Publications

Export 105 results:
Sort by: Author Title [ Type  (Asc)] Year
Conference Proceedings
Rocha, H. Different representations in mathematics teaching with technology. Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education. Vancouver, Canada: PME, 2014. Abstract

The main focus of this paper is the teacher’s representational fluency in a context of graphing calculator use. The conclusions reached point to a more intensive use of some representations over the others, suggesting that technology turns numerical or tabular representation into two different representations.

Moreira, C., S. Lopes, and H. Rocha Dos jogos à aprendizagem. Atas do ProfMat 2015. Évora, Portugal: APM, 2015. Abstractpaper.pdf

Neste texto apresentamos os jogos no ensino da matemática como uma forma de aprendizagem de conteúdos e não apenas como um recurso que cada professor pode usar nas suas aulas para tornar a aula diferente. Analisamos dois jogos desenvolvidos por nós e que utilizámos com alunos dos 7.º e 10.º anos de escolaridade, procurando não só apresentar os jogos, mas também aspetos da sua implementação em sala de aula, ponderando o contributo que trouxeram à aprendizagem dos alunos.
Aprender matemática depende de um grande número de variáveis, o que torna o ensino um processo complexo, pois é necessário que se desenvolva o raciocínio lógico, além de estimular o desenvolvimento das mais variadas capacidades transversais, tais como o pensamento autónomo, a criatividade, o sentido de estratégia e a capacidade de resolver problemas.
Duas das dificuldades frequentemente encontradas pelos professores passam pela falta de motivação para a aprendizagem e pelo desinteresse pela Matemática. A solução para estes problemas pode passar pela utilização de jogos para complementar o estudo, mas também para a aquisição de novos conteúdos. No entanto, apenas a implementação dos jogos não basta. O papel do professor é de extrema importância e a planificação e orientação da aula são fundamentais para que se alcancem os objetivos pretendidos.

Martinho, H., and H. Rocha A escrita matemática na resolução de um problema de geometria por alunos de licenciatura em Educação Básica [Mathematical writing in solving a geometry problem by undergraduate students in Basic Education]. EIEM. Lisboa, Portugal: SPIEM, 2017. Abstract

Apesar da escrita ter, habitualmente, uma maior expressão no ensino da Matemática que a própria oralidade, os alunos não estão habituados a explicitar raciocínios e a utilizar linguagem matemática apropriada. A comunicação matemática escrita tem algumas particularidades que podem ser diretamente trabalhadas com os alunos. Por exemplo, a escrita ajuda os alunos a dar sentido à Matemática e a melhorar o próprio discurso. As produções dos alunos transportam informações para o professor contribuindo para a planificação e concretização da sua prática profissional. Assim, e apesar de frequentemente ser descurada, a escrita matemática pode ser trabalhada na sala de aula, em particular, com futuros professores. Este artigo reporta parte de uma experiência realizada com uma turma da Licenciatura em Educação Básica, tendo por base a resolução em grupo de um problema de Geometria e o registo escrito do processo de resolução elaborado pelos alunos. Pretendeu-se desta forma caraterizar a comunicação escrita dos alunos e identificar contributos desta para a compreensão por parte do professor dos conhecimentos dos alunos. A análise da escrita matemática dos alunos, tendo por base um conjunto de critérios previamente definidos, permitiu identificar a preferência destes pelo recurso à representação verbal, dificuldades em fundamentar adequadamente as respostas apresentadas e uma forte tendência para desvalorizar as abordagens prévias que não conduziram à resposta ao problema. Permitiu ainda identificar uma tendência para não explicitar o entendimento das questões que lhes eram colocadas. A forma como os conceitos matemáticos surgem nas repostas escritas permite identificar aspetos relevantes do conhecimento dos alunos.

Botelho, M. C., T. Coelho, and H. Rocha Fluência representacional: a Matemática na resolução de problemas de Física. Atas do EIEM 2023 – Encontro em Investigação em Educação Matemática. Aveiro: SPIEM, 2023.
Rocha, H., P. Palhares, and M. Botelho From classroom teaching to distance learning: the experience of Portuguese mathematics teachers. INTED - 15th annual International Technology, Education and Development Conference. IATED, 2021.
Rocha, H. Games and the learning of mathematics outside the classroom. Proceedings of the International Conference on Education and New Learning Technologies. Barcelona, Spain: EduLearn, 2014. Abstract

GAMES AND THE LEARNING OF MATHEMATICS OUTSIDE THE CLASSROOM
H. Rocha

Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia (PORTUGAL)

Playing games is a recreational activity that is also highly recognized as a potentially rich activity for the teaching and learning. It is an activity that involves the recognition and observance of rules, as well as the development of strategies to achieve victory. It is thus an activity that encourages compliance with rules but also the development of learning and therefore has a socializing character while stimulating critical thinking and analysis of situations. This is why many authors think about playing games as a problem-solving activity with great potential for the learning of mathematics. However, a review of the literature suggests that mathematical learning does not always occur, pointing to the relevance of the specific features of the game and the circumstances in which it is used. Looking to contribute to a better understanding of these issues, the project that was the basis of this study focuses on the use of games by middle school students, intending to promote their mathematical learning in a voluntary and informal context, outside the classroom. The games were available in MatLab, a room of the school supervised by mathematics teachers, which students could visit in their leisure time. In this communication I intend to analyze how the visits to MatLab contributed to the mathematical learning of students, considering the influence of specific characteristics of the games and the atmosphere created in MatLab, given the students’ previous mathematical knowledge.

The study adopts a qualitative and interpretative methodological approach, undertaking two student case studies. Data collection was completed over three months and included observation of twenty visits of these students to MatLab. Data collection was made through the development of a logbook, audio record of the students’ visits and two interviews to the students and to their teacher. Data analysis was based on the evidence gathered in the light of the problem under study.

The conclusions reached stress the importance of certain features of the games to promote student engagement, leading to a desire for self-improvement, very important for the development of sustained learning. Computer games have proven to have a stronger potential to engage students than board games. Nevertheless, the most important characteristics of a game seem to be related to the possibility of playing at different mathematical levels (without getting blocked by lack of knowledge) and to the possibility of keep getting better marks (without the existence of a maximum level from which evolution is not possible). In what concerns to achievement in mathematics’ classes, the students’ teacher reports an improvement in mathematics knowledge (more evident in the average achiever student) as well as an increase in students’ involvement in class work (more evident in the low achiever student).

keywords: game-based learning, mathematics, informal learning.

Campos, S., F. Viseu, H. Rocha, and J. A. Fernandes The graphing calculator in the promotion of mathematical writing. Proceedings of 12th International Conference onTechnology in Mathematics Teaching. Faro, Portugal: Universidade do Algarve, 2015. Abstract

Through writing, students express many of their processes and ways of thinking. Since at high school level some of the activities are carried out with the graphing calculator, we intend to investigate the contribution of this resource to promote the mathematical writing in the learning of continuous nonlinear models at 11th grade. Adopting a qualitative methodology, we collected and analyzed the students’ writing productions. What they write when using the calculator gives evidence about the information valued (when they sketch graphics without any justification); about the strategies used (when they define the viewing window and relate different menus on the graphing calculator); and about the reasoning developed (when they justify the information given by the calculator and the formulation of generalizations and conjectures validation).

Botelho, M. C., T. Coelho, and H. Rocha How the use of different technologies mobilises different domains of professional knowledge. Cerme 13. Budapest, Hungary, 2023.
Rocha, H. The impact of technologies on the teacher's use of different representations. Proceedings of 12th International Conference onTechnology in Mathematics Teaching. Faro: Universidade do Algarve, 2015. Abstract

This study intends to characterize how the teacher uses and integrates the different representations provided by the graphing calculator on the process of teaching and learning functions at the secondary level. Specifically, it intends to understand the balance established between the use of the different representations, and the way these representations are articulated. The conclusions reached point to an active use of the graphic and algebraic representations and to a scarce use of the tabular representation. The conclusions also point to a flexible articulation between the two representations usual used, assuming different forms and frequently an interactive approach, repeatedly switching between representations.

Rocha, H. The impact of technology on the teachers’ use of different representations. CERME. Utrecht, Holanda: ERME, 2019. Abstract

The potential of using different representations is widely recognized, but not much is known about how teachers use them nor about the impact of the technology on such use. The goal of this study is to characterize the teachers’ representational fluency when teaching functions at high school level, discussing, at the same time, the impact in the use of representations resulting from the use of technology. Adopting a qualitative approach, I analyze one teacher’s practice. The results suggest that algebraic and graphical representations are seen as more important, that tabular representation is assumed as irrelevant and that the access to technology impacts the learning, the representations used and how they are used.

Rocha, H. The impact of the cultural context on the professional practice of the teacher. Proceedings of 8th Annual International Conference of Education, Research and Innovation. Seville, Spain: ICERI, 2015. Abstract

THE IMPACT OF THE CULTURAL CONTEXT ON THE PROFESSIONAL PRACTICE OF THE TEACHER

H. Rocha

Universidade NOVA de Lisboa, Faculdade de Ciências e Tecnologia (PORTUGAL)

The professional knowledge is a key element of the teacher’s practice. This knowledge is naturally influenced by the teacher’s beliefs and conceptions and by his training, but the context where he develops his practice is perhaps the most decisive influence. At this level, the school where the teacher works and his colleagues are a powerful influence, but the characteristics of his students are even a stronger influence. The cultural diversity of the students and specifically the linguistic diversity are highly relevant elements. A classroom where different languages converge is always a complex context which requires a deeper professional knowledge with inevitable repercussions over the teacher’s practice.

This study focuses on a teacher working with a mathematics’ class of foreign students with heavy linguistic limitations on the language of instruction and it intends to analyze the impact of this context on the teacher’s practice. In particular, it intends to analyze how this context interferes with the characteristics of the tasks proposed by the teacher and with the way how mathematical concepts are presented to the students.

The study adopts a qualitative and interpretative methodological approach, undertaking one teacher case study. Data were collected during one school year by semi-structured interviews, class observation, and documental data gathering. All interviews and classes observed were audio taped and transcribed. Data analysis was conducted in an interpretative way.

The conclusions reached point to an increase on the appreciation of mechanization, to a large reduction in the use of problematic situations and to a presentation of Mathematics as calculation, disconnected from any application, and where reasoning appears as a marginal element or is even missing. The use of several examples becomes a key element of the practice of this teacher. The main finding of this study suggests that language limitations caused a strong impact on the practice of a teacher who considers the understanding and the development of reasoning from the discussion around mathematical ideas as central to the teaching of this subject. It was also possible to identify that the need to find a way to communicate reinforced the formalism of the mathematical language, placing it in the center of the learning process.

Keywords: cultural context, teacher’s practice, mathematics.

Rocha, H. The influence of teacher’s knowledge for teaching mathematics with technology on the implementation of investigation tasks. Proceedings of 8th International Technology, Education and Development Conference. Valencia, Spain: INTED, 2014.
Rocha, H. Knowledge for Teaching Mathematics with Technology - a new framework of teacher knowledge. Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education. Kiel, Germany: PME, 2013. Abstract

Knowledge for Teaching Mathematics with Technology (KTMT) is a theoretical model that seeks to articulate previously existing models on professional knowledge and the conclusions that the investigation around the integration of technology has achieved. KTMT is a dynamic knowledge, informed by the practice, that develops from the knowledge on the base domains (Mathematics, Teaching and Learning, Technology and Curriculum), evolving as knowledge in the base domains interacts and as this promotes the development of inter-domain knowledge, which continue to interact, strengthening relations and leading to the development of an integrated knowledge, where knowledge on the base domains and on the two sets of inter-domains appears deeply integrated into a global knowledge.

Rocha, H. Knowledge for teaching mathematics with technology and the search for a suitable viewing window to represent functions. Proceedings of Cerme 9. Prague, Czech Republic: ERME, 2015. Abstract

The usual difficulties of students regarding the choice of an appropriate window when using the graphing calculator in the study of functions and the importance of the teachers’ knowledge to overcoming them, led to this study. The main goal was to characterize the way teachers address the viewing window in the classroom, trying to infer aspects of the Knowledge for Teaching Mathematics with Technology that can justify that practice. The conclusions reached point to the importance of a set of specific knowledge where I highlight the knowledge of the students’ difficulties, the knowledge of mathematical content necessary to understand the impact of the viewing window on the graphic, and the knowledge of teaching strategies that address both the students’ difficulties and the relevant mathematical knowledge.

Rocha, H. Mathematics teaching in Education and Training Courses. Proceedings of the International Conference on Education and New Learning Technologies. Barcelona, Spain: EduLearn, 2014. Abstract

MATHEMATICS TEACHING IN EDUCATION AND TRAINING COURSES
H. Rocha

Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia (PORTUGAL)

Education and Training Courses have been specifically designed to the high number of young people in a situation of school dropout and in transition to working life, particularly those who enter the labor market early with insufficient levels of schooling and professional training. Mathematics is one of the curriculum components of these courses, for its contribution to the exercise of citizenship in a democratic society. Being an important part of the cultural legacy of our society is too often seen by students as a source of exclusion. It is known that young people who enter these courses often had an experience of underachievement in the discipline, what justifies that motivating students is at once the great challenge faced by the teacher. The program suggests taking a more concrete and linked to reality approach, allowing students to learn to recognize the mathematics in the world around them and using technology to promote that learning. However, it is the teacher who is responsible for managing its implementation, shaping the learning situations and integrating them in a coherent and articulated way in the specific course that students attend. In what concerns to assessment, the program also takes into account the usual characteristics of the students. Thus, the assessment includes a strong appreciation of students’ work, its presentation and discussion and further improvement of that work. The directions given to the teacher diverge from the traditional option of the evaluation test, providing guidelines to the form that each evaluation can take depending on the contents in study. However, once again, the teacher's role in curriculum management is not neglected, being valued the adequacy of proposals to the characteristics of the students.
The study presented here had as its main goal to analyze and understand the choices made by the teacher during the different stages of his practice, giving attention to the dilemmas he faced and to the reasons he took into account when making decisions.

The study adopts a qualitative and interpretative methodological approach, undertaking one teacher case study. Data collection included semi-structured interviews, classroom observation and document collection. Data analysis was based on the evidence gathered in the light of the problem under study.

The conclusions of the study point to the important role of technology and suggest that the reduction of prerequisites, the intention of taking into account the students’ interests and the desire of improving students culture is central in what concerns to task selection; while the active involvement of students characterized the implementation of the classes. The dilemmas faced by the teacher focus mainly on the relative importance and on the demanding level that he should give to each content, as well as the articulation that he should promote between formal and intuitive knowledge. In what concerns to assessment, the results achieved highlight the impact that students ideas can have on teacher’s practice, conducting to the inclusion of tests as an assessment element, against the teacher’s intentions.

keywords: education and training courses, mathematics, innovation, technology.

Rocha, H. Múltiplas abordagens, múltiplas representações: um contributo para incrementar a relevância da representação algébrica [Multiple approaches, multiple representations: a contribute to increase the relevance of algebraic representation]. Atas do Encontro de Investigação em Educação Matemática. Bragança, Portugal: SPIEM, 2015. Abstract

A tecnologia e o impacto que esta pode ter sobre as diferentes representações utilizadas e, em particular, sobre a representação algébrica são o foco deste artigo. Procura-se assim compreender como é que o professor enquadra a representação algébrica no trabalho em sala de aula e como a procura tornar relevante para os alunos num contexto de utilização da tecnologia. As conclusões alcançadas apontam para a opção por uma estreita articulação entre as representações algébrica e gráfica e para uma criteriosa escolha de tarefas, envolvendo múltiplas abordagens, onde a representação algébrica vem disponibilizar informação fundamental e tendencialmente inacessível a partir de outras representações.

Viseu, F., P. Mendes, and H. Rocha The notion of function by basic education preservice teachers. ATEE Winter Conference ‘Science and mathematics education in the 21st century. Brussels: ATEE and CIEd, 2019. Abstract

The current curricular guidelines for mathematics education in Portugal emphasize the relevance of working with different representations of functions to promote understanding. Given this relevance, we seek understanding about the notion of function held by 37 basic education pre-service teachers in their first year of a master’s course. Data were collected through a task focusing on identifying functions in situations based on different representations. The content analysis technique was then adopted in the search for an understanding of the justifications given by the participants. The results achieved suggest it is easier for the pre-service teachers to identify examples that are not functions than examples that are functions. There is also a tendency for greater accuracy in the identification of examples expressed by tables than by algebraic expressions. The justifications presented show a notion of function as a relation between values of two non-empty sets, but without guaranteeing that this relation is single-valued.

Botelho, M. C., and H. Rocha O conhecimento do professor de matemática e a integração das tecnologias na sua prática. Atas do Encontro de Investigação em Educação Matemática., 2022.
Botelho, M. C., and H. Rocha O conhecimento profissional do professor de matemática na integração de diferentes tecnologias. Atas do XXXII Seminário de Investigação em Educação Matemática. Setúbal: APM, 2022.
Coelho, T., and H. Rocha O conhecimento profissional do professor e a interdisciplinaridade em contexto de integração com a tecnologia. XXXII Seminário de Investigação em Educação Matemática. Setúbal: APM, 2022.