Publications

Export 2 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
F
Franco, N., C. Chastre, and H. Biscaia. "Strengthening RC Beams Using Stainless Steel Continuous Reinforcement Embedded at Ends." Journal of Structural Engineering (United States). 146 (2020). AbstractWebsite

An innovative system for the flexural strengthening of RC structures designated continuous reinforcement embedded at ends (CREatE) is presented in this research work. The main characteristics and procedures for the application of this new strengthening technique were described. To evaluate the performance and efficiency of this technique, a set of RC T-beams was subjected to a four-point bending test setup. The reference RC T-beam was not strengthened; all other RC T-beams were strengthened with postinstalled stainless steel bars. Different application arrangements and different amounts of reinforcement were considered, and the CREatE technique was tested under monotonic and cyclic loading histories. The tests were modeled using the nonlinear finite-element method (FEM) to predict the performance of the RC T-beams, which allowed analyzing, in detail and with good agreement with the experiments, the influence of the CREatE technique on the (1) strains developed in the concrete, (2) cracking patterns, and (3) strains developed in the stirrups. Apart from the expected increases in the flexural stiffness and load-bearing capacity of the T-beams, the results showed that the use of the CREatE technique led to higher ductility indexes in the displacement compared with traditional techniques. Moreover, with the CREatE technique, premature debonding of the reinforcement material from the concrete tensioned surface - commonly observed in externally bonded reinforcement (EBR) strengthening systems - was eliminated. © 2020 American Society of Civil Engineers.

Franco, N., H. Biscaia, and C. Chastre. "Experimental and numerical analyses of flexurally-strengthened concrete T-beams with stainless steel." Engineering Structures. 172 (2018): 981-996. AbstractWebsite

This work presents the results and the main conclusions of a series of experimental tests carried out to evaluate the efficiency of post-installed stainless steel reinforcement on the flexural strengthening of Reinforced Concrete (RC) T-beams when the bonding techniques EBR (Externally Bonded Reinforcement), NSM (Near Surface Mounted) and MA-EBR (EBR with Mechanical Anchors) are used. The RC T-beams were also modelled using a commercial Finite Element (FE) software in order to predict their behaviour until the rupture. For this purpose, a set of single-lap shear tests were also carried out to evaluate the local bond-slip relationships developed within the Stainless Steel (SS)-to-concrete interface. Due to the experimental bond-slip relationships, the numerical simulations were able to predict, with good accuracy, the different behaviours of the RC T-beams until their rupture. Moreover, the different rupture modes observed on all the RC T-beams herein tested were very well estimated by the numerical analyses. The tests of the RC T-beams showed that all the strengthening techniques allowed their flexural stiffness to be increased. Nevertheless, the RC T–beams strengthened with the EBR and NSM techniques had premature ruptures, i.e. the rupture in the RC T-beams occurred even before the yielding of their steel reinforcements. The RC T-beam strengthened with the MA-EBR technique showed good ductility and the highest load bearing capacity, which means that the MA-EBR technique is the best bonding technique herein used. © 2018 Elsevier Ltd