Publications

Export 29 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Y
Yang, Y., J. Zhao, S. Zhang, C. Chastre, and H. Biscaia. "Effect of mechanical anchorage on the bond performance of double overlapped CFRP-to-steel joints." Composite Structures. 267 (2021). AbstractWebsite

Mechanical anchorage devices have the potential to efficiently improve the bond behavior of Carbon Fiber-Reinforced Polymers (CFRP) Externally Bonded (EB) onto steel with an adhesive. Existing relevant studies, however, have been very limited. Against this background, experimental and numerical studies on the double overlapped CFRP-to-steel bonded joints with an end mechanical anchorage were carried out in the present study. Two types of CFRP laminates (i.e., SIKA CFRP and the other type made in Harbin Institute of Technology – HIT) were used in the bond tests, with or without end mechanical anchorage devices. The test results showed that the end mechanical anchorage had marginal effect on the bond-slip relationship between EB CFRP and steel as well as debonding load, but could increase the ultimate load. It was also found that CFRP laminate from HIT had a better bond performance than that from SIKA, in terms of both debonding load and ultimate load. Using ABAQUS, Finite Element (FE) model was established on such bonded joints and the accuracy was verified with test results. The verified FE model was adopted in a parametric study to further clarify the effect of key parameters on the bond behavior of such bonded joints. © 2021 Elsevier Ltd

Yang, Y., M. A. G. Silva, H. Biscaia, and C. Chastre. "Bond durability of CFRP laminates-to-steel joints subjected to freeze-thaw." Composite Structures. 212 (2019): 243-258. AbstractWebsite

The degradation mechanisms of bonded joints between CFRP laminates and steel substrates under severe environmental conditions require more durability data and studies to increase the database and better understand their causes. Studies on bond properties of double-strap CFRP-to-steel bonded joints with two different composite materials as well as adhesive coupons subjected to freeze-thaw cycles for 10,000 h were conducted to reduce that gap. In addition, the equivalent to the number of thermal cycles and their slips induced in the CFRP laminates was replicated by an equivalent (mechanical) loading-unloading history condition imposed by a static tensile machine. The mechanical properties of the adhesive coupons and the strength capacity of the bonded joints were only slightly changed by the artificial aging. It was confirmed that the interfacial bond strength between CFRP and adhesive is critically related to the maximum shear stress and failure mode. The interfacial bond strength between adhesive and steel degraded with the aging. However, the equivalent thermal cyclic bond stress caused no detectable damage on the bond because only the interfacial elastic regime was actually mobilized, which confirmed that pure thermal cycles aging, per se, at the level imposed, have a low impact on the degradation of CFRP-to-steel bonded joints. © 2019 Elsevier Ltd

Z
Zhang, S. S., Y. Ke, E. Chen, H. Biscaia, and W. G. Li. "Effect of load distribution on the behaviour of RC beams strengthened in flexure with near-surface mounted (NSM) FRP." Composite Structures. 279 (2022). AbstractWebsite

Debonding failures of FRP have been frequently observed in laboratory tests of reinforced concrete (RC) beams flexurally-strengthened with near-surface mounted (NSM) fibre-reinforced polymer (FRP). A number of numerical and theoretical studies have been carried out to predict debonding failures in NSM FRP-strengthened beams, and several strength models have also been proposed. The existing studies, however, were all based on the scenario of a simply supported beam tested under one or two-point loading, while the influence of load distribution has not yet been investigated. This paper presents the first ever study into the effect of load distribution on the behaviour of NSM FRP-strengthened RC beams. A series of large-scale RC beams flexurally-strengthened with NSM FRP strips were first tested under different load uniformities; then a finite element (FE) model, which can give close predictions to the behaviour of such strengthened beams, was developed; finally, the proposed FE model was utilized to investigate the influence of bond length of NSM FRP on the load uniformity effect. It was found that the load uniformity has a significant effect on the beam behaviour, and the degree of this effect varies with the bond length of NSM FRP. © 2021 Elsevier Ltd

Zhou, H., W. - Y. Gao, H. C. Biscaia, X. - J. Wei, and J. - G. Dai. "Debonding analysis of FRP-to-concrete interfaces between two adjacent cracks in plated beams under temperature variations." Engineering Fracture Mechanics. 263 (2022). AbstractWebsite

Externally bonded fiber-reinforced polymer (FRP) composites have been widely used for the strengthening and repairing of reinforced concrete (RC) beams. Existing studies have denstrated that the full-range behavior and the associated debonding mechanism of the FRP-to-concrete interface between two adjacent cracks in the FRP-plated RC beam are different from those of the pull-off bonded joint. Moreover, the bond behavior between the FRP and the concrete may be affected by interfacial thermal stresses induced by the service temperature variations (i.e., the thermal loadings). Based on a fully reversible bilinear bond-slip model, this paper presents an analytical study to investigate the full-range deformation behavior of the FRP-to-concrete interface between two adjacent cracks under combined mechanical and thermal loadings. The analytical results have indicated that the thermal loadings may significantly influence the full-range deformation behavior and the axial stress distribution of the FRP plate, although the material properties of concrete, adhesive, and FRP are assumed to be not affected by the service temperature variations. A temperature increase leads to an increase in the ultimate load of the bond interface and vice versa. A finite element (FE) model with different considerations of the bondline damage is developed to verify the proposed analytical solution. The reliability of the proposed analytical solution is then validated by the comparisons between the analytical results and the corresponding predictions provided by the FE model. © 2022 Elsevier Ltd