Publications

Export 9 results:
Sort by: Author Title Type [ Year  (Desc)]
2014
Merino, E. G., G. Lavareda, P. Brogueira, A. Amaral, C. Nunes de Carvalho, and PL Almeida. "InOx thin films deposited by plasma assisted evaporation: Application in light shutters." VACUUM 107 (2014): 116-119. Abstract

An integration of undoped InOx and commercial ITO thin films into laboratory assembled light shutter devices is made. Accordingly, undoped transparent conductive InOx thin films, about 100 nm thick, are deposited by radiofrequency plasma enhanced reactive thermal evaporation (rf-PERTE) of indium teardrops with no intentional heating of the glass substrates. The process of deposition occurs at very low deposition rates (0.1–0.3 nm/s) to establish an optimized reaction between the oxygen plasma and the metal vapor. These films show the following main characteristics: transparency of 87% (wavelength, λ = 632.8 nm) and sheet resistance of 52 Ω/sq; while on commercial ITO films the transparency was of 92% and sheet resistance of 83 Ω/sq. The InOx thin film surface characterized by AFM shows a uniform grain texture with a root mean square surface roughness of Rq∼2.276 nm. In contrast, commercial ITO topography is characterized by two regions: one smoother with Rq∼0.973 nm and one with big grains (Rq∼3.617 nm). For the shutters assembled using commercial ITO, the light transmission coefficient (Tr) reaches the highest value (Trmax) of 89% and the lowest (Trmin) of 1.3% [13], while for the InOx shutters these values are 80.1% and 3.2%, respectively. Regarding the electric field required to achieve 90% of the maximum transmission in the ON state (Eon), the one presented by the devices assembled with commercial ITO coated glasses is 2.41 V/μm while the one presented by the devices assembled with InOx coated glasses is smaller, 1.77 V/μm. These results corroborate the device quality that depends on the base materials and fabrication process used.

2013
Nunes de Carvalho, C., P. Parreira, G. Lavareda, P. Brogueira, and A. Amaral. "P-type CuxS thin films: Integration in a thin film transistor structure." THIN SOLID FILMS 543 (2013): 3-6. Abstract

CuxS thin films, 80 nm thick, are deposited by vacuum thermal evaporation of sulfur-rich powder mixture, Cu2S:S (50:50 wt.%) with no intentional heating of the substrate. The process of deposition occurs at very low deposition rates (0.1-0.3 nm/s) to avoid the formation of Cu or S-rich films. The evolution of CuxS films surface properties (morphology/roughness) under post deposition mild annealing in air at 270 degrees C and their integration in a thin film transistor (TFT) are the main objectives of this study. Accordingly, Scanning Electron Microscopy studies show CuxS films with different surface morphologies, depending on the post deposition annealing conditions. For the shortest annealing time, the CuxS films look to be constructed of grains with large dimension at the surface (approximately 100 nm) and consequently, irregular shape. For the longest annealing time, films with a fine-grained surface are found, with some randomly distributed large particles bound to this fine-grained surface. Atomic Force Microscopy results indicate an increase of the root-mean-square roughness of CuxS surface with annealing time, from 13.6 up to 37.4 nm, for 255 and 345 s, respectively. The preliminary integration of CuxS films in a TFT bottom-gate type structure allowed the study of the feasibility and compatibility of this material with the remaining stages of a TFT fabrication as well as the determination of the p-type characteristic of the CuxS material. (c) 2013 Elsevier B.V. All rights reserved.

Dalui, S., S. Rout, A. J. Silvestre, G. Lavareda, L. C. J. Pereira, P. Brogueira, and O. Conde. "Structural, electrical and magnetic studies of Co:SnO2 and (Co,Mo):SnO2 films prepared by pulsed laser deposition." APPLIED SURFACE SCIENCE 278 (2013): 127-131. Abstract

Here we report on the structural, optical, electrical and magnetic properties of Co-doped and (Co,Mo)-codoped SnO2 thin films deposited on r-cut sapphire substrates by pulsed laser deposition. Substrate temperature during deposition was kept at 500 degrees C. X-ray diffraction analysis showed that the undoped and doped films are crystalline with predominant orientation along the {[}1 0 1] direction regardless of the doping concentration and doping element. Optical studies revealed that the presence of Mo reverts the blue shift trend observed for the Co-doped films. For the Co and Mo doping concentrations studied, the incorporation of Mo did not contribute to increase the conductivity of the films or to enhance the ferromagnetic order of the Co-doped films. (C) 2012 Elsevier B.V. All rights reserved.

2012
Parreira, P., E. Torres, C. Nunes, Nunes C. de Carvalho, G. Lavareda, A. Amaral, and M. J. Brites. "Dye-sensitized 1D anatase TiO2 nanorods for tunable efficient photodetection in the visible range." SENSORS AND ACTUATORS B-CHEMICAL 161 (2012): 901-907. Abstract

TiO2 films with enhanced photosensitivity were deposited on alkali free glass substrates without intentional substrate heating by pulsed DC magnetron reactive sputtering with an average thickness of about 2 mu m. Three dyes, commercial N719 and two new organic dyes were impregnated in order to control the optical spectral selectivity of such films. The type of dye used proved to dramatically influence the device's response to radiation pulses. The practical breakthrough is the use of different dyes according to the region of the electromagnetic spectrum one wants to detect. Devices with photocurrent 6 orders of magnitude higher than the dark current (from similar to 2 x 10(-12) to 2 x 10(-6) A for a 100 V bias) were fabricated with a spectral response within the visible range of the electromagnetic spectrum. In addition, this approach is likely to allow for the fabrication of hybrid photodetectors on cheap heat sensible flexible polymeric substrates. (C) 2011 Elsevier B.V. All rights reserved.

Amaral, A., P. Brogueira, O. Conde, G. Lavareda, and C. Nunes de Carvalho. "Device quality InOx:Sn and InOx thin films deposited at room temperature with different rf-power densities." THIN SOLID FILMS 526 (2012): 221-224. Abstract

The influence of tin doping on the electrical, optical, structural and morphological properties of indium oxide films produced by radio-frequency plasma enhanced reactive thermal evaporation is studied, as transport properties are expected to improve with doping. Undoped and tin doped indium oxide thin films are deposited at room temperature using both pure In rods and (95-80) % In:(5-20) % Sn alloys as evaporation sources and 19.5 mW/cm(2) and 58.6 mW/cm(2) as rf-power densities. The two most important macroscopic properties - visible transparency and electrical resistivity - are relatively independent of tin content (0-20%). Visible transmittance of about 75% and electrical resistivity around 5 x 10(-4) Omega.cm can be observed in the films. The structural features are similar for all samples. Nevertheless, the surface morphology characterization shows that the homogeneity of the films varies according to the tin content. Moreover this variation is a balance between the rf-power and the tin content in the alloy: i) films with small and compact grains are produced at 58.6 mW/cm(2) from a 5% Sn alloy or at 19.5 mW/cm(2) from a 15% Sn alloy and consequently, smooth surfaces with reduced roughness and similar grain size and shape are obtained; ii) films showing the presence of aggregates randomly distributed above a tissue formed of thinner grains and higher roughness are produced at the other deposition conditions. (C) 2012 Elsevier B. V. All rights reserved.

Lavareda, G., C. Nunes de Carvalho, A. M. Ferraria, A. M. Botelho Do Rego, and A. Amaral. "p-Type Cuo(X) Thin Films by rf-Plasma Enhanced Reactive Thermal Evaporation: Influence of rf-Power Density." JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 12 (2012): 6754-6757. Abstract

Copper oxide is a well known p-type semiconductor material, usually obtained by thermal oxidation of copper thin-films within few minutes, at atmospheric pressure. In this paper, thin films of copper oxide that were deposited by radio-frequency plasma enhanced reactive thermal evaporation of copper at room temperature, without any post-deposition annealing treatment, are studied. The deposition of good quality p-type semiconductor oxide to be used in the fabrication of p-TFTs is the purpose of this work. The thickness of the films varies from 97 up to 160 nm. The influence of rf power density on chemical, electrical and optical properties of the films was studied. Samples present conductivity within the range of 6 x 10(-5) to 4 x 10(2) Omega(-1) cm(-1) (thermal activation energy in the interval 0.46 to 0.01 eV). The p-type conductivity of the films was confirmed by Seebeck effect in the more conductive samples. Surface composition obtained by XPS analysis was correlated with optical and electrical properties, showing that rf-power plays a main role in changes of material characteristics.

2011
Parreira, P., G. Lavareda, A. Amaral, A. M. Botelho Do Rego, O. Conde, J. Valente, F. Nunes, and Nunes C. de Carvalho. "Transparent p-type CuxS thin films." JOURNAL OF ALLOYS AND COMPOUNDS 509 (2011): 5099-5104. Abstract

The effect of different mild post-annealing treatments in air, at 270 degrees C, for 4-6 min, on the optical, electrical, structural and chemical properties of copper sulphide (CuxS) thin films deposited at room temperature are investigated. CuxS films, 70nm thick, are deposited on glass substrates by vacuum thermal evaporation from a Cu2S:S (50:50 wt.%) sulphur rich powder mixture. The as-deposited highly conductive crystalline CuS (covellite) films show high carrier concentration (similar to 10(22) cm(-3)), low electrical resistivity (similar to 10(-4) Omega cm) and inconclusive p-type conduction. After the mild post-annealing, these films display increasing values of resistivity (similar to 10(-3) to similar to 10(-2) Omega cm) with annealing time and exhibit conclusive p-type conduction. An increase of copper content in CuxS phases towards the semiconductive Cu2S (chalcocite) compound with annealing time is reported, due to re-evaporation of sulphur from the films. However, the latter stoichiometry was not obtained, which indicates the presence of vacancies in the Cu lattice. In the most resistive films a Cu2O phase is also observed, diminishing the amount of available copper to combine with sulphur, and therefore the highest values of optical transmittance are reached (65%). The appearance on the surface of amorphous sulphates with annealing time increase is also detected as a consequence of sulphur oxidation and replacement of sulphur with oxygen. All annealed films are copper deficient in regards to the stoichiometric Cu2S and exhibit stable p-type conductivity. (C) 2011 Elsevier B.V. All rights reserved.

2010
Ribeiro, Celso, Pedro Brogueira, Guilherme Lavareda, Carlos N. Carvalho, Ana Amaral, Luis Santos, Jorge Morgado, Ulrich Scherf, and Vasco D. B. Bonifacio. "Ultrasensitive microchip sensor based on boron-containing polyfluorene nanofilms." BIOSENSORS & BIOELECTRONICS 26 (2010): 1662-1665. Abstract

A fluorene-based pi-conjugated copolymer with on-chain dibenzoborole units was used in the development of a nanocoated gold interdigitated microelectrode array device which successfully detects fluoride in a broad range of concentrations (10(-11)-10(-4) M) in aqueous solution, upon impedance spectroscopy measurements. A calibration curve obtained over this range of concentrations and a new analytical method based on impedance spectroscopy measurements in aqueous solution is proposed. The sensor nanofilm was produced by spin-coating and diagnosed via spectroscopic ellipsometry, AFM, and electrically conductivity techniques. Changes in the conductivity due to the boron-fluoride complex formation seem to be the major mechanism behind the dependence of impedimetric results on the fluoride concentration. (C) 2010 Elsevier B.V. All rights reserved.

Amaral, A., P. Brogueira, G. Lavareda, and Nunes C. de Carvalho. "On the Role of Tin Doping in InOx Thin Films Deposited by Radio Frequency-Plasma Enhanced Reactive Thermal Evaporation." JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 10 (2010): 2713-2716. Abstract

In view of the increasing need for larger-area display devices with improved image quality it becomes increasingly important to decrease resistivity while maintaining transparency in transparent conducting oxides (TCOs). Accomplishing the goal of increased conductivity and transparency will require a deeper understanding of the relationships between the structure and the electro-optical properties of these materials. In this work we study the role of tin doping in InOx thin films. Undoped indium oxide (InOx) and indium tin oxide (ITO) thin films were deposited at room temperature by radio-frequency plasma enhanced reactive thermal evaporation (rf-PERTE), a new technique recently developed in our laboratory using as evaporation source either In rods or a 90%In:10%Sn alloy, respectively. The two most important macroscopic properties-optical transparency and electrical resistivity-seem to be independent of the tin content in these deposition conditions. Results show that the films present a visible transmittance of the order of 82%, and an electrical resistivity of about 8 x 10(-4) Omega . cm. Surface morphology characterization made by atomic force microscopy (AFM) showed that homogeneity of the films deposited from a 90%In:10%Sn alloy is enhanced (a film with small and compact grains is produced) and consequently a smooth surface with reduced roughness and with similar grain size and shape is obtained. Films deposited from pure In rods evaporation source show the presence of aggregates randomly distributed above a film tissue formed of thinner grains.