
External Transaction Logic with Automatic
Compensations

Ana Sofia Gomes and José Júlio Alferes?

CENTRIA - Dep. de Informática, Faculdade Ciências e Tecnologias
Universidade Nova de Lisboa

Abstract External Transaction Logic (ET R) is an extension of logic program-
ming useful to reason about the behavior of agents that have to operate in a two-
fold environment in a transactional way: an internal knowledge base defining the
agent’s internal knowledge and rules of behavior, and an external world where it
executes actions and interact with other entities. Actions performed by the agent
in the external world may fail, e.g. because their preconditions are not met or be-
cause they violate some norm of the external environment. The failure to execute
some action must lead, in the internal knowledge base, to its complete rollback,
following the standard ACID transaction model. Since it is impossible to roll-
back external actions performed in the outside world, external consistency must
be achieved by executing compensating operations (or repairs) that revert the ef-
fects of the initial executed actions.
In ET R, repairs are stated explicitly in the program. With it, every performed
external action is explicitly associated with its corresponding compensation or
repair. Such user defined repairs provide no guarantee to revert the effects of the
original action. In this paper we define how ET R can be extended to automati-
cally calculate compensations in case of failure. For this, we start by explaining
how the semantics of Action Languages can be used to model the external domain
of ET R, and how we can use it to reason about the reversals of actions.

1 Introduction and Motivation

Intelligent agents in a multi-agent setting must work and reason over a two-fold en-
vironment: an external environment, representing the outside world where the agent
acts, and which may include other agents; and an internal environment comprising the
information about the agent’s rules of behavior, preferences about the outside world,
its knowledge and beliefs, intentions, goals, etc. An agent may act on the external en-
vironment (external actions), but also on the internal environment (internal actions).
Examples of the latter are insertions and deletions in the agent’s own knowledge base,
updates on its rules of behavior or preferences.

When performing actions, agents must take into account what to do upon an action
failure. This is especially relevant inasmuch as the agent has no control over the behav-
ior of the external world. External actions may fail because their preconditions are not
met at the time of intended execution or, in norm regimentation, because the execution
? The first author was supported by FCT grant SFRH/BD/64038/2009. The work was partially

supported by project ERRO (PTDC/EIA-CCO/121823/2010).

of the action would cause the violation of some norm (e.g. as allowed by 2OPL [7]), or
even by some totally unknown reason to the agent.

The failure of an action should trigger some repair plan. This is especially important
when the action is part of a plan, in which case it may be necessary to undo the effects
of previous actions that have succeeded. When the action to undo is an internal action,
the undo should be trivial. In fact, since the agent has full control over its own internal
environment, actions and updates can be made to follow the standard ACID1 proper-
ties of transactions in databases and, as such, the effects made by internal actions are
completely discarded. However, since an agent has no control over the external envi-
ronment, such transactional properties cannot, in general, be guaranteed when undoing
external actions.

Example 1 (Medical Diagnosis). Consider an agent in a medical scenario dealing with
a two-fold Knowledge Base (KB). An internal KB defining e.g. treatment specifications
and history of successful treatments of patients, and an external world where the agent
interacts with patients and executes actions. When a patient arrives with a series of
symptoms, the agent needs to reason about what should be the treatment applicable to
the given patient, but also execute this treatment by possibly giving some medication.
In case a patient shows a negative reaction to the medication, thus failing the action
of treating the patient, something must be done to counter the possible side-effects of
the previous treatment. Moreover, actions and updates in the internal KB need to be
executed transactionally, so as to guarantee that the history of successful treatments is
not updated with the medication that showed negative effects, which thereby could lead
the agent to apply the same treatment again.

In this example, “what to do to counter the side-effects of a previous unsuccess-
ful treatment” is a typical case of a repair plan, something that can be found in agent
languages such as 2APL [6] (plan-repair rules) and 3APL [14] (plan-revision rules).
In these languages, it is possible to state for each plan, which alternative plan should
be performed in case something fails. E.g., in the example, one could say that if some
treatment fails, then one should give the patient some alternative medication to counter
the effects of the first medication given in the failed treatment.

In this example it is reasonable to assume that the plan (treatment) can only be
repaired if the agent’s specification explicitly states what are the actions to execute
for each failed treatment. In other words, it is reasonable to assume that whoever pro-
grammed the agent explicitly included in the program the repair plans for each possible
failure. This is e.g. the case in 2APL, where plan-repair rules explicitly include the
actions to execute when a given action or plan fails.

However, if one has some knowledge of the external environment, it should be pos-
sible for the agent to automatically infer the repair plan in a given failure situation,
thus saving the programmer from that task, and from having to anticipate all possible
relevant failures.

Example 2 (Supermarket Robot). Imagine a scenario of a robot in a supermarket that
has the task to fill up the supermarket’s shelves with products. In its internal KB, the

1 where ACID, as usual, stands for Atomicity, Consistency, Isolation and Durability.

agent keeps information about the products’ stocks and prices, but also rules on how
products should be placed (e.g. “premium” products should be placed in the shelves
with higher visibility). Externally, the agent needs to perform the task of putting prod-
ucts in a given shelf, something that can be encoded in a blocks-world manner. In this
case, when some action fails in the context of a plan for e.g. arranging the products in
some manner, the agent, knowing the effects of the actions in the outside world, should
be able to infer what actions to perform in order to restore the external environment to
some consistent configuration, upon which some other alternative plan can be started.

Several solutions exist in the literature addressing the problem of reversing actions.
E.g. [8] introduces a solution based on Action Languages [9] that reasons about what
actions may revert the effects of other actions. For that they define the notions of reverse
action, reverse plan and conditional reversals that undo the effects of a given (set of)
action(s). These notions may allow the automatic inference of plan repairs.

In this paper we propose a logic programming like language that tackles all the pre-
viously mentioned issues. In particular, the language operates over two-fold KBs, with
both an internal and an internal environment; it allows for performing actions both in
the internal and the external environment; it deals with failure of actions, having a trans-
actional behavior in the actions performed in the internal environment, and executing
repair plans in the external environment; it allows to automatically infer repair plans
when there is knowledge about the effects of actions.

Our solution is based on External Transaction Logic (ET R) [12,13], an extension of
Transaction Logic (T R) [3] for dealing with the execution of external actions. Here, if
a transaction fails after external actions are executed in the environment, then external
consistency is achieved by issuing compensating actions that revert the effects of the
initial executed actions. ET R, as its ancestor T R, is a very general language, that
relies on the existence of oracles for querying and updating an internal KB and, in the
case of ET R, also for dealing with the external environment. Besides recalling the
preliminaries of ET R (Section 2) and [8] (Section 4), in this paper we:
1. formalize how the external oracle in ET R can be instantiated using action lan-

guages in general, and specifically, with action language C (Section 3);
2. extend ET R to deal with repair plans, rather than simply with compensating ac-

tions (Section 5);
3. formalize how to automatically infer repair plans when the external environment is

expressed as an action language (Section 5);
4. elaborate on the properties of these repair plans (Section 5.3).

2 External Transaction Logic

ET R [13] is an extension of Transaction Logic [3] to deal with actions performed in an
external environment of which an agent has no control. The original Transaction Logic
(T R) is a logic to reason about changes in KBs, when these changes are performed
as ACID transactions. In a nutshell2, T R syntax extends that of first order logic with

2 For lack of space, and since ET R is a proper extension of T R (cf. [13]), we do not include
here a detailed overview of T R alone. For the complete details see e.g. [3].

a serial conjunction operator ⊗, where φ ⊗ ψ represents the action composed by an
execution of φ followed by an execution of ψ. Formulas are read as transactions, and
they are evaluated over sequences of KB states (paths). A formula (or transaction) φ
is true over a path π iff the transaction successfully executes over that sequence of
states. In other words, in T R truth means successful execution of a transaction. The
logic itself makes no particular assumption about the representation of states, or on
how states change. For that, T R requires the existence of two oracles, one abstracting
the representation of KB states and used to query them (data oracle Od), and another
abstracting the way the states change (transition oracle Ot).

Besides the concept of a model of a T R theory, which allows one to prove prop-
erties of the theory independently of the paths chosen, T R also defines the notion of
executional entailment. A transaction is entailed by a theory given an initial state, if
there is a path starting in that state on which the transaction succeeds. As such, given a
transaction and an initial state, the executional entailment determines the path that the
KB should follow in order to succeed the transaction in an atomic way. Nondetermin-
istic transactions are possible, in which case several successful paths exist. Transaction
Logic Programs [2] are a special class of T R theories that extend logic programs with
serial conjunction. For them, a proof procedure and corresponding implementation ex-
ists, which takes into account the ACID execution of transactions.

To deal also with external actions, ET R operates over a KB including both an inter-
nal and an external component. For that, formally ET R works over two disjoint prop-
ositional languages: LP (program language), and LO (oracles primitives language).
Propositions in LP denote actions and fluents that can be defined in the program. As
usual, fluents are propositions that can be evaluated without changing the state and
actions are propositions that cause evolution of states. Propositions in LO define the
primitive actions and queries to deal with the internal and external KB. LO can still
be partitioned into Li and La, where Li denotes primitives that query and change the
internal KB, while La defines the external actions primitives that can be executed ex-
ternally. For convenience, it is assumed that La contains two distinct actions failop
and nop, respectively defining trivial failure and trivial success in the external domain.

Further, it is also defined L∗a as the result of augmenting La with expressions
ext(a, b), called external actions, where a, b ∈ La. Such an expression is used to de-
note the execution of action a, having action b as compensating action. If b is nop, then
we simply write ext(a) or a. Note that there is no explicit relation between a and b
and that it is possible to define different compensating actions for the same action a in
the same program. It is thus the programmer’s responsibility to determine which is the
correct compensation for action a in a given moment.

To construct complex formulas, the language uses the standard connectives ∧,¬
and ⊗ denoting serial conjunction, where φ⊗ ψ represents the action composed by an
execution of φ followed by an execution of ψ.

Definition 1 (ET R atoms, formulas and programs). An ET R atom is either a prop-
osition in LP , Li or L∗a and an ET R literal is either φ or ¬φ where φ is an ET R atom.
An ET R formula is either a literal, or an expression, defined inductively, of the form
φ ∧ ψ, φ ∨ ψ or φ⊗ ψ, where φ and ψ are ET R formulas.

An ET R program is a set of rules of the form φ ← ψ where φ is a proposition in LP
and ψ is an ET R formula.

Example 3. Recall Example 1 regarding a medical diagnosis. A possible (partial) en-
coding of it in ET R can be expressed by the following rules:

sick(X)← hasF lu(X)
hasF lu(X)← ext(hasFever(X))⊗ ext(hasHeadache(X))⊗ nonSerious(X)

nonSerious(X) ← ext(¬vomiting(X)) ∧ . . . ∧ ext(¬diarrhea(X))
treatment(X, Y)← hasF lu(X)⊗ treatF lu(X, Y)⊗ treatmentHistory(X, Y, Z).ins⊗

ext(goodReaction(X, Y))
treatF lu(X, Y)← ext(giveMeds(X, p1), giveMeds(X, c1))
treatF lu(X, Y)← ext(giveMeds(X, p2), giveMeds(X, c2))

In this example, predicate treatment(X,Y) denotes a transaction for treating patient
X with treatment Y . Then, one can say, e.g. in the 4th rule, that such a transaction
succeeds if a patient X has flue and a medicine Y to treat the flue is given to X
(i.e. transaction treatF lu(X,Y) succeeds). Additionally, after a treatment is issued,
the medical history of the patient should be updated and the agent needs to check if
the patient shows a positive reaction to the treatment in question. In this sense, the
formula treatmentHistory(X,Y, Z).ins ⊗ ext(goodReaction(X,Y)) denotes the
action composed by updating the treatment history of patient X followed by exter-
nally asking if the patient X had a good reaction to treatment Y . Moreover, treating
a patient with a flue is encoded by the nondeterministic transaction treatF lu(X,Y)
(5th and 6th rules) as the external action of giving patient X the medicine p1 or the
medicine p2. While the action of asking about the reaction of a patient does not need
to be repaired, the same is not true for the action of giving a medication. If a failure
occurs, the agent has to compensate for it. This is, e.g. expressed by the external action
ext(giveMeds(X, p1), giveMeds(X, c1)) where c1 cancels the effects of p1.

A state in ET R is a pair (D,E), where D (resp. E) is the internal (resp. external)
state identifier taken from a set D (resp. E). The semantics of states is provided by 3
oracles, which come as a parameter to ET R: a data oracle Od that maps elements of
D into transaction formulas; a transition oracle Ot that maps a pair of elements from
D into transaction formulas; and an external oracle Oe that maps a pair of elements
from E into transaction formulas. Intuitively Od(D) |= ϕ means that, according to the
oracle, ϕ is true in state D, and Ot(D1, D2) |= ϕ (resp. Oe(E1, E2) |= ϕ) that ϕ is
true in the transition of internal (resp. external) states from D1 to D2 (resp. E1 to E2).

As in T R, ET R formulas are evaluated in paths (sequence of states). For conve-
nience, as it is necessary in the sequel, paths also include the explicit annotation of the
action executed in each transition of states. So 〈S1,

ϕ S2〉 means that action ϕ occurred
in the transition of state S1 into S2. Then, interpretations map paths to a Herbrand
structures. If φ ∈ M(π) then, in the interpretation M , path π is a valid execution for
the formula φ. Moreover, we only consider as interpretations the mappings that comply
with the specified oracles:

Definition 2 (Interpretations). An interpretation is a mapping M assigning a classi-
cal Herbrand structure to every path. This mapping is subject to the following restric-
tions, for all states Di,Ej and every formula ϕ:

1. ϕ ∈M(〈(D,E)〉) iff Od(D) |= ϕ for any external state E
2. ϕ ∈M(〈(D1, E),ϕ (D2, E)〉) iff Ot(D1, D2) |= ϕ for any external state E
3. ϕ ∈M(〈(D,E1),ϕ (D,E2)〉) iff Oe(E1, E2) |= ϕ for any internal state D

Satisfaction of ET R formulas over paths, requires the prior definition of operations
on paths. For example, the formula φ ⊗ ψ is true (i.e. successfully executes) in a path
that executes φ up to some point in the middle, and executes ψ from then onwards. To
deal with this:

Definition 3 (Path Splits). A split of a path π = 〈S1,
A1 . . . ,Ai−1 Si,

Ai . . . ,Ak−1 Sk〉 of
size k (k-path) is any pair of subpaths, π1 and π2, such that π1 = 〈S1,

A1 . . . ,Ai−1 Si〉
and π2 = 〈Si,Ai . . . ,Ak−1 Sk〉 for some i (1 ≤ i ≤ k). In this case, we write π =
π1 ◦ π2.

Before we are able to define general satisfaction of formulas, we need two auxiliary
relations for constructing compensations. Classical satisfaction is similar to satisfaction
in the original T R, and a transaction formula is said to be classically satisfied by an
interpretation given a path iff the transaction succeeds in the path without failing any
action. A transaction is partially (or partly) satisfied by an interpretation given a path,
iff the transaction succeeds in the path up to some point where an action may fail.

Definition 4 (Classical Satisfaction). Let M be an interpretation, π a path and φ a
formula.

1. Base Case: M,π |=c φ iff φ ∈M(π) for any atom φ
2. Negation: M,π |=c ¬φ iff it is not the case that M,π |=c φ
3. “Classical” Conjunction: M,π |=c φ ∧ ψ iff M,π |=c φ and M,π |=c ψ.
4. Serial Conjunction: M,π |=c φ ⊗ ψ iff M,π1 |=c φ and M,π2 |=c ψ for some

split π1 ◦ π2 of path π.

Definition 5 (Partial Satisfaction). Let M be an interpretation, π a path and φ a for-
mula.

1. Base Case: M,π |=p φ iff φ is an atom and one of the following holds:
(a) M,π |=c φ
(b) M,π 6|=c φ, φ ∈ Li, π = 〈(D,E)〉, ¬∃Di s.t. M, 〈(D,E),φ (Di, E)〉 |=c φ
(c) M,π 6|=c φ, φ ∈ L∗a, π = 〈(D,E)〉, ¬∃Ei s.t. M, 〈(D,E),φ (D,Ei)〉 |=c φ

2. Negation: M,π |=p ¬φ iff it is not the case that M,π |=p φ
3. “Classical” Conjunction: M,π |=p φ ∧ ψ iff M,π |=p φ and M,π |=p ψ
4. Serial Conjunction: M,π |=p φ⊗ ψ iff one of the following holds:

(a) M,π |=p φ and M,π 6|=c φ
(b) ∃ split π1 ◦ π2 of path π s.t. M,π1 |=c φ and M,π2 |=p ψ

With this, we say that a transaction φ fails and can be compensated only if M,π |=p φ
but M,π 6|=c φ where the last state of π stands for the exact point where φ fails.

Example 4. Consider and internal KB where a state D is a set of ground atoms and
Od(D) = D. Moreover, for every atom p in D, the transition oracle defines the ac-
tions p.ins and p.del respectively denoting insertion and deletion of atom p, and where

p.ins ∈ Ot(D1, D2) iff D2 = D1 ∪ {p} and p.del ∈ Ot(D1, D2) iff D2 = D1 − {p}.
Furthermore, consider that the external oracle includesOe(E1, E2) |= a, (i.e. the exter-
nal execution of a in state E1 succeeds, and makes the external world evolve into E2),
Oe(E1, E4) |= c, and that for every state E, Oe(E2, E) 6|= b (i.e. the execution of b in
state E2 fails).

Besides these oracles, consider the following rules defining a transaction t:
t← p.ins⊗ ext(a, d)⊗ ext(b, e)
t← q.ins⊗ ext(c)

In this example, the formula p.ins⊗ ext(a, d) is classically satisfied by all interpreta-
tions in the path 〈({}, E1),p.ins ({p}, E1),ext(a,d) ({p}, E2)〉 while q.ins ⊗ ext(c) is
classically satisfied in the path 〈({}, E1),q.ins ({q}, E1),ext(c) ({q}, E4)〉. Moreover, it
is easy to check that ext(b, e) cannot succeed in any path starting in state E2 (given
the external oracle definition). The idea of partial satisfaction is to identify the path
〈({}, E1),p.ins ({p}, E1),ext(a,d) ({p}, E2)〉 as one that partly satisfies the complex for-
mula p.ins ⊗ ext(a, d) ⊗ ext(b, e) up to some point, though it eventually fails since
the external action ext(b, e) fails.

When a formula fails in a path after the execution of some external action, we have
to say how these actions can be compensated. To define this, we first need to define
some auxiliary operations on paths. To start, one has to collect all actions that have
been executed in a path and need to be compensated; and to rollback the internal state:

Definition 6 (Rollback Path, and Sequence of External Actions). Let π be a k-path
of the form 〈(D1, E1),A1 (D2, E2),A2 . . . ,Ak−1 (Dk, Ek)〉. The rollback path of π is the
path obtained from π by: (1) Replacing all Dis by the initial state D1; (2) Keeping just
the transitions where Ai ∈ L∗a.
The sequence of external actions of π, denoted Seq(π), is the sequence of actions of the
form ext(a, b) that appear in the transitions of the rollback path of π.

Seq(π) only collects the external actions that have the form ext(a, b). Since this op-
eration aims to compensate the executed actions, then actions without compensations
are skipped. With this, a recovery path is obtained from executing each compensation
operation defined in Seq(π) in the inverse order.

Definition 7 (Inversion, and Recovery Path). Let S be a sequence of actions from L∗a
of the form 〈ext(A1, A

−1
1), . . . ext(An, A−1

n)〉. Then, the inversion of S is the trans-
action formula Inv(S) = A−1

n ⊗ . . .⊗A−1
1 .

πr is a recovery path of Seq(π) w.r.t. M iff M,πr |=c Inv(Seq(π)).

We can now say which paths compensate a formula and define satisfaction.

Definition 8 (Compensating Path for a Transaction). Let M be an interpretation, π
a path and φ a formula. M,π φ iff all the following hold:

1. ∃π1 such that M,π1 |=p φ and M,π1 6|=c φ
2. ∃π0 such that π0 is the rollback path of π1

3. Seq(π1) 6= ∅ and ∃πr such that πr is a recovery path of Seq(π1) w.r.t. M
4. π0 and πr are a split of π, i.e. π = π0 ◦ πr

Definition 9 (General Satisfaction). Let M be an interpretation, π a path and φ a
formula.

1. Base Case: M,π |= φ if φ ∈M(π) for any atom φ
2. Negation: M,π |= ¬φ if it is not the case that M,π |= φ
3. “Classical” Conjunction: M,π |= φ ∧ ψ if M,π |= φ and M,π |= ψ.
4. Serial Conjunction: M,π |= φ ⊗ ψ if M,π1 |= φ and M,π2 |= ψ for some split
π1 ◦ π2 of π.

5. Compensating Case: M,π |= φ if M,π1 φ and M,π2 |= φ for some split
π1 ◦ π2 of π

6. For no other M,π and φ, M,π |= φ.

With this notion of satisfaction, a formula φ succeeds if it succeeds classically or,
if although an external action failed to be executed, the system can recover from the
failure and φ can still succeed in an alternative path (point 5). Obviously, recovery only
makes sense when external actions are performed before the failure. Otherwise we can
just rollback to the initial state and try to satisfy the formula in an alternative branching.

Example 5. Recall example 4 and assume that Oe(E3, E4) |= c and Oe(E2, E3) |= d.
Then, the rollback path of π = 〈({}, E1),p.ins ({p}, E1),ext(a,d) ({p}, E2)〉 is the
path 〈({}, E1),ext(a,d) ({}, E2)〉 and Seq(π) = 〈ext(a, d)〉. Furthermore, the path
〈({}, E2),a

−1
({}, E3)〉 is a recovery path of Seq(π) w.r.t. any interpretation M .

Based on these, the complex formula (p.ins ⊗ ext(a, d) ⊗ ext(b, e)) ∨ (q.ins ⊗
ext(c)) is satisfied both in the path 〈({}, E1),q.ins ({q}, E1),ext(c) ({q}, E4)〉 – with-
out compensations – but also in the path: 〈({}, E1),ext(a,d) ({}, E2),d ({}, E3),q.ins

({q}, E3),ext(c) ({q}, E4)〉 – using point 5 above, in this case.

Definition 10 (Models, Logical and Executional Entailment). Let φ and ψ be two
ET R formulas and M be an interpretation. M is a model of φ (denoted M |= φ) iff
M,π |= φ for every path π. M is a model of a program P iff for every rule φ ← ψ in
P , if M is a model of ψ then it is also a model of ψ.
Then, φ logically entails ψ (φ |= ψ) if every model of φ is also a model of ψ.

P, 〈S1,
A1 . . . ,An−1 Sn〉 |= φ (?) iff M, 〈S1,

A1 . . . ,An−1 Sn〉 |= φ for every model
M of P . We also define P, S1– |= φ to be true (and say that φ succeeds in P from the
state S1), if there exists a path S1,

A1 . . . ,An−1 Sn that makes (?) true.

3 Action Languages in ET R

The general ET R is parametrized by a set of oracles defining the elementary primitives
to query and update the internal and external KB. However, to deal with specific prob-
lems, these oracles must be defined. For example, to deal with simple internal KBs, one
can define a so-called relational oracle, in which: states are defined by sets of atoms;
the data oracle simply returns all these formulas, i.e., Od(D) = D; the transition or-
acle defines, for each predicate p, two internal actions, p.ins and p.del, respectively
stating the insertion and deletion of p as p.ins ∈ Ot(D1, D2) iff D2 = D1 ∪ {p}, and
p.del ∈ Ot(D1, D2) iff D2 = D1 − {p}.

If the agent knows nothing about the external environment, the external oracle Oe
can be left open, and whenever the evaluation of an action is required of that oracle,
the oracle is called returning either failure or a subsequent successful state (which can
be the same state, if the external action is simply a query). However, the agent may
have some knowledge about the behavior of the external world. Here we consider the
case where the agent’s knowledge about the external world can be formalized by Action
Languages [9], and show how to define an external oracle for that. Moreover, below we
use the external oracle defined in this section to automatically infer repair plans.

Every action language defines a series of laws describing actions in the world and
their effects. Which laws are possible as well as the syntax and semantics of each law
depends on the action language in question. Several solutions like STRIPS, languages
A,B, C or PDDL, have been proposed in the literature, each with different applications
in mind. A set of laws of each language is called an action program description. The
semantic of each language is determined by a transition system which depends on the
action program description.

Let 〈{true, false},F ,A〉 be the signature of an action language, where F is the
set of fluent names and A is the set of action names in the language. Let 〈S, V,R〉 be a
transition system where S is the set of all possible states, V is the evaluation function
from F × S into {true, false}, and finally R is the set of possible relations in the
system defined as a subset of S ×A× S. We assume a function T (E) that from action
programE defines the transition system 〈S, V,R〉 associated withE, and the previously
defined signature. We also define La = F ∪A.

Equipped with such a function, an ET R external state is a pair, with the program
E describing the external domain and a state of the transition system, and the general
external oracle Oe is (where T (E) = 〈S, V,R〉):
1. Oe((E, s), (E, s′)) |= action iff action ∈ A ∧ 〈s, action, s′〉 ∈ R
2. Oe((E, s), (E, s)) |= fluent iff fluent ∈ F ∧ V (fluent, s) = true

To be more concrete, let us show one instantiation of this, with action language C
[11]. This language and its extensions like C+ [10], are known for being traditionally
used to represent norms and protocols (e.g. auction, contract formation, negotiation,
rules of procedure, communication, etc.) [16,1]

A state formula is a propositional combination of fluent names while a formula is
a propositional combination of fluent names and elementary action names. An external
description E is a set of static and dynamic laws. A static law is a law of the form
“caused F if G”, where F and G are state formulas. A dynamic law is of the form
“caused F if G after U”, where F and G are state formulas and U is a formula

An important notion is that actions can be done concurrently. So, in a transition
〈s1, A, s2〉, A is a subset of A. Intuitively, to execute A from s1 to s2 means to execute
concurrently the “elementary actions” represented by the action symbols inA changing
the state s1 into s2. A state is an interpretation of the set of fluentsF that is closed under
the static laws. I.e. for every static law “caused F if G” and every state s, s satisfies
F if s satisfies G. Then, the interpretation function V for a state is simply defined as
V (P, s) = s(P). To define the set of valid relationsR we first need the notion of reduct.
For any description E and any transition 〈s0, A, s1〉 we can define the E〈s0,A,s1〉, the
reduct of E relative to 〈s0, A, s1〉, which stands for the set consisting of:

– F for all static laws from E s.t. s1 satisfies G
– F for all dynamic laws from E s.t. s1 satisfies G and s0 ∪A satisfies H

We say that 〈s0, A, s1〉 is causally explained if s1 is the only state that satisfies the
reduct E〈s0,A,s1〉. Since the external oracle is defined for elementary actions rather than
for sets of actions, we can define the relation R of T (E) as follows: 〈s0, a, s1〉 ∈ R iff
〈s0, A, s1〉 is causally explained by E and a ∈ A.

4 Reverse Actions in Action Languages

Before defining how to automatically infer repair plans in ET R plus an external oracle
of an action language, we briefly overview [8]’s action reverses, adapting it for the
action languages framework defined above.

To start, we need the notion of trajectory of a sequence of actions. Intuitively, we
say that a state sf is the trajectory of a sequence of actions applied to state si if there
exists a trace from si to sf by executing the given sequence of actions.

Definition 11 (Trajectory of a Sequence of Actions). We say that sf is the trajec-
tory of a0 ⊗ . . . ⊗ am−1 when applied to s0 iff: ∃s′1, . . . , s′m s.t. 〈s0, a0, s

′
1〉 ∈ R and

〈s′i, ai, s′i+1〉 ∈ R then s′m = sf where (1 ≤ i ≤ m − 1). In this case we write
traj(s0; [a0 ⊗ . . .⊗ am−1]) = sf .

With this we can define the notion of reverse action. An action a−1 is a reverse
action of a if whenever we execute a−1 after we execute a, we always obtain the (initial)
state before the execution of a. This is encoded as follows.

Definition 12 (Reverse Action). Let a, a−1 be actions inA. We say that an action a−1

reverses a iff ∀s1, s2 if 〈s1, a, s2〉 ∈ R then ∃s.〈s2, a−1, s〉 ∈ R and ∀s.〈s2, a−1, s〉 ∈
R, s = s1. In this case we write revAct(a; a−1).

Besides the notion of reverse action, the authors of [8] also introduce the notion of
reverse plan. Since a single action may not be enough to reverse the effects of another
action, the notion of reverse is generalized into a sequence of actions, or plan. A reverse
plan defines what sequences of actions are able to reverse the effects of one action.

Definition 13 (Reverse Plan). Let a, a0, . . . , am−1 be actions in A. We say that a0 ⊗
. . . ⊗ am−1 is a plan that reverses action a iff ∀s1, s2 s.t. 〈s1, a, s2〉 ∈ R then ∃s′ s.t.
traj(s2; [a0 ⊗ . . .⊗ am−1]) = s′ and ∀s′ s.t. traj(s2; [a0 ⊗ . . .⊗ am−1]) = s′ then
s′ = s1. In this case we write revPlan(a; [a0 ⊗ . . .⊗ am−1]).

Intuitively, a reverse plan is a generalization of a reverse action, as every reverse action
revAct(a, a′) is a reverse plan of size one: revPlan(a, [a′]).

The previous definitions denote a strong relation between an action and a sequence
of actions which holds for any state in the set of states defined in the framework. I.e.,
a sequence of actions is a reverse plan of a given action, if the sequence can always
be applied after the execution of a and, in all the transitions defined in the set R, the
application of this sequence always leads to the state before the execution of a.

However, some states may prevent the existence of a reverse plan. I.e., an action
may have a reverse plan under some conditions, that do not necessarily hold at every
reachable state. Thus, we need a weaker notion of reverse that takes into account the
information of the states, e.g. values of some fluents obtained by sensing. By restraining
the states where the reverse plan is applied, we might get reverse plans that were not
applicable before. This is the idea of conditional reversal plan formalized as follows.

Definition 14 (Conditional Reversal Plan). Let a, a0, . . . , am−1 be actions in A. We
say that a0 ⊗ . . .⊗ am−1 is a φ;ψ-reverse plan that reverses action a back iff: ∀s1, s2
where V (s2, φ) = V (s1, ψ) = true, if 〈s1, a, s2〉 ∈ R then ∃s′ s.t. traj(s2; [a0 ⊗
. . .⊗ am−1]) = s′ and ∀s′ s.t. traj(s2; [a0 ⊗ . . .⊗ am−1]) = s′ then s′ = s1.

5 ET R with automatic compensations

After defining the reversals of actions for action languages, we can show how ET R’s
external oracle can be instantiated to use these definitions and automatic infer what is
the correct repair plan for each action.

However, we do not need such a strong and generic notion of reverse action as the
one defined in [8]. In fact, both reverse actions and reverse plans are defined disre-
garding the initial state where they are being applied. When defining compensations or
repairs of actions in ET R, we already have information about the specific states where
the repairs will be applied. This demands for a weaker notion of reverse action and
reverse plan, defined for a pair of states rather than for a given action.

Definition 15 (Situated Reverse Action). We say that an action a−1 reverses s2 into
s1 iff ∃s.〈s2, a−1, s〉 ∈ R and ∀s.〈s2, a−1, s〉 ∈ R, s = s1. In this case we write
revAct(s1, s2; a−1).

Intuitively, we say that action a is a reverse action for states s1 and s2 iff a can be
executed in state s2 and all the transitions that exist in the set of relations R w.r.t. action
a applied to state s2 end in state s1.

As in [8], instead of only considering singleton actions, we also define the notion of
situated reverse plan to specify sequences of actions that are able to reverse the effects
of one action. Then, revPlan(s1, s2; [a0 ⊗ . . . ⊗ am−1]) states that the sequence of
actions a0 ⊗ . . .⊗ am−1 always restores s1 when executed in state s2. For that, the KB
may pass through m arbitrary states necessarily ending in s2.

Definition 16 (Situated Reverse Plan). We say that a0 ⊗ . . . ⊗ am−1 is a plan that
reverses s2 back to s1 iff: ∃sf s.t. traj(s2; [a0 ⊗ . . . ⊗ am−1]) = sf and ∀sf s.t.
traj(s2; [a0 ⊗ . . .⊗ am−1]) = sf then sf = s1. In this case we write revPlan(s1, s2
; [a0 ⊗ . . .⊗ am−1])

Clearly, several reverse plans may exist restoring s1 from state s2. Moreover, there
are better reverse plans than others. E.g., imagine that in a state si there exists an action
ai that always leads us to the same state si, i.e. 〈si, ai, si〉 ∈ R. If a plan exists to
restore the system back from s2 to s1 passing into state si, then there are several plans
where the only difference is the amount of times we execute the “dummy” action ai.

Since recovery is a sensitive operation, in order to minimize the amount of operations
to be executed, we define the notion of shorter reverse plans. A shorter reverse plan
revPlans(s1, s2; [a1 ⊗ . . .⊗ am]) is a reverse plan where the number of actions to be
executed is minimal (i.e. there is no other revPlan(s1, s2; [a1⊗. . .⊗an]) with n < m).

5.1 Goal Reverse Plans

The previous notions define a reverse action or a reverse plan for a pair of states s1
and s2, reverting the system from state s2 back to state s1, and imposing that the final
state obtained is exactly s1. However, it may happen that, for some pair of states, a
reverse plan does not exist. Furthermore, if some information is provided (e.g. by the
programmer) about the state that we intend to reach, then we might still achieve a state
where this condition holds. This is useful for cases where the agent has to find repairs
to deal with norm violations. For instance, it may not be possible to return to the exact
state before the violation, but it may be possible to reach a consistent state where the
agent complies with all the norms.

This corresponds to the notion of goal reverse plans that we introduce here. Based
on a state formula φ characterizing the state that we want to reach, then goalRev(φ, s2
; [a0 ⊗ . . .⊗ am−1]) says that the sequence a0 ⊗ . . .⊗ am−1 reverses the system from
s2 into a consistent state s where the state formula φ holds.

Definition 17 (Goal Reverse Plan). We say that a0 ⊗ . . . ⊗ am−1 is a goal plan that
reverses s2 to a state where φ holds iff ∃s′ s.t. traj(s2; [a0 ⊗ . . . ⊗ am−1]) = s′ and
∀s′ s.t. traj(s2; [a0 ⊗ . . .⊗ am−1]) = s′ then V (φ, s′) = true. In this case we write
goalRev(φ, s2; [a0 ⊗ . . .⊗ am−1]).

As before, to preserve efficiency of plans, we define the notion of shorter goal reverse
plan. goalPlans(φ, s2; [a1 ⊗ . . . ⊗ am]) holds, if the sequence a1 ⊗ . . . ⊗ am is a
sequence with minimal length that takes s2 into a state where φ is true.

5.2 External Oracle for Action Languages with Automatic Compensations

We can now make precise how and when repairs are calculated in ET R’s semantics,
and what changes of ET R’s language are needed to deal with these automatic repairs.

Besides defining automatically inferred repairs, we want to keep the option of ex-
plicitly defining compensations for external actions. The latter are useful in external
environments where the agent is not able to automatically infer the repair (see e.g. the
repairs in Example 1). However, since more than one action may be required to repair
the effects of one external action (e.g., in Example 1 it may be necessary to give the
patient a series of medications in order to repair the side-effects of the previously given
one), we also extend these explicitly defined compensations to plans.

Consequently, the language of ET R is extended so that external actions can appear
in a program in three different ways: 1) without any kind of compensation associated,
i.e. ext(a, nop), and in this case we write ext(a) or simply a, where a ∈ La; 2) with
a user defined repair plan, written ext(a, b1 ⊗ . . . ⊗ bj) where a, bi ∈ La; 3) with
an automatic repair plan, denoted extA(a[φ]), where a ∈ La, φ is an external state
formula, and an external state formula is a conjunction of external fluents. Formally:

Definition 18. An ET R atom is either a proposition in LP , Li or an external atom. An
external atom is either a proposition in La (where La = F ∪A), ext(a, b1 ⊗ . . .⊗ bj)
or extA(a[φ]) where a, bi ∈ La and φ is an external state formula. An ET R literal is
either φ or ¬φ where φ is an ET R atom. An external state formula is a either a literal
from F or an expression φ ∧ ψ where φ and ψ are external state formulas. An ET R
formula is either a literal, or an expression, defined inductively, of the form φ∧ψ, φ∨ψ
or φ⊗ ψ, where φ and ψ are ET R formulas. An ET R program is a set of rules of the
form φ← ψ where φ is a proposition in LP and ψ is an ET R formula.

Intuitively, extA(a[φ]) stands for “execute the external action a, and if something fails
automatically repair the action’s effects either leading to the state just before a was
executed, or to a state where φ holds”. When one wants the repair to restore the system
to the very state just before a was executed, one may simply write extA(a) (equivalent
to extA(a[⊥])).

Example 6. With this extended language one can write, e.g. for the situation described
in Example 2, rules like the ones below, plus a specification in C of the external environ-
ment which must include the definition of blocks-world-like actions (omitted here for
brevity). Intuitively the rules say that: to place a product one should decrease the stock
and then place the product; one can place a product in a better shelf, or in a normal shelf
in case the product is not premium. Moreover, moving a product to a given shelf is an ex-
ternal action that can be automatically repaired based on the existing information about
the external world. Consequently extA(move(X,warehouse, betterShelf)) means
that, if something fails after the agent has moved X from the warehouse into a better
shelf, then a repair plan will be automatically defined for this action by the semantics.

placeProduct(X)← decreaseStock(X)⊗X > 0⊗ placeOne(X)
decreaseStock(X)← stock(X, S)⊗ stock(X, S).del ⊗ stock(X, S − 1).ins

placeOne(X)← extA(move(X, warehouse, betterShelf))
placeOne(X)← ¬premium(X)⊗ extA(move(X, warehouse, normalShelf))

Note that, the semantics must ensure that the external world is always left consistent
by the agent in this example. Particularly, whenever it is not possible to place a non-
premium product in the better shelf, a repair plan is executed to put the product back
in the warehouse, where after one can try to put the product in the normal shelf; if it is
not possible to put the product in either shelf (or to put a premium product in the better
shelf), then a repair plan is executed to put the product back in the warehouse, and the
stock is rolled back to its previous value (and the transaction fails).

Contrary to the semantics of the original ET R which is independent of the de-
fined oracles, the semantics of this new language can only be defined given specific
oracles that allow the inference of repair plans. For example, for external environments
described by action languages, an external state is a pair, with the action program E de-
scribing the external domain and a state of the transition system, and the external oracle
Oe is (where T (E) = 〈S, V,R〉):

Definition 19 (Action Language Oracle). Let f, a be atoms in La s.t. f is a fluent in
F and a is an action in A.

1. Oe((E, s1), (E, s1)) |= f iff V (f, s1) = true

2. Oe((E, s1), (E, s2)) |= a iff 〈s1, a, s2〉 ∈ R
3. Oe((E, s1), (E, s2)) |= ext(a, b1 ⊗ . . .⊗ bn) iff 〈s1, a, s2〉 ∈ R
4. Oe((E, s1), (E, s2)) |= ext(a[φ], a−1

0 ⊗ . . .⊗ a
−1
m−1) iff one holds:

(a) 〈s1, a, s2〉 ∈ R ∧ revPlans(s1, s2; [a−1
0 ⊗ . . .⊗ a

−1
m−1]); or

(b) 〈s1, a, s2〉 ∈ R ∧ (¬∃a−1
0 ⊗ . . . ⊗ a−1

m−1 s.t. revPlans(s1, s2; [a−1
0 ⊗ . . . ⊗

a−1
m−1])) ∧ goalRevs(φ, s2; [a0 ⊗ . . .⊗ am−1])

Points 3 and 4 above define how the oracle satisfies external actions with compensa-
tions. If the agent wants to explicitly define b1 ⊗ . . .⊗ bn as the reverse plan for action
a, then ext(a, b1 ⊗ . . . ⊗ bn) is evaluated solely by what the oracle knows about a,
holding in a transition iff a holds in that transition of states.

When the agent wants to infer a repair plan for a, then these repairs are calculated
based on the notions of reverse plan and goal reverse defined previously. Namely, the
formula ext(a[φ], a−1

0 ⊗ . . .⊗ a
−1
m−1) holds, iff a holds in the transition s1 into s2, and

a−1
0 ⊗ . . .⊗a

−1
m−1 is a shorter reverse plan to repair s2 back to s1 or, if a−1

0 ⊗ . . .⊗a
−1
m−1

is a shorter goal plan to repair s2 into a state where the state formula φ holds.
Note that the order of points 4a and 4b is not arbitrary. Goal reverse plans provide

an elegant solution to relax the necessary conditions to obtain repairs plans and are spe-
cially useful in scenarios where it is not possible to return to the initial state before exe-
cuting the external action, as e.g. in norms or contracts violations. However, care must
be taken when defining the external state formula φ of an external action extA(a[φ]).
In fact, if φ provides a very incomplete description of the state that we want to achieve,
then we might achieve a state substantially different from the intended one. Particularly,
although we constrain the applicability of goal reverse plans to the ones that are shorter,
there is no guarantee that the changes of these plans are minimal (w.r.t. the amount of
fluents that are different from the previous state). To guarantee such property represents
a belief revision problem and is, at this moment, out of scope of this paper.

Finally, compensations can be instantiated by changing the definition of interpreta-
tion (Def. 2) which now determines how to deal with automatic repairs.
Definition 20 (Interpretations). An interpretation is a mapping M assigning a clas-
sical Herbrand structure (or >) to every path. This mapping is subject to the following
restrictions, for all states Di,Ej and every formula ϕ, every external atom a and every
state formula ψ:
1. ϕ ∈M(〈(D,E)〉) iff Od(D) |= ϕ for any external state E
2. ϕ ∈M(〈(D1, E),ϕ (D2, E)〉) iff Ot(D1, D2) |= ϕ for any external state E
3. ϕ ∈M(〈(D,E1),ϕ (D,E2)〉) iff Oe(E1, E2) |= ϕ for any internal state D
4. extA(a[ψ]) ∈ M(〈(D,E1),ext(a[ψ],a−1

0 ⊗...⊗a
−1
m−1) (D,E2)〉) iff Oe(E1, E2) |=

ext(a[ψ], a−1
0 ⊗ . . .⊗ a

−1
m−1) for any internal state D

Note that, an external action with automatic repair plans only appears in the program in
the form extA(a[φ]). With this previous definition, it is the interpretation’s responsi-
bility to ask the oracle to instantiate it with the correct repair plan a−1

0 ⊗ . . .⊗ a
−1
m−1.

5.3 Properties of Repair Plans
We start by making precise the relation between the concepts presented here, and the
definitions from [8]. Specifically, if a goal reverse plan is not considered, then a−1

0 ⊗

. . . ⊗ a−1
m−1 is a valid repair plan iff it is a φ;ψ-conditional plan in [8] where the ψ

(respectively φ) represents the state formula of the initial (resp. final) state s1 (resp. s2).

Theorem 1 (Relation with [8]). Let F1 and F2 be formulas that respectively represent
completely the states s1 and s2. Then, Oe((E, s1), (E, s2)) |= ext(a[⊥], a−1

0 ⊗ . . . ⊗
a−1
m−1) iff a−1

0 ⊗ . . .⊗ a
−1
m−1 is a F2;F1-reversal for a

Then, we can apply the result on the sufficient condition for the existence of repairs
plans from [8] which is based on the notion of involutory actions. An action is said to be
involutory if executing the action twice from any state where the action is executable,
always results in the starting state, i.e. iff for every s1, s2 s.t. traj(s1; [a ⊗ a]) = s2
then s2 = s1. An example of an involutory action is a toggle action, as toggling a simple
switch twice will always lead the system into the initial state.

Lemma 1. Let a be an involutory action. For every pair of states s1, s2 s.t. 〈s1, a, s2〉 ∈
R it holds that Oe((E, s1), (E, s2)) |= ext(a[φ], a) for every state formula φ.

Further, we can talk about safety of repairs w.r.t. programs. We say that a program
is repair safe iff all its external actions have a repair that is guaranteed to succeed.

Theorem 2 (Repair Safety). Let P be a ET R program without user defined repair
plans of the form ext(a, b1 ⊗ . . . ⊗ bj). If for every extA(a[φ]) defined in P there
exists a reverse plan a1 ⊗ . . .⊗ ak s.t. revPlan(a, [a1 ⊗ . . .⊗ ak]) then P is a repair
safe program.

Note that, although the conditions for a repair safe program are considerably strong,
they allow us to reason about the safeness of a program before execution. Obviously,
we do not want to restrict only to repair safe programs. However, if an agent is defined
by a repair safe program, we know that, whatever happens, the agent will always leave
the external world in a consistent state.

We can also define a safe property regarding a particular execution of a transaction.

Theorem 3 (Repair Safe Execution). Let P be a program without user defined re-
pairs, φ be a formula, π be a path and M an interpretation where M |= P . If M,π |=p

φ, M,π 6|=c φ and Seq(π) 6= ∅ then ∃π0, πr where π0 is a rollback path of π, and πr is
a recovery path of π0 s.t. π′ = π0 ◦ πr and M,π′ φ

This result talks about the existence of compensating paths for a given transaction φ
being executed in a path π. Intuitively, if P does not contain user defined transactions,
and π is an execution of φ that fails (i.e. M,π |=p φ but M,π 6|=c φ) after executing
some external actions (i.e. if Seq(π) 6= ∅), then there always exists a path where the
execution of φ is repaired, i.e. there exists a path π′ where M,π′ φ holds.

Note that these theorems only provide guarantees for programs where explicit user
defined repairs are not presented. The problem with the user defined repairs is that it is
impossible to predict, before execution, what will be the resulting state of the external
world after their execution, or to guarantee any properties about this resulting state. As

such, it may be the case that the existence of user defined repairs jeopardizes the ap-
plicability of automatic repair plans. This is as expected: since the user may arbitrarily
change the repair of some actions, it may certainly be the case that the specification of
the external domain cannot infer any repair plan for other actions in the same sequence.
To prevent this, we could preclude the possibility to define user defined repairs. How-
ever, this would make ET R less expressible, making it impossible to use whenever the
agent does not possess enough information about the external world.

6 Conclusions and Related Work

We have extended the ET R language to deal with external environments described by
an action language, and to deal with automatically inferred repair plans when some
external action fails. The obtained language is able to reason and act in a two-fold envi-
ronment in a transactional way. By defining a semantics that automatically infers what
should be the repairs when something fails in the external world, we ease the program-
mer’s task to anticipate for all the possible failures and write the corresponding correct
repair for it. Thus, when enough information is available regarding the external world,
ET R can be used to automatically infer plans to deal with failures. Contrarily, when
the agent has no information about the external environment on which she performs
actions, then repair plans can be defined explicitly in the agent’s program. Though not
presented here for lack of space, we have devised a proof procedure for ET R [13], that
readily provides a means for an implementation that is underway.

For dealing with the inference of repair plans, we assumed that the environment is
described using the action language C and based the representation of reversals on the
work of [8]. An alternative would be to chose another language for representing changes
in the external environment like [17]. [17] defines an action language to represent and
reason about commitments in multi-agent domains. In it, it is possible to encode di-
rectly in the language which actions are reversible and how. Using this language to rep-
resent the external world in ET R could also be done by changing the external oracle
definition, similarly to what we have done here. However, we chose the reversals rep-
resentation from [8] since its generality makes it applicable to a wider family of action
aanguages, like, e.g. the action language C. Since this latter language has several exten-
sions that are already used for norms and protocol representation in multi-agent systems
[16,1], by defining an external oracle using this action language C we provide means to
employ such representations together with ET R, extending them with the possibility
to describe an agent’s behavior in a transactional way. Furthermore, our version of goal
reverse plans can be seen as a contribution to the work of [8]’s as it provides means to
relax the conditions for the existence of plans, increasing the possibility of achieving a
state with some desirable consistent properties.

Several languages to describe an agent’s behavior partitioned over an internal and
external KB have been proposed in the literature. Jason[4], 2APL[6] and 3APL[14] are
successful examples of agent programming languages that deal with environments with
both internal updates and external actions. All these language have some way to deal
with action failures, and to execute repair plans of some form. However, none of them
consider the automatic inference of the repair plans based on the external information

available. Moreover, none of them guarantees transactional properties, in particular for
actions performed in the internal environment.

Other agent’s logic programming based languages exist (e.g. [5,15]) but, to our
knowledge, none of them deals with transactions nor with repair plans. The closest
might be [15], where the authors mention as future work the definition of transactions.
However, the model theory of [15] does not consider the possibility of failure and thus
neither the possibility of repairing plans. Contrarily, its operational semantics may re-
act to external events defining failure of actions performed externally, but since no tools
are provided to model the external environment, the decision about what to do with the
failure is based only on internal knowledge (but which has information about external
events). Moreover, since there is no strict distinction between action performed exter-
nally and internally, it not clear to see how the semantics would deal with the different
levels of atomicity that the combination between internal and external actions demands.

References
1. A. Artikis, M. J. Sergot, and J. V. Pitt. Specifying norm-governed computational societies.

ACM Trans. Comput. Log., 10(1), 2009.
2. A. J. Bonner and M. Kifer. Transaction logic programming. In ICLP, pages 257–279, 1993.
3. A. J. Bonner and M. Kifer. Transaction logic programming (or a logic of declarative and

procedural knowledge). Technical Report CSRI-323, University of Toronto, 1995.
4. R. H. Bordini, M. Wooldridge, and J. F. Hübner. Programming Multi-Agent Systems in

AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley & Sons, 2007.
5. S. Costantini and A. Tocchio. About declarative semantics of logic-based agent languages.

In DALT, pages 106–123, 2005.
6. M. Dastani. 2apl: a practical agent programming language. Autonomous Agents and Multi-

Agent Systems, 16(3):214–248, 2008.
7. M. Dastani, J.-J. C. Meyer, and D. Grossi. A logic for normative multi-agent programs. J.

Log. Comput., 23(2):335–354, 2013.
8. T. Eiter, E. Erdem, and W. Faber. Undoing the effects of action sequences. J. Applied Logic,

6(3):380–415, 2008.
9. M. Gelfond and V. Lifschitz. Action languages. Electron. Trans. Artif. Intell., 2:193–210,

1998.
10. E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic causal theo-

ries. Artif. Intell., 153(1-2):49–104, 2004.
11. E. Giunchiglia and V. Lifschitz. An action language based on causal explanation: Preliminary

report. In AAAI/IAAI, pages 623–630. AAAI / The MIT Press, 1998.
12. A. S. Gomes and J. J. Alferes. Transaction logic with external actions. In LPNMR, pages

272–277, 2011.
13. A. S. Gomes and J. J. Alferes. Extending transaction logic with external actions. Theory and

Practice of Logic Programming, On-line Supplement, To appear, 2013.
14. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. C. Meyer. Agent programming in

3apl. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.
15. R. A. Kowalski and F. Sadri. Abductive logic programming agents with destructive

databases. Ann. Math. Artif. Intell., 62(1-2):129–158, 2011.
16. M. J. Sergot and R. Craven. The deontic component of action language nC+. In DEON,

pages 222–237. Springer, 2006.
17. T. C. Son, E. Pontelli, and C. Sakama. Formalizing commitments using action languages. In

DALT, pages 67–83, 2011.

	External Transaction Logic with Automatic Compensations
	Ana Sofia Gomes and José Júlio Alferes

