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Resumo

Este trabalho apresenta os resultados do estudo experimental das reac¢des nucleares induzi-
das por protdes em litio, nomeadamente as reaccdes ’Li(p,a)*He, °Li(p,)*He e "Li(p,p)’Li.

As abundancias de "Li e ®Li identificadas como primordiais e observadas em estrelas muito
antigas do halo da Via Léctea diferem consideravelmente dos valores previstos por mode-
los de nucleossintese primordial e evolugao estelar que dependem, entre outros factores, das
seccdes eficazes de reacgdes nucleares como a 'Li(p,a)*He e a °Li(p,a)’He. A procura da res-
posta para estas discrepancias desencadeou nestes ultimos anos investigacao intensa nos campos
da evolugdo estelar, da cosmologia, da evolug¢do pré-galactica e das reaccdes nucleares a baixa
energia.

Focando-se nas reac¢des nucleares, este trabalho determinou com maior precisao experi-
mental as sec¢des eficazes (expressas em termos do factor astrofisico) das reacgdes "Li(p,a)*He
e SLi(p,)’He e os efeitos de blindagem electrénica nestas reaccdes para diferentes ambi-
entes (alvos isolantes e metdlicos). Foram igualmente medidas as distribuicOes angulares da
reaccdo do "Li. Estas medicdes foram realizadas em dois laboratérios, no 4mbito da colaboracdo
internacional LUNA (Laboratory for Undergroud Nuclear Astrophysics), nomeadamente o La-
boratorio de Feixe de Ioes do ITN (Instituto Tecnoldgico e Nuclear) em Sacavém, Portugal e
o Dynamitron-Tandem-Laboratorium na Ruhr-Universitit em Bochum, Alemanha. No ITN, a
camara dos alvos foi modificada de forma a optimizar a medicdo destas reaccdes com o de-
senho e construcdo de novas pecas, a inclusdo de mais uma bomba turbomolecular no sistema
e de um dedo frio. As reac¢des "Li(p,a)*He e °Li(p,a)’He foram medidas em simultineo com
sete e quatro alvos, respectivamente. Os alvos foram produzidos de forma a obter perfis de litio
em profundidade adequados e estéveis.

Os valores obtidos para a energia potencial de blindagem electronica em ambientes metélicos

estdo muito acima dos limites dos modelos de fisica atémica. O modelo de blindagem electrénica
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de Debye aplicado aos electrdes de condugdo dos metais consegue reproduzir estes valores cons-
tituindo um modelo simples, mas que parametriza com robustez os dados experimentais. Ao
nivel dos modelos estelares e de nucleossintese primordial, estes resultados sdo muito impor-
tantes porque mostram que as medicdes em laboratério estio bem compreendidas e, portanto,
os parametros de entrada destes modelos correspondentes as secgdes eficazes estdo correctos.
Neste trabalho também foi medida a sec¢do eficaz diferencial da reac¢do de dispersdo

eldstica dos protdes por "Li, ttil para descrever o canal de entrada da reac¢io 'Li(p,e)*He.

Palavras chave

Litio primordial, reaccdes nucleares induzidas por particulas carregadas, sec¢do eficaz, fac-

tor astrofisico S, distribui¢des angulares, blindagem electrénica, modelo de Debye.



Abstract

This work presents the results of the experimental study of proton induced nuclear reactions
in lithium, namely the "Li(p,a)*He, ®Li(p,a)*He and "Li(p,p)’Li reactions.

The amount of "Li and °Li identified as primordial and observed in very old stars of the
Milky Way galactic halo strongly deviates from the predictions of primordial nucleosynthesis
and stellar evolution models which depend, among other factors, on the cross sections of re-
actions like "Li(p,a)*He and ®Li(p,)*He. These discrepancies have triggered a large amount
of research in the fields of stellar evolution, cosmology, pre-galactic evolution and low energy
nuclear reactions.

Focusing on nuclear reactions, this work has measured the "Li(p,a’)*He and ®Li(p,«)*He re-
actions cross sections (expressed in terms of the astrophysical S-factor) with higher accuracy,
and the electron screening effects in these reactions for different environments (insulators and
metallic targets). The "Li(p,)*He angular distributions were also measured. These measure-
ments took place in two laboratory facilities, in the framework of the LUNA (Laboratory for Un-
dergroud Nuclear Astrophysics) international collaboration, namely the Laboratdrio de Feixe de
I8es in ITN (Instituto Tecnoldgico e Nuclear) Sacavém, Portugal, and the Dynamitron-Tandem-
Laboratorium in Ruhr-Universitdt Bochum, Germany. The ITN target chamber was modified
to measure these nuclear reactions, with the design and construction of new components, the
addition of one turbomolecular pump and a cold finger. The "Li(p,)*He and ®Li(p,a)*He reac-
tions were measured concurrently with seven and four targets, respectively. These targets were
produced in order to obtain adequate and stable lithium depth profiles.

In metallic environments, the measured electron screening potential energies are much
higher than the predictions of atomic-physics models. The Debye screening model applied
to the metallic conduction electrons is able to explain these high values. It is a simple model,

but also very robust. Concerning primordial nucleosynthesis and stellar evolution models, these
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results are very important as they show that laboratory measurements are well controlled, and
the model inputs from these cross sections are therefore correct.
In this work the "Li(p,p)’Li differential cross section was also measured, which is useful to

describe the "Li(p,a)*He entrance channel.

Keywords

Primordial lithium, charged-particle-induced nuclear reactions, cross section, Astrophysical

S-factor, angular distributions, electron screening, Debye model.
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| ntroduction

Lithium is one of the most interesting and puzzling elements in the field of nucleosynthesis.
Its most abundant isotope, ’Li, has the rather unique status of requiring three enterely different
nucleosynthetic processes: Big Bang Nucleosynthesis (BBN), galactic cosmic ray spallation of
interstellar matter, and a poorly identified stellar process.

The amount of "Li present in stars, among other factors, depends on the rate of the "Li(p,a)*He
reaction. However, very recently, it has been determined that the primordial lithium abundance
expected on the basis of "Li(p,a)*He cross section measurements does not match that observed
in several astrophysical sites such as very old Pop. II stars from the Milky Way halo. For
the lighter isotope, °Li, there is also no agreement between expected and observed primordial
abundances.

These discrepancies have triggered a large amount of research in the fields of stellar evolu-
tion, cosmology, pre-galactic evolution and nuclear reactions. The accuracy of the predictions
given by stellar and primordial nucleosynthesis models depends greatly on the accuracy of the
cross sections of reactions that take place in those scenarios, and whose values can be measured
in laboratories with particle accelerators. This is the field of experimental nuclear astrophysics,
to which this work brings a contribution.

In astrophysical scenarios, charged particles nuclear reactions take place predominantly over
the Gamow peak, an energy window situated at very low energies. For these reactions the
Coulomb barrier makes these reactions very unlikely at such low energies, often requiring long
data collection times with painstaking attention to background.

Another struggle in laboratory measurements comes from the presence of electrons around
the nuclei. They screen the nuclear charges, therefore increasing the fusion probability by redu-
cing the Coulomb repulsion. However, this electronic screening is not the same in astrophysical

scenarios and in a laboratory experiment. For instance, inside stars, nuclear reactions occur in a
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fully ionized plasma, where electrons move much faster than the nuclei. In a laboratory, an ion
beam strikes a neutral atomic (or molecular) target, where electrons are much more confined
around the target nucleus. So, due to their different electronic arrangement, electron screening
is not the same in a star plasma and in a neutral target. This means that fusion cross sections
measured in the laboratory have to be corrected by the electron screening when used as inputs
of a stellar or primordial nucleosynthesis model.

Experimental studies of fusion reactions involving light nuclides have shown the expected
exponential enhancement of the cross section at low energies. However, the observed enhance-
ments were in several cases much larger than could be accounted for from available atomic-
physics models. Suggested solutions of the large enhancement including aspects such as stop-
ping power or thermal motion were not successful. Recently, an explanation came from a more
radical approach, after studying the electron screening in D(d,p)T for deuterated metals, insula-
tors, and semiconductors: the large screening, only observed in metals, is due to a star-plasma-
like behaviour of the conduction electrons of a metal. This model predicted a temperature de-
pendence which was verified with the D(d,p)T study, but also predicted a dependence with the
target atomic number and an isotopic independence, which required experimental verification.

This experimental work was the motivation of this thesis. The low energy, E;,, < 100 keV,
"Li(p,a)*He and SLi(p,a)*He reactions cross sections (expressed in terms of the astrophysical S-
factor) were measured concurrently in different environments (insulator and metallic targets),
and the corresponding electron screenings were determined. A precise quantification of this
screening effect requires an equally accurate knowledge of the cross section at higher energies
where the electron screening effect is negligible. As the available data was not very accurate
and presented discrepancies, a new study of both nuclear reactions at high energy, E;,, > 116
keV, was done which included the cross section determination and the measurement of the Li
reaction angular distributions.

The "Li(p,p)’Li differential cross section was also measured in this work. Elastic scattering
of protons by "Li does not directly present an astrophysical interest but is important to describe
the entrance channel of the "Li(p,a)*He reaction, and in this view is important for theoretical
models.

The work is organized in the following way. The Chapter 1 presents a short review about

the latest developments concerning the quantification of primordial lithium, and Chapter 2 ad-
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dresses the determination of nuclear reaction rates, including the effects of the Coulomb barrier
and electron screening. Chapter 3 presents the status, prior to this work, on the most relevant
experimental data for both lithium reactions. The description of the experimental details is
given in Chapter 4. It embraces the experimental setups, and details about target preparation
and analysis. Chapter 5 describes the analysis used to obtain the astrophysical S-factor with
estimation of associated uncertainties, the results obtained from this analysis and its interpreta-
tions. Chapter 6 describes the measurement of the "Li(p,p)’Li reaction, and the results obtained.

The conclusions are presented in Chapter 7.
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Chapter 1

Primordial lithium in the univer se

The Big Bang model is a broadly accepted theory for the origin and evolution of the uni-
verse. From this model, we know that during the first three minutes of the universe, hydrogen,
deuterium, heliu