
How to combine event stream reasoning with
transactions for the Semantic Web

Ana Sofia Gomes and José Júlio Alferes?

NOVA-LINCS - Dep. de Informática, Faculdade Ciências e Tecnologias
Universidade NOVA de Lisboa

Abstract Semantic Sensor Web is a new trend of research integrating
Semantic Web technologies with sensor networks. It uses Semantic Web
standards to describe both the data produced by the sensors, but also
the sensors and their networks, which enables interoperability of sensor
networks, and provides a way to formally analyze and reason about these
networks. Since sensors produce data at a very high rate, they require
solutions to reason efficiently about what complex events occur based
on the data captured. Nevertheless, besides detecting complex events,
sensor based applications also need to execute actions in response to these
events, and in some cases, to execute these actions in a transactional way.
In this paper we propose T Rev as a solution to combine the detection
of complex events with the execution of transactions for these domains.
T Rev is an abstract logic to model and execute reactive transactions.
The logic is parametric on a pair of oracles defining the basic primitives
of the domain, which makes it suitable for a wide range of applications.
In this paper we provide oracle instantiations combining RDF/OWL
and relational database semantics for T Rev. Afterwards, based on these
oracles, we illustrate how T Rev can be useful for these domains.

1 Introduction and Motivation

The future of the Internet-of-Things is filled with sensors, and with it, sensor data
and sensor networks. Nodes in these sensor networks use the internet to interact
and communicate with each other, but also with other services and applications,
helping with the detection of changes in the environment, and making daily
decisions based on these changes. Today, sensor networks are successfully used
in detecting emergency situations, monitoring agriculture conditions and animal
farming, industrial control, home automation, patient health surveillance, etc.

With the popularity increase of the Internet-of-Things and the widespread of
sensor networks, one important problem is how to deploy sensors’ data so it can
be accessible by a larger number of different applications and services. Sensors
produce data at an extremely high rate, with extremely heterogeneous schemas,
vocabularies and data formats, making it very hard to discover and reuse. Based
on the premise that it is a waste of resources to use sensors’ data for just one sin-
gle application, an important research effort has been made recently in Semantic

? This work was supported by project ERRO (PTDC/EIA-CCO/121823/2010).

Sensor Web (SSW) [20,8] with the goal to enable interoperability between sen-
sors, and reuse of sensors’ data. By using Semantic Web technologies, SSW solves
this problem by providing a way to semantically describe sensors capabilities,
sensors measurements and observations, deployments, etc. With interoperability
as one of the main flagships of the Semantic Web, Semantic Web technologies
allow one to integrate and reason about knowledge published across different
sources, by using RDF as a data model in combination with ontology languages
like OWL [16], and to use this knowledge to execute actions in several appli-
cation domains. In the this context, the Semantic Sensor Network Incubator
Group1 defines an ontology for sensors based on OWL and RDFS, and publishes
sensors’ data using RDF statements, enabling users to reuse and integrate data
from multiple sensors, but also to reason about such data in a powerful way.

In scenarios like sensor networks, where the production of data is high, the
fields of Event Processing (EP) and Stream Reasoning provide important solu-
tions to efficiently handle large volumes of data, and to detect complex changes
based on these. In these areas, an event is a first-class citizen, encoding some
change that may be relevant to the system, like e.g. a new sensor’s observation.
Then, based on the occurrence of a set of events (also called as a stream), EP
solutions handle the detection of meaningful event patterns (also known as com-
plex events), based on expressive operators and temporal relationship of events.
Stream Reasoning exceeds EP by combining streams with domain application
knowledge, allowing one to use this knowledge to reason about the events that
become true over time. While traditionally EP and Stream Reasoning solutions
were designed mostly for databases, the increase of popularity of the Semantic
Web and its technologies led to the development of several solutions that can
successfully handle and reason about RDF statements and RDFS/OWL mod-
els [1,19,15]. However, and by design, EP solutions are incomplete, as they do
not deal with the problem of acting upon the event patterns they detect. De-
tecting these patterns is only meaningful if we can act upon this knowledge, and
thus, in general, we need more complete solutions that allow us to define what
to do when an event occurs.

In another context, Event-Condition-Action (ECA) languages solve this by
explicitly defining how should a system react whenever a given pattern is de-
tected. These languages support rules of the form: on event if condition do
action, where whenever an event occurs, the condition is checked to hold in
the current state and, if that is the case, the action is executed. Today a num-
ber of ECA languages exist, providing a semantics for reactive systems in the
context of the Semantic Web [3,6,18], multi-agent systems [17,9,13], conflict res-
olution [7], etc. However, even though ECA languages started in the database
context, and many solutions exist with rich languages for defining complex ac-
tions, most ECA languages do not allow the action component to be defined as a
transaction. Moreover, when they do, they either lack from a declarative seman-
tics (e.g. [18]), or are only suitable for databases since they only detect atomic
events defined as primitive insertions/deletes on the database (e.g. [21,14]).

1 http://www.w3.org/2005/Incubator/ssn/

http://www.w3.org/2005/Incubator/ssn/

In this case we sustain that in many applications, and especially applications
dependent on sensor networks, it is important to guarantee transactional prop-
erties, like consistency or atomicity, over the execution of a set of actions issued
in response to events. As an application scenario, consider the case where the
police wants to monitor and detect traffic violations based on a sensor network
deployed in some road. A sensor in such a network can identify plates of vehicles
and distinguish between types of vehicles. Then, based on the information that
the sensor publishes in RDF, the application must reason about what vehicles
are indulging in traffic violations and, in these cases, issue fines for these viola-
tions and notify the corresponding drivers. Clearly, some transactional behavior
regarding these actions must be ensured, as it can never be the case that a fine
is issued and the driver is not notified, or vice-versa.

T R [4] is a general purpose logic to model and reason about the executional
behavior of transactions. It provides a general model theory that is parametric
on a pair of oracles defining the semantics of states and updates of the knowl-
edge base (KB) (e.g. relational databases, action languages, description logics,
etc.). With it, one can reason about the sequence of states (also denoted as a
path) where a transaction is executed, independently of the semantics of states
and primitive actions of the KB. Additionally, T R also provides a proof-theory
to execute a subclass of T R programs that can be formulated as the Horn-
like clauses of logic programming. However, T R fails to deal simultaneously
with complex events and transactions, and for that we have previously proposed
T Rev in [11]. T Rev is an extension of T R that can reason about the execu-
tion of transactions, but also about the complex events that become true in this
transaction execution. Just like in EP algebras, with T Rev one is able to define
complex events by combining atomic (or other complex) events with temporal
operators. In T Rev, atomic events can either be external events, which are sig-
nalled to the KB, primitive updates in the KB (similarly e.g. to the events “on
insert” in databases), or events that the oracle defines to occur in state transi-
tions. Moreover, as in active databases, transactions in T Rev are constrained by
the events that occur during their execution: a transaction can only successfully
commit when all events triggered during its execution are addressed. T Rev is
parameterized with a pair of oracles as in the original T R, but also takes an
additional choice function, which abstracts the semantics of a reactive language
from its response policies decisions. Of course, to be put to work in specific
domains, T Rev (and T R) require the instantiation of such oracle.

In this paper we propose T Rev as a solution to combine heterogeneous event
stream reasoning with the execution of transactions for sensor networks that
use Semantic Web technologies. This is done by providing an appropriate oracle
instantiation to reason about RDF/OWL semantics. With it, one can decide
what events become true in a given path, based on the occurrence of atomic
events and the knowledge inferred from the sensors’ ontology. After defining
such an oracle, we provide an elaborated example to illustrate what kind of
event stream reasoning can be done using T Rev, and how to combine more than
one oracle instantiation for a sensor based application that uses RDF/OWL to

describe and reason about events together with a relational database to perform
transactions.

2 Background: T Rev

Transaction Logic [4], T R, is a logic to execute and reason about general changes
in a KB, when these changes need to follow a transactional behavior. In a nut-
shell2, T R syntax extends that of first order logic with the operators ⊗ and ♦,
where φ ⊗ ψ denotes the action composed by an execution of φ followed by an
execution of ψ, and ♦φ denotes the hypothetical execution of φ, i.e. a test to see
whether φ can be executed but leaving the current state unchanged. Moreover,
φ ∧ ψ denotes the simultaneous execution of φ and ψ; φ ∨ ψ the execution of φ
or ψ; and ¬φ an execution where φ is not executed.

In T R all formulas are read as transactions which are evaluated over se-
quences of KB states known as paths, and satisfaction of formulas means execu-
tion. I.e., a formula (or transaction) φ is true over a path π iff the transaction
successfully executes over that sequence of states. A key feature of T R is the
separation of primitive operations from the logic of combining them. T R’s the-
ory is parametric on two different oracles allowing the incorporation of a wide
variety of KB semantics, from classical to non-monotonic to various other non-
standard logics. These oracles abstract the representation of KB states and how
to query them (by including the data oracle Od), and abstract the way states
change (defined by the transition oracle Ot). Consequently, the language of prim-
itive queries and actions is not fixed, and neither is the definition of what is a
state. To distinguish between states, T R works with a set of state identifiers to
uniquely identify a state. With this, the data oracle Od is a mapping from state
identifiers to sets of formulas where, given a state identifier i, Od(i) returns the
set of formulas true in state i. The state transition oracle Ot(i1, i2) is a function
that maps pairs of KB states into sets of ground atoms called elementary tran-
sitions, where given two state identifiers i1 and i2, Ot(i1, i2) returns the set of
elementary transitions that are true when the KB changes from state i1 into i2.

The logic provides the concept of a model of a T R theory, which allows one
to prove properties of transactions that hold for every possible path of execution;
and the notion of executional entailment, in which a transaction φ is entailed
by a theory given an initial state D0, and written P,D0– |= φ, if there is a path
D0, D1, . . . , Dn, which starts in that state D0, and on which the transaction,
as a whole, succeeds. Given a transaction and an initial state, the executional
entailment provides a means to determine what should be the evolution of states
of the KB, to succeed the transaction in a atomic way. Non-deterministic trans-
actions are possible, and in this case several successful paths exist. For a special
class of T R theories (known as serial-Horn programs) there is a proof procedure
and corresponding implementation [4,10].

2 For lack of space, and since T Rev is an extension of T R (cf. [11]) we do not make
a thorough overview of T R here. For complete details see e.g. [11,4]

T Rev extends T R in that, besides dealing with the execution of transaction,
it is also able to raise and detect complex events. For that, T Rev separates the
evaluation of events from the evaluation of transactions. This is reflected in its
syntax, and on the two different satisfaction relations – the event satisfaction
|=ev and the transaction satisfaction |=. T Rev’s alphabet contains an infinite
number of constants C, function symbols F , variables V and predicate symbols
P. Furthermore, predicates in T Rev are partitioned into transaction names (Pt),
event names (Pe), and oracle primitives (PO). Importantly, to support event
stream reasoning in the oracle side, for this paper, we also consider the case where
oracles primitives are partitioned into oracle actions POa and oracle events POe .
Finally, formulas in T Rev are partitioned into transaction formulas and event
formulas, and are evaluated differently: event formulas are meant to be detected
w.r.t. a path encoding the history of execution; while transaction formulas are
meant to be executed. One of the goals of T Rev’s theory is to find the paths
where a given reactive transaction formula φ successfully executes.

Event formulas, i.e. formulas that can be detected, are either an event occur-
rence, or an expression defined inductively as ¬φ, φ∧ψ, φ∨ψ, or φ⊗ψ, where φ
and ψ are event formulas. We further assume φ;ψ, which is syntactic sugar for
φ ⊗ path ⊗ ψ (where path is just any tautology, cf. [5]), with the meaning: “φ
followed by ψ, but where arbitrary events may be true between φ and ψ”. An
event occurrence is of the form o(ϕ) s.t. ϕ ∈ Pe or ϕ ∈ PO (the latter are events
signalling changes in the KB, needed to allow reactive rules similar to e.g. “on
insert” triggers in databases). Transaction formulas, i.e. formulas that can be
executed, as in T R are either a transaction atom, or an expression defined in-
ductively as ¬φ, ♦φ, φ∧ψ, φ∨ψ, or φ⊗ψ. In T Rev, a transaction atom is either
a transaction name (in Pt), an oracle defined primitive (in PO), the response
to an event (written r(ϕ) where ϕ ∈ PO ∪ Pe), or an event name (in Pe). The
latter corresponds to the (trans)action of explicitly triggering an event directly
in a transaction. Finally, rules have the form ϕ ← ψ and can be transaction or
(complex) event rules. In a transaction rule ϕ is a transaction atom and ψ a
transaction formula; in an event rule ϕ is an event occurrence and ψ is an event
formula. A program is a set of transaction and event rules.

Central to T Rev’s theory is the correspondence between o(ϕ) and r(ϕ). As a
transactional system, the occurrence of an event constrains the satisfaction path
of the transaction where the event occurs, and a transaction can only “commit”
if all the occurring events are answered. More precisely, a transaction is only
satisfied in a path, if all the events occurring in that path are responded to. This
behavior is achieved by evaluating event occurrences and transactions differently,
and by imposing r(ϕ) to be true in the paths where o(ϕ) holds. For dealing
with cases where more than one occurrence holds simultaneously, T Rev takes
as parameter, besides T R’s data and transition oracles, also a choice function
defining what event should be selected for being responded at a given time, in
case of conflict. This function abstracts the operational decisions from the logic,
and allows T Rev to be useful in a wide spectrum of applications.

As a reactive system, T Rev receives a series (or a stream) of external events
which may cause the execution of transactions in response. As in T R, T Rev’s
formulas are also evaluated over paths (sequence of states), and the theory allows
us to reason about how does the KB evolve in a transactional way, based on an
initial KB state. This is defined as P,D0– |= e1⊗ . . .⊗ek, where D0 is the initial
KB state and e1 ⊗ . . . ⊗ ek is the sequence of events that arrived. A path D0
O1→ . . .On→Dn that make P,D0– |= e1⊗ . . .⊗ek true, represents a KB evolution
responding to e1 ⊗ . . .⊗ ek

As usual, satisfaction of formulas is based on interpretations which define
what atoms are true over what paths, by mapping paths to sets of atoms. If a
transaction (resp. event) atom φ belongs to M(π) then φ is said to execute (resp.
occur) over path π given interpretation M :

Definition 1 (Interpretation). An interpretation M is a mapping assigning
a set of atoms (or >3) to every possible path, with the restrictions (where Dis
are states, and ϕ an atom):
1. ϕ ∈M(〈D〉) if ϕ ∈ Od(D)
2. {ϕ,o(ϕ)} ⊆M(〈D1

o(ϕ)→D2〉) if ϕ ∈ Ot(D1, D2) ∧ ϕ ∈ POa

3. o(ϕ) ∈M(〈D1
o(ϕ)→D2〉) if o(ϕ) ∈ Ot(D1, D2) ∧ o(ϕ) ∈ POe

4. o(e) ∈M(〈D o(e)→D〉)

Understanding this notion of interpretation, and its restrictions, is important
for understanding T Rev’s semantics. The first three points above, force all in-
terpretations to satisfy primitive formulas on the paths where the oracles satisfy
them, i.e., only the mappings that comply with the specified oracles are consid-
ered as interpretations. The second point also states that, whenever a primitive
action ϕ (e.g. the insertion of a fact in the KB) is made true by the oracle,
the occurrence associated with the primitive action o(ϕ) (e.g. “on insert” of
that fact) is also made true in every M , and in this case, the path is annotated
with ϕ’s occurrence. As such, this restriction guarantees compliance with the
oracles, viz. whenever the oracle satisfies a primitive action in a transition, all
Ms also satisfy both the primitive action, and the primitive occurrence in that
same transition. Similarly, the third point makes the correspondence between
the primitive events defined by the oracle, and the primitive events made true
by Ms. This allows the oracle to define primitive events different from primitive
actions, and make interpretations satisfy these events in these transitions.

Finally, the fourth point guarantees that, whenever an event is observed to
occur in a transition, then all interpretations necessarily satisfy this occurrence.
This point is an important technical detail to satisfy the action of explicitly
triggering an event. By forcing M to satisfy o(e) whenever it appears explicitly in
the history of the path, we impose compliance between the history of occurrences
on a path and the set of formulas that interpretations make true on that same
path. Note that making the occurrence of an event explicitly true does not
change the KB state per se and thus, these transitions only take place on paths

3 For not having to consider partial mappings, besides formulas, interpretations can
also return the special symbol >. The interested reader is referred to [4] for details.

where the current state does not evolve. However, as we shall see, T Rev theory
imposes that, whenever o(e) is true in some part of a path (or subpath), then
for a transaction to be satisfied, r(e) must also be true. Thus naturally, some
actions may need to be executed to satisfy r(e) as an implicit result of making
this occurrence true, which in turn, may cause changes in the KB.

Satisfaction of formulas requires the definition of operations on paths. E.g.,
φ⊗ ψ is true on a path if φ is true up to some point in the path, and ψ is true
from that point onwards.

Definition 2 (Path Splits, Subpaths and Prefixes). Let π be a k-path, i.e.
a path of length k of the form 〈D1

O1→ . . . Ok−1→Dk〉. A split of π is any pair
of subpaths, π1 and π2, s.t. π1 = 〈D1

O1→ . . . Oi−1→Di〉 and π2 = 〈Di
Oi→ . . .

Ok−1→Dk〉 for some i (1 ≤ i ≤ k). In this case, we write π = π1 ◦ π2.
A subpath π′ of π is any subset of states of π where the order of the states is
preserved. A prefix π1 of π is any subpath of π sharing the initial state.

As mentioned above, satisfaction of complex formulas is different for event
formulas and transaction formulas. While the former concerns the detection of
an event, the latter concerns the execution of actions in a transactional way.
As such, when compared to the original T R, transactions in T Rev are further
required to execute all the responses of the events occurring in the original
execution path of that transaction. In other words, a transaction ϕ is satisfied
over a path π, if ϕ is executed in a prefix π1 of π (i.e. where π = π1 ◦ π2),
and all events occurring over π1 are responded to in π2. This requires a non-
monotonic behavior of the satisfaction relation of transaction formulas, making
them dependent on the satisfaction of events.

Definition 3 (Satisfaction of Event Formulas). Let M be an interpretation,
π a path and φ a formula. If M(π) = > then M,π |=ev φ; else:
1. Base Case: M,π |=ev φ iff φ ∈M(π) for every event occurrence φ
2. Negation: M,π |=ev ¬φ iff it is not the case that M,π |=ev φ
3. Disjunction: M,π |=ev φ ∨ ψ iff M,π |=ev φ or M,π |=ev ψ.
4. Serial Conjunction: M,π |=ev φ ⊗ ψ iff there is a split π1 ◦ π2 of π s.t.

M,π1 |=ev φ and M,π2 |=ev ψ
5. Executional Possibility: M,π |=ev ♦φ iff π is a 1-path of the form 〈D〉

for some state D and M,π′ |=ev φ for some path π′ that begins at D.

Definition 4 (Satisfaction of Transaction Formulas). Let M be an inter-
pretation, π a path, φ transaction formula. If M(π) = > then M,π |= φ; else:
1. Base Case: M,π |= p iff there is a prefix π′ of π s.t. p ∈ M(π′) and π is

an expansion of path π′ w.r.t. M , for every transaction atom p s.t. p 6∈ Pe.
2. Event Case: M,π |= e iff e ∈ Pe and there is a prefix π′ of π s.t. M,π′ |=ev

o(e) and π is an expansion of path π′ w.r.t. M .
3. Negation: M,π |= ¬φ iff it is not the case that M,π |= φ
4. Disjunction: M,π |= φ ∨ ψ iff M,π |= φ or M,π |= ψ.
5. Serial Conjunction: M,π |= φ⊗ ψ iff there is a prefix π′ of π and a split

π1 ◦ π2 of π′ s.t. M,π1 |= φ and M,π2 |= ψ and π is an expansion of path
π′ w.r.t. M .

6. Executional Possibility: M,π |= ♦φ iff π is a 1-path of the form 〈D〉 for
some state D and M,π′ |= φ for some path π′ that begins at D.

The latter definition depends on the notion of expansion of a path. An expansion
of a path π1 w.r.t. to an interpretation M is an operation that returns a new
path π2 where all events occurring over π1 (and also over π2) are completely
answered. Formalizing this expansion requires the prior definition of what it
means to answer an event:

Definition 5 (Path response). For a path π1 and an interpretation M we say
that π is a response of π1 iff choice(M,π1) = e and we can split π into π1 ◦ π2
s.t. M,π2 |= r(e).

The choice function picks, at each moment, the next event unanswered event
to respond to. First it has to decide what events are unanswered in a path
π w.r.t. an interpretation M and, based on a given criteria, selects what event
among them should be responded to first. Just like T R is parametric to a pair of
oracles (Od and Ot), T Rev takes the choice function as an additional parameter.
Before defining this choice function, we first define what is an expansion of a
path. Nevertheless, an important notion here is that, if all events that occur on
a path π are answered on π w.r.t. M , then choice(M,π) = ε.

Definition 6 (Expansion of a path). A path π is completely answered w.r.t.
to an interpretation M iff choice(M,π) = ε. π is an expansion of the path π1
w.r.t. M iff π is completely answered w.r.t. M , and:
– either π = π1;
– or there is a sequence of paths π1, . . . , π, starting in π1 and ending in π, s.t.

each πi in the sequence is a response of πi−1 w.r.t. M .

The latter definition specifies how to expand a path π1 in order to obtain
another path π, where all events satisfied over subpaths of π are also answered
within π. This must perforce have some procedural nature: it must start by
detecting which are the unanswered events; pick one of them, according to some
criteria given by a choice function; and finally, expand the path with the response
of the chosen event. Each path πi of the sequence π1, π2, . . . , π is a prefix of the
path πi+1, and where at least one of the unanswered events on πi is now answered
on π′; otherwise, if all events occurring over πi are answered, then πi = π, and the
expansion is complete. Note that, since complex events are possible, in general
nothing prevents πi+1 to have more unanswered events than πi. In fact, it may
be impossible to address all events in a finite path, and in that case, such a
sequence of paths does not exists. In fact, non-termination is a known issue of
reactive rules, and is an undecidable problem in the general case [2].

These definitions leave open the choice function, that is taken as a further
parameter of T Rev, and specifies how to choose the next unanswered event to
respond to. For its instantiation one needs to decide: 1) in which order should
events be responded and 2) how should an event be responded. The former de-
fines the handling order of events in case of conflict, e.g. based on when events
have occurred (temporal order), on a priority list, or any other criteria. The

latter defines the response policy of an ECA-language, i.e. when is an event
considered to be responded. E.g., if an event occurs more than once before the
system can respond to it, this specifies if such response should be issued only
once or equally to the amount of occurrences. Choosing the appropriate opera-
tional semantics depends on the application in mind. For this paper, we fix an
instantiation of choice function, where events are responded in the (temporal)
order in which they occurred, and events for which there was already a response
are not responded to again:

Definition 7 (Temporal choice). Let M be an interpretation and π a path.
The temporal function is choice(M,π) = firstUnans(M,π, order(M,π)) where:
– order(M,π) = 〈e1, . . . , en〉 iff ∀ei 1 ≤ i ≤ n, ∃πi subpath of π where
M,π |=ev o(ei) and ∀ej s.t. i < j then ej occurs after ei

– e2 occurs after e1 w.r.t. π and M iff there exists π1, π2 subpaths of π such that
π1 = 〈Di

Oi→ . . .Oj−1→Dj〉, π2 = 〈Dn
On→ . . .Om−1→Dm〉, M,π1 |=ev o(e1),

M,π2 |=ev o(e2) and Dj ≤ Dm w.r.t. the ordering in π.
– firstUnans(M,π, 〈e1, . . . , en〉) = ei iff ei is the first event in 〈e1, . . . , en〉

where given π′ subpath of π and M,π′ |=ev o(e) then ¬∃π′′ s.t. π′′ is also a
subpath of π, π′′ is after π′ and M,π′′ |= r(e).

Afterwards, we define the notion of model of formulas and programs.

Definition 8 (Models and Minimal Models). An interpretation M is a
model of a transaction (resp. event) formula φ iff for every path π, M,π |= φ
(resp. M,π |=ev φ). M is a model of a program P (denoted M |= P) iff it is a
model of every rule in P .
Let M1, M2 be interpretations, M1 ≤M2 if ∀π: M2(π) = > ∨M1(π) ⊆M2(π).
Let φ be a formula, and P a program. M is a minimal model of φ (resp. P) if
M is a model of φ (resp. P) and M ≤M ′ for every model M ′ of φ (resp. P).

This notion of models can be used to reason about properties of transaction
and event formulas that hold for every possible path of execution. However, to
know whether a formula succeeds in a particular path, we need only to consider
the event occurrences supported by that path, either because they appear as oc-
currences in the transition of states, or because they are a necessary consequence
of the program’s rules given that path. Because of this, executional entailment
in T Rev is defined w.r.t. minimal models.

Definition 9 (T Rev Executional Entailment). Let P be a program, φ a
transaction formula and D1

O0→ . . . On→Dn a path. Then P, (D1
O0→ . . . On→

Dn) |= φ (?) iff for every minimal model M of P , M, 〈D1
O0→ . . .On→Dn〉 |= φ.

P,D1– |= φ is true, if there is a path D1
O0→ . . . On→Dn that makes (?) true.

3 Oracles for stream reasoning

T Rev provides a powerful theory to talk about executional properties of abstract
reactive transactions. With it, one is able to say what properties (or fluents) hold

for every possible path of execution, or express relations between transactions
and events, e.g. to say “event ψ occurs whenever transaction φ succeeds”. In ad-
dition, with T Rev’s proof theory, one can also talk about a particular execution
path, and say exactly how an abstract reactive transaction succeeds.

Of course, to use T Rev in applications one needs to instantiate the appropri-
ate oracles Od and Ot, on which T Rev is parametric, that describe the behavior
of the KBs in the domain at hands. As illustration of how this can be done,
consider the relational oracle proposed in [4]:

Definition 10 (Relational Oracle). In a relational oracle, states can be rep-
resented by sets of ground atomic formulas. The data oracle simply returns all
these formulas, i.e., Od(D) = D. Moreover, for each predicate symbol p in D,
the transition oracle defines two new predicates, p.ins and p.del representing
the insertion and deletion atoms, respectively. Formally, p.ins ∈ Ot(D1, D2) iff
D2 = D1 ∪ {p} and, p.del ∈ Ot(D1, D2) iff D2 = D1\{p}.

Example 1 (Financial Transactions - adapted from [4]). Consider a bank’s KB
defined by the relational database of Definition 10 and where the balance of a
bank account is given by the relation balance(Acnt, Amt). Using just .ins and
.del as primitive actions, we define the transactions: withdraw(Amt, Acnt) to

withdraw an amount from an account; deposit(Amt, Acnt) to deposit an amount
into an account; changeBalance(Acnt, Bal, Bal′) to change an account’s balance;
and, finally, transfer(Amt, Acnt, Acnt′) for transferring an amount from one
account to another. In T Rev (and also in T R) these can be defined in a logic
programming style by the following rules:

transfer(Amt, Acnt, Acnt′) ← withdraw(Amt, Acnt)⊗ deposit(Amt, Acnt′)
withdraw(Amt, Acnt) ← balance(Acnt, B)⊗ changeBalance(Acnt, B, B− Amt)
deposit(Amt, Acnt) ← balance(Acnt, B)⊗ changeBalance(Acnt, B, B + Amt)

changeBalance(Acnt, B, B′) ← balance(Acnt, B).del⊗ balance(Acnt, B′).ins

P, 〈d1, d2, d3, d4, d5〉 |= transfer(10, ac1, ac2) holds, if d1 is e.g. a state
where balance(ac1, 20) and balance(ac2, 30) are true, d2 is a state obtained
from d1 by deleting balance(ac1, 20); d3 is d2 plus balance(ac1, 10); d4 is d3 mi-
nus balance(ac2, 30); and finally d5 is obtained from d4 by adding balance(ac2, 40).

We can also define complex event rules and their associated responses. E.g.,
the following event o(balanceViolation(Acnt)) occurs the first time the ac-
count balance is updated into a negative value, and in that case, the bank charges
5e to the customer for that violation. This is expressed in T Rev as follows:

o(balanceViolation(Acnt)) ← (o(balance(Acnt, B).del)⊗ o(balance(Acnt, B′).ins))
∧ (B′ < 0 ≤ B)

r(balanceViolation(Acnt)) ← balance(Acnt, B)⊗ changeBalance(Acnt, B, B− 5)

Now imagine that we start on a state d′1 where balance(ac1, 5) is true in-
stead of balance(ac1, 20). Then, transfer(10, ac1, ac2) to succeed from d′1
needs an expanded path 〈d′1, d′2, d′3, d′4, d′5, d′6, d′7〉, where d′6, d

′
7 satisfy the ac-

tion changeBalance(ac1,−5,−10), changing the balance of the account a1 into
balance(ac1,−10). I.e., for the transaction to succeed, it needs to respond to
the event o(balanceViolation(Acnt)) that becomes true during its execution.

The later example shows how one can use T Rev to reason about what are the
paths that make a transaction succeed, given a set of basic primitives (actions
and queries) defined by a pair of relational oracles. Note that oracles have an
important role in T Rev, as one can only write transactions combining these
primitives after knowing exactly what oracle primitives are available. The logic
then takes care of the semantics of complex (trans)actions, defining over what
paths such a complex transaction can succeed.

Moreover, while the previous relational oracles are rather simple, nothing
prevent us from using more powerful and expressive oracles, or to combine of
several oracles into one, making T Rev useful in more sophisticated applications.
In the following, we provide a new oracle definition that, as we shall see, can be
used with T Rev to perform event stream reasoning. We start by defining a data
oracle based on RDF with an ontology model defined in OWL:

Definition 11 (RDF data Oracle). A state is an RDF graph G, i.e., a set
of RDF triples of the form (s p o) together with an OWL ontology. The data
oracle (Od) is defined such that Od(G) |= (s p o) iff (s p o) ∈ Closure(G), where
Closure(G) is the closure of the graph under the ontology.

Just like a state in the relational database oracle is represented by the set of
formulas that are in the database, a state in the latter oracle is simply a set of
instances defined in RDF triples, together with the ontology. This oracle also
assumes a function Closure(G) that computes the whole model of the RDF
instance graph under the ontology.

Based on this function, we now define the possible transitions for an RDF/OWL
graph, where the primitive actions are insertions and deletions of graphs com-
posed by RDF instances4. In this case, inserting (or deleting) an RDF instance
graph means to add (or remove) every individual triple to the graph. Notice
that insertion a triple is the special case where the graph is a set of just one
element. Similarly to the relational oracle, we assume the primitives graph.ins
and graph.del where graph is a set of RDF triples. Recall that the syntactic
choice of .ins and .del has no particular meaning in T Rev, and we could have
chosen any other representation as e.g., insert(graph) and delete(graph).

Definition 12 (RDF transition Oracle). Let g1 be an RDF graph, i.e., a set
of RDF triples of the form (s p o).
Ot(D1, D2) |= g1.ins iff both statements are true:
– D2 = D1 ∪ {(s p o) : (s p o) ∈ g1} and;
– Ot(D1, D2) = {g1.ins}∪{o((s p o).ins) : (s p o) ∈ Closure(D2)\Closure(D1)}
Ot(D1, D2) |= g1.del iff both statements are true:
– D2 = D1 ∩ {(s p o) : (s p o) ∈ g1} and;
– Ot(D1, D2) = {g1.del}∪{o((s p o).del) : (s p o) ∈ Closure(D1)\Closure(D2)}

Notice that in the latter definition, Ot explicitly defines a set of primitive events
true in a transition of states. This definition of Ot allows one to distinguish

4 To simplify, and since in most SSW applications this is not needed, we do not consider
the case of updating the OWL ontology.

between the primitive actions executed by T Rev, and the primitive events that
occurred as a result of this action. Namely, while in the insertion of an instance
graph g1, Ot only makes g1.ins true, it also satisfies the occurrences of primitive
actions executed as a consequence of g1.ins. This allows us to reason about what
action was really executed (g1.ins) in the transition by T Rev, but also about
what happened inside the oracle as a consequence of this action. As we shall see
next, this allows us to use application’s knowledge to reason about what events
hold, not only inside T Rev’s rules, but also at the oracle level.

4 An example combining event stream reasoning and
transaction execution

After defining oracles to reason about RDF/OWL graphs, we can now show how
to use these oracles for SSW domains. Moreover, in these domains, it is often
useful to use more than one representation semantics of states and actions. In
fact, this is the case in the application example described in the introduction,
where we need to combine data produced by a sensor network (published in
RDF/OWL), with the government’s relational database comprising information
about drivers, fines, addresses, etc.

Although formally we can only have one oracle defining the primitives to
query (Od), and one oracle defining the primitives to execute actions (Ot), noth-
ing prevents these oracles from being instantiated with more than one semantics.
This is easily done by partitioning the oracle primitives (PO) into as many as
needed and, based on this partition, use Ot and Od as “meta-oracles” deciding
in which semantics a formula should be evaluated. Next we illustrate how to do
this, and how to perform stream reasoning using the previously defined oracles.

Example 2. Consider the situation from the introduction, where we have a gov-
ernment’s application to detect and issue fines for traffic violations. To detect
traffic violations, the government depends on a sensor network deployed on some
road. To model this network, its sensors, and sensors’ observations, we have a
Semantic Sensor Network based on OWL ontology, that publishes observations
data using RDF triples. Besides information about the sensors, this ontology
also describes information about the vehicles observed by the sensors. Such an
ontology can include e.g., that lightVehicle and heavyVehicle are subclasses
of motorVehicle5, and that sensor1 and sensor2 are instances of type Sensor:

ov : vehicle rdf : type owl : Class .
ov : motorVehicle rdfs : subClassOf ov : vehicle .
ov : lightVehicle rdfs : subClassOf ov : motorVehicle .
ov : heavyVehicle rdfs : subClassOf ov : vehicle .
ov : sensor rdf : type owl : Class .
ov : sensor1 rdf : type ov : sensor .
ov : sensor2 rdf : type ov : sensor .

5 Although, for this example, we chose to express the properties and knowledge about
vehicles in our local ontology, we could have alternatively used any other external
ontology to describe vehicles like, e.g., the Vehicular Sales Ontology [12].

where as usual rdf,rdfs and owl are the default namespaces for RDF, RDFS and
OWL, and ov is the application’s namespace where the objects and properties
of the vehicular ontology are defined, and which includes additional statements.

The information about drivers, fines and addresses is on a government’s rela-
tional database, and actions are performed w.r.t. this database. E.g., the follow-
ing T Rev rules define that processing a given violation V of a vehicle with plate P
at a date-time DT is done by identifying, in the government’s relational database,
the cost Cost of the violation and the driver D of the vehicle, to insert into the
database that the fine was issued for that driver, and to notify the driver:

processViolation(P, DT, V)← fineCost(V, Cost)⊗ isDriver(P, D)⊗
fineIssued(P, D, DT, Cost).ins⊗ notifyFine(P, D, DT, Cost)

notifyFine(P, D, DT, Cost)← hasAddress(D, Addr)⊗sendLetter(D, Addr, P, DT, Cost)

Then, we can write events of interest in T Rev. E.g., in the following (simplified)
rules we define the event o(passingSpeedA1(P, VType, S, DT)) which detects if a
vehicle with plate P and type VType has passed in area a1 at time DT with speed
S; or o(passingWrongWay(P, DT)) detecting any vehicle plate P passing the road
in the wrong way at time DT, as long as this vehicle has the type motorVehicle:

o(passingSpeedA1(P, VType, S, DT2, S2))←
([o((Obs1 ov:plateRead P).ins) ∧ o((Obs1 ov:vehicleDetected VType).ins)
∧ o((Obs1 ov:dateTime DT1).ins) ∧ o((Obs1 ov:readBy sensor1).ins)]
⊗ [o((Obs2 ov:plateRead P).ins) ∧ o((Obs2 ov:vehicleDetected VType).ins)
∧ o((Obs2 ov:dateTime DT2).ins)) ∧ o((Obs2 ov:readBy sensor2).ins)])
∧ ((DT2 > DT1) ∧ S = (10/DT1 − DT2))

o(passingWrongWay(P, DT1))←
(o((Obs1 ov:plateRead P).ins) ∧ o((Obs1 ov:vehicleDetected motorVehicle).ins)
∧ o((Obs1 ov:dateTime DT1).ins) ∧ o((Obs1 ov:readBy sensor2).ins))
⊗ (o((Obs2 ov:plateRead P).ins) ∧ o((Obs2 ov:vehicleDetected motorVehicle).ins)
∧ o((Obs2 ov:dateTime DT2).ins) ∧ o((Obs2 ov:readBy sensor1).ins)) ∧ (DT1 < DT2)

o(passingSpeed(P, VType, S, DT2, a1))← o(passingSpeedA1(P, VType, S, DT2))

r(passingSpeed(P, VType, S, DT, A))←
maxSpeed(VType, A, MS)⊗ (MS ≤ S)⊗ processViolation(P, DT, speed)

r(passingSpeed(, VType, S, , A))← maxSpeed(VType, A, MS)⊗ (MS > S)
r(passingWrongWay(P, DT))← processViolation(P, DT, wrongWay)

In the rules above we also define what is executed whenever these events
occur. Namely, we say that processViolation is only executed for the event
passingSpeed if the vehicle’s detected speed exceeds the speed limit, and always
executed if passingWrongWay is detected.

With these rules, our system can prove statements of the form: P, S1– |=
obs1.ins ⊗ obs2.ins ⊗ . . . ⊗ obsn.ins where, based on given starting state S1,
T Rev computes the path 〈S1

O1→ . . . On−1→ Sn〉 satisfying the sequence of
observations obtained so far. I.e., it computes how the system should evolve in
order to respond to these observations, in a transactional way, and according to a
T Rev program P containing the rules above. Note that, since we are considering
two different KBs, each state Si in the path is a composed state (Gi, Di), where

Gi is the RDF graph describing vehicles and sensors’ observations, and Di is a
state of the government’s relational database. With this setting, let’s assume we
want to prove P, S1– |= (ov:obs1).ins⊗ (ov:obs2).ins where:

ov : obs1 rdf : type ov : Observation ;
ov : plateRead "01-01-AA" ;
ov : dateTime 1426325213000 ;
ov : vehicleDetected ov : heavyVehicle ;
ov : readBy ov : sensor1 .

ov : obs2 rdf : type ov : Observation ;
ov : plateRead "01-01-AA" ;
ov : dateTime 1426325213516 ;
ov : vehicleDetected ov : heavyVehicle ;
ov : readBy ov : sensor2 .

Then, based on the ontology definition, we know that heavyVehicle v vehicle,
and thus o((ov:obs1 ov:vehicleDetected motorVehicle).ins) will hold at the
same time (i.e., transition) as o((ov:obs1).ins). In a similar way, the event
o((ov:obs2 ov:vehicleDetected motorVehicle).ins) will hold at the same as
o((ov:obs1).ins). From this, o(passingWrongWay("01-01-AA", 1426325213000)
holds for the same transition as where the actions (ov:obs1).ins⊗ (ov:obs2).ins
occur, and thus the transaction (ov:obs1).ins⊗ (ov:obs2).ins will only succeed
in an expanded path where the driver of vehicle "01-01-AA" is fined and notified,
for the infraction of passing the road in the wrong way.

5 Discussion and Final Remarks

In this paper we propose a set of oracle instantiations to make T Rev useful for
domains involving sensor networks and Semantic Web technologies. With it, one
can use T Rev to reason about what complex events occur, and what transactions
need to be executed to respond to these events. Moreover, like in EP/Stream
Reasoning solutions [1,19,15], T Rev can use the domain’s application knowledge
to reason about what complex events occur. This reasoning can be done either
inside the oracle, using the oracle’s domain knowledge to trigger primitive events,
but also inside T Rev rules, where we use this knowledge to decide what should
be the response of the system for a given event.

Since EP/Stream Reasoning only deal with detecting complex event pat-
terns, and not with executing actions, our work can be better compared with
ECA solutions. While several ECA languages exist for several domains like the
Semantic Web [3,6,18] they normally do not support the execution of transac-
tions. Some exceptions exist, but are either only procedural like [18], or can only
detect simple events based on database inserts and deletes [21,14].

This is, in fact, one thing that distinguishes T Rev from most solutions: com-
bining the ability to detect and reason about complex and sophisticated event
patterns, with the execution of complex transactions, and to do this in a way that
can be useful for a wide range of applications by plugging in different oracles.
The example presented in Section 4 uses a concrete oracle parametrization com-
bining RDF/OWL and relational database semantics, and which is interesting

for SSW applications. With it, one can use the sensor network ontology to help
reason about the events that occur in a given transition, while simultaneously
combining the execution of (trans)actions in the relational database.

References

1. D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. EP-SPARQL: a unified lan-
guage for event processing and stream reasoning. In WWW 2011, pages 635–644,
2011.

2. J. Bailey, G. Dong, and K. Ramamohanarao. On the decidability of the termination
problem of active database systems. Theor. Comput. Sci., 311(1-3):389–437, 2004.

3. E. Behrends, O. Fritzen, W. May, and F. Schenk. Embedding event algebras and
process for eca rules for the semantic web. Fundam. Inform., 82(3):237–263, 2008.

4. A. J. Bonner and M. Kifer. Transaction logic programming. In ICLP, pages 257–
279, 1993.

5. A. J. Bonner and M. Kifer. Results on reasoning about updates in transaction
logic. In Transactions and Change in Logic Databases, pages 166–196, 1998.

6. F. Bry, M. Eckert, and P.-L. Patranjan. Reactivity on the web: Paradigms and
applications of the language xchange. J. Web Eng., 5(1):3–24, 2006.

7. J. Chomicki, J. Lobo, and S. A. Naqvi. Conflict resolution using logic programming.
IEEE Trans. Knowl. Data Eng., 15(1):244–249, 2003.

8. M. Compton, C. A. Henson, H. Neuhaus, L. Lefort, and A. P. Sheth. A survey of
the semantic specification of sensors. In SSN09, pages 17–32, 2009.

9. S. Costantini and G. D. Gasperis. Complex reactivity with preferences in rule-
based agents. In RuleML, pages 167–181, 2012.

10. P. Fodor and M. Kifer. Tabling for transaction logic. In ACMPPDP, pages 199–
208, 2010.

11. A. S. Gomes and J. J. Alferes. Transaction Logic with (complex) events. Theory
and Practice of Logic Programming, On-line Supplement, To appear, 2014.

12. M. Hepp. Vehicle Sales Ontology. http://www.heppnetz.de/ontologies/vso/ns.
Accessed: 2015-03-18.

13. R. A. Kowalski and F. Sadri. A logic-based framework for reactive systems. In
RuleML, pages 1–15, 2012.

14. G. Lausen, B. Ludäscher, and W. May. On active deductive databases: The statelog
approach. In Transactions and Change in Logic Databases, pages 69–106, 1998.

15. A. Margara, J. Urbani, F. van Harmelen, and H. E. Bal. Streaming the web:
Reasoning over dynamic data. J. Web Sem., 25:24–44, 2014.

16. D. L. McGuinness, F. Van Harmelen, et al. OWL web ontology language overview.
W3C recommendation, 10(2004-03):10, 2004.

17. R. Müller, U. Greiner, and E. Rahm. AgentWork: a workflow system supporting
rule-based workflow adaptation. Data Knowl. Eng., 51(2):223–256, 2004.

18. G. Papamarkos, A. Poulovassilis, and P. T. Wood. Event-condition-action rules on
RDF metadata in P2P environments. Comp. Networks, 50(10):1513–1532, 2006.

19. Y. Ren and J. Z. Pan. Optimising ontology stream reasoning with truth mainte-
nance system. In ACM CIKM, pages 831–836, 2011.

20. A. P. Sheth, C. A. Henson, and S. S. Sahoo. Semantic sensor web. IEEE Internet
Computing, 12(4):78–83, 2008.

21. C. Zaniolo. Active database rules with transaction-conscious stable-model seman-
tics. In DOOD, pages 55–72, 1995.

http://www.heppnetz.de/ontologies/vso/ns

	How to combine event stream reasoning with transactions for the Semantic Web
	Ana Sofia Gomes and José Júlio Alferes

