Publications

Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Fernandes, M., Y. Vygranenko, M. Vieira, G. Lavareda, Nunes C. de Carvalho, and A. Amaral. "Automated rf-PERTE System for Room Temperature Deposition of TCO Coatings." Energy Procedia 102 (2016): 96-101. Abstract

In this work we present a fully automated plasma-enhanced reactive thermal evaporation system (rf-PERTE) that can be used for the deposition of transparent metal oxide films without intentional heating of the substrate. The system and developed software enables the full control over critical deposition conditions such as mass flow of oxygen, process pressure, current flowing through crucible and rf-power. These parameters are automatically adjusted during the deposition thus keeping them in a narrow process window. This way, highly transparent and conductive coating can be deposited with a high degree of reproducibility of the optical and electrical characteristics. The resistivity of 9×10-4 Ω-cm and the peak transmittance of 90% in the visible spectral range were achieved for indium oxide films deposited on glass substrates. This technique is also suitable for the deposition of transparent conducting coatings in a wide range of plastic materials for flexible solar cells. In particular, we have successfully deposited indium oxide on PEN (polyethylene naphtalate) sheets with electrical and optical properties approaching the ones for films on glass.

F
Costa, J., M. Fernandes, M. Vieira, G. Lavareda, CN Carvalho, and A. Karmali. "Field Effect and Light-Assisted a-Si:H Sensors for Detection of Ions in Solution." SENSOR LETTERS 8 (2010): 493-496. Abstract

In this paper we present an amorphous silicon device that can be used in two operation modes to measure the concentration of ions in solution. While crystalline devices present a higher sensitivity, their amorphous counterpart present a much lower fabrication cost, thus enabling the production of cheap disposable sensors for use, for example, in the food industry. The devices were fabricated on glass substrates by the PECVD technique in the top gate configuration, where the metallic gate is replaced by an electrolytic solution with an immersed Ag/AgCl reference electrode. Silicon nitride is used as gate dielectric enhancing the sensitivity and passivation layer used to avoid leakage and electrochemical reactions. In this article we report on the semiconductor unit, showing that the device can be operated in a light-assisted mode, where changes in the pH produce changes on the measured ac photocurrent. In alternative the device can be operated as a conventional ion selective field effect device where changes in the pH induce changes in the transistor's threshold voltage.

M
Costa, J., M. Fernandes, M. Vieira, G. Lavareda, and A. Karmali. "Membrane Selectivity versus Sensor Response in Hydrogenated Amorphous Silicon CHEMFETs Using a Semi-Empirical Model." JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 11 (2011): 8844-8847. Abstract

Toxic amides, such as acrylamide, are potentially harmful to Human health, so there is great interest in the fabrication of compact and economical devices to measure their concentration in food products and effluents. The CHEmically Modified Field Effect Transistor (CHEMFET) based on amorphous silicon technology is a candidate for this type of application due to its low fabrication cost. In this article we have used a semi-empirical model of the device to predict its performance in a solution of interfering ions. The actual semiconductor unit of the sensor was fabricated by the PECVD technique in the top gate configuration. The CHEMFET simulation was performed based on the experimental current voltage curves of the semiconductor unit and on an empirical model of the polymeric membrane. Results presented here are useful for selection and design of CHEMFET membranes and provide an idea of the limitations of the amorphous CHEMFET device. In addition to the economical advantage, the small size of this prototype means it is appropriate for in situ operation and integration in a sensor array.

P
Lavareda, G., C. Nunes de Carvalho, A. M. Ferraria, A. M. Botelho Do Rego, and A. Amaral. "p-Type Cuo(X) Thin Films by rf-Plasma Enhanced Reactive Thermal Evaporation: Influence of rf-Power Density." JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 12 (2012): 6754-6757. Abstract

Copper oxide is a well known p-type semiconductor material, usually obtained by thermal oxidation of copper thin-films within few minutes, at atmospheric pressure. In this paper, thin films of copper oxide that were deposited by radio-frequency plasma enhanced reactive thermal evaporation of copper at room temperature, without any post-deposition annealing treatment, are studied. The deposition of good quality p-type semiconductor oxide to be used in the fabrication of p-TFTs is the purpose of this work. The thickness of the films varies from 97 up to 160 nm. The influence of rf power density on chemical, electrical and optical properties of the films was studied. Samples present conductivity within the range of 6 x 10(-5) to 4 x 10(2) Omega(-1) cm(-1) (thermal activation energy in the interval 0.46 to 0.01 eV). The p-type conductivity of the films was confirmed by Seebeck effect in the more conductive samples. Surface composition obtained by XPS analysis was correlated with optical and electrical properties, showing that rf-power plays a main role in changes of material characteristics.