Publications

Export 7 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
A
Biscaia, H. C., and S. Soares. "Adherence prediction between ribbed steel rebars and concrete: A new perspective and comparison with codes." Structures. 25 (2020): 979-999. AbstractWebsite

The interfacial behaviour between ribbed steel rebars and concrete has been extensively studied because the contribution of the adherence between these two materials is of the utmost importance for the behaviour of Reinforced Concrete (RC) structures. The majority of the available studies on this topic indicate that the local adherence between these two materials can be defined through a bond-slip relationship, which is obtained with short embedded lengths. Although this seems to be widely accepted, some incoherencies, mainly regarding the local and the global detachment process in that “conventional theory”, are identified in the present work. To facilitate the understanding of the detachment process between a ribbed steel rebar and concrete, an analytical solution is developed. An experimental program with 33 pull-out tests covering three different ribbed steel rebars with different diameters and embedded lengths was carried out. Based on the experimental load–displacement at the pulled end responses, a new local bond-slip relationship with friction is proposed. In the end, the new bond-slip relationship, as well as other known relationships, is implemented into a Finite Element (FE) commercial code and the results are compared to the experimental data. Based on these preliminary results and up to the yielding point of the steel rebars, the new proposed local bond-slip model is the only one able to clearly distinguish and simulate either the local and the global performances of the tested specimens. © 2020 Institution of Structural Engineers

B
Yang, Y., M. A. G. Silva, H. Biscaia, and C. Chastre. "Bond durability of CFRP laminates-to-steel joints subjected to freeze-thaw." Composite Structures. 212 (2019): 243-258. AbstractWebsite

The degradation mechanisms of bonded joints between CFRP laminates and steel substrates under severe environmental conditions require more durability data and studies to increase the database and better understand their causes. Studies on bond properties of double-strap CFRP-to-steel bonded joints with two different composite materials as well as adhesive coupons subjected to freeze-thaw cycles for 10,000 h were conducted to reduce that gap. In addition, the equivalent to the number of thermal cycles and their slips induced in the CFRP laminates was replicated by an equivalent (mechanical) loading-unloading history condition imposed by a static tensile machine. The mechanical properties of the adhesive coupons and the strength capacity of the bonded joints were only slightly changed by the artificial aging. It was confirmed that the interfacial bond strength between CFRP and adhesive is critically related to the maximum shear stress and failure mode. The interfacial bond strength between adhesive and steel degraded with the aging. However, the equivalent thermal cyclic bond stress caused no detectable damage on the bond because only the interfacial elastic regime was actually mobilized, which confirmed that pure thermal cycles aging, per se, at the level imposed, have a low impact on the degradation of CFRP-to-steel bonded joints. © 2019 Elsevier Ltd

C
Yang, Y., M. A. G. Silva, H. Biscaia, and C. Chastre. "CFRP-to-steel bonded joints subjected to cyclic loading: An experimental study." Composites Part B: Engineering. 146 (2018): 28-41. AbstractWebsite

Pseudo-cyclic and cyclic loading were applied to CFRP-to-steel bonded joints built with two different CFRP laminates. In this paper, the strength capacity and bond-slip curves are presented and compared. The modes of failure are also described and associated with the types of material used, and the observed performances are correlated. The analysis of the results showed a threshold value for loading and amplitude level, below which the cyclic loading caused no detectable damage. For cycles above that limit, the region of the joints around the loaded end presented degradation reflected on the bond-slip stiffness and on the increase of residual deformation. It was found that the normalized dissipated energies either obtained from the bond-slip relationship or from the load-slip response had the same trend. The experimental data allowed also to establish a relationship between the damage developed within the interface and the normalized slip. A preliminary estimate of fatigue limit based on those data is suggested. © 2018 Elsevier Ltd

E
Biscaia, H. C., C. Chastre, and M. A. G. Silva. "Estimations of the debonding process of aged joints through a new analytical method." Composite Structures. 211 (2019): 577-595. AbstractWebsite

The estimation of the long-term durability of adhesively bonded interfaces between Fiber Reinforced Polymers (FRP) and concrete substrates is crucial because degradation potentiates FRP premature debonding. One of the main reasons for mistrusting the use of FRP composites is the premature debonding phenomenon, which, associated to degradation, has been preventing their widespread use. In this research work, an analytical model is proposed that introduces ageing to estimate the effects of degradation of Glass (G) FRP externally bonded to concrete. Cycles were used to experimentally accelerate ageing of beam specimens, namely, (i) salt fog cycles; (ii) wet-dry cycles with salted water; (iii) temperature cycles between −10 °C and +30 °C; and (iv) temperature cycles between +7.5 °C and +47.5 °C. Based on the experimental results obtained and a corresponding bond-slip curve, the analytical model predicts the complete debonding process between FRP composites and a substrate. Consequently, the temporal evolution of the degradation of the bonded interfaces can be calculated and compared with the initial situation prior to exposure. The effects of the environmental conditions are reported and compared. © 2018 Elsevier Ltd

M
Yang, Y., H. Biscaia, M. A. G. Silva, and C. Chastre. "Monotonic and quasi-static cyclic bond response of CFRP-to-steel joints after salt fog exposure." Composites Part B: Engineering. 168 (2019): 532-549. AbstractWebsite

Deterioration of adhesively bonded CFRP/steel systems in salt fog environment, i.e., deicing salts and ocean environments, has to be taken into account in the design of steel strengthened structures. In the present work, monotonic and quasi-static cyclic loading were applied to CFRP-to-steel double strap joints for two kinds of CFRP laminates after being aged for a period of 5000 h to evaluate the bond behavior. The bonded joints exposed to salt fog had a different failure mode than that observed in the control specimens (0 h of exposure). The severe reduction of the maximum bond stress resulted from damage initiation that occurred in the corrosion region of the steel substrate, associated with final partial rupture on the corroded steel substrate around the edge of the bonded area: it was also correlated with reduced load carrying capacity. Results of pseudo-cyclic tests showed that the relationship between a local damage parameter (D) and normalized local dissipated energy (W d /G f ) and the normalized slip increment (ΔS/ΔS ult ) exhibited almost the same trend in the un-aged and aged bonded joints. The normalized slip increment can be seen as a direct indicator for the local and global damage for the un-aged and aged bonded joints. However, monotonic and quasi-static cyclic tests results revealed that the stress concentration due to local corrosion of steel substrate could lead to brittle rupture or accelerated cumulative damage once the aged bonded interface had become weaker. The bonded joints have exhibited also a smaller relative deformation capacity between CFRP and steel. © 2019 Elsevier Ltd

O
Silva, M. A. G., H. Biscaia, and P. Ribeiro. "On factors affecting CFRP-steel bonded joints." Construction and Building Materials. 226 (2019): 360-375. AbstractWebsite

Failure of structural steel members strengthened with Carbon Fibre Reinforced Polymers (CFRP) may occur at the joints CFRP-steel and this study examines variables that alter or explain the corresponding reduction of load capacity for a specific CFRP laminate, adhesive and steel. Factors and parameters likely to be influential like surface treatment prior to bonding, the bonded length, the glass transition temperature (Tg) of the adhesive, the exposure to aggressive environment, the temperature at service and different types of loading were examined. The experimental program selected double strap CFRP-steel bonded joints under shear for the analysis. The steel surfaces to be bonded were subjected to sand blasting (6.3 bar) or abrasive grinding (6.9 bar) corresponding to thorough blast cleaning Sa2; surfaces rusted after exposure to salt fog at 35 °C were also considered. Differences detected in responses of specimens treated by sand or steel spheres blasting were relatively minor. Tests made at increasing ambient temperatures confirmed that service temperature near and above adhesive Tg caused rapid deterioration of ultimate capacity and change of failure modes. Salt fog cycles (SF) originated the most significant losses of joint capacity. Application of cyclic static loading above the critical loading threshold obtained for unaged joints did not reduce the capacity of joints previously aged by freeze-thaw. The same cyclic loading after salt fog cycles, reduced bond capacity and increase the ultimate slip, suggesting larger effective length. Despite the losses of capacity, microscopic changes of structural nature could not be identified. © 2019 Elsevier Ltd

S
Biscaia, H. C., C. Chastre, and M. A. G. Silva. "A Simple Method for the Determination of the Bond-Slip Model of Artificially Aged Joints." Journal of Composites for Construction. 23 (2019). AbstractWebsite

The durability of adhesively bonded fiber-reinforced polymers (FRP) and concrete substrates has been the subject of recent studies. The degradation of bonded interfaces conjugated with other factors that affect the interface strength may compromise the potentialities of using FRP in externally bonded reinforced (EBR) concrete structures. However, the estimation of the effects of degradation on these bonded interfaces and the analytical methodologies to quantify them are not fully understood. The present work focuses on a local bond-slip model characterized by two parameters for which the values are obtained experimentally. Then, the determination of the local bond-slip relationship of a glass (G) FRP-to-concrete interface can be estimated. The assessment of the degradation of the bonded interface when subjected to cycles of (1) salt fog; (2) wet-dry environments with salt water; (3) temperatures between -10°C and +30°C; and (4) temperatures between +7.5°C and +47.5°C is presented. The results obtained using the proposed bond-slip model led to the conclusion that after 10,000 h of exposure to temperature cycles between -10°C and +30°C, there was a small change in the GFRP-to-concrete interface performance, whereas the effects on the bonded interface for the specimens subjected to temperature cycles between +7.5°C and +47.5°C were far more most severe. © 2019 American Society of Civil Engineers.