In Section 6 we evaluate how each smell
would behave as a fault detector and filter out those that cannot explain any
fault. Section 7 details how to use smells as inputs to a spectrum-based fault
localization algorithm to find errors in spreadsheets. In Section 9 we discuss
related work and finally in Section 10 we draw some conclusions and present
future work.

2 Motivation

This section motivates our approach using a spreadsheet taken from the spread-
sheet corpus of [13]. This spreadsheet can be seen in Figure 1a and represents
the estimated expenses and revenues of a company for two different years, with
parameters like labor, rent, and taxes. This spreadsheet has ten cells whose
observed values are wrong (marked with red2 in Figure 1a). As the net income
depends on other values that are wrong (since B15=B13-B13 and C15=C13-c14),
the ultimate goal of using such a spreadsheet is compromised and will produce
incorrect estimations.

In our approach, the first step to find these faulty cells is to apply spreadsheet
smells, individually or in combination, and label the cells that are considered
smelly (but not necessarily faulty). In a second step of our approach, the cells
identified previously as smelly act as input to a fault localization algorithm that
points out potential problematic cells. Finally, we signal toxic cells, i.e., cells
that work as dependencies of faulty ones. Finally, we point a set of cells that
we indicate as being potentially faulty.

Let us consider the spreadsheet of Figure 1a. Just by considering a single
spreadsheet smell – Multiple References3 – combined with a fault-localization
algorithm allows us to identify the errors marked with blue in the spreadsheet
of Figure 1b.

We see that, in this particular case, 8 out of 10 errors were found by our
method. Moreover, in this example, our approach did not produce any false
positives. That is to say that it did not mark as faulty any correct cell. In
this paper we consider a full catalog of spreadsheet smells and a large corpus of

2We assume colors are visible on final digital/printed versions of this paper.
3This smell appears when a formula references too many cells, reducing its understand-

ability.

4

documented faulty spreadsheets. Our approach is able to locate more than 70%
of the corpus’ faulty cells. About 2 out of 3 cells that we identify correspond to
a (documented) fault.

3 Spreadsheet Smells

The concept of code smell (bad smell, or just smell) was introduced by Mar-
tin Fowler as a first symptom that may correspond to a deeper problem in a
system [12]. This means that a smell does not always imply an error. For ex-
ample, a method with ten parameters, despite being smelly, may be perfectly
implemented.

Along with the definition of smell, Martin Fowler also proposed an initial
catalog of potential problems in the form of smells. Although this catalog was
originally defined for source code, the smells identified in it may sometimes be
applied to other artifacts, such as spreadsheets.

Fowler’s work inspired several authors to propose different catalogs of smells
for spreadsheets. We have taken the union of all the proposed catalogs, obtain-
ing the comprehensive list shown below. The first six smells in this list were
proposed in [9, 15], and exploit, for example, statistical properties of spread-
sheet data in the same row/column. The following five smells (7 to 11) have
appeared in [8], and refer to spreadsheet formulas. The next group of four
smells (12 to 15) in this list deals with inter-worksheet smells [7]. Finally, the
last two smells (16 and 17) were defined to find problematic cells in regions in
spreadsheets [16]4.

Each smell in the following list has a number which will be used later on for
identification:

1 – Standard Deviation: This smell detects, for a group of cells holding nu-
merical values, the ones that do not follow their normal distribution.

2 – Empty Cell: Cells that are left empty but that occur in a context that
suggests they should have been filled in are detected by this smell.

3 – Pattern Finder: This smell finds patterns in a spreadsheet such as a
row containing only numerical values except for one cell holding a la-
bel/formula or being empty.

4 – String Distance: Typographical errors are frequent when inputing data.
In order to try to detect these type of errors in spreadsheets, this smell
signals string cells that differ minimally with respect to other surrounding
cells.

5 – Reference to Empty Cells: The existence of formulas pointing to empty
cells is a typical source of spreadsheet errors. This smell detects such
occurrences.

4Actually, this work presents other smells, but some of them are already included in the
list we present, and others do not apply to our work; indeed, we rely on cells being signaled
by smells, and these mark entire regions of the spreadsheet.

5

6 – Quasi-Functional Dependencies: In [17] it is described a technique to
identify dirty values using a slightly relaxed version of Functional Depen-
dencies (FD) [18]. There exists a FD from a column A to a column B
if multiple occurrences of the same value in A always correspond to the
same value in B, except for a small number of cases.

7 – Multiple Operations: This smell is inspired by the well-known code
smell Long Method. As in long methods, formulas with many different
operations will likely be hard to understand. This is especially problem-
atic in spreadsheets since in most spreadsheet systems, there is limited
space to view a formula, causing long ones to be cut off.

8 – Multiple References: This smell appears when a formula references
many different cells, reducing its understandability. An example is:
SUM(A1:A5; B7; C18; C19; F19).

9 – Conditional Complexity: As also happens in source code, this smell de-
tects formulas with many conditional operations. For example: IF(A3=1,

IF(A4=1, IF(A5<34700, 50)), 0).

10 – Long Calculation Chain: Spreadsheet formulas can create chains of
calculations since they can refer to other formulas. To understand the
purpose of such formulas, users must trace along multiple steps to find
the origin of the data and intermediate calculations.

11 – Duplicated Formulas: This smell indicates that similar snippets of code
are used throughout a class. This also happens in spreadsheets since some
formulas are partly the same as others. For example, SUM(A1:A6)+10% and
SUM(A1:A6)+20% have the first part duplicated.

12 – Inappropriate Intimacy: This smell was proposed to flag classes with
too many dependencies of another class. In spreadsheets this can be
adapted to recognize a worksheet that is too much related to a second
one.

13 – Feature Envy: This smell appears when a formula is more interested in
cells from another worksheet, which suggests it should be moved to it.

14 – Middle Man: A middle man is a class that delegates most of its opera-
tions to other classes, and does not contain enough logic to justify its own
existence. In spreadsheets this occurs if a ’middle man’ formula contains
only a reference to other cells, like the formula =Sheet1!A2.

15 – Shotgun Surgery: This happens in spreadsheets when a formula is re-
ferred by many different formulas in different worksheets, which implies
that one change results in the need of making a lot of little changes

16 – Switch Statements: It is accepted that complex formulas may be the
cause of errors. This smell signals cell using the formulas IF, LOOKUP,
CHOOSE, INDEX, MATCH, and OFFSET.

6

17 – Temporary Field: This smell points to hidden formulas or zero-width
formula arguments, as these may be difficult to check for correctness.

4 Spectrum-based Fault Localization

In this section we describe the Spectrum-based Fault Localization (SFL) ap-
proach to software debugging, and present its application to find faults in spread-
sheets.

4.1 Software Debugging with SFL

SFL is a debugging technique that calculates the likelihood of a software compo-
nent being faulty [19]. SFL exploits coverage data collected from passed/failed
system runs. A passed run is a program execution that is completed correctly
(thus behaving as expected), and a failed run is an execution where an error was
detected [11]. The criteria for determining the execution outcome can be from
a variety of different sources, namely test case results and program assertions,
among others. The coverage data is collected at runtime, via instrumentation,
and is used to build a hit-spectra matrix.

The hit spectra of N executions constitutes a binary N × M matrix A,
where M corresponds to the instrumented components of the program. In this
binary matrix, each column i represents a system component and each row
j represents an execution (e.g., a test case). A matrix entry aij represents
whether component i was involved (1) or not (0) in a particular execution j.
The information of passed and failed runs is gathered in an N -length vector e,
called the error vector. The pair (A, e) serves as input to the SFL technique.

After gathering the input information, the next step consists in determining
what columns of the matrix A resemble the error vector e the most. This is done
by quantifying the resemblance between these two vectors by means of similarity
coefficients [20]. These coefficients are used to estimate the suspiciousness of a
given software component being faulty, as its similarity coefficient (relative to
the error vector) and its failure probability are directly related [21].

Several similarity coefficients do exist [11]. One of the best performing sim-
ilarity coefficients for fault localization is the Ochiai coefficient [21, 22]. This
coefficient was initially used in the molecular biology domain [23], and is defined
as follows:

sO(j) =
n11(j)√

(n11(j) + n01(j)) · (n11(j) + n10(j))
(1)

where npq(j) is the number of runs in which the component j has been touched
during execution (p = 1) or not touched during execution (p = 0), and where
the runs failed (q = 1) or passed (q = 0), as depicted in the dichotomy matrix
seen in Table 1. For instance, n11(j) counts the number of times component
j has been involved in failed executions, whereas n10(j) counts the number of
times component j has been involved in passed executions.

7

Table 1: Dichotomy Matrix of a component.

Not Involved Involved
Correct Outcome n00 n10

Incorrect Outcome n01 n11

The similarity coefficients that are computed can rank the system compo-
nents according to their suspiciousness of containing the fault. A list of compo-
nents, sorted by their similarity coefficient, is then presented to the user, helping
prioritize his/her inspection of software components to pinpoint the root cause
of the observed failure.

4.2 Spreadsheet Fault Localization with SFL

To better illustrate the application of SFL on the spreadsheet domain, we
present a faulty spreadsheet in Figure 2, to act as a running example throughout
this section. The example is adapted from [24].

(a) Correct version. (b) Faulty version.

(c) Faulty version formula view.

Figure 2: Running example of a faulty spreadsheet.

This spreadsheet is used to calculate the grades of students enrolled in a
course. It sums each student’s assignments (cells D2 and D3) and averages them
with their exams, to compute the final grade (cells F2 and F3). Average assign-
ment grades for all students are also computed (cells B4, C4 and D4). Figure 2a
depicts the correct version of the spreadsheet and Figure 2b a faulty version of
the same document. Figure 2c shows the formula view of the faulty spreadsheet.
In the faulty version, the computation of the total assignment grade for Stu-
dent 2 (cell D3) is incorrect because the cell’s SUM formula has the wrong area
as argument (i.e., SUM(C2) instead of SUM(C2:C3)). That also influences the
value of Student 2’s final grade (cell F3) and the average assignment grade (cell
D4). This can happen, for instance, when a teacher inserts a new assignment
in the grades spreadsheet for her course, and forgets to update the calculations
that are influenced by that insertion. Next, we show how SFL can be used to
pinpoint the fault in cell D3.

In order to use a traditional software debugging technique (like SFL) to aid
spreadsheet fault localization, adaptations to this scope need to be performed [6,

8

24]. This happens because, in the spreadsheet paradigm, the concept of test case
executions is non-existent. Code coverage also does not exist since there are no
explicit lines of code like in traditional programming paradigms.

An output cell is a particular cell that is not referenced by any other cell.
The set of output cells of a spreadsheet generally corresponds to the relevant
information users look for in a spreadsheet as they typically are the final result
of one or more computations on the data. Relating to SFL, each output cell
is equivalent to a test on the system, therefore the error vector represents the
correctness of the set of output cells. If we consider the running example in
Figure 2, the set of output cells is

Output cells = {F2, F3, D4, C4, B4}

To populate each row of the hit-spectra matrix, we need the coverage of each
output cell. Although there is no concept of coverage in spreadsheets, the tran-
sitive closure of a cell’s references (also known as the cone [6]) shares many
similarities. A cone, which represents the data dependencies of each cell, and is
given by:

Cone(c) = c ∪
⋃

c′∈ refs(c)

Cone(c′) (2)

where refs(c) is the set of cells that cell c references. A cone can be computed
for every cell in a spreadsheet.

Table 2: Running example’s output cells and their cones.

Output cell Cone
B4 {B2, B3, B4}
C4 {C2, C3, C4}
D4 {B2, B3, C2, C3, D2, D3, D4}
F2 {B2, C2, D2, E2, F2}
F3 {B3, C3, D3, E3, F3}

Table 2 shows the cones for every output cell from the Figure 2 example.
The hit-spectra matrix and the error vector allow the use of the SFL al-

gorithm to compute the failure suspiciousness of each spreadsheet cell. We
have chosen the Ochiai coefficient as the suspiciousness metric for spreadsheet
subjects because, according to a recent empirical study comparing similarity
measures to diagnose spreadsheets [24], this coefficient was shown to be one of
the best performing. Table 3 depicts the hit-spectra that feeds the SFL ap-
proach, the dichotomy matrix computations for each cell, and the result of the
Ochiai similarity coefficient. Note that cell D3, which is highlighted with a gray
background, is the faulty cell. As we can see, the faulty cell is at the top of the
ranking of fault candidates.

9

Table 3: Hit spectra

Spectra Dichotomy Matrix SFL Results
Cell B4 C4 D4 F2 F3 n00 n01 n10 n11 Ochiai Ranking
B2 • • • 1 1 2 1 0.41 8
B3 • • • 2 0 2 1 0.58 7
B4 • 2 2 1 0 0.00 9
C2 • • • 1 1 2 1 0.41 8
C3 • • • 2 0 1 2 0.82 2
C4 • 2 2 1 0 0.00 9
D2 • • 3 1 0 1 0.71 3
D3 • • 3 0 0 2 1.00 1
D4 • 3 1 0 1 0.71 3
E2 • 2 2 1 0 0.00 9
E3 • 3 1 0 1 0.71 3
F2 • 2 2 1 0 0.00 9
F3 • 3 1 0 1 0.71 3

Error vector • •

4.3 Misclassification of errors

As discussed in the previous subsection, the SFL approach needs a spread-
sheet’s output cells to be labeled as correct/incorrect to perform the diagnosis.
Depending on the error detection technique used, some data can be potentially
mislabeled. Therefore, high tolerance to eventual mistakes is paramount for
SFL to be applicable in most real-world scenarios.

To assess how our approach behaves when the error vector is incorrectly
labeled, we consider the concepts of error misclassification rate and quality of
diagnosis. Error misclassification rate is the probability that an output cell is
labeled as correct when it was, in fact, incorrect (or vice versa). A misclassifica-
tion rate of 0.0 means that every output cell is accurately labeled. Conversely, a
misclassification rate of 1.0 means that every output cell is labeled erroneously.

Quality of diagnosis is given by the following formula

Quality = 1−
|{j|j > f,∀j ∈ S}|+ 1

2 (|{j|j = f, ∀j ∈ S}| − 1)

|S|
(3)

where S is the list of the similarity coefficient values for every component and
f is the similarity coefficient value of the faulty component. A quality of 1.0
means that the user only needed to inspect one component to reach the fault
(i.e., the fault was at the top of the ranking). A quality of 0.0 means that, by
following the ranking, the user needs to inspect all components to reach the
fault.

Figure 3 shows the impact of the misclassification rate on the quality of diag-
nosis for different hit-spectra gathered from software programs such as Rhino5

5Available at https://developer.mozilla.org/en-US/docs/Rhino

10

0.0 0.2 0.4 0.6 0.8 1.0
Misclassification Rate

0.0

0.2

0.4

0.6

0.8

1.0

Q
u
a
lit

y

Figure 3: Quality of diagnosis versus misclassification rate.

and JHotDraw6. As we can see, even having 20% of error misclassification does
not produce a decrease in diagnostic quality using the SFL technique. Even
at 50% misclassification (meaning, in the case of the spreadsheet domain, that
every other output cell is erroneously classified as correct/incorrect), the quality
of diagnosis is still 0.7. SFL is, then, very resilient to mistakes in the data it
consumes do compute the diagnostic, making it the ideal diagnostic algorithm
to be used in conjunction with different error detection sources, such as using
code smells.

This result is corroborated in the work of Hofer et al. [24, 25], which has
also shown that we can consider only a subset of cones (i.e., a only a subset of
the spectra’s rows) to arrive at the same diagnostic accuracy.

5 The FaultySheet Detective Framework

We have extended our SmellSheet Detective tool [15] in order to fully implement
all the smells in the spreadsheet catalog, and to implement the algorithms for
fault localization. This is an extension from previous works [9], and the upgraded
version of this tool was used to perform the experiments presented in this paper.
This new tool is termed FaultySheet Detective [26].

The FaultySheet Detective supports both spreadsheets written in the desk-
top spreadsheet system Excel and spreadsheets hosted on the Google Drive
cloud platform. The support for online spreadsheets was added because migra-
tion from desktop to online-based applications is becoming very common, with
popular office suites seeing online versions.

6Available at http://www.jhotdraw.org/

11

Spreadsheets Analysis Framework

Google
Docs

Local
File

Apache
POI

Easy
Manipulation

of
Spreadsheets Spreadsheet

Information

New
Spreadsheet

Figure 4: The Spreadsheet Analysis Framework we used.

The use of Google Drive’s variant of our tool requires a registered and valid
login on that platform. Our tool allows the analysis of one spreadsheet at a
time, but within it the user can choose either a single worksheet or the full
spreadsheet.

This tool uses the Java API Apache POI7, in its version 3.8, for manipulating
various file formats based upon the Office Open XML standards (OOXML). To
read and write Microsoft’s Excel files, it uses the Microsoft’s OLE 2 Compound
Document format API.

To be able to access Google’s Drive accounts, we used the Google Data
API8. The Google Data Protocol, which we used in version 1.47.1, is a Google
owned technology for reading, writing, and modifying information on the web.
To develop the FaultySheet Detective we used the Java version of the Google
Spreadsheets API, which enables the creation of applications that read and
modify data in spreadsheets stored in Google Drive accounts.

The implementation of the smells strictly follows the guidelines provided by
their original source and are individual components of the tool, i.e., the tool
always runs the smells individually and sequentially but filters, intercepts and
processes their results as a whole. These results are used by SFL.

Figure 4 briefly describes our framework for spreadsheet analysis. Files
coming either from local or network storage are used to instantiate and populate
an internal Apache POI object. This object is used, via our abstractions on
Apache POI, to perform a set of analysis that go from smells detection to fault
localization and toxic cells analysis.

The smells are implemented using this simpler abstraction over Apache Poi
and information can be displayed either as meta-information, via standard out-
put streams or via the creation of new spreadsheets, where the user also has
options to color different cells or add side information to either individual cells
or the whole sheets.

The FaultySheet Detective together with a video demonstrating its use and
the analysis framework are available at http://ssaapp.di.uminho.pt.

7http://poi.apache.org
8https://developers.google.com/gdata/

12

6 Filtering out Perceived Smells

The first step of the proposed technique consists in analyzing the individual
performance in terms of error detection for all the smells already proposed in
the literature. Our aim here was to filter out the smells that by their nature
do not contribute to identifying spreadsheet errors, and, for all other smells, to
rank their potential ability to detect errors.

In order to realize this step, we have devised the following experiment.

6.1 Experimental Setting

We analyzed a set of well-known spreadsheets – the Hawaii Kooker Corpus –
containing 73 spreadsheets created from a real world problem by third-year
undergraduate students and MBA students at the University of Hawaii. The
errors in these spreadsheets were not “seeded” as they were naturally created
by students. Part of the corpus was used in a study by Aurigemma and Panko
to compare detection rates for static inspection and human inspection [13].

This corpus was developed aiming at analyzing both how end users structure
their data in a spreadsheet, and how correct their solution is. This corpus also
includes a correct spreadsheet to compare all others against. In order to prepare
the corpus for automatically locating end-user faults with our tool, we needed
to:

• First, we manually inspected and compared the correct solution to the
end-users solutions. As a result of this comparison, we marked all errors
in the spreadsheets. By error, we mean a cell that does not have a correct
value. We also consider that a cell defined by a correct formula is an error
when it depends on a cell marked with an error.

• Second, we manually defined the spreadsheets’ total number of cells. The
total number of cells is given by the number of cells of the smallest rectan-
gle that contains all the non-empty cells of the spreadsheet. This consid-
eration will not influence the computation of the Empty Cell smell, since
in its definition an empty cell must be surrounded by non-empty ones.

6.2 Analyzing the Smells

We have performed a first analysis of the corpus without any aid from the SFL.
In this step we only applied all the smells, individually, on all the spreadsheets
of the corpus and gathered the results, which can be seen in Table 4.

In this table we can see a list of smells (their number and name), how many
cells they pointed that really represented faulty cells (True Positives) and how
many cells they marked that were perfectly correct (False Positives). The smells
in this table are sorted by the descending number of true positives.

In this phase we were not concerned with sorting the smells based on how
good they perform. The objective was to analyze if their correlation with actual
faults. As we can see from the table, the last 6 smells cannot detect any cell

13

Table 4: Bad smells individual performance, ordered by the amount of true
positives.

Smell True Positives False Positives

17 Temporary Field 450 564
8 Multiple References 436 114

10 Long Calculation Chain 313 29
1 Standard Deviation 305 172
7 Multiple Operations 88 13
5 Reference to Empty Cells 86 19
3 Pattern Finder 46 125

11 Duplicated Formulas 16 29
14 Middle Man 6 16
12 Inappropriate Intimacy 6 16
4 String Distance 0 1

15 Shotgun Surgery 0 0
13 Feature Envy 0 0
2 Empty Cell 0 21
6 Quasi-Functional Dependencies 0 0
9 Conditional Complexity 0 0

16 Switch Statements 0 0

with faults, with the 15 and 4 detecting only cells that contain no faults at all
(false positives). From these results, we have split the smells into two groups:

Fault-Inducing Smells This group contains the smells 8, 10, 1, 7, 5, 3, 11, 14,
12, 17. These smells have different degrees of success, but to some extent they
are all capable of detecting cells that really contain faults. This is important
as we will use a two step strategy - smell detection and SFL - where the final
responsibility for the results is on the latter step.

Perceived Smells This group contains the smells 4, 15, 13, 2, 6, 9, 16. None
of these smells was capable of detecting at least one cell with a fault. In fact,
two of these smells pointed to correct cells. This result means we can discard
these smells. In fact, if we used these cells to feed into our fault localization
framework, we would obtain a misguided diagnosis. This happens because there
was no error in the indicted input cells.

Before this study, none of these smells was ever used to detect faults, with
the exception of the duplicated formulas, that was shown to be correlated with
the existence of faults in spreadsheets [8].

This step fulfilled two objectives. First, we were capable of completely dis-
carding a group of smells from the existing literature. This does not mean they
are not relevant, as they still point bad practices when designing spreadsheets.
It just means that, to what fault localization is concerned, they do not produce

14

any interesting results. Second, it will provide us with a set of smells that we
can use to apply our technique. In the next section, we will describe how to do
so.

7 Fault-Inducing Smells Meet Spectrum-based
Fault Localization

In the previous section we have selected the smells that can detect cells that
have faults.

In this section we will combine this fault detection method with an SFL
algorithm. This will allow to validate the faults detected by the smells, and
further locate other existing faults in the spreadsheet that were not yet detected.

Next we present the algorithm we devised to implement this new technique.

7.1 The Algorithm

The algorithm of the approach is depicted in Algorithm 1. The inputs of our
approach are 1) the spreadsheet under test (S) and 2) the threshold value for
the suspiciousness score given to each cell (C).

As SFL computes a ranking of cells, sorted by their suspiciousness of con-
taining a fault, the last input of our algorithm, C, is used as a way to ensure
that not every cell with nonzero suspiciousness gets inspected. In the software
debugging domain, we often use a metric called Ce that evaluates the effort
required by the user to pinpoint faulty locations. This metric indicates the
number of components (for instance, statements) that the user must inspect
until the fault is reached. In the spreadsheet domain, we adopted a similar
route, by setting a threshold on the cells to be inspected. This threshold can be
either by value (that is, only consider cells whose suspiciousness is greater than
the threshold), or by percentile (that is, only consider cells whose suspiciousness
is above a certain percentile). This way, we are able to not only evaluate the
effort required by the user in his inspection of the diagnostic ranking, but also
measure the amount of faults found and the amount of false positives given by
our approach.

First, on line 1 the list of smelled cells is computed. After that, on lines 2 to
7 the cones for every cell are calculated. A cone represents the dependencies of
a cell – either direct or indirect references. Also computed is the set of all cells
that are references of other cells (useful for finding out output cells). The worst
case time complexity of this step is O(N2), whereas the spatial complexity is
O(N).

On line 8, the set of output cells is calculated. Output cells are not referenced
by any other cell, therefore they can be computed by subtracting the set of
referenced cells to the spreadsheet. With the information about output cells,
cell cones, and smelled cells, we are able to compute the inputs to SFL – a hit
spectra matrix, and an error vector. As depicted in lines 10 to 17, each line of
the hit spectra matrix is the cone of an output cell, and its corresponding error

15

Algorithm 1 Smells as input to SFL.

Input:
Spreadsheet S
Suspiciousness Threshold C

Output:
Diagnostic Report R

1: L ← CalculateSmells(S, T) . Compute the smell listing
2: references← ø . Cell references computation
3: cones← ø
4: for all cells c in S do
5: cones[c]← Cone(c)
6: references← references ∪ cones[c]
7: end for
8: output← S \ references . Output cells
9: M ← |output|

10: ∀i∈{1...M} : A(i)← ø . Hit spectra computation
11: ∀i∈{1...M} : e(i)← 0
12: for i = 1→M do
13: A(i)← cones[output[i]]
14: if HasSmell(L, output[i]) then
15: e(i)← 1
16: end if
17: end for
18: R← SFL(A, e) . Fault Localization
19: R← Filter(R, C) . Prune suspiciousness listing
20: R← R∪ToxicCells(L)
21: return R

16

vector entry is either 1 if the output cell has a smell, and 0 otherwise. This step
has a time complexity of O(N) and a spatial complexity of O(N).

With the hit spectra matrix A and the error vector e, the fault localization
is performed, by calling the SFL method on line 18, having time complexity of
O(N2) and a spatial complexity of O(N).

Finally, the suspiciousness filtering step removes any component from list R
that is below the C threshold. This step has both time and space complexities
of O(N), and the last step expands the listing to include toxic cells, that are
cells whose references are smelly cells. These steps have a worst case space
complexity of O(N2) and a time complexity of O(N), where N is the total
number of non-empty cells of a spreadsheet.

Overall, our approach has a worst-case time complexity of O(N2) and a
spatial time complexity of O(N), where N is the total number of non-empty
cells of a spreadsheet.

7.2 Analyzing the Algorithm Results

The SFL algorithm uses smell-marked cells to compute a ranking of faulty cells:
cells with higher rank have a higher likelihood of containing errors. We can
configure our algorithm with a threshold that defines the effort to pinpoint faulty
locations. Therefore, we will consider two possibilities: first, we only mark as
faulty those cells whose suspiciousness score is 1.0, so that we maximize true
positives. Second, we consider a percentile: we mark as faulty the top 10% of
cells with highest suspiciousness.

We start by considering the first threshold. This is the approach a program-
mer would follow when considering the results produced by an SFL algorithm
for regular programming languages: programmers will focus on searching for
errors in the parts marked by the algorithm as being tagged as very suspicious.

We also want to understand if combining smells improves the results. Thus,
we consider all possible combinations of 1, 2, 3, 4, and 5 smells. Figure 5 shows,
on average, the percentage of cells marked by our algorithm that are in fact
documented errors in the spreadsheets (i.e., the true positives). We do not
consider combinations of 6 smells of more as we did not find, in the corpus we
are using, a cell containing such a value: 5 was the absolute maximum.

The best results are achieved when we give as input to SFL cells detected
by a single smell: on average in three cells marked as faulty, two cells do have
an error, value that decreases when more smells are added. When combining 5
smells, only one cell out of two marked cells on average is an error. Intuitively,
this happens because the more smells we consider, the more cells will be marked
by the algorithm, and thus the more cells SFL will also consider faulty. Since
the number of faults is always the same, the ratio will become worse every time
a new smell is considered.

Next, we present the results of combining each of the 10 fault-inducing smells
individually with SFL. Figure 6 shows, for each smell, the ratio of true positives
yielded by the technique over its false positives (left y-axis), and the percentage
of errors found (right y-axis).

17

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

1 Sm
ell

2 Sm
ells

3 Sm
ells

4 Sm
ells

5 Sm
ells

0.6
0.57

0.55
0.52

0.5

Number of smells considered

R
at

io
 o

f T
ru

e
P

os
iti

ve
s

Figure 5: Percentage of true positives.

��

����

��

����

��

����

��

����

��

����

��

����������
������������

������������������

�
���������������

�����
��������

�
���������

������������

�
���������

�������������

������
������������

���������

�
��������������

���������

�������������������
��������

�
�������

�������

���
�����������������

��

����

����

����

����

����

����

����

����

����

��

�
��
�
��
�
��
�
��
�
�
���
�
�
��
�
���

�
�
��
�
�
��
�
�
��
��
�
��
�
��
��
�
�
�
���������������������

������������

Figure 6: True positive over false positives and percentage of errors found using
single smells.

We can see that the five smells that combined with SFL locate more er-
rors are: Temporary Field with 74.0% of the total errors,Multiple References

18

with 72.5,%Long Calculation Chain with 53.1%, Standard Deviation with 50.6%
andMultiple Operations with 14.5% of the total errors found. These are also the
smells that produce the best true/false positives ratio. For example, Multiple
References produces 3 times more true positives than false ones. On practice
this means that every three out of four marked cells contain an error.

In Figure 5 we can see the average results of combining different smells.
Next, we consider the combination of the best smells, according to the results
shown in Figure 6. The results of the combinations of 1 up to 5 smells are
presented in Figure 7. Again, the left y-axis represents the ratio of real faults
over all the marked (smelly) cells, and the right y-axis represents the real smells
over the real faults.

��

������

�����

������

����

������

�����

������

��

������

�����

�����������������

�������������

���������

������

��
��

����

����

����

����

����

����

����

����

����

��

�
��
�
��
�
��
�
��
�
�
���
�
�
��
�
���

�
�
��
�
�
��
�
�
��
��
�
��
�
��
��
�
�
�
�

��������������������
������������

Figure 7: Combination of 1 up to 5 of the smells with better results.

As expected, by giving more smelly cells to the SFL algorithm the number
of detected errors increases. We are able to locate 89.1% of errors with this
setting. However, because different smells may mark the same cells as smelly
(this is the case of smells 8 and 10), this represents only a small improvement
with a high cost: the number of false positives doubles, which increases the work
of a user of our technique to detect errors.

Next, let us consider the 10% percentile threshold, which marks as faults
10% of the marked cells with highest suspiciousness. Figure 8 presents such
results when considering the combination of (up to) five smells.

It is quite clear that the best case scenario in this case is worst than the
worst case scenario in the approach where we use only the faults marked by
SFL with the 100% threshold (see Figure 5).

We can conclude that the combination of smells and SFL produces good
results when a single smell is considered and a suspiciousness score threshold
of 1.0. A combination of smells does (slightly) improve the number of detected

19

0.
0

0.
1

0.
2

0.
3

0.
4

1 Sm
ell

2 Sm
ells

3 Sm
ells

4 Sm
ells

5 Sm
ells

0.29
0.28

0.27
0.26

0.25

Number of smells considered

R
at

io
 o

f T
ru

e
P

os
iti

ve
s

Figure 8: Percentage of cells that contain errors from SFL’s top 10% results.

errors, but at a high cost: the increase of false positives, which implies an
increase in the work to locate faults in a spreadsheet.

7.3 Threats to validity

The main threat to external validity of these empirical results is the fact that,
although the subjects were all real spreadsheets, it is plausible to assume that
a different set of subjects, having inherently different characteristics, may yield
different results. This is particularly true if we consider inter-worksheet smells.

A second threat is the fact that we use only one corpus of spreadsheets. Al-
though this is the case, it is also true that it is the largest corpus of spreadsheets
with documented errors, and it was created with the goal of providing a research
corpus for spreadsheet error detection. This is a necessary condition to execute
such a study. If the errors are not known, we can not provide an analysis that
is not speculative.

Threats to internal validity are related to faults in our underlying implemen-
tation, such as smell detection, hit spectra generation, or fault localization. To
minimize this risk, some testing and individual result checking were performed
before the experimental phase.

20

8 FaultySheet Detective Meets Correct Spread-
sheets

In the previous analysis we have classified a set of 17 smells, and used the
ones that can actually point to faulty cells together with a SFL algorithm to
evaluate their efficacy under a corpus of spreadsheets with faults. These results
were obtained using a corpus of spreadsheets that we know contain errors, which
further more are documented.

The setting used in the previous analysis provided a good subject to perform
our analysis because the documented errors avoid threats to validity that would
appear if we were to manually insert errors in these sheets. We could be biased
towards introducing errors that we know would be watched by our tool.

There are available corpus of spreadsheets, such as the one presented in [27],
that is hard to use in our setting because it is likely errors exist but are not
documented. This means we would have to necessarily locate all the errors
before an analysis is possible, which an extremely hard task that would create
obvious threats to validity.

In this section we will present the findings of running our tool in a corpus of
spreadsheets that are known not to contain faults. We are motivated towards
using the corpus exactly as it is, as inserting errors would threat our results
for the reasons presented in the previous paragraph. Therefore, we shifted our
analysis towards a different evaluation of our tool.

In an ideal case, a tool that detects errors would return no results on a
setting where no errors exist, so we tested the performance of our technique in a
setting where ideally no cells should be marked. This new analysis will describe
the behavior of our technique regarding the number of false positives pointed
out on an environment with our errors.

With this new evaluation, we intend to show that our technique is well
behaved when no faults are present at the spreadsheets under analysis.

The spreadsheets we are using are the ones available through a CD with
the book “The Art of Modeling with Spreadsheets” [28]. Although it may be
the case that these spreadsheets contain errors, this scenario is highly unlikely,
as this is a well-knows book on modeling spreadsheets, currently on the 4th
edition.

This set consists of 27 spreadsheets, each containing between 1 and 16 work-
sheets, with a total of 121 worksheets, and a total of 593084 cells. More than
half of the worksheets, 66 out of the 121, contain formulas. The spreadsheets
represent different realms that range from spreadsheets to make the decision
of how much to bid for the salvage rights to a grounded ship, modeling the
production at Delta Oil, advertising budget, or planning shipments.

Some pre-processing was necessary for these spreadsheets before performing
our analysis. For example, some cells from the spreadsheet Hastings1 were
deleted because they were calculated using macros, which we cannot work with
yet. Another talk was to remove in the spreadsheets the array formulas used
as our tool cannot parse them (ex., for AdBudget, where this accounts only

21

for 8 cells). The spreadsheets Hastings2 and Options were removed from the
analysis because these spreadsheets were heavily based on macros, and removing
the cells that use them makes the spreadsheets completely irrelevant.

8.1 Results

After running our tool through all the spreadsheets in the corpus a total of
9122 cells were marked. As explained above, this corpus contains no errors so
we immediately know these are false positives. Comparing these to the total
number of cells of all the spreadsheets on this corpus (593084), this gives a total
of 1.54% of cells wrongly marked by our algorithm as potentially being faulty.
While this results is not perfect (which would be 0%) it proves our technique is
well behaved when analyzing correct spreadsheets.

It is important to recall that our technique is based on the detection of bad
smells, which may not necessarily represent faults. For this reason, it would be
very unlikely that our tool would not mark any cell, as it would mean more than
a corpus of correct spreadsheets, it would mean we are dealing with a corpus of
spreadsheets which are perfectly designed.

This results reveal that the spreadsheets used in [28] are in fact very good
examples of well designed spreadsheets, as only less then 2% of the cells were
marked as being smelly. This shows that these spreadsheets are indeed much
better, from a design perspective, than other available corpus [8].

8.2 Detailed Results

Although the overall results are very good, they deserve further analysis. In Fig-
ure 9 we present the detailed findings for each of the spreadsheets in the corpus.

The best performance is achieved in the Dish spreadsheet, where only 0.55%
(372 out of 67246) of the cells are marked by our tool. A similar resulted is
achieve in the Analgesics spreadsheet (1466 out of 195488) where only 0.75%
of all the cells are marked.

One conclusion from the analysis of this chart is that the biggest spread-
sheets are the ones with best results. The reason this happens is because these
spreadsheets are more data oriented, which means they contain less formulas
and more informations. The good results are therefore obtained because a) most
of our smells actually work on formulas and b) these spreadsheets are huge, so
it is easier for the percentage of cells marked to be slower.

Nevertheless, for some small spreadsheets we can also achieve good results.
For instance, for SS Kuniang we mark only 2.2% (7 out of 315) cells, and for
Hastings1 we mark only 4.5% (10 out of 224) of the cells.

On the other hand the worst scenario occurs for the spreadsheet Diffusion,
where 44.4% (128 out of 288) of all cells are pointed by the tool. The second
worst is obtained on the spreadsheet Forecasting where 24.2% (443 out of
1833) of the cells are marked. It is interesting no notice there is no relation
between the worst cases and the size of the spreadsheets.

22

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

AdBudget

AdBudget8

AdBudget9

Analgesics

Applicants

Bundy

Butson

Data
Delta

Diffusion

Dish
Executives

Forecasting

Hastings1

IP LP Netscape

NLP
Plants

Population

Portfolio

SS Kuniang

Tissue

Veerm
an

0.12

0.17

0.07

0.010.01

0.04

0.14

0.07

0.12

0.44

0.01

0.03

0.24

0.04
0.05

0.09

0.19

0.13

0.06
0.05

0.04

0.020.02

0.1

Spreadsheets

R
at

io
 o

f F
al

se
 P

os
iti

ve
s

Figure 9: False positive ratio for each spreadsheet.

9 Related Work

The work presented in this paper focuses on identifying smells in a spreadsheet
and feeding them into a fault localization framework. Other efforts related to
using spreadsheet smells and metrics to detect errors in spreadsheets have been
proposed before [29, 30]. Hermans et al. [7] proposed an approach to locate
spreadsheet smells and communicate them to users via data flow diagrams.
Recently, an approach to detect and visualize data clones (i.e., formulas whose
values are copied as plain text to a different location) was also described [31].

AmCheck [32] also uses smell detection in its analysis. This tool detects
a particular kind of smells, coined ambiguous computation smells, which fre-
quently appear in cells that do not maintain the computational semantics of
their row or column. AmCheck also provides repair suggestions by inferring

23

formula patterns for the smelly cells that maintain the semantics of their sur-
roundings.

GoalDebug [33] is a spreadsheet debugger targeted at end users. Whenever
the computed output of a cell is incorrect, the user can supply that cell’s ex-
pected value. This expected value is used by the system to generate a list of
change suggestions for cell formulas, ranked using a set of heuristics. A drawback
of this approach is that users are expected to detect errors in the spreadsheet,
and provide the system with the correct output value. In our approach, the
error detection phase is automated by testing spreadsheets against our smell
catalog.

CheckCell [34] is an analysis tool to automatically find potential data errors
in spreadsheets. It locates data with disproportionate impact on computations,
with the assumption that, especially in data-intensive scenarios, cells that have
an unusually high impact are either very important or incorrect, so they should
require further inspection.

Kulesz et al. [35] propose an interactive approach to debugging via creating
additional test cases that are decoupled from the spreadsheet. However, users
still have to provide the new input values and the expected output value for every
test they create. Another approach that leverages test cases to locate faults in
spreadsheets was proposed by Hofer et al. [36]. Instead of requiring the user
to provide test inputs, it leverages diagnostic and repair approaches such as
model-based debugging [37] and genetic programming [38] to generate possible
repair mutations. The approach would generate the inputs of a distinguishing
test case where the computed values for two mutated versions of a spreadsheet
would differ on the same input. As a way to filter the repair mutations, the user
is then asked to select the test cases which compute the correct value.

There are several other spreadsheet analysis tools that try to find inconsis-
tencies in spreadsheet formulas [39, 40, 41, 42, 43, 44], which differ in the rules
they employ and the amount of user effort required to provide additional input.
Most of these approaches require the user to annotate the spreadsheet cells with
additional information. An exception is the UCheck system [45], which can per-
form unit analysis automatically by exploiting header inference techniques [39].

Other approaches that aim at minimizing the occurrence of errors in spread-
sheets include code inspection [46], refactoring [10, 47], model-driven engineer-
ing [48, 49], and the adoption of better spreadsheet design practices [50, 51],
but none of these approaches focuses on spreadsheets’ debugging.

10 Conclusion

In this paper we described an approach to automatically locate faults in spread-
sheets. This approach uses a catalog of 15 well-known documented spreadsheet
smells to perform smell detection and provide an indication of possible faults in
the spreadsheet.

This set of smells was divided into two: one containing smells that actually
point out faulty smells, and another with the smells that cannot find cells with

24

faults.
The cells detected by the first set of smells are fed into a spectrum-based

fault localization framework, commonly used in the software debugging field, as
a way to improve the quality of the diagnosis. Our empirical experiments, using
a well-known faulty spreadsheet catalog, have shown that our approach is able
to detect more than 70% of errors in spreadsheets in a setting where two out of
three identified faulty cells are documented errors.

There are several research questions that still require further investigation.
First, we plan to provide natural and intuitive visualizations to improve user’s
comprehension of diagnostic data. Second, we plan to study ways to provide fix
suggestions to users, namely by mutating spreadsheets [52].

Acknowledgements

This works was partially supported by the Project NORTE-07-0124-FEDER-
000062, co-financed by the North Portugal Regional Operational Programme
(ON.2 - O Novo Norte), under the National Strategic Reference Framework
(NSRF), through the European Regional Development Fund (ERDF).

References

[1] Panko RR, Ordway N. Sarbanes-oxley: What about all the spreadsheets?
arXiv preprint arXiv:0804.0797 2008; .

[2] Hermans F, Pinzger M, van Deursen A. Supporting professional spread-
sheet users by generating leveled dataflow diagrams. Proceedings of the
International Conference on Software Engineering (ICSE’11), ACM, 2011;
451–460.

[3] Panko RR. Spreadsheet errors: What we know. what we think we can do.
arXiv preprint arXiv:0802.3457 2008; .

[4] Panko R. Facing the problem of spreadsheet errors. Decision Line, 37(5)
2006; .

[5] Reinhart CM, Rogoff KS. Growth in a time of debt. American Economic
Review September 2010; 100(2):573–78, doi:10.1257/aer.100.2.573.

[6] Hofer B, Riboira A, Wotawa F, Abreu R, Getzner E. On the empirical
evaluation of fault localization techniques for spreadsheets. Proceedings of
the International Conference on Fundamental Approaches to Software En-
gineering (FASE’13). Springer, 2013; 68–82.

[7] Hermans F, Pinzger M, Deursen Av. Detecting and visualizing inter-
worksheet smells in spreadsheets. Proceedings of the International Con-
ference on Software Engineering (ICSE’12), IEEE Press, 2012; 441–451.

25

[8] Hermans F, Pinzger M, van Deursen A. Detecting code smells in spread-
sheet formulas. Proceedings of the IEEE International Conference on Soft-
ware Maintenance (ICSM’12), IEEE, 2012; 409–418.

[9] Cunha J, Fernandes JP, Ribeiro H, Saraiva J. Towards a catalog of spread-
sheet smells. Proceedings of the International Conferences on Computa-
tional Science and Its Applications (ICCSA’12). Springer, 2012; 202–216.

[10] Badame S, Dig D. Refactoring meets spreadsheet formulas. Proceedings of
the IEEE International Conference on Software Maintenance (ICSM’12),
IEEE, 2012; 399–409.

[11] Abreu R, Zoeteweij P, Golsteijn R, Van Gemund AJ. A practical evaluation
of spectrum-based fault localization. Journal of Systems and Software 2009;
82(11):1780–1792.

[12] Fowler M. Refactoring: Improving the Design of Existing Code. Addison-
Wesley: Boston, MA, USA, 1999.

[13] Aurigemma S, Panko RR. The detection of human spreadsheet errors by hu-
mans versus inspection (auditing) software. arXiv preprint arXiv:1009.2785
2010; .

[14] Abreu R, Cunha J, Fernandes JP, Martins P, Perez A, Saraiva J. Smelling
faults in spreadsheets. Proceedings of the IEEE International Conference on
Software Maintenance and Evolution (ICSME’14), IEEE, 2014; 111–120.

[15] Cunha J, Fernandes JP, Martins P, Mendes J, Saraiva J. Smellsheet de-
tective: A tool for detecting bad smells in spreadsheets. Proceedings of
the IEEE Symposium on Visual Languages and Human-Centric Comput-
ing (VL/HCC’12), IEEE, 2012; 243–244.

[16] Asavametha A. Detecting bad smells in spreadsheets. Master’s Thesis, Ore-
gon State University June 2012.

[17] Chiang F, Miller RJ. Discovering data quality rules. Proceedings of the
VLDB Endowment 2008; 1(1):1166–1177.

[18] Codd EF. A relational model of data for large shared data banks. Commu-
nications of the ACM 1970; 13(6):377–387.

[19] Abreu R, Zoeteweij P, Van Gemund AJ. On the accuracy of spectrum-based
fault localization. Proceedings of the Testing: Academic and Industrial Con-
ference Practice and Research Techniques-MUTATION, 2007. TAICPART-
MUTATION 2007, IEEE, 2007; 89–98.

[20] Jain A, Dubes R. Algorithms for clustering data. Prentice-Hall, Inc., 1988.

26

[21] Abreu R, Zoeteweij P, Van Gemund AJ. An evaluation of similarity coeffi-
cients for software fault localization. Proceedings of the IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC’06), IEEE,
2006; 39–46.

[22] Lucia L, Lo D, Jiang L, Thung F, Budi A. Extended comprehensive study of
association measures for fault localization. Journal of Software: Evolution
and Process 2014; 26(2):172–219.

[23] da Silva Meyer A, Franco Farcia AA, Pereira de Souza A. Comparison of
similarity coefficients used for cluster analysis with dominant markers in
maize (Zea mays L). Genetics and Molecular Biology 2004; 27(1):83–91.

[24] Hofer B, Perez A, Abreu R, Wotawa F. On the empirical evaluation of sim-
ilarity coefficients for spreadsheets fault localization. Automated Software
Engineering 2014; :1–28.

[25] Hofer B. Spectrum-based fault localization for spreadsheets: Influence of
correct output cells on the fault localization quality. Proceedings of the
IEEE International Symposium on Software Reliability Engineering Work-
shops (ISSREW’14), 2014; 263–268, doi:10.1109/ISSREW.2014.100.

[26] Abreu R, Cunha J, Fernandes JP, Martins P, Perez A, Saraiva J. Fault-
ySheet detective: When smells meet fault localization. Proceedings of the
IEEE International Conference on Software Maintenance and Evolution
(ICSME’14), vol. 14, 2014.

[27] Hermans F, Murphy-Hill E. Enron’s spreadsheets and related emails: A
dataset and analysis. Proceedings of the International Conference on Soft-
ware Engineering (ICSE’15) (to appear). Firenze, Italy, May 2015; .

[28] Powell SG, Baker KR. The Art of Modeling with Spreadsheets. John Wiley
& Sons, Inc.: New York, NY, USA, 2003.

[29] Bregar A. Complexity metrics for spreadsheet models. arXiv preprint
arXiv:0802.3895 2008; .

[30] Hodnigg K, Mittermeir RT. Metrics-based spreadsheet visualization: Sup-
port for focused maintenance. arXiv preprint arXiv:0809.3009 2008; .

[31] Hermans F, Sedee B, Pinzger M, Deursen Av. Data clone detection and
visualization in spreadsheets. Proceedings of the International Conference
on Software Engineering (ICSE’13), IEEE Press, 2013; 292–301.

[32] Dou W, Cheung SC, Wei J. Is spreadsheet ambiguity harmful? detecting
and repairing spreadsheet smells due to ambiguous computation. Proceed-
ings of the International Conference on Software Engineering (ICSE’14),
ACM, 2014; 848–858.

27

[33] Abraham R, Erwig M. Goaldebug: A spreadsheet debugger for end
users. Proceedings of the International Conference on Software Engineering
(ICSE’07), IEEE Computer Society, 2007; 251–260.

[34] Barowy DW, Gochev D, Berger ED. Checkcell: data debugging for spread-
sheets. Proceedings of the ACM International Conference on Object Ori-
ented Programming Systems Languages & Applications (OOPSLA’14),
ACM, 2014; 507–523.

[35] Kulesz D, Scheurich J, Beck F. Integrating anomaly diagnosis techniques
into spreadsheet environments. In PRoceedings of the IEEE Working Con-
ference on Software Visualization (VISSOFT’14), IEEE, 2014; 11–19.

[36] Hofer B, Abreu R, Perez A, Wotawa F. Generation of relevant spreadsheet
repair candidates. Proceedings of the European Conference on Artificial In-
telligence (ECAI’14), 2014; 1027–1028.

[37] Hofer B, Wotawa F. Why does my spreadsheet compute wrong values? Pro-
ceedings of the IEEE 25th International Symposium on Software Reliability
Engineering (ISSRE), IEEE, 2014; 112–121.

[38] Hofer B, Wotawa F. Mutation-based spreadsheet debugging. Proceedings
of the IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW’13), 2013; 132–137.

[39] Abraham R, Erwig M. Header and unit inference for spreadsheets through
spatial analyses. Proceedings of the IEEE Symposium on Software Visual-
ization (VISSOFT’04), IEEE, 2004; 165–172.

[40] Ahmad Y, Antoniu T, Goldwater S, Krishnamurthi S. A type system for
statically detecting spreadsheet errors. Proceedings of the IEEE Interna-
tional Conference on Automated Software Engineering (ASE’03), IEEE,
2003; 174–183.

[41] Erwig M, Burnett M. Adding apples and oranges. Practical Aspects of
Declarative Languages. Springer, 2002; 173–191.

[42] Abreu R, Riboira A, Wotawa F. Debugging spreadsheets: a csp-based ap-
proach. Proceedings of the IEEE International Symposium on Software Re-
liability Engineering Workshops (ISSREW’13), IEEE, 2012; 159–164.

[43] Abreu R, Hofer B, Perez A, Wotawa F. Using constraints to diagnose faulty
spreadsheets. Software Quality Journal 2014; :1–26.

[44] Jannach D, Baharloo A, Williamson D. Toward an integrated framework for
declarative and interactive spreadsheet debugging. Proceedings of the 8th
International Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE’13), 2013; 117–124.

28

[45] Abraham R, Erwig M. UCheck: A spreadsheet type checker for end users.
Journal of Visual Languages and Computing 2007; 18(1):71–95.

[46] Panko RR. Applying code inspection to spreadsheet testing. Journal of
Management Information Systems 1999; :159–176.

[47] Hermans F, Dig D. Bumblebee: A refactoring environment for spreadsheet
formulas. Proceedings of the 22Nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (FSE’14), FSE 2014, ACM:
New York, NY, USA, 2014; 747–750, doi:10.1145/2635868.2661673.

[48] Cunha J, Fernandes JP, Mendes J, Saraiva J. Embedding, evolution, and
validation of spreadsheet models in spreadsheet systems. IEEE Transac-
tions on Software Engineering 2014; In press.

[49] Cunha J, Fernandes JP, Martins P, Pereira R, Saraiva J. Refactoring
meets model-driven spreadsheet evolution. Proceedings of International
Conference on the Quality of Information and Communications Technology
(QUATIC’14), 2014; 196–201.

[50] Cunha J, Erwig M, Saraiva J. Automatically inferring classsheet models
from spreadsheets. Proceedings of the IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC’10), IEEE, 2010; 93–
100.

[51] Cunha J, Fernandes JP, Mendes J, Saraiva J. MDSheet: A Framework
for Model-driven Spreadsheet Engineering. Proceedings of the International
Conference on Software Engineering (ICSE’12), ICSE ’12, ACM, 2012;
1412–1415.

[52] Abraham R, Erwig M. Mutation operators for spreadsheets. IEEE Trans-
actions on Software Engineering 2009; 35(1):94–108.

29

