Graphical Querying of Model-Driven
Spreadsheets *

Jécome Cunha'?, Jodao Paulo Fernandes'3,
Rui Pereiral, and Jodo Saraival

! HASLab/INESC TEC & Universidade do Minho, Portugal
2 CIICESI, ESTGF, Instituto Politécnico do Porto, Portugal
3 RELEASE, Universidade da Beira Interior, Portugal
{jacome, jpaulo, ruipereira, jas}@di.uminho.pt

Abstract. This paper presents a graphical interface to query model-
driven spreadsheets, based on experience with previous work and empir-
ical studies in querying systems, to simplify query construction for typical
end-users with little to no knowledge of SQL. We briefly show our previ-
ous text based model-driven querying system. Afterwards, we detail our
graphical model-driven querying interface, explaining each part of the
interface and showing an example. To validate our work, we executed
an empirical study, comparing our graphical querying approach to an
alternative querying tool, which produced positive results.

Keywords: Model-driven engineering, graphical querying, spreadsheets

1 Introduction

Spreadsheets are the most successful example of the end user programming ap-
proach to software development. Although invented to provide a simple, but
powerful, graphical environment to express mathematical formulas, spreadsheet
systems quickly evolved into powerful software environments able to manipu-
late complex and large amount of data. Indeed, spreadsheets are often used to
perform operations usually associated to databases. Surprisingly enough, spread-
sheet systems lack powerful techniques, researched and developed for decades,
that make database systems so powerful to manipulate big data, namely the use
of data normalization techniques [1] and the use of query languages to filter and
transform data [2]. And even then, the construction of a textual query language
is difficult for end-users.
The purpose of this paper is three-fold:

* This work is part funded by the ERDF - European Regional Development Fund
through the COMPETE Programme (operational programme for competitiveness)
and by National Funds through the FCT - Fundacao para a Ciéncia e a Tecnologia
(Portuguese Foundation for Science and Technology) within project FCOMP-01-
0124-FEDER-022701. The first author was funded by FCT: SFRH/BPD/73358/2010.

2 Cunha, Fernandes, Pereira, and Saraiva,

— Firstly, we introduce a single, but powerful, graphical model-driven query
language: Graphical-QuerySheet. Like in databases, we use models to express
the business logic of the data. As a consequence, we can express the query
based on those models, rather than on large and complex data. We use well-
known spreadsheet models, namely ClassSheets [3-5], where databases use
the relational models. Our queries are then expressed on those models and
not on the data, exactly as in databases. Querying data, using for example
SQL [6], is not a simple task, even for professional programmers. To make
querying data available to end users, we define a visual querying language.
Moreover, we hid from end users the data (de)normalization tasks.

— Secondly, we present a complete graphical model-driven spreadsheet query-
ing architecture and tool. We detail the graphical tool, and through an ex-
ample, show how a user would build his/her query.

— Thirdly, we present an empirical study where we compare our graphical
approach to spreadsheet querying with the language provided by Google
on its spreadsheets. A group of end users was asked to perform a series
of tasks using both query systems. We present the first results of such a
study, showing that Graphical-QuerySheet increases productivity, is intuitive
and human-friendly, and is easy to use for someone with little or no SQL
knowledge.

This paper is organized as follows: Section 2 briefly presents Google’s QUERY
function, along with some of its disadvantages, and a textual model-driven query-
ing system. Section 3 introduces our graphical model-driven spreadsheet query
interface. Section 4 presents our empirical study. Finally, in Section 5 we con-
clude the paper, and mention some future work.

2 Querying Spreadsheets

Before presenting techniques to query spreadsheets, let us introduce a spread-
sheet to be used as a running example throughout this paper.

Figure 1 shows part of a spreadsheet to store information about the budget of
a company. In this spreadsheet, we have information about the Category of the
budget used (such as Travel or Accommodation) and the Year. The relationship
between these two entities gives us information on the Quantity, Cost, and the
Total Costs, per year per category, defined by spreadsheet formulas.

Although spreadsheet systems do not provide mechanisms to query the data,
the fact is that we often need to answer simple questions like:

Question What was the total per year, ordered descendantly, from 2010
on wards?

2.1 Google QUERY Function

Google provides a querying function, the Google QUERY function [7], which
uses a SQL-like syntax [6], to perform a query over an array of values. An example
would be the Google Docs spreadsheets, where the querying function is built in.

Graphical Querying of Model-Driven Spreadsheets 3

A B = D E F G H I
1 Budget Year Year Year
2 2005 2006 200
3 Category Name Qnty Cost Total Qnty Cost Total anty
4 Travel 2 525 1050 3 360 1080
5 Accomodation 4 120 430 9 115 1035
6 Meals 6 25 150 18 30 540]

Fig. 1: Part of the spreadsheet data for a Budget example

Year Name Qnty Cost Total
2005 Travel 525 1050
2005 Accomodation 120 480
25 150
360 1080
115 1035
30 540
25 150
360 1080
115 1075

1

2

3

4 2005 Meals

5 2006 Travel

6 2006 Accomodation
T 2006 Meals

8 2007 Travel

9 2007 Accomodation
0 2007 Maale

O WD O Wm s N

Fig. 2: Budget data (denormalized)

This function needs two arguments, consisting of a range as its first argument,
to state the range of data cells to be queried (for example A1:Q13), and the actual
query string.

So if we wanted to answer our previous question, we would have to write in
a cell, the formula expressed as the pre-defined query function, as displayed in
Listing 1.1, after denormalizing the data from Figure 1 to Figure 2:

Listing 1.1: Google QUERY function for our example Question

=query (A1:58; 7”SELECT A, sum(E) WHERE A >= 2010
GROUP BY A ORDER BY sum(E) DESC”)

While being a powerful query function, it still has its flaws. To run this
function, the user needs to represent his spreadsheet information in a single
table. This means that someone who has their spreadsheet information divided
as entities with relations, would need to first denormalize the data (as shown in
Figure 2).

Afterwards, the user would need to write the query string, and here comes the
second flaw: instead of writing the query using column names/labels, one must
use the column letters. As one would expect, this can get confusing, counter-
intuitive, and almost impossible to understand what the query is supposed to
do, as shown in [8].

2.2 QuerySheet

We believe that querying spreadsheets should be simple and intuitive. This mo-
tivated us to design and implement a querying language simpler than Google’s

4 Cunha, Fernandes, Pereira, and Saraiva

querying function, based on using some form of labels or descriptive tags to point
to attributes and entities, as is in the database realm.

We turned to model-driven engineering [9, 10], a methodology in software
development that uses and exploits domain models, or abstract representations
of software. This has been successfully applied to spreadsheets, making model-
driven spreadsheets [11,12] and a model-driven spreadsheet environment (MD-
Sheet) possible [13]. One of such spreadsheet models is ClassSheets [3, 4], a high-
level and object-oriented formalism, using the notion of classes and attributes,
to express business logic spreadsheet data. ClassSheets allow us to define the
business logic of a spreadsheet in a concise and abstract manner, resulting in
users being able to understand, evolve, and maintain complex spreadsheets.

To showcase ClassSheets, we present the ClassSheet model for our example
spreadsheet from Figure 1. This ClassSheet model, named Budget, has a Cat-
egory class (with a Name attribute) and a Year class (with a Year attribute)
expanding vertically and horizontally, respectively. The joining of these gives us
a Quantity, a Cost, and the Total of a Category in a given Year, each with
its own default value. The corresponding spreadsheet instance conforms to the
ClassSheet model as shown in Figure 3.

& I [c I O I
Budget ear
year=2005

H

| |category Name |anty Cost Total

| o | name="abc" [qnty=0 cost=0 total=gnty*cost

— A B c D E F G H
1 Budget Year Year \Ci
2 2005 2006
3 Category Name Qnty Cost Total Qnty Cost Total ant
4 Travel 2 525 1050 3 360 1080

COIIfOnnS to 5 Accomodation 4 120 as0| 9 115 1035

6 Meals 6 5 150| 18 30 540)

Fig. 3: ClassSheet model and conforming instance for the Budget example

Having ClassSheet models available, we designed a textual querying lan-
guage to write the queries based on those models [14], allowing descriptive and
human-friendly query construction, in contrast to Google’s approach. Moreover,
we implemented a query framework, called QuerySheet [15,16], that automat-
ically denormalizes the data (as shown in Figure 2), translates it to a Google
QUERY, and executes it in Google’s engine. Thus, answering the previous ques-
tion would be as simple as looking at the ClassSheet and writing the query:

Listing 1.2: QuerySheet query for our example Question

SELECT Year, sum(Total) WHERE Year >= 2010
GROUP BY Year ORDER BY sum(Total)

Graphical Querying of Model-Driven Spreadsheets 5

3 Graphical Model-Driven Spreadsheet Query Language

In order to validate the model-driven query language, we have performed an
empirical study with real spreadsheet users [8], and realized that we can simplify
querying spreadsheets even further, especially for end-users.

Indeed, while the participants in our study who were experienced in SQL
had no problems, all others expressed frustration with writing SQL queries,
due to having to remember the syntax, forgetting a group by clause after an
aggregation, or even simple typos. This in turn motivated us to design a way
to abstract the users from the textual query language, to a simple point and
click query construction interface, where we could once again take advantage
of spreadsheet models, and our previous experience with QuerySheet. What we
designed was a simple, interactive visual language for querying model-driven
spreadsheets, called Graphical-QuerySheet.

3.1 Graphical-QuerySheet

To try to shorten, or even eventually eliminate, the knowledge of SQL needed to
correctly construct queries in our original system, we began building a graphical
interface for QuerySheet. The focus of this interface was to be as simple as
possible, displaying all the information in our query language, but in a human-
friendly way. The interface also had to be intuitive to use, both for an experienced
SQL user, and an end-user. We also wanted the interface to reduce the amount
of errors (at least in the query syntax and attributes’ names), and let the user
choose the attributes based on the spreadsheet’s model.

&| QuerySheet
= [£] Choose Attributes [EERIER =)
Preview Results

Cost Total A SAl l Ok J : i I
Qnty | Cost | To! | [T-_'J(Year‘ Category). Choose Aftributes
Sum No Aggregation Mo Aggregation N @Qnty Cancel
¥ Cost \
Mo Order By Mo Order By Mo Order B D Execute
! i g WTotal
— 1 ¥ OcCategory
-) [IName |
Conditions + OYear
] | | Unique Rows
MYear

Fig. 4: Attribute selection in the graphical interface

What resulted was an interactive graphical query building interface named
Graphical-QuerySheet integrated into the MDSheet framework, and launched by
a simple button. This interface allows a less experienced user to use a series of
drop-down boxes to select his/her filter conditions, attribute orders, aggrega-
tions, and other querying conditions, to easily construct the queries, eliminating
any possible syntax errors. The actual attribute selection (or Select clause) is

6

Cunha, Fernandes, Pereira, and Saraiva

presented by a tree-list based on a ClassSheet model (as shown in Figure 4),
where the user may choose (by checking the corresponding check-boxes) all the
attributes, all from a specific class, or individual ones. These chosen attributes
are then displayed in a Preview Results panel, each attribute in its own column,
showing the user how the result is to be returned, and allowing the user to drag
the columns left or right to organize how he or she desires.

-
| £ QuerySheet E‘_‘él

Preview Results

e

[Qnty | Cost | Total | Year J\ II l Choose Attributes l
[Sum Mo Aggregation Mo Aggregation No Aggregation] III VIII
(Noorderey NoOwerBy NooOrdersy DESC) IV
L Yol [1
- 1
Conditions) VII
Attribute Operation Value (] Unique Rows
| category Nams "} = "} School - Limit Rows 5 E
: : - v
| cvear, category).nty = = = 1000 =
VI

Fig. 5: Graphical-QuerySheet (The boxes and numbers do not belong to the interface
and are only shown for identifying the various areas)

In Figure 5 we see the various areas, identified by the red* boxes and Roman
numerals. Each area is as follows:

I

II

III

v

VI

Choose Attributes. This button opens the Choose Attributes tree-list panel,
where the user may check off which attributes to display.

Column Headers. Display the chosen attribute names. Dragging this column,
allows the user to rearrange the columns.

Aggregation. This row displays which attributes have aggregations. Clicking
on the cell displays a drop-down box with all the possible aggregations, or
no aggregation.

Order. This row displays which attributes have an order clause. Clicking
on the cell displays a drop-down box with the three possible options: ASC,
DESC, or No Order By.

Add Filter. This button adds a new row in the Conditions panel, to allow
the user to add a new condition (or Where clause).

Conditions Panel. Displays all the conditions in the query. Each row is
made up of two combo-boxes (allowing the user to respectively choose which
attributes and operations to be used per condition), a text box to state the

4 We assume colors are visible through the digital version of this document.

Graphical Querying of Model-Driven Spreadsheets 7

value of the condition, and a remove button (displayed as a red minus sign)
to remove the condition from the panel.

VII Unique/Limit. A check-box to choose to display unique rows, and a scroll
panel to state how many rows to display in the results, respectively. If the
scroll panel value is 0, there is no limit.

VIII Ezecute. This button automatically translates the visual language to our
model-driven query language, and executes the query, displaying the results
in the user’s spreadsheet. Below this button is a progress bar to give the
user visual feedback of the process.

The interface also displays tool-tips when hovering over the buttons, check
boxes, ete, to help the user understand the various parts. Along with the helpful
tool tips, if one were to hover their mouse over the selected attribute headers,
the attribute’s class name is displayed (as shown in Figure 6). This is useful
for when an attribute has the same name as another, while also reducing the
amount visual information presented to the user all at once (for example showing
another row to display the class names).

Another useful addition is the automatic calculation of when a group by is
needed. In other words, when an aggregation is detected with other selected at-
tributes, the visual language automatically produces a grouping. This automatic
calculation not only is practical in query construction, but also made it so one
less query clause needed to be presented in the graphical interface.

3.2 Building a Query in Graphical-QuerySheet

We will explain how one would construct the query from Listing 1.2 using
Graphical-QuerySheet, as shown in Figure 6. The steps to construct this query
are as follows:

1. Click on Choose Attributes and check Year and Total

. Click on the aggregation combo box and choose Sum

. Click on the order by combo box and choose DESC

. Click on Add filter

. Select the Year.Year attribute and greater or equal to operation using the
combo boxes, and fill in 2010 in the text box

6. Click Ezxecute

Tk W N

With this graphical interface guiding the user in his or her query construc-
tion, we are able to reduce a number of possible errors, and simplfy the user’s
experience. Using this interface, the user can have little to no SQL experience,
and still perform queries.

3.3 Architecture

Since Graphical-QuerySheet builds upon QuerySheet, the only necessary extra
work to build the former was to translate the visual query language that we in-
troduce in this paper to our textual model-driven query language. The remaining
steps of the process remain the same.

8 Cunha, Fernandes, Pereira, and Saraiva

| £| QuerySheet LI_I_J‘:' ot
Preview Results
Year | Total |: | Choose Attributes
Mo Aggregation Sum Ealeouiaioa)
Mo Order By DESC Execute
4 ¥ T
Conditions
Attribute Operation Value L_J Unique Rows
| YearYear TJ [>= T] 2010 - Limit Rows: 0 B
Add Filter

Fig. 6: Graphical-QuerySheet

When the user clicks on the Execute button, the visual language is trans-
lated, and the data is denormalized. Using our previous model-driven query
techniques, we produce the appropriate Google QUERY function string, with
the corresponding data, and send both to Google to be executed by its query
engine.

The results are then passed through our model inference technique, generat-
ing a ClassSheet-driven spreadsheet, with the resulting model and instance. In
fact, two new worksheets are added to the original spreadsheet: one containing
the spreadsheet data that results from the query, and the other containing the
ClassSheet model.

A complete illustration of the architecture that we have devised for Graphical-
QuerySheet is shown in Figure 7. Indeed, we sketch how our tool produces the
result of executing the query in Listing 1.2 on the spreadsheet of Figure 3.

An important aspect to note about our approach is that the result of execut-
ing a query is not only the data that it asks for, but also the ClassSheet model
that such data conforms to, which is automatically inferred using a technique
from our previous work [5]. This means that this result can be further queried
in a model-driven fashion.

4 Empirical Study

In order to assess the use of Graphical-QuerySheet in practice, we planned and
executed an empirical study with end-users. With this study, we wanted to obtain
concrete feedback on our query system and to assess the productivity associated
with its use.

The study was done one participant at a time, in a think-aloud session. By
doing this, we were able to see each participant using our system and learn the
difficulties they were having, and how to improve the system to overcome them.

Graphical Querying of Model-Driven Spreadsheets 9

graphical to textual translation SELECT Year, sum(Total)
e GROUP BY Year
B —— ORDER BY sum(Total)
WHERE Year >= 2010

sum=0 (O © | 100% |

Spreadsheet Data

& 3 e
any Cost ol — >

- . translation to Google QUERY function

denormalization

Sudzat.ots. Libreomce caic &|_conforms to =query(A1:E58; "SELECT A, sum(E) GROUP BY A
A ORDER BY sum(E) WHERE A >= 2010")
ods - Libreoffice Calc E]
RN i
N o 1o VIR
3 [ED BN A B
e P oy normalization & model inference 1 vear sum(Total
3 2 2010 6950
; 3 2013 6050
"« | » [»1[{ Budget instance. del (GueryLingt] [(| | Llll 4 2012 4025
Sheet 374 | Default [so[t | | sim=0 ©— 8| 5 2011 2940

Fig. 7: The architecture of Graphical-QuerySheet

We ran this study with seven students, ranging from Bachelor to PhD stu-
dents. Before running the actual study, we prepared a tutorial to teach the stu-
dents how to use Google’s QUERY function and the Graphical-QuerySheet sys-
tem, with a series of exercises using both systems. When the students were
comfortable with each system, the actual study was performed.

In the study, we used a real-life spreadsheet which we obtained, with permis-
sion, from a local food bank in our hometown of Braga. We thoroughly explained
how the information was represented to the students, and how to properly inter-
pret the spreadsheet information. This spreadsheet stored information regarding
the distributions of basic products and other food bank institutions. This spread-
sheet had information on 85 institutions and 14 different types of basic products,
giving way to over 1190 lines of unique information.

We also denormalized the information for the students (to use with Google’s
QUERY function), and also prepared the spreadsheet model and conformed
instance in the MDSheet environment. Since we can not show the actual spread-
sheet data due to revealing private information, only the spreadsheet model is
presented in Figure 8.

During the study, we asked participants to implement queries to answer the
following four questions:

1. What is the total distributed for each product?

10 Cunha, Fernandes, Pereira, and Saraiva

A [B] ¢] D [E [F] G
1 |Distribution Product name=""
2 code=""
3 |Institution stock=0
4 |code="" name="" lunch=0 dinner=0 distributed=0
5 |8 T T 0 i
[

Fig.8: A model-driven spreadsheet representing Dstributions

2. What is the total stock?

3. What are the names of each institution without repetitions?

4. Which were the products with more than 500 units distributed, and to which
institution were they delivered to?

For each question, users had to implement a query in both systems, alter-
nating between starting with one and then the other (initial starting system was
chosen by each student). Users were also asked to write down the time after
carefully reading each question, and the time after the queries were executed
(the differences in the running performance of Graphical-QuerySheet compared
to the standalone Google QUERY function are negligible). They would then
once again read the question and write down the initial and final times, but for
the opposite system.

At the end of each question, participants were asked to choose which sys-
tem they felt was more: Intuitive, Faster (to construct the queries), Easier (to
construct the queries) and Understandable (being able to fully explain and un-
derstand the constructed queries).

At the end of the study, participants answered which system they preferred
and why, and what advantages/disadvantages existed between the systems.

4.1 Results

The results we obtained from our study were gathered and analyzed, and are
presented in this section. In Figure 9, we analyze the differences in terms of
performance between Graphical-QuerySheet and the Google QUERY function.
The left side (Y-Axis) represents the average number of minutes the students
took to answer the questions. The bottom side (X-Axis) represents the question
the students answered. The green bars represent the Google QUERY function,
and the blue bars represent the Graphical-QuerySheet system.

As we can see, users spent substantially less time to construct the queries
using the Graphical-QuerySheet system, ranging from as much as approximately
65% to approximately 90%, averaging out to an overall of 80%. In the cases where
the queries or the results were incorrect, almost all (6 out of 7 errors) were with
the Google QUERY function, varying between incorrect column letters chosen,
bad query construction, and incorrect ranges.

Almost all (104 out of 112) chose our system in regards to the four previously
mentioned points (Intuitive, Faster, Easier, and Understandable). The few cases

Graphical Querying of Model-Driven Spreadsheets 11

. 3:10
338 1,40 2148 Google
" 2:16
o 2:24 B QuerySheet
=
£ 0:58
= 112 0:34 0:23 0:20 -
0:00 [|] —

Question1 Question2 Question 3 Question 4

Fig.9: A chart detailing the information gathered from the empirical evaluation

where they preferred Google’s approach, or neither, provided us with interesting
information, allowing us to detect some of the drawbacks of this system.

The comments written by the students were also very positive. All preferred
our Graphical-QuerySheet system over Google’s QUERY function, finding the
interface extremely intuitive and query construction facilitated. Some of the
comments can be seen below:

— Graphical-QuerySheet is very intuitive and quick to use, presenting an at-
tracting interface.

— Graphical-QuerySheet allows me to complete my tasks much more quickly.

— It was easy to construct queries using labels instead of column letters, and or-

dering, grouping, and aggregations are much simpler with Graphical-QuerySheet.

— No need to know SQL, a normal user like myself can quickly and easily
construct queries.

— I do not need to worry about using group by when I aggregate, Graphical-
QuerySheet does it automatically for me.

5 Conclusion

In this paper, we presented the design, implementation, and validation of a
graphical query language interface for model-driven spreadsheets. The focus of
our design for the graphical query interface was to provide a human-friendly, easy
to use, interactive environment to quickly construct ClassSheet-driven queries,
for users with different SQL skills.

We have implemented our graphical, model-driven query environment in a
model-driven spreadsheet environment. The Graphical-QuerySheet was used in
an empirical study where we were able to increase productivity by approximately
80%, while also meeting our goals of balancing simplicity with expressability.

Even with the good results and responses towards our graphical querying
system, some interesting directions of future research were identified. Although
the empirical results we have presented are interesting, they were the result of
a study with a relatively small group participants. Thus, we plan to execute a
second study, this time with more participants, and more end-users.

Acknowledgments: We would like to thank Professor José Creissac Campos for
his helpful comments and insight regarding the graphical query interface.

12

Cunha, Fernandes, Pereira, and Saraiva

References

o

10.
11.

12.

13.

14.

15.

16.

17.

18.

Maier, D.: The Theory of Relational Databases. Computer Science Press (1983)
Hainaut, J.L.: The transformational approach to database engineering. [17] 95-144
Engels, G., Erwig, M.: ClassSheets: automatic generation of spreadsheet applica-
tions from object-oriented specifications. In: Proc. of the 20th IEEE/ACM Int.
Conf. on Aut. Sof. Eng., ACM (2005) 124-133

Bals, J.C., Christ, F., Engels, G., Erwig, M.: Classsheets - model-based, object-
oriented design of spreadsheet applications. In: TOOLS FEurope Conference
(TOOLS 2007), Ziirich (Swiss). Volume 6., Journal of Object Technology (October
2007) 383-398

Cunha, J., Erwig, M., Saraiva, J.: Automatically inferring classsheet models from
spreadsheets. In: IEEE Symp. on Visual Languages and Human-Centric Comput-
ing, IEEE CS (2010) 93-100

Melton, J.: Database language sql. In Bernus, P., Mertins, K., Schmidt, G., eds.:
Handbook on Architectures of Information Systems. International Handbooks on
Information Systems. Springer Berlin Heidelberg (1998) 103-128

Google: Google query function. https://developers.google.com/chart/
interactive/docs/querylanguage (2013) [Accessed on November 2013].

Cunha, J., Mendes, J., Fernandes, J.P., Pereira, R., Saraiva, J.: Design and im-
plementation of queries for model-driven spreadsheets. In: Proceedings of the
Domain-Specific Language Summer School 2013. (2014) (submitted).

Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. Computer
39(2) (February 2006) 25-31

Bézivin, J.: Model driven engineering: An emerging technical space. [17] 36-64
Ireson-Paine, J.: Model master: an object-oriented spreadsheet front-end.
Computer-Aided Learning using Technology in Economies and Business Educa-
tion (1997)

Abraham, R., Erwig, M., Kollmansberger, S., Seifert, E.: Visual specifications of
correct spreadsheets. In: Proceedings of the 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing. VLHCC ’05, Washington, DC, USA,
IEEE Computer Society (2005) 189-196

Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: Mdsheet: A framework for
model-driven spreadsheet engineering. In: ICSE. (2012) 1395-1398

Pereira, R.: Querying for model-driven spreadsheets. Master’s thesis, University
of Minho (2013)

Cunha, J., Fernandes, J.P., Mendes, J., Pereira, R., Saraiva, J.: Querying model-
driven spreadsheets. [18] 83-86

Belo, O., Cunha, J., Fernandes, J.P., Mendes, J., Pereira, R., Saraiva, J.:
Querysheet: A bidirectional query environment for model-driven spreadsheets. [18]
199-200

Lammel, R., Saraiva, J., Visser, J., eds.: Generative and Transformational Tech-
niques in Software Engineering, International Summer School, Braga, Portugal,
July 4-8, 2005. Revised Papers. In Lammel, R., Saraiva, J., Visser, J., eds.: GTTSE
2005. Volume 4143 of Lecture Notes in Computer Science., Springer (2006)
Kelleher, C., Burnett, M.M., Sauer, S., eds.: 2013 IEEE Symposium on Visual
Languages and Human Centric Computing, San Jose, CA, USA, September 15-19,
2013. In Kelleher, C., Burnett, M.M., Sauer, S., eds.: VL/HCC, IEEE (2013)

