


New Trends in Smart Technologies  

Christian Boller 
Hartmut Janocha (Eds.) 

Fraunhofer Verlag

Fraunhofer-Institut für 
Zerstörungsfreie Prüfverfahren IZPF

Universität des Saarlandes



Contact

Christian Boller, Prof. Dr.-Ing. 
Chair of Testing and Quality Assurance, Saarland University and
Director of Fraunhofer Institute Nondestructive Testing IZFP
Campus E 3.1 
66123 Saarbrücken/Germany 
Phone 	 +49 681 9302-3800 
Fax: 	 +49 681 9302-11-3800 
E-Mail:	 christian.boller@izfp.fraunhofer.de
Website:	www.izfp.fraunhofer.de 

Members of staff:
Birgit Conrad-Markschläger, Roger Pfau

Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliografic data is 
available in the Internet at <http://dnb.d-nb.de>.

Printing and Bindery:
Mediendienstleistungen des 
Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart 

Printed on acid-free and chlorine-free bleached paper.

All rights reserved; no part of this publication may be translated, reproduced, stored in a retrieval system, or 
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, with-
out the written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. The quotation of those designations in whatever way does not imply the conclusion that the use of 
those designations is legal without the consent of the owner of the trademark.

© by Fraunhofer Verlag, 2013, ISBN 978-3-8396-0577-6
Fraunhofer Information-Centre for Regional Planning and Building Construction IRB
P.O. Box 80 04 69, D-70504 Stuttgart
Nobelstrasse 12, D-70569 Stuttgart
Phone	 +49 711 970-2500
Fax 	 +49 711 970-2507
E-Mail : verlag@fraunhofer.de
URL	 www.verlag.fraunhofer.de



Contents 

Preface  

  
  

Fundamentals 
 

Predictive Modeling of Smart Structures with In-situ Sensing Capability 
Victor Giurgiutiu 
 
Smart Ultrasonic Thin Film Based Sensors Systems - Investigations on 
Aluminium Nitride for the Excitation of High Frequency Ultrasound 
T. Herzog, S. Walter & H. Heuer 
 
Self – Similar Patterns on A1 Single Crystal Foils Under Constrained Cyclic Tension 
and Their Capabilities for Smart Sensor Applications 
P.V. Kuznetsov, Y.I.Tyurin, I.P.Chernov, T.I.Sigfusson 
 
Influence of Piezoactuator Coupling Degradation on Vibration Control Effectiveness 
M. Pietrzakowski 
 
Carbon Nanotube-Based Actuators 
S. Geier, T. Mahrholz, P. Wierach & M. Sinapius 
 
Working Behaviour and Control of Magnetorheological Dampers 
Felix Weber 
 
Uncertainty in Passive and Active Stabilisation of Critically Loaded Columns 
G. C. Enss, R. Platz, H. Hanselka 
 
How Simulation of Failure Risk Can Improve Structural Reliability –Application to 
Pressurized Components and Pipes 
Dragos D. Cioclov 

 

 
 
 

1 
 
 
 

11 
 
 
 

19 
 
 
 

27 
 

39 
 
 

51 
 
 

61 
 
 
 

69 

Modelling 
 

Dielectric Stack Actuators with Innovative Electrode Design 
W. Kaal, J.Hansmann & S. Herold 

 
Development of a Damage Quantification Model for Composite Skin-Stiffener 
Structures 
R. Loendersloot, T.H. Ooijevaar, A. de Boer, & R. Akkerman 
 
FEM-Based Simulation, Optimization and Control of Adaptive Lightweight Structures 
M. Fischer, R. Wüchner & K.-U. Bletzinger  

 

On Modeling of Energy Self-Sufficient Vibration Absorber Sensor Modules 
M. Kurch & D. Mayer 

 
Failure Risk Assessment by Integration of Probabilistic Fracture Mechanics and 
Quantitative Non-Destructive Inspection – A Structural Health Monitoring View 
Dragos D. Cioclov 

 

 
 
 

89 
 
 
 
 

99 
 
 

109 
 
 

119 
 
 
 

127 

Applications 
 

Application of Risk Based Inspection to Heat Exchangers of a Chemical Plant 
N. Farbas, A. Murariu, N. Pasca 

 

 
 
 

141 
 
 



Experimental Determination of the Multi-Axial Strain Transfer from CFRP-Laminates 
to Embedded Bragg Sensor 
N. Lammens 
 
Impact and Damage Localization in Carbon Fiber Reinforced Plastic Plates by a 
Piezoelectric Sensor Network 
A. Ungethüm and R. Lammering 

 
Fatigue Crack Detection using Nonlinear Vibro-Acoustic Modulations – Comparative 
Study of Piezo-Based Excitation 
R. B. Jenal, W.J. Staszewski, A. Klepka & T. Uhl 
 
Crack Detection by Wave Propagation in Overhead Transmission Lines 
L. Gaul, T. Haag, H. Sprenger, S. Bischoff 
 
Vibration Damping of Turbomachinery Components 
R. Bastaits, B. Mokrani, G. Rodrigues, I. Burda, R. Viguié, A. Preumont 
 
Bridge Hinge-Restrainers Built up of NITI Superelastic Shape-Memory Alloys 
F. P. Amarante Dos Santos & Corneliu Cismasiu 

 
Active Control of Flow-Induced Acoustic Resonance Inside Downstream Cavities 
Through Surface Perturbation 
L. Cheng, Z. B Lu, D. Halim  

 
Method of Impact Energy Dissipation by the Use of the Pneumatic Impact Absorber 
with a Piezo-Valve 
R. Wiszowaty, J. Biczyk, C. Graczykowski, G. Mikułowski 
 
Thermoelectric Energy Harvester for a Smart Bearing Concept 
Michał Lubieniecki & Tadeusz Uhl 

 
Static-Aeroelastic Optimization of Surface Actuated Variable-Camber Piezocomposite 
Morphing Wings 
O. Bilgen, S. Barbarino & M. I. Friswell 
 
Adaptive Aeronautical Structures Demonstration on a Modular Designed Micro Aerial 
Vehicle 
C.-M. Kuo, C. Boller 

 

 
 

151 
 
 
 

157 
 
 
 

165 
 
 

177 
 
 

185 
 
 

195 
 
 
 

205 
 
 
 
 

223 
 
 

231 
 
 
 

245 
 
 
 

255 

 



 
 PREFACE  

Adaptive, intelligent or smart technologies, materials and structures, or even expressions such as Adaptronics are now 
around within the scientific community for nearly three decades. It encompasses sensing, actuation and control capabilities 
to be combined from a systems approach would this happen on a macro, meso or even micro scale. Smart technologies, how 
it is considered as the summarizing term here, have generated a variety of interdisciplinary activities and fields. Starting 
from technology development in the early and mid-20

th

 century technologies became increasingly specialized with the 
danger of loosing the view of an integrated systems approach. Many of the existing technical systems in transportation, 
manufacturing, processing, medicine, computation, electronics and others have made significant progress over the past 
centuries and decades. However a lot of concern also emerged with regard to technical governance over a society and as to 
where the human being and nature would find its role within the process. This concern has triggered a large amount of 
research in the area of biomimetics and bio-inspiration which has been an answer from biology’s side to a natural and 
engineering science request. Structures (macro) as well as materials (micro) have been considered, drawing upon an 
understanding of materials and systems with sensing and actuation capabilities as well as control. This includes modelling, 
numerical simulation, realisation on a laboratory and finally also real application scale. The diversity of disciplines 
involved, comprising materials science and engineering, structural design, strength, dynamics and fatigue, control, 
electrical engineering, applied mathematics, signal processing, non-destructive testing, artificial intelligence and much 
more, makes up possibly one of the most interdisciplinary areas of engineering science history has ever seen.  

Smart technologies have triggered a variety of new research areas which have gradually become subjects of their own or 
merged into further areas of engineering. As regards sensing structural health monitoring (SHM) is one of those topics 
which are increasingly discussed with respect to structural design, inspection and life cycle management. With respect to 
actuation and damping a lot of novel actuation principles have been established, starting from the generation of guided 
waves in the context of SHM, vibration dampers as a means of load alleviators and energy harvesters, or as elements of 
morphing structures that optimize their shape in accordance to operational conditions. What happens at the macro scale is 
allowed to also happen at the micro scale where micro electro-mechanical systems (MEMS) are still the major 
representatives. MEMS on the one side may be considered as a sensing system only but has to be considered as a smart 
system completely when it comes to drug delivery and other similar types such as considered within the biomedical sector. 
Progress in material science has provided a comprehensive and theoretical framework for implementing multi-functionality 
into materials, and the development of high speed digital computation has allowed that framework to be gradually 
transformed into methodologies to be considered for practical design and manufacturing. Actuation within a system is not 
possible without control. Enhancement in computation power and decentralization as well as cost has allowed control 
algorithms to be applied, that have not been applicable in the past. Development of products in the electronics entertainment 
and leisure industry is currently ongoing at such a pace, technical standard, and as a consequence of high volume 
production comparatively low cost, that smart technologies developed can virtually be obtained by ‘cannibalizing’ modern 
electronic toys towards a new smart system. A rewarding area where this is happening in this regard is robotics. Micro 
(unmanned) aerial vehicles with different sensors and morphing aerodynamic profiles have made a start with a trend of 
gradually applying technologies developed also to ground and possibly even under water vehicles. Such a fleet of specific 
small robotic vehicles being designed on a modular basis and operating even in swarms may be the automated inspection 
helpers in the not too far future.  

The smart technologies’ community nowadays meets at a variety of opportunities physically as well as intellectually. Those 
opportunities include R&D projects, conferences and seminars, journals and books. Many of these opportunities have been 
generated in a variety of locations around the globe over the past that are impossible to be mentioned here. The idea of 
compiling this book has been generated along the 5

th

 ECCOMAS Thematic Conference on Smart Structures and Materials 
held in Saarbrücken/Germany in the summer of 2011. From the variety of papers presented at this conference a variety were 
considered worth to be expanded and to be compiled in a book providing recent trends with respect to the development and 
realization of smart technologies and which has become the result of the book presented here. The different articles provide 
an insight into where development in smart technologies stands today with a specific emphasis towards technology 
application.  



This book is structured into three main sections including a) Fundamentals, b) Modeling and c) Applications. As regards the 
fundamentals, aspects related to different types of sensors and actuators are addressed as well as a system’s reliability and 
risk assessment, the latter being a major issue not too much considered with regard to smart technologies so far. Within the 
modeling section different aspects are considered such as actuators, damage in composite materials, adaptive structures 
with regard to shape optimization, vibration absorption as well as probabilistic aspects within the frame of SHM. A large 
amount of the book is devoted to smart technologies’ applications, starting from risk based inspections and looking into a 
variety of SHM-based applications related to metallic as well as composite materials and even addressing the topic of 
monitoring electric transmission lines. With a specific view on active blade damping and bridge hinge restrainers some 
recent developments with the actuation side are discussed as well as some recent developments in flow control including 
the aspect of morphing structures in micro aerial vehicles.  

All of those smart technologies’ solutions can have some inspiring impacts on next generation nondestructive technologies’ 
development either from the sensing and sensor signal processing side with respect to SHM as well as from the robotics side 
with regard to inspection vehicles. Further impacts have to be seen in the wide field of engineering, materials technology 
and science and even medicine. All of those potential impacts have been a motivation to get this book edited. Therefore 
hoping this book to become another source of inspiration in engineering through smart technologies the editors want to 
thank Fraunhofer Gesellschaft for supporting this book to be published within the frame of Fraunhofer Publications not 
only in a printed but also as an open access electronic publication, which can be found under 
http://publica.fraunhofer.de/starweb/pub09/index.htm. Furthermore the editors want to thank all contributing authors for 
their willingness and effort to submit partially well extended articles that have gone through a peer reviewing process and 
the respective quality assurance process. Without their effort and support together with a variety of other editorial helpers 
this book would not have been possible.  

Christian Boller & Hartmut Janocha  

Saarbrücken/Germany, June 2013  
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PREDICTIVE MODELING OF SMART STRUCTURES WITH IN-SITU SENSING 
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Victor Giurgiutiu* 

University of South Carolina, Columbia, South Carolina, USA, 

*Corresponding author. E-mail: victorg@sc.edu  

 

ABSTRACT 
 

A methodology for the predictive modeling of smart structures with in-situ sensing capability is presented and discussed. First, 
the smart structures concept is briefly reviewed. Then, self-sensing smart structures with in-situ sensing capabilities are 
introduced. Focus is placed on active sensing methods using ultrasonic guided waves in thin-wall structures. The challenges of 
modeling ultrasonic wave propagation in realistic structures and the mesh-size and time-step convergence requirements are 
discussed. The recently developed hybrid models for modeling ultrasonic nondestructive evaluation using bulk waves are 
presented and their advantages are discussed as well. A new approach, the generic hybrid global-local (HGL) approach is 
presented. It builds upon previous work in hybrid methods and extends them to guided waves in thin-wall structures equipped 
with piezoelectric wafer active sensors (PWAS) capable of both transmission and reception of ultrasonic guided waves. The 
features of this proposed HGL approach, which is still under development, are discussed. 

 

 

SMART STRUCTURES 

 

The concept of smart structures (a.k.a., adaptive structures or intelligent structures) is usually derived 
through analogy with living organisms which can sense the environment, interpret the information sensed 
from the environment, and react to it appropriately. For example, sensors in my skin would sense the 
pricking of a rose’s thorns and send the information to my nervous system which will interpret it and 
instruct my hand to let go and retreat. In order to achieve these functions, the living organisms possess 
sensing, data processing, and actuation capabilities embedded into their complex bodies. Similarly, a bio-
inspired smart structure would be equipped with sensing, data processing, and actuation capabilities. A 
smart structure is a multifunctional system with capabilities well beyond the mundane load-bearing mission 
of conventional structures (Figure 1). Enabling technologies are active materials, integrated active sensors, 
fiber optics sensors, fiber optics communication, solid-state actuators, autonomous power and energy 
harvesting, multifunctional composites, self-healing materials, integrated electronics, reasoners, and 
microcontrollers, etc. 

 
Figure 1: The smart structures constellation: functional attributes and technology enablers. 
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Smart-structure concepts have been developed for many engineering fields. A smart building or bridge 
would feel an earthquake and ‘brace’ itself to sustain it better; afterwards, it would quickly inspect itself to 
assess and control damage, if any. A smart aircraft would feel the effect of flight loads, operational 
environment, or enemy fire on its load bearing capability and would take corrective actions to arrive safely 
at destination. A smart space antenna would adapt its shape to maintain its focusing accuracy under uneven 
solar heating and micrometeorite impacts. A buried smart pipeline would monitor its state of corrosion, 
detect leaks, report its state of structural health, and even attempt self-repair. A smart automobile structure 
would adapt its suspension impedance according to the road type, i.e., make it stiffer for high-speed 
travelling on high way, while making it more complying for cross-country excursions. A smart machine 
tool will adapt the tool holder, pressure, feed, and impedance to optimize the machining process by 
increasing material removal rate while reducing chatter and vibration and minimizing energy usage. Recent 
advances in smart structures research and implementation can be traced along three major directions: (i) 
morphing structures; (ii) self-bracing structures; (iii) self-monitoring structures. 

 

 

SELF-MONITORING SMART STRUCTURES 

 

Self-monitoring smart structures are equipped with structural health monitoring (SHM) sensors and 
advanced data processing algorithms capable of structural diagnosis and prognosis. The goal of SHM is to 
develop a monitoring methodology that is capable of detecting and identifying various damage types during 
the service life of the structure, monitor their evolution, and predict the remaining useful life with a 
continuously updating structural model. SHM can be broadly classified into two categories: (a) passive and 
(b) active. Passive SHM (such as acoustic emission, impact detection, strain measurement, etc.) are 
relatively more mature; however, their utility is limited by the need for continuous monitoring and the 
indirect way in which damage existence is inferred. Active SHM aims at directly interrogating the structure 
on demand using guided wave ultrasonics and other methods. Active SHM resembles conventional 
nondestructive testing/evaluation only that the sensors are permanently attached to the structure and 
interrogated automatically without human intervention. Historical SHM data would allow projection of 
damage progression trends and estimation of remaining useful life. In critical situations, on board 
processing of SHM data would allow adaptive mission planning to ensure safe return to base. Smart 
structures with in-situ sensing capabilities are likely to increase their presence in aerospace because they 
can offer tangible evidence of the structural performance and state of health [1]. The benefits of monitoring 
the structural state include design feedback, performance enhancement, on-demand condition-based 
maintenance, and predictive fleet-level prognosis.  

 
Figure 2: Venn diagram of the multi-domain interaction in a self-monitoring smart structure 

 

On-board structural sensing systems have been envisioned for determining the health of a structure by 
monitoring a set of sensors over time, assessing the remaining useful life from the recorded data and design 
information, and advising of the need for structural maintenance actions. Figure 2 shows the Venn diagram 
of the interrelations inherent in a predictive methodology which will combine the structural analysis domain 
with the active sensors transduction domain and the sensors and electronics domain. The software domain 
of data analysis, information fusion, and prognosis is weakly bonded to this predictive methodology 
concept because it will utilize its signal products, process them, and then feed them back into the process to 
achieve structural prognosis that will forecast the future behavior of the structure. Figure 3 shows a possible 

Structural 
analysis  
domain 

Sensors and 
electronics 

domain 
Active  
sensors  

transduction

Data analysis, information 
fusion, and prognosis 



Fundamentals 

3 

 

implementation of an SHM system on board an unmanned aerial vehicle (UAV). Some active sensors are 
distributed in clusters around the structure targeting the „hot spot“ areas where structural problems are 
expected to happen, whereas wide-sensing active sensors will be evenly distributed around the structure to 
detect unexpected structural damage occurrences.  

The sensor signals are fed into data concentrators that perform local processing of received data and distill 
pertinent critical information that is sent to the on-board processing unit for further data condensation and 
reasoning. If a critical situation is identified, then immediate remedial action is taken and the base-station is 
alerted for further instructions that may mean a change in flight plan, mission objectives, or even return to 
base. 

 
Figure 3: Possible implementation of a structural health monitoring (SHM) system on board an unmanned aerial vehicle 
(UAV). 

 

Essential to the whole process is the availability of proper structural modeling methodologies and software, 
as discussed in the next section. 

 

 

MODELING OF ULTRASONIC WAVE PROPAGTION 

 

Finite element modeling of ultrasonic wave propagation in realistic structures is challenging because a very 
fine mesh is required in both time and space discretization to achieve a reasonable representation of the high 
frequency ultrasonic guided waves used in this process.  

Analytical methods such as ray-tracing [2], beam/pencil [3], Green functions [4] can efficiently model wave 
propagation in simple geometries. Geometric theory of diffraction based on ray tracing was recently 
extended to efficiently calculate multiple echoes and scatter [5] but it cannot handle complicated defects or 
structures with complex geometries. Green functions give the displacement field at any point in a uniform 
elastic medium illuminated by ultrasonic waves using an integral formulation. Analytical Green functions 
exist for both bulk waves [4] and guided waves [6]; Green’s functions can be also determined 
experimentally [7]. However, scattering of ultrasonic waves from a complex-shaped defect cannot be 
achieved directly by analytical methods and needs the use of a numerical discretization approach such as 
finite differences, finite elements, boundary elements, etc.. Commercially available finite element (FE) 
codes (e.g., ABAQUS-CATIA, NASTRAN, ANSYS, COMSOL, PZFlex, etc.) are capable of capturing the 
structural details and offer convenient built in resources for automated meshing, frequency analysis, and 
explicit time integration of dynamic events. Even a relatively rough FE model would yield a ‘wave 
propagation’ output that is illustrative and instructive. However, to obtain accurate wave propagation 
solution at ultrasonic frequencies is computationally intensive and may become prohibitive for realistic 
structures [8,9]. Aldrin et al. [10] performed FEM studies of the scattering of guided waves from a multi-
layer fastener site with cracks emanating from the hole and showed that the presence of a fastener insert can 
significantly change the scattering pattern if the insert is in full contact with the hole (i.e., stiff interface). 
However, they showed that considerable computational resources are needed to perform a full FEM 
simulation of this process, and proposed the use of analytical tools [11] that are much faster and more 
efficient.  
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structures such as loose bolts in joints; disbonds in adhesive joints; degradation and delamination in 
composite material; corrosion in metallic materials; impact damage in composite material (cracks, 
delamination and fiber breakage); cracks in metallic components, etc. Analysis of integral rib stiffeners will 
periodic layout would be easily incorporated. The actual case studies to be considered will be selected 
through consultation with potential users.  

 

 

CONVERGENCE AND ACCURACY CONTROL 

 

If damage is not present inside the FEM region, then no wave scatter should take place. However, it is quite 
possible that numerical artifacts associated with the FEM discretization in the local region and with the GL 
interface would generate scatter even in a damage-free situation. The existence of such false-scatter artifacts 
will be an indication of deficient numerical modeling that needs to be corrected. Therefore, a possible figure 
of merit of the HGL modeling will be the relative smallness of the residual wave scattering in the case of a 
damage-free local region.  

Another possible figure of merit of our modeling would be the energy balance between incoming and 
outgoing wave fronts. During our preliminary studies, we have identified convergence differences between 
the ABAQUS and ANSYS codes when analyzing the same geometric discretization with the same element 
type. Therefore, investigation of FEM convergence and development of convergence guidelines for multi-
physics FEM simulation and HGL approach will play a major role in our investigation. 

 

 

CONCLUSIONS 

 

This paper has presented a proposed predictive methodology for multi-scale multi-domain modeling of 
smart structures with in-situ sensing capability. Such methodology would be able to predict the signal 
response of the structural sensors as a function of the structural state and/or the presence of structural flaws 
or damage, in linear and nonlinear regimes. The modeling is multi-scale because it has to incorporate (a) the 
macro-scale structural features; (b) the micro-scale flaw/damage; (c) the mezo-scale interfaces between 
structural parts and between sensor and structure. The modeling is multi-domain because the analysis is 
integrated over several physical domains, i.e., (a) structural mechanics; (b) electromechanical transduction 
in the sensors; (c) guided waves ultrasonics; (d) power and signal electronics, etc.  

To achieve this proposed methodology for predictive modeling of smart structures with in-situ sensing 
capability, we are proposing a hybrid global-local (HGL) approach which achieves the integration of an 
analytically described ultrasonic field in the global region with a numerical discretized response in a local 
region around a structural feature, a damage site, sensor attachment, or other local region of interest. Multi-
physics elements are used to model with the piezoelectric transduction in the sensors and actuators. The 
focus is on the study of guided wave propagation in thin-wall structures and their interaction with the 
structural damage/defects. The outcome of this endeavor will go beyond the state of the art with the 
following attributes: (a) 2-D thin-wall structure global domain; (b) guided waves; (c) local-global boundary 
of generic shape based on Saint-Venant’s principle; (d) generalized matching condition on the global-local 
boundary; (e) zoom-in/zoom-out capabilities. At present this HGL methodology is under development and 
actual results will make the object of future presentations. 
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ABSTRACT 

 

Many new materials and processes require non-destructive evaluation methods with high resolutions. Acoustic microscopes in 
a frequency range up to 250 MHz are frequently used because of their versatility, but need high inspection times due to the 
necessary mechanical scanning of the sensor. The efficiency of conventional acoustic microscopes can be enhanced by a 
combination with phased array ultrasonic techniques. With the phased array technique, the use of segmented transducers (i.e. 
into pixels divided sensors), it is possible to control the shape and the sound beam direction by a phase delayed excitation of 
the single elements and therefore evaluate specific volumes of the specimen without the need of mechanical scanning. The use 
of two-dimensional sensor arrays allows a three-dimensional steering of the ultrasound beam, which is beneficial due to the 
enormous reduction of the manipulation efforts. 

Aluminium nitride is a promising material for the use as a piezoelectric sensor material in the considered frequency range and 
contains the potential for high frequency phased array application in the future. This work represents the fundamental 
development of piezoelectric aluminium nitride films with a thickness of up to 20 µm. Fraunhofer IZFP has investigated and 
optimized the deposition process of the aluminium nitride thin film layers regarding their piezoelectric behaviour. Therefore a 
specific test setup and a measuring station to determine the piezoelectric charge constant (d33) and the electro acoustic 
behaviour of the sensor has been created. Large single element transducers were deposited on silicon substrates with 
aluminium electrodes, using different parameters for the magnetron sputter process, like pressure and bias voltage. Acoustical 
measurements up to 500 MHz in pulse echo mode were carried out and the electrical and electromechanical properties 
qualified. As a result, it was found out, that there are two parameter sets for the sputtering process to obtain an excellent 
piezoelectric charge constant of about 7.2 pC/N as a maximum. 

 

 

INTRODUCTION 

 

Ultrasonic microscopes are frequently used for the non-destructive evaluation of micro-technical 
components and structures, the reason being their versatility and efficiency. The frequency of an ultrasonic 
test system defines the attainable resolution and the penetration depth into a material. The higher the 
frequency the better the resolution is and the smaller the penetration depth becomes. The efficiency of 
conventional microscopes can be enhanced by a combination with high frequency phased array (PA) 
techniques. With the use of segmented transducers (i.e. sensors divided into pixels), it is possible to 
evaluate the complete volume of specimens in 3 dimensions. The advantage is that the ultrasonic transducer 
does not need to be manipulated mechanically by a scanner. The shape and the sound beam direction can be 
controlled on a large scale since each of the array elements can be pulsed with appropriate time delays. At 
present PA ultrasonic sensors with operating frequencies up to 20 MHz are available, but frequencies above 
50 MHz are necessary for the applications that require a high resolution. Therefore development of new 
high frequency PA sensors has been required. A promising alternative piezoelectric material is aluminum 
nitride (AlN). Aluminum nitride is a piezoelectric but not ferroelectric material with a Wurtzite crystal 
structure. Compared to the widely used ferroelectric materials like PZT, AlN can not be electrically poled. 
Therefore piezoelectric activity can only be achieved with single crystals or with a polycrystalline structure 
with a strong crystal orientation.  

To achieve a vibration of the sensor in thickness direction, a crystalline orientation in (001) direction is 
necessary (c-axis of the AlN crystalline structure being oriented perpendicular to the substrate surface). AlN 
in this condition exhibits several attractive properties that were verified in various publications (e.g. [1]) and 
in our own experimental work: 

− Piezoelectric coupling coefficient of 20 % 

− Piezoelectric constant d33 of about 8 pm/V 

− Piezoelectric constant g33 of about 100 mVm/N 

− High sound velocity for longitudinal waves 10700 m/s 
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− High dielectric strength of up to 20 MV/cm 

− Low dielectric constant of 8.6 

− High electrical resistivity of more than 1011 Ωcm 

− High temperature stability (up to 1000°C) 

Additionally the AlN thin film technology is compatible to CMOS technology and therefore interesting in 
MEMS (Microelectromechnical Systems) and MOEMS (Microoptomechanical Systems) fabrication. 
Recent publications show, that for these applications very thin films (below 1 µm, e.g. [2] were deposited 
with deposition rates between 5 nm/min [3] and 100 nm/min [4]. But until now AlN is seldom used for 
ultrasonic transducers. Only a few groups are working on single element ultrasonic transducers for low 
frequencies based on membrane vibration [5] or based on thickness vibration to reach a high resonance 
frequency of 100 MHz [6]. Further investigation on the behaviour of thin film AlN piezoelectric sensors 
and design consideration need to be performed. 

 

 

Test Setup and Measurement Methods 
 

A simple layout was used for optimization of deposition process in previous investigations [7,8]. Here 
additionally sensor investigations were carried out for high temperature storage and design considerations 
performed for different substrate materials with the same test layout. An electrode structure with 10 mm 
diameter was deposited on an isolated silicon wafer. An aluminium nitride film in a circle structure with a 
diameter of 13 mm was deposited, followed by a second aluminium electrode to fabricate the sensor and the 
interconnection pad on the top side as shown in Figure 1. The aluminum electrodes all have a thickness of 
150 nm. These deposition processes were carried out at Fraunhofer Institute for Electron Beam and Plasma 
Technology - FEP in Dresden.  

 

 
Figure 1: Ultrasonic sensors on silicon wafer. 

 

Additionally design considerations were carried out with different electrode sizes. The layer thicknesses and 
sequence are same as we used in the first experiments. Only the layout was changed as can be seen in 
Figure 2. The bottom electrode is a square shaped aluminum electrode with a large ground area around for a 
better electromagnetic shielding. On top of the bottom electrode a square shaped AlN layer with a thickness 
of 10 µm and an edge length of 5 mm follows. The top electrode is also square shaped with the same edge 
length as the bottom electrode and a short track for the connection of the measurement tips. Sensors with 
edge lengths of 5 mm, 1 mm, 0.5 mm and 0.3 mm were manufactured with the optimized sputtering 
parameter sets on a 6” silicon wafer. The bottom electrode for the smallest electrode size of 0.3 mm was 0.5 
mm to reduce effects caused by a misalignment of the masks.  

 

The optimized unipolar and bipolar deposition parameters were used for the deposition of 6” isolated silicon 
wafers with 17 pieces of the same geometry on each substrate. 
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Figure 2: Layout for electrode size variation experiments with coaxial bottom electrode (full line), AlN layer (grey) and top 
electrode (dashed line), exemplarily for 1 mm² (left) and 25 mm² (right). 

 

Pulse Echo Measurements 
 
The sensor tests were performed with the pulse echo measurements too [7]. The AlN sensor served as an 
acoustic transmitter and receiver. The pulser and receiver DPR 500 (JSR Ultrasonics) was used to excite an 
acoustic sound wave. The ultrasound wave that propagates through the substrate, is reflected at the interface 
substrate-air and travels back to the AlN layer. There the ultrasound wave excites a voltage signal which 
can be measured and evaluated. The maximum amplitude of the received voltage signal was used to 
evaluate the AlN film quality depending on the deposition parameters. The measured voltage values were 
calculated to absolute voltage values without gain for a better comparability. Figure 3 shows a typical time 
response with multiple back wall echoes. To avoid an influence of the sending signal, not the first back wall 
echo but rather the fourth was evaluated.  

 

Figure 3: Echo pulse signal from silicon back wall reflection 

 
 

Measurements of piezoelectric constant d33 

 
The piezoelectric charge constant d33 was determined with a conventional Berlincourt-Meter (Piezotest 
PM300). The samples were clamped and loaded with an alternating force. The generated electric charge 
was compared to the value of a reference sample to obtain the piezoelectric charge constant. The 
measurements were carried out by applying an alternating force of 0.25 N and a frequency of 110 Hz [7,8]. 
Additional test specimens with new substrate materials were created after the optimization of the AlN thin 
film deposition process. Different substrate materials like aluminium oxide, glass, quartz and aluminium 
were investigated. This is important for the sensor design considerations because different substrate 
materials have different mechanical and acoustic properties, which have an influence on the thin film 
ultrasonic transducers. The mechanical clamping of the thin film to the substrate plays an important role as 
well as the geometry dimensions. The relative big thin film sensor area versus the thin film thickness has a 
second influence on the d33 measurement with this method. This takes effect as a second clamping. 
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EXPERIMENTS AND RESULTS 

 

Substrate variation and temperature storage 
 
An acceptable piezoelectric activity could be proofed on a variety of substrate materials, which are common 
in electronics manufacturing, using sputtering parameter sets found in earlier investigations [8]. The d33-
meter can be used for a very fast estimation of the thin film quality for AlN sensors with the same substrate 
material and film thickness (see Figure 4). The measured value d33 is not the actual d33 value. This follows 
from the mentioned clamping of the thin film transducer on the substrate. During the testing with the d33-
meter the sample should only be loaded by the force head with a stress in thickness direction, which means 
parallel to the crystal orientation to obtain an unaffected d33 value. 

 
Figure 4: Results of d33 constants for AlN sensors deposited on different substrates.  

 

In this case an additional stress in planar direction is induced, because of the clamping of the thin film on 
the substrate and because of the very low ratio of film thickness to diameter. Therefore the measured d33 
value is lower than the true value and depends on Poisson’s ratio of the substrate material. The lower the 
Poisson’s ratio of the substrate is the lower the measured d33 value becomes. 

The rather hard materials which have a lower Poisson’s ratio and a lower elongation coefficient (e.g. 2.0 for 
silicon and 23.0 for aluminium in [10-6/K]), show also lower d33 measurement results. This relationship can 
be seen in Figure 5. These results are similar for both deposition processes. Additionally the sensors were 
stored at high temperatures to evaluate the influence on the piezoelectric properties of the AlN and the 
substrate. The maximum signal voltages of the pulse echo measurements of all sensors were obtained, but a 
direct comparison was not possible because of the different substrate thicknesses and acoustical damping 
coefficients. Monocrystalline silicon has a much lower damping coefficient compared to the other substrate 
materials and therefore the maximum voltage received is much higher. For all materials it is obvious, that 
the temperature storage at 200°C had no significant influence.  

 
Figure 5: Piezoelectric charge constant of AlN thin film before and after temperature storage. 
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For aluminium, aluminium oxide and silicon no change in the d33 value could be observed but the d33 value 
of glass seemed to be much higher.  

Due to the fact that there was no change in the measured back wall echo amplitude, it can be assumed that 
this effect is not caused by a change of the AlN properties, but by a change of the glass structure.  

 

Electrode Size Variation 
 
The variation showed a detectable reflected ultrasound wave for all electrode sizes. Sensors with the 
smallest electrode size and deposited with the bipolar mode could not be used for measurements. For these 
sensors a misalignment of the masks caused short circuits between the top electrode and the ground layer. 
The overview of the measured maximum signal amplitudes is shown in Figure 6. For both parameter sets 
the electrodes with 1 mm² showed the highest signal amplitude. All measurements were done with a 
conventional pulser-receiver with an input impedance of 50 Ω without additional impedance matching of 
the sensors. The impedance of the sensors with an electrode area of 1 mm² fits best to the characteristic 
impedance of the measurement cables used and the input impedance of the hardware. The reflection 
coefficient for these sensors is much lower than for the sensors with other geometries. The matching of the 
electric impedances, the sensor size and the film properties influence the maximum signal amplitude. 
Therefore there is no direct dependency visible between the maximum signal amplitude and the electrode 
area. But we could prove that it is possible to send and receive ultrasound waves with very small electrodes, 
which is important for an application of these films in phased array ultrasound transducers. 

  

 
Figure 6:  Maximum amplitude |Vmax| of the 4th back wall echo without additional gain for square shaped electrodes with 
edge lengths of 0.3mm, 0.5 mm, 1 mm and 5 mm. 

 

The variation of the mean values for the unipolar mode is between 7.5 % for the 1 mm² electrodes and 15.6 
% for the 25 mm² electrodes. The variation of the values for the bipolar mode is higher. It varies between 
15.7 % for the 0.25 mm² electrodes and 21.5 % for the 25 mm² electrodes. 

Figure 7 shows the single values for the measured maximum amplitude of the different sensors for both 
deposition parameter sets. A dependency between maximum amplitude and sensor position on the substrate 
could not be found. Therefore a misalignment of the masks (e.g. offset or rotation) could not be the main 
reason for the higher scattering with the bipolar deposition mode. Furthermore there was no connection 
between low amplitude and the position of the sensor that was similar on all substrates. Thus a systematic 
variation of the film properties or crystal structure caused by the deposition process could be excluded. 

 
Figure 7: Maximum amplitude |Vmax| of the 4th back wall echo without additional gain for square shaped electrodes against 
sensor position on the silicon substrate. Each electrode area was sputtered with unipolar (top) and bipolar (bottom) deposition 
mode. 
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CONCLUSION AND VISION 

Basic investigations were carried out for different ultrasonic thin film AlN sensor designs, electrode sizes 
and substrate materials. It could be shown that the electrode size can be smaller than 1 mm square for use as 
high frequency sensors. Additionally tests of different substrate materials have shown that these sensor 
substrates can also be used in higher temperature applications up to 200 °C. The reason is the very good 
temperature resistance of the AlN thin film transducers.  

The development of thin film based ultrasonic sensors should enhance the application range of ultrasonic 
microscopes. Especially the non-destructive evaluation becomes more and more important for micro-scaled 
components, heterogeneous structures, new materials like reinforced carbon fibre composites and thin film 
components in the flat screens or solar cells. Today these components were investigated with the ultrasonic 
microscope and mechanical scanning of single transducer during the components are placed in a liquid bath. 
The ultrasonic microscope is therefore very sensitive in case of delaminations, flaws, pores, cracks and 
gives important information about the consistence and quality of a product. The evaluations were carried 
out with single element transducer and frequencies from 5 MHz up to 200 MHz.  

The measurement time is relative long caused by the necessary mechanical scanning and the lateral 
resolution limited by the scanner precision. For the scanning in z-direction also a parallel use of 2 to 4 
single transducers focusing in different depth are necessary. With the use of phased array sensors working 
in higher frequency range and being available today, this technique will become more effective. The vision 
of the project idea is the development and demonstration of a new ultrasonic sensor test system with high 
frequency phased array transducers for the evaluation of complex three-dimensional components, structures 
or medical applications. Therefore a new phased array sensor has to be developed on the basis of 
piezoelectric thin films. A demonstrator working in a frequency range above 50 MHz in phased array 
technique with multi-channel electronic will be created in further investigations. 
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ABSTRACT 

 

In this article it is shown that the formation of particular self-similar patterns on Al single crystal foils (100)[001] under 
constrained cyclic tension is related to a surface effect of pure elastic origin known as the Grinfeld instability. The formation of 
structures in the Grinfeld instability condition could be considered as an additional channel of elastic energy dissipation 
alternative to dislocation glide in metal crystals under cyclic tension at stresses higher than the yield stress which can be 
considered as a means for stress monitoring in many regards. 

 

 

INTRODUCTION  

 

It was shown in [1-4] that Al single crystal foils (100) [001] fixed on plane high-strength alloy samples 
undergoing cyclic tension in the elastic region exhibit unusual properties. Al-foils are deformed plastically 
and the surface relief develops as a certain sequence of periodic structures of different scale whose 
quantitative and qualitative parameters correlate with the number of loading cycles. It was suggested by 
Gordienko et al. [1,2] to use such single crystal foils as sensors of fatigue damage accumulation in structural 
alloys. It was found in [5] that the structure formation on Al single crystal foils under cyclic tension is 
related to a common fundamental property of bilayer systems under external or internal perturbation fields. 
Particularly, according to [5] longitudinal macrobands on Al single crystal foils result from periodic 
distribution of compressive elastic misfit stresses resulting from tension of specimens with fixed Al foils 
due to the Poisson effect and the difference between elastic moduli of the substrate and the anisotropic one 
of foil.  

Another type of structures observed on the Al foils after a various number of cycles is the periodic surface 
perturbations with different periods forming a cubic lattice with the sides oriented at an angle of 45° to the 
axis of tension [4,5]. A similar structure of micron range was observed in [6] under cyclic tension of bulk 
samples of Al single crystal (100)[001]. This structure was defined by Videm and Ryum [6] as a tweed 
structure. It was revealed in [5] that tweed structures resulting on Al foils are self similar in the size range 
from a few hundred nanometers to several hundred microns. These data are clear evidence of self-
organization of the deformation structure of Al single crystal foils under constrained cyclic tension, and 
allow one to consider them as a smart material. Generally, smart materials are not ordinary materials. 
Rather, they are hybrid composites or integrated systems of materials such as shape-memory alloys, 
piezoelectric ceramics, magneto-(electro-)strictive materials, etc. A question arises: What intrinsic 
microstructure peculiarities of an ordinary FCC Al metal result in its sensory capabilities under cyclic 
tension. The aim of the present work is to clarify this question, to analyze possible generality of the 
observed phenomenon and its practical application.  

 

 

MATERIALS AND EXPERIMENTAL PROCEDURE  

 

The substrates were flat duralumin specimens of dimensions 150×30×4 mm3. The material to be studied 
was (001)[100] single crystal Al foils having dimensions 16×20×0.2 mm3. The technology of growth of 
single crystals and manufacture of foils are described in [1,2]. The foils were attached to the central part of 
the surface of the flat duralumin specimens with glue. The composite duralumin - foil specimens were 
tested for low-cycle fatigue on a Schenck Sinus 100.40 testing machine with the following parameters: f= 1 
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Hz, σmax = 200 MPa, σrnin = 0.1 σmax and σrnean = (σrnax - σrnin)/2. Once a specified number of loading cycles 
was reached, the specimens were removed from the grips of the testing machine and the foils were studied 
with an Axiovert optical microscope, a Solver atomic force microscope (AFM), a Tesla BS 300 scanning 
electron microscope and a laser profilometer. 

 

SELF-SYMILARITY SURFACE PATTERN OF DEFORMED METALS  

 

In most cases, the main mechanism of stress relaxation under plastic deformation of metal crystals at room 
temperature is the generation and motion of dislocations leading to slip trace initiation on the surface.  

The traces of slip on the surface of deformed materials sometimes exhibit self-similarity, which has been 
investigated by a number of authors  [7-9]. It was shown that self-similarity of the slip traces is observed 
both at the stage of easy gliding [7,8] and at the stage of parabolic hardening [9] of the materials studied, 
but in all cases, the range of linear dimensions of self-similarity is in the nanometer - micrometer scale and 
is in no excess of (1 ÷ 1,5) order of length. The range of linear dimensions of self-similar tweed structures 
from a few hundred nanometers to several hundreds of microns observed on the surface of Al single crystals 
under cyclic tension [5] is not consistent with the assumption about their dislocation origin. It is assumed by 
Gordienko et al. [2] that the structures are formed on the foil surface because of self-organization of 
vacancy-type defects in mechanical stress fields. However, no specific mechanism of self-organization of 
defects was offered by the authors [2] and the question of the mechanism of deformation of Al single 
crystal foils under cyclic tension still remains open. 

 

 

GRINFELD INSTABILITY  

 

The analysis performed shows that the role of free surface of Al single crystal (100)[001] increases under 
cyclic tension, when the strain is higher than the yield strength, and a significant contribution to the 
relaxation of elastic energy is provided by a different mechanism -  the Grinfeld instability [10]. The 
Grinfeld instability is of purely elastic origin and is as following: when a nonhydrostatically strained solid 
has a surface, where the material can be redistributed by some appropriate transport mechanism, the solid 
may reduce its elastic energy via surface modulation. The instability wavelength (λс,) is controlled by a 
balance between the elastic energy, which tends to roughen the surface, and the surface tension, which 
smoothens it, and can be estimated in the linear approach of the Grinfeld instability as [10]: 

 

2c
E

σ
πγλλ =>

         (1) 

 

where γ, E, and σ are the surface tension, the Young modulus, and the stress, respectively. The destabilizing 
stress and the surface tension can be estimated within the approaches used in mechanics and AFM 
measurements.  

 

 

INTERPRETATION OF EXPERIMENTAL DATA IN TERMS OF THE GRINFELD 
INSTABILITY 

 

The tweed structure in micron range 
  

Figure 1 shows tweed structures of various scales observed on Al single crystal foils under constrained 
cyclic tension [5]. The analysis carried out has shown that formation of these structures can be explained in 
terms of the Grinfeld instability.  

It was shown for the first time in [11] that the tweed structure with period T2 ~ 3 μm (Figure 1b) was 
formed under cyclic tension of single crystal Al foils at stresses higher than the yield stress under conditions 
of Grinfeld instability. This structure is formed in the region of positive periodic distribution of misfit 
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stresses arising on the “foil – specimen” interface due to the difference between the elastic modulus of the 
foil and that of the high-strength alloy. The cross section of the region is about 120 – 140 μm. An 
estimation based on the Grinfeld model in the linear approximation in [11] T = 4 µm is in satisfactory 
agreement with the experimentally measured period of the tweed structure T2 ~ 3µm. The change in the 
cross-sectional profile of the tweed structure with increase of the number of loading cycles qualitatively 
agrees with the results of numerical simulation of Grinfeld instability evolution in the nonlinear 
approximation [12,13]. On this basis a conclusion was made in [11]  that a tweed structure with the period 
T ~ 3 μm was formed under the conditions of Grinfeld instability. 

 

          
a)                                                             b)                                                c) 

Figure 1: a) a fine tweed structure with period Т1 ~0.3 μm, N =10000 cycles; b) a tweed structure with period T2 ~ 3 μm, 
N=10000 cycles; c) a coarse tweed structure with T3 ~ 320 μm, N=100000 cycles. a), b) AFM, c) laser profilometry.  

 

 

A fine tweed structure  
 

The fine tweed structure with the period T ~ 0.33 μm was found to form in the transition region between the 
longitudinal macroscopic bands and the tweed structure of micron range (Figure 2a) [6]. The area occupied 
by this structure is ~ 10-12 µm in width.  

 

 

 
a)                                        b)            c) 

Figure 2: a) the fine tweed structure in the transition region. N ~ 10000 cycles; b) a macroband on the surface of the Al single-
crystal foil; c) the cross-section along CD direction, indicated by the line segment in b). N ~ 100000 cycles. Atomic force 
microscopy.  

 

Analysis of the experimental results shows that in the transition region between the macroscopic 
longitudinal bands and the tweed structure a local bending of the foil surface of an opposite sign is formed 
which gives rise to tensile and compressive normal stresses [14]. Pronounced curvature is clearly evident in 
the profilogram obtained by atomic force microscopy (Figure 2b, c). In the negative curvature region at the 
free surface of the foil, marked as circle A in (Figure 2c), an additional compressive stress (σa) arises, which 
leads to an increase in the local stress (σ1) σ1 = σ2+ σa. In accordance with the Equation 1 it results in a 
decrease in the period of the tweed structure. Using the AFM data, the radius of curvature in the region A of 
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the foil (Figure 2c) was measured to be equal to (24 ±6) μm and the extra stress (σa) was estimated as 
follows [15]: 

  

)21(0 ρσσ aa +=         (2)
 

 

where σ0, α, ρ are the average stress, groove depth, and curvature in the stress concentrator region. The 
surface tension (γ) was estimated by Mullins’ method [16] using the data from AFM profile measurement of 
the fine tweed structure (Figure3) along the direction AB shown in the (Figure 1a).  

 

 
Figure 3: A cross section of fine tweed structure along the direction shown by AB in Figure 1a.  

 

Figure 3 shows the tangent to two tweed structure protrusions at an angle β to the surface plane of the foil.  

The resulting equation can be written as 2γssinβ= γg, [16], where γs and γg are the surface energy per unit 
area (γg = 1024 mJ/m2 for Al [17] and the surface tension, respectively. The surface tension obtained as the 
average of about 25 tweed structure protrusions analyzed is ~ 430 mJ/m2. Taking into account the above 
estimation of the additional local stress arising in the transition region, the period of the fine tweed structure 
in the model of Grinfeld instability was evaluated to be λ1G = 0.35 μm, which is in good agreement with the 
experimental value λ1 = 0.33 μm.   

 

 

A coarse tweed structure 
  

At N > ~ 40000 two systems of conjugate mesobands are formed on the foil surface in the direction of 
maximum shear stresses distributed over all their width d ~ 10 mm. The formation of bands of localized 
deformation leads to a partial relaxation of stresses in the foil which, according to Equation 1, causes 
roughening of the surface structure. Further cyclic deformation foil leads to a coarse tweed structure (Figure 
1c). Using Equation 1and the period of the structure λ3 =320 μm (Figure 1c), the residual stresses in the foil 
has been estimated. The surface tension was assumed to be equal to the surface energy of Al γ=1024 mJ/m2  
[17]. The value of σ3 = 37 MPa obtained is higher than the yield strength of Al and comparable with the 
couple stress ~ 10 MPa occurring in the foil, due to eccentric load application [14]. This result suggests that 
in the process of surface coarsening the role of coupled stresses increases with the number of tension cycles. 
Thus, our analysis shows that the tweed structures of various scales observed on Al foils under constrained 
cyclic tension are described well in terms of the Grinfeld instability. 

 

 

DISCUSSION  

 

The Grinfield instability is usually considered for nonhydrostatically loaded solids in contact with their own 
melt, solution, or vapor phase, which provides a redistribution of the material on the surface [10]. However, 
the formation of tweed structures under cyclic tension of aluminum crystals testifies to mass transfer in the 
absence of any external media. It can be naturally assumed that mass transfer on the foil surface is due by 
intrinsic point defects of aluminum, which form during cyclic tension of foils and appear to be rather 
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mobile at the temperature of specimen testing. A micron tweed structure was observed on the surfaces of 
bulk plane samples of aluminum single crystals of cubic orientation [6,18] and on the mono- and 
polycrystalline aluminum foils glued on flat specimens of high-strength alloys [4,5,19] under cyclic tension. 
Therefore, this structure is possibly a result of crystal structure features of aluminium and is independent of 
the properties of the foil/sample interface. 

As to other two tweed structures with λ1 = 0.33 μm and λ3 = 320 μm their formation is related both to the 
characteristics of point defects in aluminium and to the features of the foil/sample interface. Thus, the thin 
tweed structure with λ1 = 0.33 μm, according to [5] (Figure1a), is formed in the transition region between 
the longitudinal stripes and the tweed structure of a micron range. Therefore, this structure is due to 
peculiarities of plastic deformation of a glued aluminum foil, in particular, to the stress and strain 
distribution on the foil /sample interface. The coarse tweed structure with λ3 = 320 μm (Figure1c) seems to 
result from a high degree of plastic deformation of glued Al foils which can not be obtained under simple 
cyclic tension of bulk samples. Indeed, it is shown in [6] that the failure of bulk samples of pure aluminum 
single crystal with [001] orientation under cyclic tension at constant plastic strain amplitudes occurs 
approximately after N ~ 100000 cycles. Therefore, the coarse tweed structure observed at N ~ (100000 ÷ 
150000) cycles in [5] corresponds to an ultrahigh degree of plastic cyclic deformation of the glued 
aluminum foils beyond cyclic durability of bulk aluminum samples.  

In Al single crystals of cubic orientation under cyclic tension, four slip systems are simultaneously 
activated. Highly developed transverse slip leads to efficient generation of lattice defects. According to [20] 
an excess of strain induced defects in near-surface layers can be several orders of magnitude higher than 
their density in the material bulk. Therefore, a surface layer can be considered as an independent defect 
phase in contact with the Al crystalline phase. Analyses by Videm and Ryum [6] and Charsley and Harris 
[19] show that the temperature at which the specimens are subjected to cyclic tension affects the period of 
tweed structure and this is indicative of a peculiar role of heat-activation processes in the aluminum mass 
transfer.  

The high mobility of point defects in aluminum crystals at room temperature suggests that the 
recrystallization temperature of aluminum crystals (Tr), 99.9999% purity according to [17], is Tr ~ -50 ° C.  

Thus, the above analysis makes it possible to assume that the main reason of a ‘smart’ behavior of Al single 
crystal foils (100)[001] under constrained cyclic tension at stresses above the yield stress is due to the 
formation of a two-phase system "defective near-surface layer / base Al crystal". In this two-phase system 
there are conditions for Grinfeld instability, which result in formation of tweed structures. During cyclic 
tension of (100)[001] Al single crystal foil the nonuniform distribution of elastic energy density leads to 
nonuniform distribution of chemical potential along the surface of the Al foil [12,13]. In the field of 
nonuniformly distributed chemical potential along the Al - foil surface due to surface and/or volume 
diffusion, redistribution of aluminum mass occurs and results in the formation of tweed structures. The 
Grinfeld instability appears on the foils surface under certain boundary conditions which provides tweed 
structure formation in various scales and their self-similarity [5]. The nature of the Greenfield instability is 
universal, so we can assume that it may develop under certain conditions at cyclic deformation of other 
FCC crystals, such as copper. 

The stacking fault energy of a Cu crystal γ = 67mJ/m2 is smaller than the corresponding value for an Al 
crystal γ = 200 mJ/m2  [17], therefore, the cross  slip of dislocations and generation of point defects in Cu 
crystals are less developed than in Al crystals at room temperature. Conditions for mass redistribution on 
the surfaces of copper samples can be provided under cyclic deformation of samples at elevated temperature 
about ~(0.3 ÷ 0.5) homologous temperature, when the probability of cross slip of dislocations and the 
mobility of point defects increases. Interesting results, which seem to support the foregoing idea have been 
obtained in [21,22]. In this work, the effects of loading frequency and microstructure on the formation of 
thermal fatigue damage in thin Cu interconnects on <100> Si substrate were investigated. 

Alternating current with different frequency was apapplied to the copper bands and produced temperature 
cycles with a range of 190 °C due to Joule heating. The cyclic temperature change gave rise to a cyclic 
strain in the Cu line due to the difference in the thermal expansion coefficient between the metal line and 
the wafer [21]. The cyclic deformation caused surface damages which depend on the copper band structure 
and deformation conditions [22]. It was found in [22] an unusual strain induced growth of grain in the [100] 
plane and a structure similar to a tweed structure observed in [4,5] on Al foils. According to [22] the 
observations show that the fatigue damage in thin Cu films is fundamentally different from that in coarse 
grained, bulk Cu and appears to be more and more controlled by diffusive mechanisms and interface 
properties rather than by dislocation glide. Unfortunately, no direct comparison of the experimental period 
of the structure observed in copper crystals with the Grinfeld model is possible because the theory is 
developed for isothermal conditions. A nature of Grinfeld instability is thermodynamic, and redistribution 
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of material on the sample surface is not a direct result of dislocation gliding. Therefore the formation of 
structures in the Grinfeld instability condition could be considered as an additional channel of elastic energy 
dissipation alternative to dislocation glide in metal crystals under cyclic tension at stress higher than the 
yield stress. 

 

 

POSSIBLE WAYS OF PRACTICAL APPLICATION  

 

One can suggest several ways to develop practical applications based on the observed effects. The effect of 
frequency of mechanical loading on the period of a resulting tweed structure on single crystal foils of 
aluminum and aluminum alloy was observed in [3]. An increase in the frequency of cycling in the range 
(0.1 ÷ 10) Hz leads to a decrease in the period of tweed structure from ~ 3000 down to ~ 2000 nm.  

Therefore, the effect of frequency of thermo-mechanical cycling in the kHz range on the nature of the relief 
formed on the samples of copper found in [22] supports the idea of authors [3] about the possibility of 
developing a new technology of self-assembling two-dimensional rectangular surface lattices of submicron 
(or maybe less) range by varying the frequency of cycling. The basic requirements to metal foils as 
multiscale sensors and the scope of their possible applications are discussed in [23]. In particular, it is 
shown in [23] that such foils can be used in aeronautics for load path detection, fatigue life sensing, and 
crack assessment. Appropriate techniques of acquisition and processing information based on optical means 
or measurement of eddy currents can be developed [23]. Self-similar structures formed on sensors under 
cyclic strain, allows us to use hierarchical non-linear approach to data analysis, including fractal analysis. 
Finally, the Grinfeld instability model makes it possible to get a quantitative relationship between the period 
of structures on the sensor surfaces and the stress in the sample.  

 

 

CONCLUSIONS 

 

Thus, it is shown that the formation of particular self-similar patterns on Al single crystal foils (100)[001] 
under constrained cyclic tension is related to a surface effect of pure elastic origin known as the Grinfeld 
instability. The formation of structures in the Grinfeld instability condition could be considered as an 
additional channel of elastic energy dissipation alternative to dislocation glide in metal crystals under cyclic 
tension at stresses higher than the yield stress. It is obvious that further experimental and theoretical studies 
of Grinfeld instability under cyclic deformation of metals are required with varying conditions of cyclic 
deformation (frequency of cycling, temperature, environment, etc.) and using different materials. 
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ABSTRACT 

 

The study develops the modelling of piezoactuator edge delamination and analysis of active systems like beams or one-
dimensional plates with this kind of imperfection. Delamination process is considered as a significant reduction of the bonding 
interlayer shear stiffness, which extends uniformly across the actuator from its ends to the centre. The governing equations are 
formulated separately for particular sections of the system and solved taking into account boundary and continuity conditions. 
For the steady-state case the influence of both the length and shear stiffness of the damaged region on the system’s dynamic 
characteristics and control effectiveness is shown as well as the transverse displacement and shear stress distributions that have 
been numerically investigated and discussed.  

 

 

INTRODUCTION 

 

Techniques based on application of distributed piezoelectric transducers have found a relevant role in 
vibration control of thin walled flexible structures to improve their operational behaviour and ability to 
reduce unwanted vibration (see e.g. [1-5]). In order to achieve satisfactory control effectiveness relatively 
large deformations of piezoelectric actuators have to be generated during the control process. Large 
deformations of piezoactuator patches create severe interfacial shear stresses. Alternating in time shear 
stresses and also environmental conditions initiate geometrical and material degradation, which may 
progress and finally lead to a failure of the control system. The geometrical degradation is mainly 
introduced as delamination and refers especially to damage of a bonding interlayer of glue material. The 
glue damage is characterized by a local concentration of micro-cracks, which leads to reduction of the 
bonding layer shear stiffness decreasing significantly the coupling performance of piezoactuators and the 
control effectiveness. The actuator partial debonding was studied by Wang & Merguid [6] among others. In 
the field of damage detection techniques based on vibration responses are well established where a literature 
review has been provided by Zou et al. [7]. The modal frequency approach in a closed-loop detection of the 
piezoactuator damage was presented by Sun & Tong [8]. This study develops modelling of the actuator 
edge delamination. Instead of modelling delamination as a gap between the actuator and the main structure 
(c.f. [9,10]) the bonding interlayer is still considered. But within the damaged area the bonding layer shear 
stiffness is reduced depending on the phase of delamination process. 

 

 

DESCRIPTION OF THE SYSTEM 

 

The system considered herein is a simply supported one-dimensional plate with piezoelectric rectangular 
patches bonded to its both the upper and lower sides. Piezoelectric transducers operate as a collocated 
sensor/actuator pair in a closed loop control. The one-dimensional plate considered can be analysed as a 
beam modelled according to the Bernoulli-Euler theory due to its geometry and dimensions. Closed loop 
control with velocity feedback is applied to reduce transverse vibration excited by a time-dependant force 
F(t). The physical model of the system with the sensor/actuator pair located between coordinates x2 and x5, 
the edge delamination regions indicated by coordinates x2, x3 and x4, x5 and loaded by the force acting at the 
x1 cross-section is shown in Figure 1. 

The delamination process is regarded as a local shear stiffness reduction of a massless viscoelastic bonding 
layer between the piezoceramic actuator and the main structure. It is assumed that the damaged section is 
characterized by a constant shear stiffness of the glue material and extends uniformly across the actuator to 
its centre. In the case of a relatively thin piezopolymer sensor the perfect bonding assumption is reasonable. 
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Viscoelastic properties of the system material components are approximated according to the Kelvin-Voigt 
relation.  

 

Figure 1: Model of the beam with partially delaminated piezoactuator.  

 

 

EQUATIONS OF MOTION AND THE SOLUTION 

 

For analysis the beam is divided into six sections due to the external force cross-section (x1), the location of 
piezoelectric transducers (x2, x5) and the sections of the actuator delamination (x2, x3 and x4, x5) (Figure1). 
Taking the actuator extension into account, to which the inertial forces also contribute, and the shear 
stresses transmitted by the bonding layer, the motion of both the undamaged and damaged activated 
sections is described by two coupled equations related to the beam transverse displacements and pure 
longitudinal displacements of the actuator. They can be expressed in terms of beam surface strains εb and 
actuator strains εa in the following form 
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Where the following parameters represent:  

ta, tb and tg - actuator, beam and bonding layer thickness, respectively,  

ρ~  - equivalent mass density of the activated beam section,  

ρa - actuator mass density,  

Ea - Young’s modulus of the actuator material,  

E~  - equivalent Young’s modulus of the activated beam section,  

Gk - Kirchhoff’s modulus referred to the undamaged (k = u) or damaged (k = d) actuator section, 
respectively. 

The motion of other beam sections is described by the well-known equation 
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where Eb, ρb are Young’s modulus and mass density of the beam, respectively. 
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Supposing a viscoelastic material of the beam and the bonding layer, Young’s moduli Eb, E~  and 
Kirchhoff’s moduli Gu, Gd are complex. The governing equations formulation is described in details by 
Pietrzakowski [11] and Tylikowski [9].  

 

The governing Equations 1 and 2 have to satisfy boundary conditions at the beam ends at x = 0 and x = l for 
a simply supported beam, continuity of beam deflection, slope, curvature and transverse force at the borders 
of the sections at x = x1, x2, x3, x4 and x5, free edge conditions at the actuator ends at x = x2, x5 and continuity 
of the actuator longitudinal displacements ua and stresses σa at the borders between the actuator undamaged 
and damaged sections at x = x3, x4.  

 

The normal stresses σa, uniformly distributed in the actuator cross-section, are given by the following 
relation 

 

( )λ−ε=σ aaa E          (3) 

 

The continuity of stresses and displacements between the actuator sections yields 

 

( ) ( )+− σ=σ 33 xx aa               and     ( ) ( )+− σ=σ 44 xx aa      (4) 

 

+− ==  ε=ε
33 xxaxxa dxdx  and     +− ==  ε=ε

44 xxaxxa dxdx     (5) 

 

The free edge conditions require zero normal stresses at the actuator ends and according to Equation 3 
become 

 

( ) ( ) λ=ε=ε −+
52 xx aa            (6) 

 

The actuator strain λ(t) is produced by the external voltage V(t) applied to the actuator sections and is 
determined due to the general strain-voltage formula, which for the unconstrained transversally polarised 
one-directional actuator has the form 

 

at
Vd31=λ          (7) 

 

where d31 indicates the actuator piezoelectric constant. The voltage feeding the actuator is generated by the 
sensor and transformed according to the applied control function. In the case of perfectly bonded relatively 
thin sensor the voltage strictly depends on the beam deflection and due to the direct piezoelectric effect with 
the external electric field ignored can be approximated as follows 
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Where the following parameters represent:  

ds31- piezoelectric constant of the sensor,  

Es - Young’s modulus,  

cs - sensor capacitance,  
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bs - width of the sensor related to the effective electrode area. 

The steady-state response of the active system discussed are harmonic single frequency functions with an 
angular velocity of excitation ω and can be written in the general form as 
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The spatial functions εa(x) and εb(x) are formulated using the modal superposition. They have the form 
dependent on the section of the beam or the actuator, which is determined by the boundary and continuity 
conditions. In order to solve the boundary-value problem for a viscoelastic system the complex moduli are 
used for material properties description. The surface strain spatial distribution in classical beam sections is 
described by the well-known formula 
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The activated beam sections (x∈(x2, x3), x∈(x3, x4), x∈(x4, x5)) are described by the following formulas for 
the beam surface strain and actuator strain, respectively 
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As mentioned above Kirchhoff’s modulus Gk with subscript k = u, d describes the bonding layer properties 
of undamaged or damaged actuator section, respectively. The wavenumbers kn are calculated from the 
algebraic equation 
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In the system analyzed the thirty unknown coefficients C1, C2,...,C12 and D1, D2,...,D18 are calculated from 
the system of algebraic equations determined by boundary and continuity conditions after substituting the 
expected solutions. 
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RESULTS 

 

Numerical calculations are performed for the beam of dimensions 380×40×2 mm³ loaded by the harmonic 
force F = F0 exp(iωt) of amplitude equal to unity and acting at x1 = 75 mm. The sensor/actuator pair is 
located between x2 = 76 mm and x5 = 114 mm with its centre placed on the fourth mode nodal line. The 
thickness of the PZT (lead-zirconate-titanate) actuator is ta = 0.2 mm. The PVDF (polyvinylidene fluoride) 
sensor is of thickness ts = 0.04 mm. The material properties of the beam and piezoelectric transducers are 
listed in Table 1. 

Material parameter Beam Actuator (PZT) Sensor (PVDF) 

Mass density (kg/m3) 7800 7280 1780 

Young’s modulus (N/m2) 2.16 × 1011 6.3 × 1011 2.0 × 109 

Piezoelectric constant (m/V) - 1.9 × 10-10 3.3 × 10-11 

Dielectric constant (F/m) - - 1.06 × 10-10 

Table 1: Material properties. 

 

The actuator bonding layer within the undamaged section is of the shear stiffness parameter G/tg = 5×1011 
N/m3. The beam and glue layer material damping of retardation time μb = 10-7 s and μg = 5×10-5 s, 
respectively, is applied to limit the resonant amplitudes. Figures 2a, b show the beam deflection 
distributions which are induced by almost a static voltage (ω = 0.1 s-1) of the amplitude V0 = 100 V, and the 
voltage loading of the same amplitude value and frequency corresponding to the second mode, respectively. 
The diagrams show effects of the bonding layer stiffness in the one-side delaminated actuator comparing 
with the performance of the undamaged actuator. A constant length of the damaged section is assumed δ = 
30%. The relative damage length parameter δ is defined as the ratio of the damaged section length to the 
total length of the actuator. 

 

 

 

 

Figure 2: Influence of the bonding layer stiffness G/tg within the damaged section on the beam deflection: a) quasistatic 
voltage loading, b) frequency excitation near the second beam resonance.  
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Comparison of the shear stress distribution along the actuator obtained for slowly varying external voltage 
of amplitude V0 = 100 V is presented in Figures 3 and 4. Figure 3 shows the effect of variation in the 
bonding layer stiffness of the damaged section in the case of the one-side delamination pattern. It is seen 
that the bonding layer degradation strongly changes shear stress distribution comparing with the healthy 
actuator and for extremely low stiffness values (G/tg = 1 Nm-3) reduces the activated area to the undamaged 
section.  

 

 

Figure 3: Effects of variation in the bonding layer stiffness G/tg within the damaged section on the shear stress distribution for 
a quasistatic voltage loading (ω = 0.1 s-1).  

 

The influence of the delamination length parameter δ on the shear stress distribution is shown in Figure 4 
for the actuator symmetrically delaminated on its opposite edges. Assuming a weak bonding layer (G/tg = 1 
Nm-3) a decrease of the activated area caused by the damage expansion is shown clearly. The extreme shear 
stress values concentrate at the edges of the section where an accurate mechanical coupling exists.  

 

Figure  4: Effects of variation in the delamination length parameter δ on the shear stress distribution for the two-side damaged 
actuator at ω = 0.1 s-1.  

 

The results based on the analytical model considered in the case of a constant voltage loading have been 
verified using finite element method (FEM). The appropriate FE model of the beam with the actuator patch 
has been arranged. Generally 3D-solid, 8-nodes elements are applied, which for the piezoelectric actuator 
have additionally electric potential nodal quantity. The bonding layer consists of 8-nodes “cohesive” 
elements. For example, the simulation results in Figure 5 relate to diagrams in Figure 2a and show the 
effects of the glue layer stiffness degradation on the beam deflection. In Figure 6 the shear stress 
distributions are shown, which can be compared with analogous diagrams in Figure 3.  
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The results compared betwenthose obtained from FEM simulations and those from the analytical approach 
show quite a good agreement. Some differences noticed in the extreme values of deflection and stresses are 
caused by the analytical model simplification. Herein, the equivalent stiffness of the activated beam section 
is determined assuming a perfect bonding between the beam and the actuator. Hence it results in the 
system’s global stiffness increase. Besides, in the analytical model of the actuator performance the bending 
effect is ignored.  

 

 

Figure 5: Influence of the bonding layer stiffness G/tg within the damaged section on the beam deflection - FEM calculations. 

 

 

Figure 6: Effects of variation in the bonding layer stiffness G/tg within the damaged section on the shear stress distribution - 
FEM calculations.  

 

Deformation of the active beam segment including the damaged actuator section is presented in Figure 7. 
The bonding layer displacements and the stress concentration along the undamaged edge are also shown. 

 

 

 

 

 

 

 

 

Figure 7: Deformation of the activated beam segment for a quasistatic voltage loading - FEM model. 
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The FEM calculations performed and the results obtained confirm the applied analytical model’s 
correctness such that it can be used for dynamic analysis. Dynamic characteristics of the system considered 
are presented in terms of amplitude-frequency functions calculated at the activated field point x = 90 mm. 
The effects of the shear stiffness degradation for the one-side and two-side delamination patterns in the first 
resonance region are shown in Figures 8 and 9 respectively. The dynamic responses related to the 
symmetrically damaged actuator, which are obtained for various shear stiffness values within wide 
frequency range, are shown in Figure 10. The damage length parameter is assumed constant for both the left 
and right actuator edges and equal to δ = 30%. It can be seen that the amplitudes of the vibration modes 
tested increase significantly, as the bonding layer (due to the adhesive material degradation) becomes soft. 
In addition, the local stiffness changes affect the stiffness of the entire system, thus the resonant peaks 
appear at lower frequencies.  

 

 

 

Figure 8: One-side damaged actuator. Effects of variation in the bonding layer stiffness G/tg on the first mode active damping 
(δ = 30%).  

 

 

 

Figure 9: Symmetrically damaged actuator. Effects of variation in the bonding layer stiffness parameter G/tg on the first mode 
active damping (δ = 30%).  

 

The effect of variation in the relative length parameter δ on the beam dynamic response is numerically 
investigated for the two-side delamination described by the bonding layer of residual stiffness G/tg = 1 Nm-

3. The results of calculation are presented in Figure 11 for the near-first resonance frequencies and in Figure 
12 for a wide frequency range including the third resonance region.  
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Figure 10: Symmetrically damaged actuator. Comparison of the dynamic responses in a wide frequency range depending on 
the bonding layer stiffness degradation (δ = 30%).  

 

 

 

Figure 11: Effects of variation in the delamination length δ on the first mode active damping for the symmetrically damaged 
actuator (G/tg = 1 [N/m3]).  

 

Figure 12: Effects of variation in the delamination length on the dynamic response in a wide frequency range for 
symmetrically damaged actuator (G/tg = 1 [N/m3]). 
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When comparing the plots a significant increase of the resonant amplitudes, caused by abbreviation of the 
actuator operational length, is noticed. Hence, the active damping effectiveness is reduced. Besides, the 
partly debonded actuator modifies the global stiffness of the system and a shift of the resonant peaks is 
observed. It can be concluded that the shear stiffness degradation and the increased length of delamination 
create qualitatively similar effects. 

 

 

CONCLUSIONS 

 

The model of the actuator edge delamination developed based on the bonding layer stiffness degradation is 
formulated and analysed. The numerical simulations show the influence of the delamination parameters on 
the transmitted shear force distribution, beam deflection and amplitude-frequency characteristics. The 
increased delamination length as well as the local bonding interlayer softening result in a disadvantageous 
modification of shear forces transmitted which diminishes the control system’s effectiveness and leads to 
the modal frequency shift when related to the global stiffness reduction of the system. The changes in the 
modal frequencies can be used as a parameter for damage assessment.  

The results presented and related discussion let us conclude that the stiffness of bonding layers within the 
damaged area has a harmful effect on the vibrational response and the active damping efficiency and can be 
used to describe the degradation process and estimate its progress. The proposed model of the actuator 
delamination offers a possibility of detecting the presence of damage and evaluating damage effects in 
active structures. 
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ABSTRACT 

 

This paper focuses on the electro-mechanical behaviour of a wide range of architectures based on pure carbon nanotubes 
(CNTs). The different types of architectures represent different qualities of CNT-alignment. The aim is to transfer the excellent 
micro-scale structural CNT-properties to the macro-scale anisotropic architecture. The main types of mentioned architectures 
are randomly oriented paper-like entangled CNTs, also called Bucky-papers, as a common reference. In contrast highly 
vertically aligned CNT-arrays are tested too. These are manufactured using two different techniques (chemical vapor 
deposition, CVD, and plasma enhanced CVD, PECVD) and substrates with decisive difference in result. As a linkage between 
the randomly oriented and highly aligned architectures, a manufacturing technique will be presented which transfers vertically 
aligned CNTs into a flat, horizontally aligned paper-like architecture.   

The results of the active behaviour are correlated to findings of the various other material quality tests in order to clarify the 
composition and the origin of the active behaviour. The alignment is an important fact to distinguish between the possible 
actuation mechanisms, i.e. whether it is an electro-static or quantum-mechanical effect or caused by volume change. The type 
of actuation mechanism is crucial for future applications. 

 

INTRODUCTION 

 

One key issue of the future mobility is energy efficiency. Current research tries to improve it by using 
biological inspired adaptability in order to meet the actually most efficient condition. Until now it is 
common to realize adaptive systems via mechanical kinematics. The additional mass and complexity can be 
reduced by implementing multifunctional materials as part of the structural frame. These materials are able 
to convert e. g. electrical into mechanical energy. The aim of future research will be to develop 
manufacturing techniques which enable multifunctional materials to take on structural tasks. 

At present reproducibility and economical production are the driving issues for successful use of smart 
materials. Focusing on electro-mechanical transducers there are three groups of active materials worth to be 
mentioned, which are well researched and partly commercially available (see Figure 1). Most of the realized 
adaptive systems are based on piezoceramics (see Figure 1, PZT) as electro-mechanical transducers. The 
active mechanism, called the inverse piezo-effect, can be explained by a crystalline deformation within an 
electric field. Characteristically high actuation frequencies up to 60 kHz and high stiffness (64GPa) are 
making them very attractive for applications. Inherent brittleness, low active strain (0.15%) and high 
operation voltage (200-2800V, [1]) are disadvantageous characteristics. In contrast to piezoceramics, shape-
memory alloys (see Figure 1, SMA) generate high active strains up to 8% [2] by changing their crystalline, 
metallic configuration from austenite into martensite. Slow reaction and unstable long term behaviour are 
severe drawbacks. 

Beside these established groups of active materials a third group, the electro-active polymers (see Figure 1, 
EAPs), found their way to application. Driven by an ion induced volume change or electrostatic-induced 
electrostatic attraction, free strains of 215% [5] and frequencies of 82 Hz ([5], depending on mechanism) 
can be reached. Their flexible base material with low stiffness does not allow highly loaded structural 
applications. Therefore this kind of actuator was mostly demonstrated as tensile loaded artificial muscle. 
With excellent electro-mechanical properties carbon nanotubes (CNTs) catch researcher’s attention since 
years. Additionally it can be shown, that two dimensional architectures made of CNTs (called Bucky-paper) 
are reversely elongating when they are set up like a capacitor and electrically charged. Single CNTs 
(SWCNTs) are difficult to handle because of their nano-scale geometry. Therefore paper-like architectures 
of entangles and bundled SWCNTs are produced by filtration-techniques of aqueous dispersions made from 
commercially available powder consisting of agglomerated CNTs.  
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Figure 1: Overview of smart materials [2] in comparison to CNT-based materials, their potential and theoretical limitations 
[3,4]. 

 

These papers containing randomly oriented CNTs are responsible for the actuation behaviour. Bending 
cantilevers set-ups of CNT-papers are successfully demonstrated as electro-mechanical transducers [6]. The 
potential to combine low voltages of ± < 3V [6-8], theoretical high active strains 1% [3,4] and excellent 
mechanical properties make CNTs to be a promising candidate for a structural integrated actuators for 
future adaptive applications. The majority of research on CNT-actuators refers to extraordinary properties 
of CNTs like high Young's modulus of 1TPa [9] or thermal and electrical conductivities. Most of these 
values are related to ideal, single walled CNTs (SWCNTs) or theoretical calculations. In fact most of 
publications presented on CNT-actuation use macroscopic paper-like CNT-based architectures. Extensive 
studies [10-12] show that the mechanical results are essentially driven by the composition of the CNT-
papers.  

CNT-papers are a suitable configuration to make CNTs handable but they represent only partially the active 
behaviour of the single CNTs. To test this kind of model structure a number of test set-ups for deflection 
measurements were designed. Among these, two analysis-methods are well established now. The in-plain 
test set-up (see Figure 2) in which a CNT-paper is fixed on the one side and pre-stressed by a clamp on the 
other side is designed for symmetrical specimen [2,7,8,13]. The deflections of the actuated paper are 
detected by a distance laser sensor system along their direction of propagation. Often this test set-up is used 
for measurements within liquid electrolytes. 

Figure 2: In-plane test set-up. 

Unsymmetrical specimen build-ups, like it is the case for single side coated CNT-papers, are analysed 
within an out-of-plane test set-up [14]. This method is suitable for hybrid-testing, containing CNT-papers 
and solid electrolytes. By measuring the thickness change of the specimen secondary effects like thermal 
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induced volume change or ion related mass-transfer can be clearly detected and compensated. Beside the 
diverging composition of the powder, the random orientation of CNTs generates an isotropic character of 
electro-mechanical properties. This is the reason for small measured strains. A possible solution is an 
aligned architecture, like vertically aligned CNTs grown as an array. The measurement along their 
geometric anisotropy offers a significant way to understand the actuation mechanism itself. From the 
mechanical point of view forces can also be transferred more efficiently along the aligned architectures 
(compare fiber-reinforced-plastics). That is the reason for intensive research on electro-magnetic alignment 
of CNTs in papers using powder based dispersions [15,16]. In the past several analysis-methods were used 
to identify the mechanism, but either the used material (CNT-papers with high density of different CNTs 
[17-19]) was not suitable for definite results or the analysis method (Atomic-Force-Microscopy scanning of 
activated single CNT) was carried out inconsequently [20]. The latest investigations on randomly oriented 
CNT-papers in use as actuators consider an important correlation between their mechanical properties and 
their active characteristics. Therefore an electrostatic effect as actuation mechanism is suggested instead of 
further preferred ion and charge transfer [21]. 

This conflicting message has driven the presented basic research in the field of CNTs: detailed analysis of 
CNT-papers and an evaluation of their contribution to the actuation mechanism, significant measurement of 
single SWCNTs or aligned CNT-based architectures because only their exact confirmation helps to evaluate 
the resulting measurements and to understand the actuation mechanism itself. 

 

Understanding the Influence of CNT-Paper Composition  
 

Prerequisites for excellent active properties are pure single walled dispersed metallic CNTs. Therefore 
SWCNTs of high purity are preferred. These CNTs show the highest specific surface area and their small 
diameter of 1-2 nm enables their geometric stability [22]. Within a comprehensive test campaign of rare 
SWCNT-material, suppliers (see Table 1) offering high purities were chosen. Their material is compared to 
powder of lower purity and powder mostly containing multi-walled carbon nanotubes.  

Within a filtration process [23] a CNT-paper is formed of the powder. A high pressure source is added in 
order to improve the paper density and thereby the quality as a result of the higher compression (see Figure 
3). For a more homogeneous dispersion the standard process of ultrasonic bath and afterwards manual 
homogenization can be optionally completed by a time variable (5 to 15 minutes at 4000g) centrifugation 
step (Universal 320, Hettich GmbH & Co. KG., Germany). Additionally other homogenizing techniques are 
tested like automatic high pressure homogenizing, ultra turrax and the efficiency of ultrasonic bath or 
ultrasonic horn without using the manual homogenizer first. The results presented refer only to CNT-papers 
made by the standard process described further below. 

 

 
Figure 3: Process steps of CNT-paper manufacturing. 

 

The powder handled is optically analysed via scanning electron microscopy (SEM, Leo 1550, Zeiss Jena 
AG, Germany) before processing. Thermo gravimetric analysis (TGA) of the powder are carried out by the 
suppliers. These tests are repeated later and compared to TGA-results of samples taken from CNT-papers. 
Each manufactured CNT-paper is also analysed by SEM afterwards. Additionally conductivity tests, 
measurements of the paper density and the specific surface area via the BET method (Nova 2000e, 
Quantachrome GmbH & Co. KG., Germany) are carried out. Moreover mechanical properties [24] are 
tested by a dynamic mechanical analysis-facility (DMA/SDTA861, Mettler Toledo Intl. Inc., Swiss) and the 
free strain is measured by the already mentioned in-plane test set-up (Figure 2). High resolution TGA-
analyses (TGA Q500, TA instruments, US) of the papers are made for analysing the composition. This 
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extensive quality assessment of the manufactured papers enables the comparison of different manufacturing 
processes, electro-mechanical properties and the powder and paper composition. 

The selected powders analysed herein were used because of their high CNT purities as the decisive 
argument for a high conductivity. The correlation of the supplier information and the measured conductivity 
of the manufactured papers are shown in Table 1. The ranges for the standard process (with or without 
centrifuge) are presented in Table 2. It is evident that the purity offered does not guarantee the best 
conductivity, except the Unidym material. Even here additional process steps like centrifugation are 
required. MWCNT-papers have in fact a lower conductivity than all other SWCNT-papers, which can be 
attributed to their lower specific active surface also underlined by the range of the conductivity values. The 
variation of the standard manufacturing process has a decisive influence. Moreover it can be seen that 
different powders are not affected the same way. While the powders of Thomas Swan and Unidym show a 
significant improvement of the conductivity all other papers remain below 81 S/cm.  

 

supplier product 

manu- 

facturing 
process 

purity  

CNTs 

 

[%] 

purity 

SWCNTs 

 

[%] 

Conductivity 

of CNT- 

paper 

[S/cm] 

Thomas Swan Elicarb SW PR0925 CVD 70 unknown 62-241 

Shenzhen Nano 

Tech Port Co. Ltd. 
SWCNTs CVD >90 70 33-70 

Unidym super purified HiPCO >95 unknown 90-254 

Nano-C Inc. 
Nano-cpt 

Nano-capt 
pyrolyse unknown >97 46-81 

Bayer 

Materialscience AG 
Baytubes C 150 P CVD >95 - 25-34 

Table 1: Overview of CNT-suppliers and measured properties of the material. 

 

Further CPS-measurement (CP24000, CPS Instruments, Inc., US) comparing the particle fraction of CNT-
solutions made by different homogenizing techniques show that the standard process generates a double 
peak particle fraction with a small peak at 15 nm and the higher peak at 700 nm. Using just the ultrasonic 
bath inverts the proportions. Additional steps of pre-filtration with filtering-membranes and/or 
centrifugation of the dispersion, shifts the average x50 particle diameter to 25 nm. The mass loss during 
centrifugation ranges between 70-80%. Table 2 shows all measured values which are also plotted in Figure 
4.  

nr. supplier process-style BP-conductivity 

 

[S/cm] 

centrifuge-time 

 

[min] 

Young’s modulus 

 

[MPa] 

free strain at 
+0.7V 

[%] 

specific surface 

area 

[m2/g] 

1 T. S. standard 103 0 994 0.12 294 

2 T. S. standard 161 5 2361 0.02 513 

3 T. S. standard 219 10 2414 0.03 350 

4 T. S. standard 228 15 3424 0.02 397 

5 T. S. high pressure 113 10 2010 0.007 472 

6 U standard 88 0 432 0.01 197 

7 U standard 128 5 1967 0.007 136 

8 U high pressure 250 0 2549 0.006 441 

9 N-C hp. high pressure 75 15 7385 0.005 233 

10 N-C asp. high pressure 80 0 3078 0.009 187 

11 S high pressure 42 0 945 0.012 331 

12 S high pressure 66 10 869 0.006 439 

13 B high pressure 26 0 776 0.02 209 

Table 2: Overview of analysed CNT-papers: 

T. S.: Thomas Swan,    U: Unidym N-C hp: Nano-C high purity,         N-C asp: Nano-C as produced, 

S: Shenzhen,  B: Bayer; 
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As a general trend the free strain decreases with an increasing specific Young's modulus. An increase of the 
mechanical properties seems only possible by using the additional process steps of centrifuging or high 
pressure homogenization. This increase is accompanied by higher specific surface areas and electrical 
conductivity. Nevertheless the high pressure process step does not increase the mechanical or active 
properties as far as the centrifugation step does, but it can reduce the extensive mass loss. 

Also HR-TGA results show a great impact of the processing on the thermal stability of CNT-papers. As a 
reference untreated powder (Thomas Swan) was tested first. It was heated with 5K per minute up to 900°C 
within a nitrogen atmosphere. Afterwards it is cooled down until the heating chamber reached 25°C and 
heated up again within an oxygen atmosphere with the same routine. CNT-papers made from the stable 
fraction of 10 minutes centrifuged CNT-dispersion as well as papers made from the deposited CNT-residue 
of the same dispersion are tested this way. It is found that the mass loss increases by using a centrifuge step. 
The mass loss is related to unstable carbon-based material, which even degrades within the nitrogen 
atmosphere. The paper made of the centrifuged dispersion shows a loss of about 32wt% whereas the mat 
formed of deposited CNT-material looses 26wt% of relative mass. The neat powder used as reference 
shows less than 10wt% mass loss. This observation points out that the composition of the homogenously 
centrifuged CNT-dispersion tends to contain more unstable, amorphous material. This high fraction can also 
be seen as impact of the manufacturing process on the neat material by fragmentation of the CNTs via 
ultrasonic treatment. 

 

 
Figure 4: Overview of the results from Table 2 and Table 3. 

 

In contrast DMA-analyses verify that centrifuging improves the values of electro-mechanical properties 
(stiffness, conductivity) and the specific surface almost twice and more. Although on SEM micrographs of 
the top side and bottom side of centrifuged papers almost no CNT-structures are apparent. Therefore CNT-
bundles only become visible in cross section areas of cryogen broken papers or by using specific surface-
scanning SEM-detectors. Moreover the papers show a typical layered structure (see Figure 9, middle 
micrograph) which suggests sedimentation levels. It seems to be possible that these levels consist of 
different sizes and therefore weights of powder agglomerates. An inhomogeneous build-up of centrifuged 
CNT-papers can also be the reason for out-of-plane bending, what can be observed in experiments using 
CNT-papers in ionic liquids. The diffusion of the ionic liquids seems to depend on the surface area. Smaller 
particles characterized by higher specific surface support the diffusion and layer building of the ions. 

With this effect the paper swells asymmetrically and starts to bend out of plane although it is stressed in 
plane. This is a significant indicator for a global unsymmetrical build-up of a material with different levels 
of active surfaces. It is evident that both the electro-mechanical properties and active behaviour (free strain) 
cannot be improved simultaneously until now. Aspects like the layered build-up and the composition of a 
CNT-paper should open a discussion if results of measurements using CNT-papers are suitable for 
explaining the actuation mechanism itself. Table 3 gives detailed averaged results of four uncentrifuged 
CNT-papers. It can be seen that the standard process creates inhomogeneous papers with especially highly 
diverging results of free strain. With the totally similar paper production in mind, this result points out that 
the quality of CNT-papers is strongly affected by the human factor as well as the raw material quality. Both 
causes low reproducibility (grey shaded area in Figure 4). 
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conductivity 

[S/cm] 

bulk-density 

[g/cm3] 

Young’s modulus 

[MPa] 

free strain at +0,7V 

[%] 

specific surface area 

[m2/g] 

average value 103 0.66 994 0.12 294 

standard deviation [%] 37 9 19 31 18 

median value 100 0.65 1050 0.12 282 

Table 3: Results of four specimen of T. S. CNT-papers made by the same procedure. 

 

 

Aligned CNT-architectures  
 

There are different ways of manufacturing aligned architectures made of CNTs. While electrical field 
induced alignment points out to be energy and device intensive with often poor results an even more 
promising way opens up by using as produced vertically aligned CNTs, called CNT-arrays. Within the 
study described here multi walled carbon nanotube-arrays (MWCNT-arrays), produced at the partner 
institutes in Hamburg (TUHH) and Wismar (HSW) are used (see Figure 5). 

 

 
Figure 5: left: MWCNT-array with curly structure from the TUHH, 

right: straight MWCNTs in array formation with short length of 10µm (HSW). 

 

For the use as paper-like actuators a process inspired by Wang [25] is adapted (Figure 6). In this process the 
vertically aligned MWCNTs-array can be transferred into an almost horizontal position. This architecture is 
similar to the CNT-paper mentioned before. In a first step the substrate of the array is fixed at its bottom. In 
a second step the aligned CNTs are separated by a film of aluminum. The aluminum-covered arrays are 
rolled by a tube and flattened this way. An array bending can be avoided by pulling the film while the array 
is rolled in the same direction. The array is sheared within this process. This method enables the 
manufacturing of CNT-papers whose dimensions are only limited by the substrate geometry on which the 
CNTs are grown.  

 
Figure 6: Process steps of transferring a MWCNT-array into an aligned paper. 

 

Finally the idea of analyzing aligned structures is extended from aligned CNT-papers to unaffected arrays 
of free standing CNTs. A CNT-array is an ideal structure for measuring deflections because experiments 
show that their clamping can be suggested as fixed on the solid substrate. Straight CNTs of almost conform 
length are used like in Figure 5 (right) so that the actuation can be measured as the movement of the CNT-
array top side. This can be transferred to covering bodies (glass tube) placed on the top of the arrays for 
which movements can be detected optically. This approach allows exact optical measurements out of any 
reflecting liquids on the one hand. On the other hand a complete wetting of the CNT-arrays by the 
electrolyte is ensured. The method allows measuring CNT-deflections provided that it is an ion and charge 
induced C-bond-lengthening. An out-of-plane test set-up is modified (see Figure 7) so that an array can be 
clamped and electrically activated.  
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A glass cylinder with a diameter of 3 mm, a height of 3 mm and a weight of about 0.06 g placed on the top 
of the arrays, transfers the deflection of the vertically aligned tubes out of the electrolyte. The 
measurements were carried out according to the in-plane measurements by charging the CNTs with 
different voltage steps around the zero potential of the electrical system. As a preparation of this test, 
different electrolytes were analysed for their wetting characteristics within a contact angle test set-up 
(contact angle system OCA20, DataPhysics Instruments GmbH, Germany). Deionized water, an one molar 
solution of sodium chloride as well as an ionic liquid, 1-ethyl-3-methylimidazolium 
bis(trifluoremethylsulfonyl)imide (EMITf2N, supplied by Merck), are tested. The contact angle gives an 
idea about the wettability of the tested material (Figure 8).  

 

 
Figure 7: Different views of the out-of-plain test set-up: schematic graphic of the array testing (left), view from above onto the 
test bed (center), front view to the test set-up (right). 

 

 

 

 

 

 

 

 

Figure 8: Wettability test of different electrolytes on MWCNT-arrays as substrate: 179.1° deionized water after 10 seconds 
(left), 169.1° one molar NaCl-solution after 10 seconds (center), 59.1° EMImTf2N after 1second (right). 

 

The more CNTs are covered by the electrolyte theoretically the more ion-transfer is enabled with increasing 
strain. The array is completely wetted by 11 g of the ionic liquid. Because of the slowly chemical reactions 
the tests are carried out at a frequency of 30 mHz. The reasonable activation voltage ranges for aqueous 
solution within ±1 V to avoid irreversible chemical reactions. In contrast ionic liquids can be used with 
rather high voltages of -2 V to 1.5 V (the ranges are supposed for 0 V as zero potential of the test system). 
Figure 8 reveals the ability of the ionic liquid only to diffuse into this strong hydrophobic material. 

As a further development of randomly oriented CNT-mats, aligned papers can be produced successfully of 
CNT-arrays. Grown MWCNT-arrays with heights of more than 500 µm are successfully flattened to 2D 
papers. The alignment is proven by analyzing their conductivity along and crosswise the CNT direction. 
Due to a lower specific surface area MWCNTs are not able to reach the same conductivity as it can be 
measured for SWCNT-papers. The aligned papers show duplication of the conductivity values along the 
CNT alignment direction like with a crosswise alignment. All the measured conductivity values for aligned 
CNT-papers were even higher than they were found for filtrated MWCNT-papers as it can be seen from 
Table 2. Mechanical tensile tests are carried out but the aligned papers are still structurally too weak for 
measuring any values. Further thermal and manual processing in order to solidify the paper structure hadn’t 
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the yearned positive effect. The aim is to improve the paper density and thereby the adhesion between the 
CNTs (Van-der-Waals-forces) to get a higher quality of papers for practical application.  

But even the incorporation of these papers into the measuring facility (DMA) failed. The left micrograph of 
Figure 9 shows a fold area of an aligned CNT-paper. It can be seen that the tubes slide easily on each other.  

The Van-der-Waals couplings have to withstand all the stresses. In contrast to the aligned paper the fold 
edge of a tensile tested paper of randomly oriented CNTs looks like sharper with an inhomogeneous, 
layered build-up (Figure 9, middle picture). Higher resolutions reveal that the CNTs within the paper are 
not broken (Figure 9, left picture). The twisted bundles are pulled out of the paper and are aligned during 
the tensile test. The SWCNTs are even sliding on each other cutting in the SWCNT bundle until it consists 
of just one SWCNT. A randomly oriented CNT-paper is completely broken when all of these single tubes 
are pulled out completely. The stress-curve of the tensile test is qualitatively comparable to composite 
materials. The dominating mechanism of stiffness seems to be the high adhesion of SWCNTs within a 
bundle and the knotting of bundles within a CNT-paper which also contains a matrix of undefined material. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Overview of different fold areas and their details: top view on slant broken fold area of a aligned CNT-paper (left),  
fold line, cross section, of a CNT-paper of randomly oriented CNTs (center), details of fold line (right). 

 

Figure 8 documents that tests of the active behaviour of MWCNT-arrays can only be carried out using ionic 
liquids because of the high hydrophobicity of CNT-arrays. For the presented measurements 1-ethyl-3-
methylimidazolium bis(trifluoremethylsulfonyl)imide is used. During these analyses the almost same 
reaction is found like it is performed by CNT-papers in liquid electrolytes. The acquired data at -2 V is 
shown as an example in Figure 10. 

 

 
Figure 10: Data for voltage, current, charge and strain for -2 V. 

 

Tests using activation voltages between -2 V to +1.5 V reveal a maximum free strain of 0.45% (see Figure 
10 for activation voltages of -2 V). Negative potentials reach higher values of free strain in comparison to 
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the positive charges. A possible reason can be found in the different structured ions provided by the 
electrolyte and their ability to form a double-layer around the CNTs.  

To enable a better ion transfer without increasing the free strain significantly the test is carried out at 
different temperatures (22° C and 50° C). During the tests the ionic liquid changes its colour from 
transparent to yellow-brown. This effect refers to the ability of ionic liquids to solve any soiling from the 
electrodes (amorphous carbon, residues of the catalysis). It cannot be excluded that the solved particles 
affect the performance of the ionic liquid. Nevertheless the strain characteristics suggest that the used 
frequency is still too high for the different chemical processes to achieve the maximum strain (diffusion 
controlled process). Moreover the usage of SWCNT-arrays enables higher strain as well because of their 
higher active surface area, instead of using MWCNT-arrays. At least there are alternative ionic liquids 
available too. The diffuse process and chemical interactions between ionic liquids and the analysed CNT-
structures have to be investigated in more detail in order to optimise the strain generation by synchronizing 
the interacting materials. Analysing these issues still enables to meet the CNT potential mentioned in Figure 
1. 

 

CONCLUSIONS 

 

Different types of architectures made of carbon nanotubes are electro-mechanically tested to get an 
understanding of the actuation mechanisms. The wettability has decisive influence on the choice of the used 
electrolyte which can affect the paper by ion-transfer induced geometrical swelling. This fact points out an 
electrostatic behaviour of architectures made of entangled, randomly oriented CNTs. For reliable 
measurements architectures with symmetrical lay-up have to be preferred. As far as the presented tests 
show, this feature cannot be provided by randomly oriented CNT-papers. This behaviour results in a high 
deviation of results and an inverse relation between mechanical stiffness and free strain. 

The presented manufacturing-process is a suitable technique to fabricate large two-dimensional CNT-
papers. Although the neat vertically aligned CNT-arrays reveal a curly architecture with some 
entanglement, the aligned flattened papers suffer from less stiffness. Further steps to improve the friction by 
reducing free space between CNTs via manual compressing as well as thermal compacting show no 
significant effect on the mechanical properties. This type of architecture has to be developed further on for 
application. 

The highly vertically aligned multi-walled CNT-arrays demonstrate the highest, reproducible result of all 
compared CNT-architectures by far. Taking the quality of alignment and the mounting on the specific 
substrate into account, the arrays made by PECVD and grown on glassy carbon are preferred. As far as the 
tests reveal the measured free strain has to be attributed to a quantum-mechanical elongation of the CNTs 
themselves. 

These structures show the greatest potential for structure-integrated actuators in the near future. 
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ABSTRACT 
 

Observations on a rheometer indicate that the MR damper force at currents different from 0 A is produced by the particle 
chains that act like brushes against the adjacent surfaces. Due to this brush analogy, a LuGre friction model-based feed forward 
control scheme is developed to track a desired dissipative force with a superimposed stiffness force. The measured tracking 
errors are mainly generated by the MR damper residual force. As a specific application study, a Bingham model-based feed 
forward is considered to track clipped viscous damping with negative stiffness for cable damping. The measured force tracking 
errors on the order of 20% are larger than for the LuGre approach. However, the Bingham approach leads to the cable damping 
ratio as expected from the theory and thereby indicates that models for feed forward control schemes do not require taking into 
account the pre-yield behaviour of MR dampers. 

 

 

INTRODUCTION 

 

Magnetorheological (MR) dampers have been installed on, e.g. stay cables, to semi-actively mitigate 
vibrations [1-3]. Also, MR dampers have been used for controlled vibration isolation and tuned mass 
damper systems [4-6]. For all these applications, the real-time control of the actual MR damper force 
according to the desired control force is a demanding task due to the non-linear characteristics of the MR 
damper force [7,8]. To compensate for the non-linear behaviour, the actual force is usually controlled by a 
model-based feed forward [9]. From the large variety of the existing feed forward control schemes, this 
paper presents two approaches. One is based on the LuGre friction model [10-12] and the other on the 
Bingham model [13], which is a simple modelling approach because it does not describe the pre-yield 
behaviour. Both approaches are experimentally validated for a desired dissipative force combined with a 
stiffness force. The results are discussed and conclusions are drawn. 

 

 

WORKING BEAHVIOUR OF MR DAMPER 

 

Observations at rheometer 
 

A MR fluid sample is tested in shear deformation mode using the rheometer that is depicted in Figure 1. 
The test set-up is prepared such that the magnetic flux in the MR fluid sample is parallel to the rotation axis 
(Figure 2). Using an optical instrument which is similar to a microscope, it was observed that: 

The MR fluid at 0 A and without remanent magnetization behaves similar to a viscous fluid. The viscous 
force is produced by the lubricant, which is visible in Figure 3(a), between the MR fluid sample and core 
plate. 

The MR fluid at currents different from 0 A produces a predominant friction force by the friction between 
the particle chains and the core plate. This behaviour is shown in Figure 3(b) where the MR fluid sample 
was stretched after rotation in order to make the particle chains better visible. Figure 4 shows a snapshot 
from the video that was taken during rotation. It demonstrates that the MR fluid sample slides as an entire 
body against one adjacent surface and sticks to the other surface. 

From these observations may be concluded that the predominant friction force of MR dampers is produced 
by the friction between the particle chains and the damper housing assuming that the chains stick to the 
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cylinder of the piston where the magnetic flux density is large. Figures 5 and 6 explain schematically how 
the force is generated within the MR damper: 

 

              
Figure 1: Rheometer and video camera.                         Figure 2: Details of rheometer set-up. 

 

                          
Figure 3: Particle chains visible in MR fluid.             Figure 4: MR fluid during operation. 

 

 

           
Figure 5: Force displacement trajectory at 0.5 A                               Figure 6: Sticking and sliding of chains during pre-yield and post-

yield regions. 

Section a): The displacement reaches its negative maximum where the particle chains stop to slide against the 
housing surface. Here, section a) starts which is commonly denoted as pre-yield region. During the entire section 
a), the particle chains stick to both surfaces, i.e. the damper housing and the rotating damper disc.  

The angle of the particle chains changes from its negative sliding angle γ = -γs to its positive sliding angle γ = γs. 
During this phase, the measured MR damper force is a pure stiffness force because the particle chains act like 
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springs that are first compressed and then stretched due to the damper motion. This is visible by the very steep 
slope of the force displacement trajectory in section a. The end of section a) is characterized by the Stribeck 
effect [14] where the damper force changes from dry to sliding friction. The smooth transition may result from 
the fact that not all particle chains start to slide either against the damper housing or the rotating plate at the same 
time instant. The end of the Stribeck is interpreted as the time instant when all particle chains slide. Section b): 
This section starts when all particle chains slide relative to the damper housing or the rotating disc and stops 
when the particle chains stick again to both adjacent surfaces. The change from sliding to sticking is not 
characterized by a force increase as in case of the Stribeck effect since the brushes simply stop to slide. The 
section b) is commonly denoted as post-yield region. The maximum force is reached at approximately zero 
displacement where velocity reaches its maximum and thereby the sum of the friction force and the viscous force 
is maximized. 

 

Response time of MR damper force 
 

It is assumed that the MR damper produces a friction force f1 at current i1 and sliding angle γs = γ1. Now, current 
steps up to i2 > i1. Then, the attraction force of the particle chains is increased instantaneously. Consequently, the 
chains stick to both surfaces. The MR damper force is then equal to the stiffness of the particle chains times the 
chain angle γ1 which is the same as the sliding angle at i1. Only if the chain angle becomes greater, the MR 
damper force can be increased. This can only be achieved by further rotation in the damper disc which is 
imposed by structural vibration. During the disc rotation, the chain angle and thereby the MR damper force 
increase continuously. The greater MR damper force is reached as  f2 > f1 when the chains slide again relative to 
one surface at γ2 > γ1. The time needed go from γ1 to γ2 and thereby generate the force increase f2 > f1  represents 
an inherent response time of the MR damper force. 

 

LuGre friction model of MR damper force 
 
The LuGre friction approach is chosen to model the MR damper force due to the analogy between the brushes of 
this modelling approach and the particle chains of the MR fluid that are observed in the rheometer tests. The 
LuGre friction model was developed by researchers from Lund and Grenoble which explains the abbreviation 
LuGre [10]. The MR fluid parameters, i.e. slip stress, shear modulus and viscosity are identified from the 
rheometer tests [12]. These parameters and the results from tests on the entire MR damper device with sinusoidal 
motion at different amplitudes and frequencies are used for the modelling. 

The model validation is depicted in Figure 7 which proofs that the LuGre friction approach is able to capture the 
MR damper force dynamics accurately. 

 

                          
Figure 7: LuGre friction model validation.                 Figure 8: Model-based feed forward 
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EMULATION OF STIFFNESS WITH FRICTION AND VISCOUS DAMPING 

 

Model-based feed forward control of MR damper force 
 
The states used for the model-based feed forward control of the MR damper force are the actual damper 
displacement, acceleration and current (Figure 8). The damper velocity is estimated from the displacement and 
acceleration by a kinematic Kalman filter. The desired current is estimated from the inverse MR damper model 
which is derived from the validated LuGre friction model. The forward MR damper model, i.e. the validated 
LuGre friction model, estimates the actual MR damper force and thereby corrects the desired current generated 
by the inverse model. 

 

             
Figure 9: Validation of control approach on INSTRON 
machine 

Figure 10: Tracking of friction with negative stiffness with 
XFk fri /|| =  

 

Hydraulic test set-up 
 
The hydraulic machine of type INSTRON shown in Figure 9 is used to operate the MR damper at sinusoidal 
displacement with defined amplitudes and frequencies. The model-based feed forward control scheme is 
implemented in MATLAB/dSPACE® and runs at a sampling frequency of 1000 Hz. The desired current output 
is the command signal of the amplifier of type KEPCO that is operated in current control mode and thereby acts 
as current driver. The force sensor visible in Figure 9 is used to quantify the force tracking error but is not used 
as feedback for the force tracking task. 

 

Friction damping with negative stiffness 
 
The desired force desf  is the sum of a friction force and a positive or negative stiffness force 

 

 






>
≤±

=
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XFkxkFx

f
fri

frifri
des /||:0

/||:)sgn( 
       (1) 

 

where x  denotes the damper displacement and x  its velocity, friF  is the friction force level and k  is the 

stiffness coefficient. (1) results in active desired forces if 

 

 XFk fri /|| >           (2) 

 

where X  denotes the damper displacement amplitude [15]. Then, (1) is clipped. The difference between the 
desired and actual forces in case of friction damping with negative stiffness is depicted in Figure 10 for |k|= Ffri/ 
X and in Figure 11 for |k|> Ffri/ X. In addition, also the force predicted by the LuGre friction model is plotted. If 
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|k|= Ffri/ X, the force tracking error mainly occurs when the desired force changes its sign and steps up to its 
maximum. The force tracking error then results from the inherent response time of the MR damper force as 
explained in the previous section. The rest of the tracking error is due to the residual force at 0 A. If |k|> Ffri/ X, 
additional force tracking errors result from the semi-active constraint of the MR damper. The actual force cannot 
cross the displacement axis but has to follow the residual force until the displacement maximum is reached. 
Then, when the damper piston starts to move into the opposite direction, the force can change its sign and 
thereby track the desired force. 

 

 

 

           
Figure 11: Tracking of friction with negative stiffness with 

XFk fri /|| >
 

Figure 12: Tracking of friction with positive stiffness with 
XFk fri /|| >  

 

Friction damping with positive stiffness 
 
Figure 12 shows that the force tracking error in case of positive stiffness with friction for |k|> Ffri/ X 

 mainly 
occurs at large forces due to maximum current limitations and prediction errors of the MR damper force and 
when the desired force changes its sign.  

 

      
 

Figure 13: Tracking of viscous damping with positive 
stiffness with 0|| >k  

Figure 14: Rotational MR damper connected to 16.5 m long 
steel wire strand

 

This second source of force tracking error results from the remanent magnetization of the MR fluid particles and 
damper housing after the previous force maximum. The remaining magnetization yields increased forces at 0 A 
compared to the forces obtained from cyclic testing at 0 A [16]. 
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Viscous damping with negative and positive stiffness 
 
The desired force is the sum of a viscous force and a positive or negative stiffness force 

 




<±
≥±±

=
0)(0

0)(:

xxkxc
xxkxcxkxc

f des 


        (3) 

 

where c  denotes the viscous damping coefficient. Equation (3) requires clipping independent of c  and k . The 
emulation of Equation (3) is depicted in Figure 13 for positive stiffness which shows the same sources of force 
tracking error as for friction damping with positive stiffness except that the clipping leads to additional energy 
dissipation relative to the unclipped control force of Equation (3). 

 

Cable damper set-up 
 
The test cable is a 16.5 m long steel wire strand with rotational MR damper that is connected to the strand at 4% 
of the cable length from the left cable support (Figure 14). The actual damper displacement is measured by a 
laser triangulation sensor. The collocated velocity is derived in real-time from a kinematic Kalman filter. The 
force sensor is used to quantify the force tracking error. The damping performance of the controlled MR damper 
is assessed by the cable damping ratio of the first mode that is excited by hand. The cable damping ratio is 
estimated from the free decay response at 3.58 m cable length using the logarithmic decrement method. The 
control law in Equation (3) is implemented in MATLAB/dSPACE® and runs at 1000 Hz. 

 

          
 

Figure 15: Force displacement trajectory for clipped viscous 
damping with negative stiffness 

 

Figure 16: Force velocity trajectory for clipped viscous 
damping with negative stiffness

 

Measured clipped viscous damping with negative stiffness 
 

A validated Bingham model of the MR damper under consideration is used for the model-based feed forward 
force tracking approach. Figure 15 depicts the measured force displacement trajectories during the free decay 
test due to the tuning |k| = 0.72 T/a and c/ c1

opt
 = 0.26. Here, T denotes the cable tension force, a is the damper 

position and c1
opt is the optimal viscous damping coefficient of a transverse linear damper on a taut string for 

mode 1 according to Krenk [17] 

 

 11 // == = n
opt
n aTc ω  .          (4) 

 

The shape of the force displacement trajectories is similar to the one resulting from clipped LQR [15,18] which 
points out that Equation (3) is a simple method to generate almost optimal control forces for the damping of a 
cable with local damper close to one cable support. Force tracking errors mainly result from the residual force of 
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approximately 22 N. The spikes of the actual force just before it changes its sign result from a too early increase 
of the damper current due to a slightly too early sign change in the estimated state variable x . The measured 
force velocity trajectories in Figure 16 seem to show active force within the active quadrants. However, these 
forces are due to the pre-yield MR damper behaviour and consequently are not active forces. 

 

Free decay test 
 

Figures 17 and 18 display the time histories of the actual MR damper current and cable displacement at 3.58 m 
for a typical hand excited free decay test. The excitation level is adjusted such that the MR damper current is not 
constraint by its maximum of 3 A. Both the small variations of the point-to-point damping ratios and the good 
agreement between the exponential fit and the local maxima indicate that clipped viscous damping with negative 
stiffness yields almost amplitude independent cable damping despite of the clipping in (3). This results from the 
fact that (3) with clipping adjust the cycle energy in the MR damper approximately in proportion to the damper 
peak velocity and thereby approximately in proportion to the damper motion amplitude. 

 

        
Figure 17: Current time history for clipped viscous damping 
with negative stiffness 

Figure 18: Cable displacement time history at 3.58 m for 
clipped viscous damping with negative stiffness 

 

Measured cable damping ratio 
 

The damping ratio of the first cable mode is measured for varied control law parameters c  and k  and also for 
pure viscous damping as benchmark damper where the MR damper emulates linear viscous damping with k =0 
(Figures 19 and 20). According to Krenk [17], the theoretically achievable damping ratio of a taut string with 
optimal viscous damper is 

 

2// Latheo ≅ζ           (5) 

 

where L  denotes the cable length. Comparing Equation (5) with the results plotted in Figure 20, the emulation of 
viscous damping only yields 50% of theoζ .  

The losses of 50% are explained by the flexural rigidity of the strand which evokes smaller damper motion [19] 
and reduces the achievable damping ratio to approximately 80% of Equation (5) [20]. The supplemental losses of 
20%-30% are due to the force tracking errors which is discussed in detail in [15]. The experimental results due to 
clipped viscous damping with negative stiffness demonstrate that this approach generates approximately twice as 
much damping as optimal viscous damping which is in accordance with other researches [21,22]. 

A reasonably good tuning of Equation (3) without the danger of clamping effects due to too aggressive tuning is 

 

 aTkcc opt /,5.0/ 1 ≈≈  .         (6) 
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The achieved results also point out that fairly high damping in structures can be achieved by MR damper models 
that neglect the pre-yield region [23]. 

 

         
 

Figure 19: Measured damping ration due to controlled 
friction stiffness approach 

Figure 20: Measured damping ratio due to emulated viscous 
damping

 

 

SUMMARY AND CONCLUSIONS 

 

From observations on a rheometer it is concluded that the MR fluid slides as an entire body relative to the 
damper housing and sticks to the rotating disc or moving cylinder of the piston where the magnetic flux density 
is higher. This behaviour generates the predominant friction within the post-yield region. When MR fluid sticks 
to both adjacent surfaces, then it behaves as a stiffness which is visible in the pre-yield region. Due to the brush 
analogy, the LuGre friction approach is considered for the MR damper modelling. The model validation shows 
precise prediction and the model-based feed forward force tracking control scheme leads to small tracking errors. 
The simpler Bingham model, which does not predict the pre-yield region, is then used to track clipped viscous 
damping with negative stiffness for cable damping. The resulting force tracking errors are slightly larger than 
those obtained from the more sophisticated LuGre friction approach. However, the feed forward control scheme 
based on the Bingham model is able to track sufficiently precise clipped viscous damping with negative stiffness. 
This is confirmed by the fact that it leads to twice as much damping as viscous damping only which is simpler to 
track. 
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ABSTRACT 

 

Sudden buckling of slender column structures may occur due to axial unforeseen overloads, imperfections or disturbances. 
Passive and active measures are presented to enhance the critical buckling load of a column to prevent buckling. Thus, 
uncertain buckling failure due to overloads may be controlled to reduce probability of failure. However, passive and active 
measures are subject to and also lead to uncertainties. Concepts of active buckling stabilisation are discussed with respect to 
uncertainties. 

 

 

INTRODUCTION 

 

Mechanical load-carrying structures may be exposed to mechanical stress, thermal stress, chemical stress 
and many other stresses during their lifetime, especially during operation. Load carrying structures are desi-
gned to withstand mechanical loads and may fail by overloads or fatigue. Whereas fatigue is generally a 
long-term failure due to relatively moderate loads, overloads may result in a sudden failure. An example for 
such sudden failure is buckling of axially compressed slender structures. If a slender column is loaded by a 
load above its critical buckling load, it may buckle. Eventually, this may lead to the collapse of an entire 
structure. In this article, different passive and active approaches for stabilisation of critically loaded co-
lumns and their uncertainties are discussed. 

Active or adaptive mechanical systems gain importance in many fields in mechanical engineering. They are 
characterized by mechanical passive structural elements with functional integrated sensing and actuating 
capabilities. Active systems may be used in different operating conditions and may react to system changes 
by a suitable control algorithm [1]. Therewith, they have an augmented functionality and may be more 
reliable [2]. An overview of applicable smart materials for integration such as shape memory alloys or pie-
zoelectric materials with sensing or actuation properties can be found in [3]. In lightweight structures, e. g. 
space truss structures, undesired vibrations play an important role as they often are low structural damped 
[4-6]. For vibration damping purposes, passive solutions are limited in their operating frequency bandwidth 
most times. Adaptive systems, however, may control broadband vibrations and even fulfill their require-
ments if system properties like eigenfrequencies of the passive structure change [6]. In machine tools, self 
excited vibrations may occur in machining centers due to combination of cutting parameters, machine stiff-
ness, environmental conditions etc.  

Those undesired vibrations may lead to an unstable cutting process and thereby, maybe, to a lower surface 
quality [7,8]. Other applications of adaptive mechanical systems can be found in the automotive and aero-
nautical industry [9,10]. 

The focus of work presented here lies in the stabilization of critically or over-critically loaded column struc-
tures against buckling. Stability of passive columns has been examined thoroughly for four different Euler 
boundary conditions [3]. The mathematical solution of the critical buckling load of axially compressed 
columns as well as beam columns loaded also by lateral forces is well documented in [11]. The dynamic 
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behavior of axially loaded structures is extensively treated in [12]. In this work an existing highly sensitive 
active column system demonstrator is used to examine the effect of uncertain loading conditions on this 
system’s uncertainty to buckle.  

In first studies, active stability control was conducted only manually in one plane and in one direction in a 
simple column exposed to its buckling load [13]. A simple feedback control has been added to avoid buck-
ling of the column in one plane and two directions by means of adaptive measures. These technological 
steps were accompanied by uncertainty description and assessment to, finally, control uncertainty from 
loading as well as uncertainties arising from the developed active stabilization technology. This work is part 
of the Collaborative Research Centre (Sonderforschungsbereich SFB 805): Control of Uncertainty in Load-
Carrying Systems in Mechanical Engineering, which is publicly funded by the Deutsche Forschungsge-
meinschaft DFG. 

 

 

PASSIVE SOLUTIONS FOR STABILISATION 

 

To prevent buckling, standards and design guidelines propose the use of safety factors from 3 to 10 against 
buckling, [14]. The system considered is a flat slender column of length l with a rectangular cross section 
bh, clamped at the base x = 0 and pinned at the upper end x = l, Figure 1. 
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Figure 1: Column system with disturbance force Fd(t) 
 

The column’s geometric properties are length l and moment of inertia I and material with Young’s modulus 
E. For the presented clamped-pinned column, critical buckling load Pcr is [3,11], 

( )
2

cr 2
0 7

EIP
. l

π ⋅=          (1) 

that may lead to buckling deflection wb.  

In addition to the buckling deflection wb other deflections that are non critical and are much smaller than wb 
might occur. For example, the deflection wd due to a lateral disturbing force Fd or a predeflection w0 due to 
initial bending or imperfections in assembling the column are present. Selected passive modifications to 
reduce the structure’s possibility of buckling are discussed in [15]. They are based on reducing the column 
length l, increasing moment of inertia I or reducing material property such as Young’s modulus E. This 
could lead to more stability and an augmented buckling load increasing safety factors. 

In technical structures, though, the possibility of changing the geometric or even the material properties of a 
structure is often not given due to strict boundary conditions and system specifications. If the structure is 
oversized by a predetermined high safety factor to avoid buckling, the additional weight may always be 
carried by the system even though only moderate or normal loads affect the structure most times.  

To reduce weight, it would be more efficient to have a structure only slightly oversized that carries normal 
loads and may be stabilized actively just during the few occasions that the structure is overloaded. Further-
more, these passive modifications are still not able to prevent buckling initiated by disturbance forces Fd 
leading to a triggering deflection wd, predeflection w0 of the column or imperfections in its material that 
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may lead to sudden buckling (Figure 1). Active solutions are a possible remedy to uncertainty in loading 
and system properties. 

 

 

ACTIVE SOLUTIONS FOR STABILISATION 

 

There is only little work available in literature on active buckling stabilization of column structures or ac-
tive buckling control. One early approach was made in 1968 with a bracing of two electromagnets applying 
deflection proportional forces onto the column, resulting in a stabilization of the first buckling mode [16]. 
In other publications, concepts were presented applying bending moments through embedded shape 
memory alloys (SMA) in a pre-deflected composite column and experimentally validated with an increase 
of the buckling load of 11% [17]. Compared to piezoelectric actuators, SMA may apply large deflections at 
the expense of high applicable forces and high operating frequency. Therefore, their field of application is 
limited to non-repeated stabilization or static stabilization of already pre-deflected structures such as shown 
in [17]. Most of the work that followed was based on applying additional forces or bending moments on a 
column’s surface or through clamped and pinned supports [18,19]. Work reported there has been based on 
shape control with actively applied bending moments distributed along the length of the column, using 
piezoelectric patch actuators attached to the column’s surface. The use of piezoelectric patch actuators is, 
however, limited because of its inherent characteristics such as small available actuation strain of 
0.1 to 0.2% [20].  

Though, an increase of a column’s critical buckling load up to a factor of 5.6 was achieved experimentally, 
stabilizing the first bending deflection shape of a thin pinned-pinned steel column with low bending stiff-
ness and small control forces has been discussed in [18]. The column was externally stiffened by the at-
tached piezoelectric patch actuators along its entire surface and additional stiffeners to cover gaps between 
the actuators. Also, by attaching piezoelectric patch actuators to a slender pinned-pinned plastic column 
with low bending stiffness, an increase of the buckling load by a factor of 8.8 was shown numerically by 
stabilizing its first and second bending deflection shape [19]. All of this work achieved active stabilization 
by controlling the first or higher bending deflection shapes actively. However, the work discussed uses 
additional devices as actuators and sensors along the column’s surface that may not be suitable for example 
for outside application with environmental influences like humidity or other restrictions to have the surface 
of the column free from additional devices such as actuators. Furthermore, the influence of disturbances on 
the controlled system or the effect of uncertainty in operation was not investigated thoroughly. The concept 
presented in this article has the major advantage of leaving most of the column’s surface unchanged without 
additional active devices and obstacles along the column’s length. The actuation force for buckling control 
is realized close to the clamped end of the demonstrator system that is presented in section below. 

 

 

DEMONSTRATOR COLUMN SYSTEM 

 

A column system has been developed as a demonstrator to describe, assess and control uncertainties that 
may lead to buckling. For reasons of clearness, a system has been chosen that is highly sensitive against 
buckling due to uncertain loading. When an ideal column is loaded by an axial compressive force P equal to 
its individual critical buckling load Pcr, a critical stable equilibrium state occurs and it may buckle inevita-
bly or stay in a straight line. In reality, however, an imperfect column may even buckle if loaded below its 
critical load due to imperfections in the system properties, for example due to an out of line deflection w0 or 
material inhomogeneity. If the actual loading during the column’s operation is not fully known, buckling 
becomes even more uncertain and may occur at lower loads. Generally, a load carrying passive structure 
should carry the load it is designed for at all times. In case of an active load carrying structure and in view 
of controlling uncertainty, active stabilization is intended to be activated to prevent buckling failure only if 
an overload or critical deflection is detected. This deflection may occur due to loading above the column’s 
critical buckling load and a disturbance force Fd or a pre-deflection w0. 

Figure 2 shows the load carrying column system with time dependent active forces Fa(t) near the fixed end 
to prevent buckling as a schematic sketch and a photograph of the real system. As a major allowance, the 
active force Fa(t) is chosen to be applied close to the column’s fixed end x = la = l/30 to keep the main part 
of the column’s surface free from additional actuators. Furthermore, and comparing to other work presented 
in literature, the bending stiffness of this column with dimensions described in Figure 4 is more than 10 



Fundamentals 

64 

 

times higher [18,19]. High bending stiffness leads to higher necessary active loads along the column’s sur-
face that may not be generated by piezoelectric patch actuators any more. 

The controlled active force Fa(t) may be activated if the beam column needs to be stabilized quickly due to 
sudden but short-term axial overloading P > Pcr or a lateral disturbance force Fd(t) with P ≥ Pcr. Like in 
prior concepts, the column is forced in its approximate second bending deflection shape w2, but this time by 
active force Fa(t), Figure 2a, instead of moments along the column’s length like in [19]. The approximate 
second bending deflection shape w2 occurs due to superposition of initial first buckling deflection shape due 
to Fd or P > Pcr and deflection due to Fa [13]. Figure 2b shows the real demonstrator with the column, strain 
gauge sensors, actuators and a mass to generate the axial compressive load. The pendulum is used to repro-
ducibly apply a disturbance force Fd(t) and the guide rail facilitates the pinned boundary condition at the 
column’s top. For an ideal system, forcing the column into its second bending deflection shape results in a 
reduction of the buckling length l to effective buckling length ld ≈ 0.6 l [21]. Thus, the critical load Pcr in-
creases by a factor of 2.9 for the given boundary conditions theoretically because of the quadratic relation-
ship of length l in Eq. (1) [11]. The control task is to keep the column deflected in the second bending de-
flection shape, i. e. keep deflection w2(ld) = 0 for the supercritically loaded column. 
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Figure 2: Active column system a) schematic sketch, b) real demonstrator 

 

 

UNCERTAINTY IN ACTIVE COLUMN SYSTEM 

 

This work deals with both, designing a suitable controller to stabilize the statically unstable system with 
active forces and studying uncertain disturbances on the actively controlled system critical to buckling. As a 
hypothesis in the SFB 805, uncertainty occurs when process properties of a system can not or only partially 
be determined. To describe uncertainties within this active column system, a process analysis was carried 
out in accordance with the consistent description of uncertainty in processes presented in [21]. Figure 3 
shows the process chain for the active column system’s life, including the processes 1 development, 
2 production and 3 carrying load. At the beginning and at the end of each process, the state of the column 
system shown as a circle in Figure 3 is described via geometric, material, mechanical, electrical and other 
properties. 

The states are described in detail in Figure 4. The properties of one state is valid for one time step tn before 
and after a process with number of time steps n = 1, 2, …, N. The aim of the active column system is to 
carry critical and overcritical loads, thus the process 3 of carrying load is shown in more detail. This enables 
the visualization and analysis of uncertainties in the corresponding subprocesses. The initial state 3 at time 
step t3 just before process 3 of load carrying occurs characterizes the properties of the active column system 
after production (Figure 4). In this case it is assumed that it does not matter if the system is loaded for the 
very first time after manufacturing or later in its lifetime. The final state 4n+3 at t4n+3 after process 
3.4 generates an active force that is fed again as a loading input into process 3.1 within a feedback control 
loop. However, for the first time the column is loaded at t3, the final state after process 3.4 active force 
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generation exists at t7 for n = 1. In the state matrices, major system properties are listed with corresponding 
categories of stochastic uncertainty (SU), estimated uncertainty (EU) and unknown uncertainty (UU) [22]. 

The geometric properties like column length l, thickness h, etc. are all categorized as EU as their design 
parameters vary from the production to the assembly process and uncertainties and information about their 
lower and upper design limits are given, e. g. l varies from 299.8 to 300.2 mm, but no further measurements 
were made for this evaluation. 

 

 
Figure 3: Detailed process chain of load carrying process of active column system 

 

Time t 3

Attribute
Nominal 

Value Unit
Stochastic 

Uncertainty
Estimated 

Uncertainty
Unknown 

Uncertainty

Length l 300 mm - [299.8, 300.2] -

Width b 20 mm - [19.9, 20.1] -
Thickness h 1 mm - [0.99, 1.01] -

Young's-Modulus E 70 kN/mm² N(70,1) - -

Critical buckling load P cr(t ) 27.5 N - [27, 28] -

Disturbance force F d(t ) - N - - x

Active force F a(t ) 0 N - - -

Predeflection w 0(x ) - m - - x

Measured deflection w (x ,t ) 0 m - - -

Measured strain ε (x ,t ) 0 - - - -

Strain gauge k -factor 1.76 V - [1.734, 1.786] -

Properties
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Figure 4: Full state matrix at t3 before loading 

 

Material properties like Young’s modulus E are all known with SU, as many experiments exist for this 
material, giving information about nominal value E = 70 kN/mm² with deviations of σ = 1 kN/mm² being 
within normal distribution. Some mechanical properties are marked with an x as UU, e. g. the measured 
deflection w and stain ε, which remain unknown at time t3 before the loading and measuring processes due 
to the force Fd at position ld become relevant (Figure 4). Other mechanical properties are not categorized as 
uncertain because they simply do not exist on purpose, like the active force Fa(t) is known to be zero before 
it is applied. Figure 5 shows an extracted section “mechanical properties” only of the state matrix at t7 of the 
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stabilised column after processes 3.1 loading, 3.2 measuring, 3.3 information processing and 3.4 active 
force generation shown in Figure 3 have been completed. Only mechanical properties are shown in Fig-
ure 5, as they are the major changing properties.  

Regarding these four processes, the former uncertain deflection wd due to the force Fd may now be detected 
by causing strain ε on the column’s surface which can be measured by strain gauge sensors at x = 168 mm 
(Figure 5). Former unknown uncertainty marked with an x now becomes an estimated uncertainty by meas-
uring deflection and strain tolerances and taking into account the data sheet of the strain gauge sensor. After 
measurements, the measured deflection w(x,t) deviates between 694 and 706 µm. Furthermore, the process 
of information processing is introduced to convert the measured signals into control signals for the actuator. 
The active force Fa = 56 N is now applied and non-zero.  

Due to active forces, the column may now carry up to 20% higher axial loads than the original non activat-
ed critical buckling load, experimentally. Compared to the uncontrolled passive system, the active system 
has the major advantage to control buckling failure due to unknown overloads and to react autonomous to a 
disturbance force Fd. 

Time t 7

Attribute
Nominal 

Value Unit
Stochastic 

Uncertainty
Estimated 

Uncertainty
Unknown 

Uncertainty

Critical buckling load P cr(t ) 33.5 N - [33, 34] -

Disturbance force F d(t ) 0.15 N - [0.13, 0.17] -

Active force F a(t ) 56 N - [52, 60] -

Predeflection w 0(x ) 500 µm - [200, 700] -
Measured deflection w (x ,t ) 700 µm - [694, 706] -
Measured strain ε (x i,t ) 42 µm/m - [41.6, 42.4] -
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Figure 5: Buckling control – extraction of section “mechanical properties” from full state, state matrix at t7 of final state after 
process 3.4 active force generation. 

 

 

CONCLUSION AND OUTLOOK 

 

The main aim of this work has been to describe, assess and finally control uncertainty in a simple column 
sensitive to buckling. To achieve this aim, a technology for active stabilisation and disturbance compensa-
tion was introduced. Hence, uncertainty in loading may be controlled by an active technology forcing the 
column into a stabilizing approximate second bending deflection shape. Uncertainty within the active tech-
nology was analyzed according to the SFB 805 process model. Future work will focus on stabilization 
beams with circular cross section that may buckle in an infinite amount of directions. Also time-variant 
axial loads may be considered. Further in the timeline, the individual active column will be implemented in 
a truss structure that consists of single passive and active members. 

 

 

ACKNOWLEDGEMENTS 

 

This research has been funded by the Deutsche Forschungsgemeinschaft DFG within the Collaborative 
Research Centre (Sonderforschungsbereich SFB) 805. 

 

 

 

REFERENCES 

 
1  Chopra, I., 2002. Review of State of the Art of Smart Structures and Integrated Systems. AIAA Journal, 
40(11). 



Fundamentals 

67 

 

2  Henning, E., Kopsch, D., Krämer, N., Pertsch, P., Pogodzik, N. and Richter S., 2006. Reliability of piezo-
electric multilayer actuators. Actuator 2006, Bremen. 
3  Hering, E. and  Modler, K.H., 2002. Grundwissen des Ingenieurs, Hanser, München. 
4  Aizawa, S., Arikabe, T., Fujita, T., Hatayama, T., Kamada, T., Murai, N. and Tohayama, K., 1997. Active 
vibration control of frame structures with smart structures using piezoelectric actuators. Smart Materials 
and Structures 6, pp. 448-56. 
5  Frapard, B., Lebihan, D., Petitjean, B. and Vaillon, L., 1999. Active isolation in space truss structures: 
from concept to implementation. Smart Materials and Structures 8, pp. 781–90. 
6  Preumont, A., 2002. Vibration Control of Active Structures: An Introduction, ISBN 1-4020-0496-6, 
Kluwer Academic Publishers, Dordrecht. 
7  Mussa, S. and Spath, D., 2001. Active Compensation of Machine Tool Errors with a Piezo Device. Pro-
duction Engineering 8(2). 
8  Denkena, B., Sellmeier, V. and Will, J. C., 2006. Prediction of Process Stability and Dynamic Forces of 
an Adaptronic Spindle System. Adaptronic Congress, 2006, Göttingen. 
9  Harrison, A. J. L., Hillis, A. J. and Stoten, D. P., 2005. A comparison of two adaptive algorithms for the 
control of active engine mounts. Journal of Sound and Vibration 286, pp. 37-54. 
10  Costa, A. P. and Suleman, A., 2004. Adaptive control of an aeroelastic flight vehicle using piezoelectric 
actuators. Computers & Structures 82(17-19), pp. 1303-314. 
11  Gere, J. M. and Timoschenko, S. P., 1961. Theory of elastic stability, McGraw-Hill Book Company, 
1961. 
12  Virgin, L., 2007. Vibration of axially loaded structures, Cambridge University Press, New York. 
13  Enss, G. C., Platz, R., and Hanselka, H., 2010. An Approach to Control the Stability in an Active Load-
Carrying Beam-Column by One Single Piezoelectric Stack Actuator. ISMA 2010 Int. Conf. on Noise and 
Vibration Engineering, Sept. 20-22, 2010, Leuven/Belgium, pp. 535-46. 
14  ISO/TS 13725, 2001. Hydraulic fluid power cylinders – Method for determining buckling load. 
15  Enss, G. C., Hanselka, H. and Platz, R., 2011. A survey on uncertainty in the control of an active column 
critical to buckling. Proceedings of Int. Conf. on Structural Engineering Dynamics ICEDyn, June 20-22, 
2011, Tavira/Portugal, #17. 
16  Jefferis, R. P., 1968. Feedback control of the buckling instability in an axially compressed thin elastic 
beam. Ph.D. Thesis, Dept. of Electrical Eng., University of Pennsylvania. 
17  Choi, S., Choi, S. W., Lee, J. J., Seo, D. C., 1999. The active buckling control of laminated composite 
beams with embedded shape memory alloy wires. Composite Structures 47, pp. 679-86. 
18  Berlin, A. A., 1994. Towards Intelligent Structures: Active Control of Buckling, Ph.D. Thesis, Dept. of 
El. Eng. and Computer Science, Massachusetts Institute of Technology. 
19  Wang, Q. S., 2010. Active Buckling Control of Beams Using Piezoelectric Actuators and Strain Gauge 
Sensors. Smart Mater. Struct., IOP Publishing Ltd. 19(6), 065022. 
20  Meressi, T. and Paden, B., 1993.  Buckling control of a flexible beam using piezoelectric actuators. Jour-
nal of Guidance, Control and Dynamics. ASME 16, pp. 977-80. 
21  Eifler, T., Enss, G. C., Hanselka, H., Haydn, M., Mosch, L. and Platz, R., 2012. Approach for a con-
sistent description of uncertainty in process chains of load carrying mechanical systems. Applied Mechanics 
and Materials, Trans Tech Publications 104, pp. 133-44. 
22  Birkhofer, H., Engelhardt, R. A., Enss, G. C., Hanselka, H., Kloberdanz, H., Koenen, J. F. and Sichau, 
A., 2010.  A Model to Categorise Uncertainty in Load-Carrying Systems. MMEP Modelling and Manage-
ment of Engineering Processes, July 19-20, 2010, Cambridge/UK, pp. 53-64. 





Fundamentals 

69 
 

HOW SIMULATION OF FAILURE RISK CAN IMPROVE STRUCTURAL RELIABILITY – 
APPLICATION TO PRESSURIZED COMPONENTS AND PIPES 
 
Dragos D. Cioclov  
Fraunhofer IZFP, Saarbrücken, Germany and D. Cioclov Consultant, New York, USA. 
Dragos.cioclov@izfp.fraunhofer.de 
 
 
ABSTRACT 
 
Probabilistic methods for failure risk assessment are introduced, with reference to load carrying structures, 
such as pressure vessels (PV) and components of pipes systems. The definition of the failure risk associated 
with structural integrity is made in the context of the general approach to structural reliability. Sources of 
risk are summarily outlined with emphasis on variability and uncertainties (V&U) which might be 
encountered in the analysis. To highlight the problem, in its practical and analysis perspective, a short 
account is given on the nature of failures encountered in pressure vessels and pipe systems, with essential 
statistical data of service failure. Two engineering analysis tools are invoked: probabilistic fracture 
mechanics (PFM) and quantitative non-destructive inspection (QNDI). Probabilistic models for risk 
estimation, in terms of failure probability, are introduced in the classical view of full distribution approach 
(convolution integral computation) and direct Monte Carlo random simulation of the governing input 
variables implied in the failure model.  The considered end-failure criterion operates with a performance 
function derived from the elastic-plastic Dugdale crack model, formalized in the failure assessment diagram 
(FAD) methodology. In the analysis are also integrated probability of detection (POD) models which 
quantify the chance of flaws/cracks detection by non-destructive inspection, applied intermittently or 
continuously in a structural health monitoring (SHM) system. he technique of construction of non-
parametric confidence intervals on POD vs. crack size rule, by simulated bootstrap re-sampling is 
presented, in view of setting, presumably safe initial crack size used in fracture mechanics computations. 
By merging PFM and QNDI via POD, the benefit of applying non-destructive inspection for the purpose of 
increasing structural reliability is estimated in terms of the decrease of failure probability. The influence of 
the quality of non-destructive inspection is reflected by POD rule (model). The quantitative approach, 
structured as a computer code pvRISK is provided. A case study of failure risk assessment in PVs is 
presented and discussed in the context of failure risk management by intermittent inspection or by a SHM 
system. By sensitivity analysis, as concerns the variability of size of cracks that might subsist in the 
structure the benefit of applying NDI expressed in terms of reducing the probability of failure by fracture is 
evaluated. 
 
 
ON THE MECHANICAL FAILURE RISK ASSESSMENT 
 
The failure risk encountered in industrial components, pressure vessels (PV) included, may be defined by a 
combined measure of the potential for the component failure (usually by fracture or excessive deformation) 
and the consequences of the failure.  Failure potential of a component is related with failure rate i.e. the 
frequency of its occurrence. Failure consequences are related with material, financial and image losses, 
environmental damage and, not ultimately, the danger upon human life. Globally, the risk of an accident 
may be quantified by the product of the accident frequency of occurrence and the resulted consequences, 
the latter, usually measured in terms of costs (e.g. [1,2]). 
One possible general definition of risk is: 
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According to this interpretation, risk frequency assessment may be made by statistical inference on past 
events (a posteriori analysis) or by probabilistic prediction (a priori prognostication). The assessment of 
severity is a matter of economic, social, environment or even of a political nature. 
The background of failure risk assessment encompasses and synthesizes essential procedures from various 
fields of engineering: 
 

1 Non-destructive inspection (NDI) techniques; 
2 On-line continuous structural health monitoring (SHM); 
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3 Fracture mechanics (FM);  
4 Reliability theory and probabilistic fracture mechanics (PFM); 
5 Computer-assisted simulation of structural damage  evolving in operation; 
6 Damage tolerance concepts applied to structure with inevitable damage development and structural 

load-carrying capacity impairment by ageing;  
7 Failure consequences evaluation as concerns economy, social and natural environment and, not 

ultimately, human life, at large. 
 
The failure risk management and alleviation in load-carrying structures has at the core NDI technology. 
Nowadays, two ways of approach have been matured. On one way, (i) inspection is performed in 
intermittent sessions when the structure is retired from operation (revisions). Raw data resulting from 
intermittent inspections are processed by applying deterministic and probabilistic quantitative methods and, 
analysis evaluation and interpretation, the current state of the “structural health” is assessed. Forward in 
time prognostication of the damage evolution may be also made and, finally, decisions are taken on the 
further usage (repairs or retirement), maintenance timing during the remnant life. On the alternate way (ii), 
the well defined and scheduled inspection sessions of NDI are replaced by on-line continuously monitoring 
the “health” state of the structure under real-life operation conditions. Monitoring is achieved by sensing the 
damage in its various manifestations: cracks, corrosion, creep, wear, erosion, cavitation in hydraulic 
machinery, the enumeration being not exhaustive. In this approach to structural control and failure risk 
management, a new paradigm has evolved which is under vigorous development and is referred as 
structural health monitoring (SHM). It implies that monitoring sensors are permanently and intimately 
attached or implemented within the structure in “hot spots”, usually in a network arrangement. 
Comprehensive monitoring of vital structures as in aerospace industry may imply networking of a large 
number of distributed sensors (e.g. [3,4]). The information gathered by sensors is transmitted by wired or, 
more advanced, by wireless channels to data processing hubs provided locally within the structure, centrally 
at the location of data processing and evaluation unit, for the entire system or to long distanced centers for 
global processing of information by expert systems which elaborate vital decision and prognostic of the risk 
evolution, together with devising, eventually, new maintenance strategies. The most advanced SHM 
systems, already implemented (aircraft and aerospace vehicles), or under development, present incipient 
attributes of artificial intelligence or even self-organization capability. SHM benefits from the tremendous 
development of micro- and nano-electronics, blended with ever increasing digital computation power.  
It is worth to emphasize that, given the circumstances, both methods of failure risk management, by distinct 
session of NDI at scheduled intervals or by continuous SHM are currently applied and this dichotomy will 
continue for a long time from now. For the strategy based on inspection at pre-set intermittent intervals, 
methods have been developed for the evaluation of structural failure risk based on integrated probabilistic 
fracture mechanics (PFM) and quantitative non-destructive inspection (QNDI), (e.g. [5,6]). These already 
existing methods provide “ready-made” mathematical algorithms and procedures which are directly 
implementable in the continuous SHM assessing methodology.  
 
In this view, the bases of probabilistic fracture mechanics and quantitative non-destructive inspection are 
first introduced, with emphasis on their practical aspects used for structural failure risk assessment under 
both circumstances, i.e. of distinct sessions of NDI and continuous SHM. The developed rationale of 
fracture risk is focused on pressure vessels and pipe (PV&P) components. In this context, a short outline is 
given on the ways of approach to the management of structural failure risk established nowadays: on the 
basis of the statistics of past failures and on the basis of a priori quantitative modeling of failure processes 
for the purpose of prognostication and gaining information for decisions making. In the latter case, 
probabilistic models in fracture analysis are highlighted according to the two analysis methodologies in use: 
direct convolution of the probabilistic distribution functions involved in the model and Monte Carlo 
simulation of model random variables implied in the failure model. Conjointly, it is evinced how QNDI is 
integrated with PFM via the key random variable which describes the probability of detection (POD) of a 
flaw (crack) of a certain size. The entire algorithmic construct is organized in pvRISK computation code.  
The integrated PFM and QNDI construct aims to demonstrate and assess, explicitly, in terms of probability 
of failure the improvement of reliability which can be achieved by applying non-destructive inspection, 
intermittently or continuously, of a specified quality, quantified by POD. 
 
 
FAILURE RISK ASSESSMENT IN PRESSURE VESSELS AND PIPE COMPONENTS 
 
In PV&P current technology, one way to reduce failure risk of PVs is to inspect them periodically and 
repair or replace the part of the PV that shows signs of deterioration and damage, as is common in pipe 
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lines. Inspection intervals are set on the basis of two main sources of information: past experience by 
processing historical failure data in terms of frequency and consequences and, prospective simulation, 
forward in time, using probabilistic models of the fracture process, in either analytical formulation or by 
Monte Carlo random sampling of key model random variables.  
 
The results of analyses can be systematized in two-dimensional “risk matrix” that defines on one scale the 
categories of failure potential and, on the second one, the magnitude of consequences. This philosophy 
underlies the “Risk-Based In-Service Inspection” (RB-ISI) approach to pressure vessels and pipes reliability 
(see also [7,8]). This methodology is currently applied in nuclear power plants reliability management. 
Following this way of thinking, the risk matrix estimates enable to rank groups of PVs or parts of PVs 
systems. The higher ranked items are inspected more often and thoroughly (more on this philosophy is 
covered by Sundaramajan [9,10]). The key undertaking in ISI approach is the assessment of failure 
probability evaluated empirically, a posteriori, based on past events or a priori, prospectively, by modeling 
the failure as events governed by the random variables of the considered model. On conjoint approach of 
PFM and QNDI to mechanical failure risk assessment, methods have been tempted and reported, over the 
years, by the author (e.g. [5,6,11-14]). Obviously, organizations and many other authors have been 
embarked on this task. Without being exhaustive, because it is virtually impossible to provide a fair and 
comprehensive overview of this field, one can cite, in historical perspective, organization’s guiding 
documents [8, 15-17]  and milestones contributions by individuals or group of authors [7,18-24]. 
 
 
PAST EXPERIENCE ON THE SERVICE FAILURE OF PRESSURE VESSELS AND PIPE 
SYSTEMS 

 
The failure modes of PVs and pipes systems can be classified as: 

 
• Leak flaws that penetrate the component wall, resulting in visible sign of leakage, generally in 

limited amounts that comply with technical specifications for allowable limits; 
• Failures characterized by larger leaks at rates greater than allowable limits; 
• Rupture and breakage occurring on a significant portion of longitudinal or transverse cross-

section of the pressure vessel or pipe. 
 
The last category of failure is a serious event which needs a special attention and adequate measures for 
prevention of its repetition. Hence, a global characterization of failure modes for the purpose of 
statistical/probabilistic analysis may be accepted into two broad categories: leaks and ruptures.  The broad 
conclusion of the past failures analysis of non-nuclear pressurized components, i.e. pressure vessels and 
pipes, can be seen in the rate of disruptive failure where rate is in the range of (1 to 5) x 10-5. The rate of 
non-disruptive failures is about ten times greater, as results from the data given in Table 1 (e.g. [20, 25-29]).  

 
 

 
Source 

 
Number 
 PV & Pipes 

Nb. in 
service  
PV/Year 

Failures Ruptures 
No. Events Rate  

95% CL 
No. Events Rate 

95% CL 

UK [31] 
≈ 20 000 3.1· 105 65 2.6· 10-4 5 3.5· 10-5 

Germany TÜV [32] 7 000 6.7· 104 30 6.0· 10-4 0 < 4.5· 10-5 
USA NBBPVI [33] 536 000 3.0· 106 1.043 ( 3.2· 10-4) 115 3.5· 10-5 
CL – confidence limit; (…), supposedly, mean values 

Table 1 – Failure and rupture statistics in PV & pipes. The data presented in this table do not encompass failures and rupture 
statistics for nuclear PV&Ps. Extensive information on the subject may be found in [15,19,25,29,30,31,32,33].  
 

As concerns failure mechanisms related to PV&P (non- and nuclear) failure, they may be rationalized, as 
follows, without pretending to reflect a rating as concerns the frequency of occurrence and associated 
danger: Stress corrosion cracking (SCC) is caused by the simultaneous presence of tensile stress and 
corrosive medium. The governing variables in SCC-damage are: solution temperature composition and its 
PH, metal composition and structures, impurity content and applied stress. The stress may arise from any 
sources such as, directly applied, residual or of thermal origin. While some of the factors outlined may be 
absent, the presence of stress above a certain threshold is a necessary triggering condition. Both 
intergranular and transgranular SCC has been observed. 
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1 Corrosion attack is induced by chemically active service fluids or microbiological species. Surface 
crevices and pitting typifies this damage.  

2 Mechanical vibrations are induced by turbulent flow, pumps vibration or poor mechanical 
component design. Alternating stresses may be induced at values above the component fatigue 
limit prompting fatigue damage. Characteristically for this type of fatigue damage, almost the 
entire fatigue life of the component is consumed during the phase of crack initiation. Once crack 
initiated, it propagates steadily and ineluctably to failure. 

3 Low cycle fatigue damage is related with repeatedly induced plastic deformation. Low cycle 
fatigue is generated at sites of severe deformation and geometric stress concentration under 
repeated pressurization. Under this circumstance the fatigue life can be as low as only some 
thousand of stress cycles.  

4 Thermal fatigue damage is caused by cyclic stresses of thermal origin. High thermal gradients 
induce stresses in the plastic range. As thermal cycling proceeds the capacity of plastic 
deformation is exhausted and multiple cracks are generated at the metal surface. In some pipe 
segments, large radial temperature differences are generated by intermittent contact with cold and 
hot fluids. This condition, referred to as thermal stratification, tends to bow the pipe. The cyclic 
occurrence of this condition may result in large alternating global stresses. 

5 Corrosion fatigue is the result of the synergic interaction of local corrosion and applied cyclic 
stress. Under this circumstance crack initiation is accelerated and the fatigue crack growth rate 
enhanced.  Surface pits and crevices, induced in the incipient stage by corrosion attack, act as 
stress risers where fatigue cracks initiate. High tensile stress at such discontinuities, or at the tip of 
a propagating crack, cause local plastic strain (metal electric “positivity” is enhanced) and the 
rupture of the protective oxide film, hence promoting local electro-chemical corrosion processes. 

6 Erosion induced damage, in a broad sense, covers metal loss by mechanical friction with the fluids 
mixed with solid particles. 

7 Cavitation is an accelerated local damage caused by rapid pressure variations in the limited areas 
of restricted turbulent flaw. 

8 “Water hammer” degradation is typical for pipes under rapid acceleration or deceleration of fluid 
flaw cause by pump start, outing or valves closure. 

9 There is a rather large category of PVs and pipes failures which have the origin in the design, 
manufacture, inspection, maintenance and operation, or can be caused by natural events (e.g. 
earthquakes, winds, waves, freezing, etc.).  

 
It is not uncommon that a failure implies a combination of the outlined damaging mechanisms with 
synergic conjunction of detrimental factors. In such cases a clear picture of the failure event may be 
difficult to be discerned.  
 
It is obvious that in any failure event various degrees of variability and uncertainty are involved which 
renders a probabilistic aspect to failure events.  Moreover, the failure risk evaluation in a PV or pipe 
segment results from the interplay between failure mechanism(s) and the applied NDI programs. A NDI 
procedure may be ineffective in assuring reliability against fracture if the possible failure event cannot be 
associated with an identifiable damage mechanism. Now, it is obvious that a strategy of PVs and pipes 
reliability management must be founded on the clear recognition of damage mechanisms, their physical 
backgrounds, coupled with plausible engineering models in order to enable quantitative analysis by 
computation. In mechanical risk analysis due account must be given to the parameters that have a 
stochastic/random nature. The final quantitative reliability assessment must also account on the quality of 
NDI techniques reflected in their capacity to sense defects, i.e. by their high probability of detection. 
 
 
QUANTIFYING THE FAILURE RISK BY FRACTURE MECHANICS 
 
The general context of fracture mechanics 
 
Analytical failure risk assessment in load-carrying components and structures is mainly based on 
probabilistic fracture mechanics methods (e.g. [5,10,11,23,34]).  Fracture mechanics, traditionally, is an 
engineering discipline that provides quantitative methods for assessing the circumstances under which a 
load bearing structural element can fail owing to the pre-existence of flaws or induced by outlined damage 
mechanisms. Once a flaw attains a dominant size, as a crack, it growths continuously under the actions 
encountered in service. The crack can grow at sub-critical rate, over an extended period of time, owing to 
cyclic loading and/or adverse environmental effects. The sub-critical growth of one dominant crack leads, 
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inexorably, to the attainment of critical conditions, at which point, the crack rapidly extends in an unstable 
manner towards fracture. The key ingredients in a conventional deterministic fracture mechanics analysis 
are: the initial defect size, far-field applied stress, material properties which describe the resistance to sub-
critical crack growth and the failure criterion which is associated with unstable, unbounded, crack extension 
until material separation/fracture. These circumstances are incorporated in the unifying concept of a driving 
force acting on the crack defect. Under linear elastic response of the loaded body, this concept is referred to 
the stress intensity factor (SIF). It embodies the intensity of the applied stress field ∞σ  and crack size, a . 

SIF is expressed in terms of stress intensity factor (SIF), K=Yσ πa∞ ,  where Y is a correction accounting 

on the geometry of the structural element. Mathematically, sudden fracture, occurs when SIF attains a 
critical material characteristic, the fracture toughness, Kc  expressed in the same units as SIF. Apart from 
component geometry correction factor,Y , crack-tip plasticity corrections are introduced when the size of the 
crack-tip plastic enclave, which develops under load, is a non-negligible ratio of the crack size. When 
significant plastic deformation occurs at crack-tip the methods of elastic-plastic fracture mechanics apply. 
In this circumstance the Failure Assessment Diagram (FAD) methodology has been developed which is 
formalized by various prescriptions (e.g. [17,35,36]). 
 
FAD methodology is implemented in pvRISK [40] algorithmic construct and code which will be further 
used to exemplify the failure risk assessment in pressure vessels. The end result of a deterministic fracture 
mechanics analysis, performed on this line provides for circumstances of monotonously increasing loading, 
the critical load at fracture or the component life set when loading is applied in cyclic sequences until 
failure. The evaluation of critical crack size associated with failure is the main part of the aims of the 
fracture mechanics approach.  
 
Probabilistic models in fracture analysis 
 
As a rule, input parameters in a fracture mechanics analysis are subjected to statistical variability and 
uncertainty (V&U). Variability is the effect of chance and is a function of the system. Variability is 
objective since it resides in the nature of the involved physical mechanisms underlying, in our case, material 
damage. It is not reducible by either study or further testing and measurements. It may be reduced, however, 
by changing the system. Uncertainty is the assessor’s lack of knowledge about physical laws, parameters 
that characterize physical and technical systems. Belongs to sources of uncertainty even the unawareness 
stemming from semantics i.e. the meaning we attach to the vectors of communication. Uncertainty is 
reducible by further experiments and study. The alternate concept of the degree of certainty is our measure 
of how much we believe something to be true. In practice, certainty is validated by positive (confirming) 
experiments. 
 
Variability and uncertainty act conjointly to erode our ability to predict the future behavior of a system. 
V&U are to be quantified when failure risk assessment is scrutinized. The most common methods available 
for this purpose are: probability theory, applied statistics, fuzzy logic, neural networks, and elicitation 
procedures. In the present study only methods pertaining to the theory of probability and applied statistics 
will be used. 
 
Probabilistic formalism is constructed around the concept of events and their probability of occurrence. 
Probabilities are quantified by random variables (X) and their associated distributions. A specific type of 
distribution is described by its repartition function: ( ) ( )F x =prob x X≤ with ( )x 0,1∈  or by its probability 

density (PD) function, ( ) ( )f x = dF x dx . 

 
In a probabilistic model some distributions are related with uncertainty about some parameters, other, 
reflect the variability, i.e. the random nature of underlying physical mechanisms. In the practice of 
mechanical failures modeling it is not easy to make this distinction so that, as a common rule, it is tacitly 
accepted that involved random variables reflect the contribution from both sources of randomness. 
Quantitative probabilistic models are constructed on the basis of the theory underlying physical processes. 
Generally, in a probabilistic model, the description and interaction of the parameters governing the physical 
processes under study is made in terms of random variables. The main methods used to construct PMs 
pertain to: full distribution method implying the computation of multiple convolution integrals, Markov 
chains, Bayesian inference, or direct Monte Carlo random simulation. It is important not to forget that 
mathematical and physical models, fracture models included, are idealization of reality hence, strictly 
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speaking, all models are more or less accurate approximations. However, by increasing the accuracy of 
experiments and refining mathematical algorithms, models can approach reality ever more closely.  
 
Full distribution approach to probabilistic fracture mechanics 
 
Full distribution approach of failure risk assessment is formulated rigorously in terms of multiple 
convolution integrals.  The first step on this line is to construct, on the basis of the underlying physical 
mechanisms, the key random variables, Xi, describing the relevant parameters of the material strength and 
the loading, together with the functional relationship among them: ( )1 2 nZ=z X ,X , ... X .  The failure, or the 

limit state, is defined by the condition Z 0≥  that represents the multi-dimensional failure surface. Function 
Z is also termed as performance function. Its representation marks the boundary between the safe and 
unsafe regions in the space of basic parameters Xi. Failure risk or reliability analysis can be developed in a 
form that is explicit or implicit in the random variables, Xi. Comprehensive presentation of this way of 
approach can be found in the literature [10,21,41,42]. 
Accounting that failure occurs when Z 0≥ the probability of failure results as: 
 

f 1 2 nP =Prob[Z(X ,X ,...,X ) 0]≥         (2) 

 
or, explicitly, by the convolution integral:  
 

f X 1 2 n 1 2 n
Z(.) 0

P = ... f (x ,x ,...,x )dx dx ...dx
≥

         (3) 

where ( )X 1 1 nf x ,x , ... ,x  is the joint probability density (PD) function of 
1 2 nX ,X ,...,X  random variables. The 

integration is performed over the region where Z(.) ≥ 0.  
If the random variables are probabilistically independent, the joint PD function may be replaced under 
integral sign by the product of mutually independent density functions, 

iX if (x ) .  

 
Rigorously, in a comprehensive approach, the joint PD function of random variables is in some degree 
correlated, making virtually impossible to define it in compact analytical form. Even if this function would 
be available, the direct evaluation of the multiple integral in Eq. 3 is extremely complicated. Analytical 
approximations of this integral, that are easy to compute, have been, nevertheless, proposed and are at the 
base of a multitude of computation algorithms. The majority of these approximations may be grouped into 
two classes referred to as: first- and second-order reliability methods (FORM and SORM, respectively). 
Detailed information on these methods can be found in the above mentioned literature and, more 
specifically, in the monograph of Madsen et al. [42]..   
 
Direct Monte Carlo simulation of failure risk 
 
For a given quantitative model conceived to predict the behavior of a system, Monte Carlo simulation 
consists of iterations of repeatedly sampling of random values of the model input variables according to 
theirs distribution. Distribution arguments are generated by inverse mapping a uniform distribution, defined 
over the interval ( )0,1  using pseudo-random numbers1 generated by computer (random numbers), onto the 

domain of definition of the considered random variable in the model. The sampled random values 
pertaining to all involved random variables, obtained in one iteration, are used as input in the model 
computation algorithm, in deterministic formulation and, after a large number of iterations (scenarios), the 
statistical response of the model is ascertained. On this basis probabilistic inferences on the system behavior 
may be performed. 
 
Direct Monte Carlo simulation can be applied to estimate the probability of failure on the basis of 
performance function Z, (see below), rather than computing the convolution integral, Eq. 3, for probability 

                                                 
1 Pseudo-random numbers are generated by mathematical algorithms having the property that the generated numbers appear to 
be independent observations from a uniform distribution defined on the interval ( )0,1 . It is conjectured that decimal digits of 

the number π are naturally occurring sequences random numbers. This conjecture seems reasonable in the light of Buffon’s 
needle problem [54]. 
 



Fundamentals 

75 
 

of failure estimation.  By Monte Carlo simulation of failure, in every scenario the input variables are drawn 
automatically according to their probabilistic distributions implied in the model, and then fed into 
performance function Z. After n repetitions one counts nf , the number of scenarios when the condition for 
failure is fulfilled, i.e. when Z(.) ≥ 0. An estimation of the probability of failure follows as:   
 

f fP =n /n           (4) 

As, n → ∞ , at limit,  f fP P→  , the true probability of failure. 

The accuracy of Monte Carlo estimation depends on the number of simulation repetitions. It improves with 
the increase of the number of simulations. The accuracy can be evaluated by assuming that each simulation 
is a Bernoulli trial. Therefore, the number of failures in n trials can be considered to follow a binomial 
distribution. The coefficient of variation, COV, is a measure of statistical accuracy of the estimated 
probability of failure (e.g. [22,25,43], hence: 
 

n
PP

P
PCOV ff

f
f

)1(1
)(

−
≅

         (5) 

 
Table 2 gives a view of the number of Monte Carlo simulations that are necessary to achieve a coefficient 
of variation of 10% for various levels of the estimated probability of failure 

fP . 

 

Probability of failure fP   10-3 10-4 10-5 10-6 

n- number of simulations  10 5 10 6 10 7 10 8 

 

Table 2 – Number of Monte Carlo simulation necessary to achieve a Pf  accuracy of 10% COV (covariance). 

 
It is obvious from the data presented in Table 2 that Monte Carlo simulation implies an extensive computer 
time. However, this is a diminishing drawback since the power of computer facilities increases rapidly at 
decreasing costs. Computer expenses implied in a sufficiently accurate Monte Carlo simulation are 
nowadays no higher than those associated with the numerical integration in Eq. 3. 
 
 
PROBABILISTIC DESCRIPTION OF QUANTITATIVE NON-DESTRUCTIVE INSPECTION 
(QNDI) 
 
Quantitative non-destructive examination encompasses flaws detection and their quantitative evaluation, 
together with assessing V&U associated with a specific NDI technique in terms of probability of detection 
(POD). 
 
NDI systems are driven to their extreme capability to find small flaws. To extreme capability of NDI, not 
all small flaws are detected. V&U result. Because of V&U, NDI capability (implicitly, reliability) is 
characterized in terms of POD as a function of the flaw size, a. POD(a) function is defined as the 
proportion of all flaws of size a that will be detected by a given NDI system. Probability of non-detection 
(PND) is simply the complementary of POD, i.e. PND=1-POD.  
 
The POD variation vs. flaw size displays, by the nature of physical limitations of NDI process, a minimum 
crack size threshold, ao. This signifies that the flaw must be greater than a threshold ao, for detection to be 
possible.  Above this threshold POD increases with the flaw size. The POD curve eventually attains a 
maximum limiting value above which POD cannot be increased, presumably that other factors enter into 
play, such as human errors that might interfere in the detection process. 
 
Probability of detection can be estimated only by statistically planned NDI experiments on specimens 
containing flaws of known size and position. A large experimental effort has been made in the last decades 
on this line and extended literature is available about this subject (e.g. [41,42]). Such experiments have 
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enabled to derive various models of POD variation as against the flaw size. Here are some examples: 
Asymptotic exponential [20]; Log-logistic or log-odds [41]; Asymptotic of power-law type [43]. 
 
In handling POD data in fracture mechanics computation it should be taken into account that for a given 
NDI circumstance, the true probability of detection, as a function of crack size (length), will never be 
known exactly. The capability of a NDI technique in a given application can only be demonstrated through 
an experiment in which representative test components with known crack length are inspected and true 
POD is only estimated by the percentage of correct positive detections. The estimated POD is subjected to 
statistical variation that results from random influences in the flaws detection process stemming, basically, 
from random response to the non-destructive interrogation of the material which has, inherently, structural 
non-homogeneity. Nonetheless, unavoidable variations in the application of NDI technique are also 
incumbent. The variability reflected in POD is obviously more pronounced in manual NDI in relation either 
operators skill (human factor), being less dependent on this factor in automatic NDI. Under SHM, though 
the human factor is virtually non-existent, local failures in the embedded sensors networks, which may be 
ignored, makes, in the present capacity of SHM that POD is as a rule lower than in the case of NDI 
performed on the structure retired from service.    
 
Unavoidable finite sample size in POD experiments and, possibly, systematic differences between 
inspection and in-service conditions introduces additional V&U in POD assessment used in risk 
assessments. However, statistical methods are available that yield confidence intervals (CI) on the true 
value of POD. CI derived for a specific sample, i.e. the set of experimental POD data, account for finite size 
of the sample and, indirectly, on the systematic errors reflected in the POD pattern of variation. Estimation 
of CI with bounding superior and inferior confidence limits (CL) offers an indirect way to achieve 
protection against making a wrong decision in choosing the relevant initial crack size on the basis of the 
capability of POD technique in fracture mechanics simulation of the fatigue crack growth and crack-
conditioned sudden fracture.  
 
Recently, new statistical methods have been developed for constructing CI, beyond the classical 
methodology which imposes, as premise, the knowledge of the theoretical statistical distribution obeyed by 
the sample (parent sample) under analysis (parametric approach). “Bootstrap” re-sampling method enables 
to construct CI relaxing this implied condition [44]. The author has developed a two-dimensional bootstrap 
technique for constructing CIs placed on the analytical form of POD vs. crack size variation (correlation). 
Figure 1 shows an example of bootstrap simulated re-sampling of POD vs. crack size for the set of data 
obtained by ultrasonic NDI [48]. Bootstrap simulation has been performed with pFATRISK simulation 
methodology and computer code developed for probabilistic failure assessment under circumstances of 
fatigue crack propagation in structural elements, specifically in aircraft fuselages treated as pressure vessel 
under fluctuating internal pressure in takeoff /landing cycles [46]. 
 

 
 
Figure 1 Bootstrap re-sampling of POD vs. crack size correlation and confidence interval construction with example of 
assessing the crack size at POD = 0.9 on the inferior confidence bound of 95% confidence interval. 
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In order to quantify and manage the failure risk in aerospace technology, damage tolerance of a structural 
component is demonstrated by the simulation of the fatigue crack growth. To ensure conservative design at 
very low levels of probability of failure, presumably lower than 10-9, an equivalent initial flaw (EIF) size is 
adopted, as incipient flaw, for fatigue crack growth (FCG) simulation. EIF is set at the value of the crack 
size corresponding on the POD vs. crack size at a high POD value of 0.9 on the inferior confidence limit 
(CL) of 95% CI (e.g. [50]). This is an “operational”, POD-related setting of EIF in FCG simulation in the 
structural components. For instance, Rummel and Matzkanin [48] give for various NDI techniques, 
materials and components geometry the value of aNDI (95/90), i.e. the crack length for which it can be 
shown that there is 95 percent confidence that 90 percent of all cracks of this length will be found. Note that 
according to this rationale it is a chance (however, very small) that a crack longer than aNDI (95/90) passes 
undetected through the NDI process. This chance depends not only on the capability of the NDI techniques 
but also on the distribution of crack length that are present in the component before inspection.  
 

 

COMPUTATIONAL PROBABILISTIC FRACTURE MECHANICS (PFM) 
 
Probabilistic fracture mechanics offers computational tools for quantifying in an a priori or a posteriori 
analysis the failure risk by fracture in terms of failure probabilities, Pf , or the complementary quantity, the 
reliability, expressed in terms of survival probabilities Ps. Obviously, Pf = 1- Ps. 
One way of approach of PFM is to account on the basic V&U encountered in structural design and 
operation and, on this basis, to evaluate the probability of failure under various loading and environmental 
circumstances such as static, fatigue, creep, wear, corrosion or a combination of these. Depending on the 
degree of complexity of the PFM model the following basic model parameters may be regarded as random 
variables: 
 

1. Material fracture and strength characteristics under static (time independent) loading: ultimate 
tensile strength (UTS), yield point (YP), and fracture toughness (Kc, Jc, critical crck-tip opening 
displacement, CTODc, etc.). 

2. Material characteristics related with time dependent damage and final failure. A wide variety of 
failure modes belongs to this category: material damage related with crack growth by fatigue under 
repeated loading (e.g. as described by Paris or Forman formalism); material damage by irreversible 
accumulation of deformation as activated by temperature and applied loading (creep, relaxation, 
plastic fatigue, thermal “ratcheting”, etc.), combined modes with superimposed influence of active 
environment (corrosion, irradiation, etc.). 

3. External loading intensity, statically or repeatedly applied. 
4. Flaw size distribution in terms of size, orientation, location and frequency 
5. The reliability of non-destructive testing as expressed by POD(a) functions. 
6. Tentatively, quantification of human factor (reliability) in terms of probabilities to apply 

successfully a prescribed procedure. 
 
Both probabilistic general methods, by convolution integrals computation and Monte Carlo simulation, are 
in current use. The models based on convolution integrals are rigorous and of wide generality. 
Unfortunately, on this line of approach, only few closed form analytical solutions can be obtained for the 
purpose of Pf or Ps computation and, moreover, these solutions correspond to highly simplified structural 
geometry and crack configurations (e.g. [11,12]). For structural geometry, loading and other conditions 
dictated by reality, the convolution integral method becomes very tedious. Nowadays, with the tremendous 
available computation power, Monte Carlo simulation is a reasonable alternative. Monte Carlo simulation 
methods are straightforward, of wide generality, with less restrictive assumption and with direct practical 
potential of application.  
 
In the following, a case study is presented in which Monte Carlo simulation method will be exemplified in 
an exercise for assessing the failure risk in pressurized pressure vessels and pipes.  For this purpose, 
pvRISK, a rationale and a computation code have been developed [37] which integrates PFM and QNDI.  
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AN OUTLINE OF THE pvRISK RATIONALE 
 
General description 
 
pvRISK is a rationale and a code platform devoted to perform fracture mechanics assessments. Failure 
Assessment Diagram (FAD), as specified in standards (see above), is the implemented failure criterion. This 
methodology encompasses both elastic dominated (brittle) and elastic-plastic dominated (ductile) fracture. 
FAD approach to failure is a two-parameter criterion. One parameter, (Kr = SIF / material fracture 
toughness) pertains to pure fracture mechanics analysis. The other ( Lr = applied load / plastic collapse 
load ), is evaluated with the methods of plastic limit state theory (or by test). The interaction between the 
parameters results from Dugdale model of crack tip plasticity or from empirical corrections to this model.  
For failures under singular loading (in one loading cycle) the performance function Z (see above) is 
implicitly implemented in FAD. There are enabled various formats of FAD in order to comply with national 
and international documents [17,36]). This methodology encompasses both elastic dominated (brittle) and 
elastic-plastic dominated (ductile) of fracture. Stress intensity factors (SIF) are calculated, according to 
pvRISK methodology, by analytical solutions of wide recognizance. There is a possibility to implement SIF 
fitted data obtained by finite element analysis. 
 
The logic underlying pvRISK methodology in the context of analysis of mechanical reliability of load-
carrying components is illustrated in Figure 2. Contributions and interactions pertaining to structural 
mechanics, probabilistic fracture mechanics, material testing, experimental loading evaluation and 
quantitative NDI are outlined. The main modules of pvRISK are: 
 

• Material module for the input of material properties related to static fracture: UTS, YP, Kc, and 
others. All material properties are regarded as random variables (RV) following the most common 
distributions: Normal, log-normal and three parameters Weibull distribution. Fitted distributions 
are displayed in various representations as: cumulative probability (CP), probability density 
function (PDF), with evincing standard deviation (SD) intervals from 1 to 6. 

• Stress Intensity Factor (SIF) module gives the possibility to choose among many geometry 
configurations which have compact analytical solutions given in the existing literature. Finite 
elements result in a table form, i.e. points of SIF geometry correction factor Y vs. crack size a may 
be given in the input. Y(a) functions and point estimations (YI, aI) are graphically represented. For 
probabilistic analyses the crack size is defined as RVs with an input distribution, at choice, among 
several types: normal, log-normal, 3P-Weibull, logistic and extremal distribution or the 
distribution of statistically simulated crack size at various intervals during fatigue crack 
propagation. 

 

 
 

Figure 2 Probabilistic approach to failure risk assessment by the conjoint contribution of structural mechanics, 
probabilistic fracture mechanics, material testing, loading sensing/recording/evaluation and quantitative NDI. 
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• Failure simulation module (main module) performs static failure analysis under deterministic and 
probabilistic scenarios. In deterministic analysis, non-failure/failure circumstance is assessed by 
2D FAD performance function formulated in two governing variables – Kr and Lr.  In these 
variables, FAD formalism formulates the limit state of the component under analysis represented 
in Kr, Lr coordinates the boundary between non-failure/failure domains. A safety index is evaluated 
by the relative position of the component state representative point as against the limit state 
boundary. Parametric analysis enables to compute critical crack size, loading or material fracture 
toughness at failure. Probabilistic failure analysis is performed by Monte Carlo simulation of the 
RVs specified in the input (material strength parameters, crack size and loading intensity). In order 
to simulate failure vs. non-failure circumstance the Monte Carlo sampling of input parameters are 
feed into FAD formalism in one iteration. By a great number of iterations the probability of failure 
results as the ratio of the number of iterations resulting in failure to the total number of iterations. 
On-line (dynamic) graphical display of the state points in FAD representations portrays the points 
“cloud” that gives an overall perception of the failure occurrences. In this module the possibility to 
assess the influence of non-destructive inspection (NDI) via the concept of probability of detection 
(POD) as function of the flaw (crack) size is implemented. A straightforward evaluation of the 
failure risk mitigation can be made when a specific NDI procedure characterized by its POD 
capacity is applied as follows:  

o POD module enables to input the rule (distribution) of POD vs. crack size variation. 
Among the implemented analytical forms of POD(a) rules are: exponential, log-normal, 
logistic, log-logistic (odd-logistic), 3P-Weibull and asymptotic forms of power-law types. 
A unique feature is implemented in this module, namely, the possibility to perform 
bootstrap computer re-sampling (e.g. [47]) in the experimental (parent sample) (PODi, ai) 
data. By this procedure it becomes possible to construct non-parametric confidence 
intervals over the mean correlation POD vs. crack size, a. This technique is supplemented 
with algorithms pertaining to order statistics [5]. In this way conservative lower bounds of 
POD curves can be ascertained and the representative crack size, aCL/POD, at specific 
confidence level, CL, and POD ( e.g. a90/95 ) can be set for the purpose of defining 
computational equivalent initial crack for the purpose of fatigue crack growth simulation.  

 
pvRISK has been used mainly for a priori estimation (prognosis) of failure probability in pressure vessels 
and pipes and for a posteriori  analysis of field failures. This software platform is under continuous 
development and can be customised for specific applications. 
 
Application of pvRISK rationale to the analysis of failure risk in PVs and pipes 
 
This section considers the case of a gas pipe which being in service for several years was found to be 
affected by stress-corrosion damage (see similar case descriptions in [49]. The pipe geometry was 610-9.5 
mm (24-0.375 in) of API, grade B steel with nominal strength characteristics of UTS = 520 MPa and YP = 
350 MPa.  
 
The geometry of the pipe segment under analysis is shown in Figure 3 – together with the SIF correction 
factors, Y, vs. crack size, calculated at the depth tip (size b) and surface tip (size a) of the inner axial semi-
elliptic crack. The internal pressure of the pipe segment is 80 bar. 
 
An axial crack of approximately semi-elliptic geometry was found by ultrasonic NDI on the inner surface of 
the pipe. It was discerned that the crack depth was of some b=5 mm and the length (2a) emerging on the 
inner surface was about of a=25 mm. However, the crack length had a less accurately discernible boundary. 
Obviously, a probabilistic analysis is needed to evince how the failure risk is influenced by uncertainties in 
the knowledge of the crack size. This undertaken will be further outlined.  
 
Failure risk assessment followed FAD methodology based on strip-yield model [50] underlaying pvRISK 
code which complies with  R6/BS-7910 and SINTAP procedures. SIF analytic solution developed by Raju 
and Newman [51,52] is implemented in pvRISK methodology for Y factors computation. Figure 3 
exemplifies Y factors for a crack aspect ratio of b/a = 0.2. 
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Figure 3 – Geometry characteristics of the pipe and stress intensity factor analysis according to pvRISK rationale. 
 
Deterministic FAD analysis 
 
In deterministic FAD analysis with pvRISK code, a strip-yield model (Dugdale) has been used. The steps in 
the analysis follow the R6/BS-7910 procedure. Nominal (mean) material strength parameters are given in 
Table 3.  The results of the FAD analysis are contained in Table 4. Figure 4 shows the results of the 
deterministic FAD analysis.  
 
 

Characteristics Mean Lower threshold Location param. Shape param. 
UTS MPa 520 480 500 3.5 
YP MPa 350 325 350 3.5 
Kc MPm0.5 100 100 175 4.0 

 
Table 3 Parameters of 3P-Weibull distribution of strength and fracture toughness. 
 
 

 K MPm0.5 Y Kr Safety Index 
At crack depth, b 34.498 1.6382 0.345 1.66 
At surface crack tip, a 18.466 1.8769 0.185 1.69 
Sr (#) 0.592 - - - 
 

Table 4 Results of deterministic FAD analysis 
 
It should be noted from data in Table 4 and Figure 4 that the point representation of the state related to the 
possibility of failure possibility or hence occurrence is seemingly not imminent. The safety index for failure 
triggering at the crack tip in depth (b) and at the surface crack tip (a) is 1.66 and 1,69, respectively at a 
loading intensity of approximately 60%  of the plastic collapse load (Sr = 0.592). However, V&U which is 
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compellingly involved makes the assessment of failure risk of the pipe component under study necessary by 
using probabilistic analysis.   
 
Probabilistic FAD analysis 
 
Probabilistic analysis has been made in a combined framework of expert judgment and the evidence of the 
trend of statistical data, as concerns material strength (UTS), deformation (YP) and fracture toughness 
characteristics (Kc) described by assumed 3P Weibull distributions, with the parameters outlined in Table 3.  
As concerns V&U in crack-size estimation, normal distribution has been hypothesized, a usual “custom” 
when there is no other specific information. The parametric (sensitivity) analysis performed, related to the 
scatter of the crack size, considers three scenarios of low, moderate and large scatter, parameterized by 
standard deviation (SD) as made explicit in Table 5. 
 

Crack-size scatter Mean b/Mean a SD - b SD - a 
Low 5 /25 0.5 2.5 
Moderate 5 /25 1.0 5.0 
Large 5 /25 1.5 7.5 
Crack-size in mm. 
 

Table 5 Parameters of the Normal distribution of the crack-size 

 
In the probabilistic failure risk analysis, Monte Carlo method has been used in the format implemented in 
pvRISK rationale. By repeating a large number of FAD scenarios,  Monte Carlo sampling of the key RVs, 
UTS, YP, Kc, b and a, has been performed in each of them. In each scenario deterministic FAD assessment 
has been made using temporarily sampled random key variables, according to their assumed distribution. A 
statement of failure/non-failure results is then made. The simulated probability of failure, 

fP , results simply 

as the  ratio of number of scenarios of simulated failures, 
fn , to the total number of scenarios, n , attempted 

in Monte Carlo simulations:  
 

f
f

n
P =

n
          (6) 

 
For non-failure, representative points in FAD are positioned inside the domain bound by the limit-state 
curve, while for failure cases, outside. In the case when low probability values results in simulation, the 
number of iterations has been increased from 105 to 106 in order to improve the accuracy of the Monte 
Carlo simulation.  
 

 
Figure 4. Deterministic FAD analysis representation with positions of points marking the state of flawed pipe as regards the 
risk of failure 
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Figure 5 illustrates the graphical display which visualizes the “cloud” of representative points. The “clouds” 
represent the state points on the FAD for every scenario of simulation with Monte Carlo random sampling 
of strength characteristics UTS and YP, fracture toughness Kc and crack size parameters a and b. It should 
be noted that representations in Figure 5 for series A, do not imply NDI performed before the analysis. The 
parameters of 3P-Weibull distribution of strength and fracture toughness characteristics are unchanged, as 
in Table 3. In Series A, no NDI was applied. In Series B, NDI was applied with POD capability as shown in 
Figure 6. 
 
The trends, evinced by probabilistic analysis in Figure 5, for the case when no NDI is applied, enable to 
discern some pattern of behavior. As the scatter of the crack size increases the failure risk manifestly 
increases; compare in Table 6 positions 1, 3 and 5 and the corresponding clouds of state points in Figure 5, 
positions A1, A2 and A3. While at low scatter estimated failure probability is virtually zero, a high 
probability of failure results for large scatter of the crack-size. This obvious trend emphasizes the necessity 
to master the knowledge of crack size statistics in a failure analysis in order to obtain consistent results. 
 
Quantitative NDI  
 
To explore how the application of NDI contributes to a decrease of failure risk the sensitivity analysis has 
been performed following the scenarios parameterized as given in Table 6. In Monte Carlo simulation, the 
crack size has the same nominal (mean) values and the same extent of the crack size scatter for the three 
analysis circumstances as given in Table 5.  
The quality of applied NDI is quantified in this study by the probability of detection (POD) as a function of 
the crack size (here crack depth b is considered as the “hot spot” location where final fracture is triggered). 
Asymptotic exponential [20] POD rule has been considered in the construct of a failure simulation model 
exemplifying the merge of FAD analysis and POD capability. This POD rule, represented in Figure 6 has 
the equation: 
 

0

1 0

a-aPOD=A 1-exp -
a -a

  
  

  
        (7) 

 
where a , is the crack-size, 

0a is the sensitivity of NDI procedure, i.e. the inferior crack-size threshold 

under which the crack cannot be detected owing to the limitation of the instrumentation; 
1a  is a fitting 

parameter and A<1  signifies that for POD>A no detection is possible, irrespective of the crack size. This 
circumstance is in the realm of defective NDI instrumentation or human errors in applying the prescribed 
procedure. In this case-study the following parameters of the asymptotic exponential POD rule have been 
used: A = 0.995, ao = 1mm and a1 = 1.5 mm. Figure 6 shows POD vs. crack size representation for these 
parameters. 
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Figure 5. Probabilistic FAD analysis. Normal distributed crack size for low, moderate and large scatter of the crack size.  
Implementation of POD rule in FAD methodology enables to evince scenarios when the crack size has the 
magnitude that might lead to failure but NDI technique is able to detect the flaw. In the simulation, once a 
crack is detected by the applied NDI, it is considered that efficient corrective measures have been applied 
implying that the element is repaired at the initial quality or is replaced with a new one. Hence, the scenario 
is counted as “non-failure”, making in the overall counting, which yields the probability of failure,

fP , 

 
 
Figure 6 - Variation of the POD and PND as function of the crack size. Asymptotic exponential rule.  A = 0.995, ao = 1mm 
and a1 = 1.5 mm. 
 
Eq. 6. as results from the simulation results, in terms of probability of failure (last column in Table 6), by 
application of NDI of high quality reflected in the POD vs. crack size curve shown in Figure 6 
(POD=0.99467), the probability of failure decreases with nearly two orders of magnitude. When the crack 
size scatter increases the probability of failure increases but also in these circumstances the benefit of 
applying a NDI of quality is obvious.  
 
It is worth to note that positions B1, B2 and B3, i.e. circumstances when NDI is applied shows a small 
number of FAD state representative points than when no NDI is performed. Obviously, the simulated 
detected cracks are considered as repaired or the element replaced with an unflawed one. However, though 
for large crack sizes, say over 5 mm, POD is very high, say beyond 0.995,  a small chance (1-A=0.005 ) 
nevertheless remains that cracks that may escape NDI, irrespective of the crack size and, those in the realm 
of large cracks to provoke fracture.  
 
 

No FAD 
probabilistic 

Crack size 
scatter 

Nb. 
Simulations 

Nb. 
Detections 

Simul.P
OD1)  

Nb. 
Failures 

Pf 

1 No NDE low 100.000 - - 0 0 
2 With NDE low 1.000.000 994.417 0.9944 0 0 
3 No NDE moderate 100.000 - - 634 6.34 10-3

4 With NDE moderate 1.000.000 992.673 0.9927 33 3.50 10-5

5 No NDE large 100.000 - - 4558 4.56 10-2  
6 With NDE large 1.000.000 980.697 0.9807 189 1.89 10-4

1) Theoretical POD = 0.99467 at b=5 mm, on source POD vs. crack size curve (Figure 6). 

 
Table  6 – Results of comparative probabilistic analysis of the failure risk when  NDI  is applied and not-applied.  
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ON THE IMPLEMENTATION OF PFM & QNDI ANALYSIS IN STRUCTURAL HEALTH 
MONITORING 
 
When combined PFM & QNDI analysis is performed, a clear differentiation of the circumstances should be 
stated. In the case under study which is reported in this paper, it was presupposed that combined FAD & 
POD analysis is performed intermittently, at pre-set timing (e.g. the pipe operation is shut-off or an aircraft 
is grounded for inspection). When continuous SHM is implemented, which parallels, on-line, the structure 
operation, the network system of sensors are “tuned” to provide warning at the attainment of a pre-set 
size,aw, when it  develops in the pipe. Obviously, the warning time, tw, is random in nature, the randomness 
being conditioned by the V&U encountered in loading pattern, material response and POD of implemented 
sensing system. Warning time statistics at the attainment of a pre-set warning crack-size, aw, can be 
simulated with pvRISK methodology, as detailed in Sect.7, resulting the probability of occurrence Pt(aw) 
associated with the warning time tw, the relationship tw  Pt(aw) being parameterized by aw.  

 

By setting the warning time early in the structures life, i.e. for small probabilities of occurrence, Pt , and 
performing the failure analysis as described in Sects 5 and 6 and 7, then, via Pt, the correlation of failure  

risk, Pf, with the level of  warning crack size level aw and warning time twcan be ascertained:  

 

( )f t w wP P a ,t⇔ . The only difference in the failure risk assessment in the case of continuous on-line 

monitoring of the crack size is that in Monte Carlo simulation the crack size assumes a deterministic value 
at the warning level of the crack size,

wa . This way of approach is exemplified in a companion paper 

dedicated to failure risk assessment in riveted joints of fuselage structures provided [53]. 
 
 
DISCUSSION AND CONCLUSIONS 
   
The study develops a methodology for integrating probabilistic fracture mechanics with quantitative NDE 
for the purpose of failure risk assessment in pressure vessels and pipe elements. The uncertainty in our 
knowledge and the intrinsic random variability implied in the physical mechanisms of fracture, confer an 
overall probabilistic character to the phenomenon of structural damage and failure. The estimation of the 
probability of failure may be achieved by integrating probabilistic fracture mechanics with quantitative non-
destructive inspection using advanced computing technology. 
 
For structural failure assessment, heuristic probabilistic models have been constructed on the basis of the 
principles of the probability theory. Key material, loading and crack-size parameters involved in the 
fracture process are modeled as random variables. Rigorously, probabilistic theoretical models of fracture 
are formulated in terms of direct distributions convolution which leads to a mathematical formalism 
expressed in multi-dimensional integrals. On this way, however, only highly simplified geometry of the 
structural elements can be approached and, few types of distributions describing the scatter of the crack size 
and material strength and fracture mechanics characteristics have been considered in order to obtain 
computationally efficient compact analytical solutions. Applied to more realistic structural geometry 
configurations, the direct distribution approach leads to tedious and, possibly, unpredictable errors that are 
unavoidable in the numeric approximations of the model multiple-integrals.  
 
An alternate way of approach to failure models is offered by massive computer simulation of fracture 
models with Monte Carlo technique. Governing random variables of the underlying physical model are 
sampled according to their distribution functions and the evaluation of failure circumstance is made by a 
limit state criterion (performance function). In the pvRISK methodology the performance function is 
constructed on the principles of elastic-plastic fracture mechanics embodied in the Failure Assessment 
Diagram methodology. The accuracy of Monte Carlo simulation is straightforwardly assessed as function of 
the number of simulation. This relationship is outlined in order to substantiate the relevance of failure risk 
simulations using pvRISK rationale and the associated software. In this context, the concept of probability 
of detection is presented as being the quantitative framework which enables to take into account the quality 
of the applied NDI in prognostication of its influence on the reliability of the structure. 
 
A case study is presented in which the application of pvRISK methodology to failure risk assessment in a 
pipe segment with inner semi-elliptic axial crack is exemplified. A parametric study of the influence of 
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crack size scatter has been performed and the benefit of applying NDI is demonstrated in terms of the 
decrease in probability of failure.  
 
It is obvious that application of NDI of proper quality reflected in the POD rule is beneficial in reducing the 
risk of structural failure. Applied in a reasonable time schedule by intermittent NDI or continuously by a 
SHM system, followed by repairs and/or replacements of the damaged components enables to increase 
structural reliability at levels where the probability of failure is very low.  
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Figure 11: a) Test stand for dynamic characterization of stack actuators b) 4-layer stack actuator with 5 electrodes and PU 
elastomer. 

 

Figure 11b shows an assembly of four electrodes with three layers of elastomer in between. The hole 
pattern is placed on a square area of 30 x 30 mm² inside a 0.5 mm width border which is necessary for 
mechanical stability of the electrodes.  

On the left side are the connection lugs for electrical contacting of the electrodes. The cut-outs in the 
connection lugs are used for geometric alignment of the electrodes when building an actor with a larger 
number of electrodes, as well as the square lugs on the right side. 

 

 

ELECTRODES AND ELASTOMERS 

 

The actuators were built and tested with different electrodes. Figure 12a and 12b show a microscope photo 
of two general types that are both manufactured in an electroforming process. The surface of the first 
electrode type is smooth and the holes are sharp, the holes of the second type are conically shaped, resulting 
in a more mountainous surface. The thickness of the electrodes was in a range from 0.05 mm to 0.2 mm.  

 

       
Figure 12: Microscope pictures of different electrode types a) cylindrical holes, b) conically shaped holes.  

 

Different elastomer materials like silicone, natural rubber and polyurethane elastomers were tested likewise. 
These materials differ in their mechanical and electrical properties. Layers in a thickness range from 35 μm 
to 200 μm were tested. 

 

 

FIRST TESTS ON RELIABILITY AND FAILURES 

 

During the tests some actuator assemblies failed based on an electric breakthrough. Figure 12 shows a 
microscope photo of such a failure. The voltage level at which this failure appears depends theoretically 

a) b) 

a) b) 
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only on the elastomer, its dielectric breakdown strength and thickness. However, the condition of the used 
electrodes will practically reduce the maximum voltage. Possible causes are sharp edges and burrs that can 
arise in the manufacturing process of the electrode.  

Another source of possible early failures are small particles (dust, dirt, swarf etc.) which are on the 
electrode. Therefore high demands on a clean assembly environment are necessary. Polluted electrodes 
should first be cleaned e.g. in an ultrasonic bath. The aim of the actuator design was to have a closed and 
encapsulated device. The parts of the actuator were manufactured using a rapid prototyping printer 
(photopolymer jetting). 

Figure 13a shows a CAD rendering of the actuator. The housing is shown as a transparent contour. Inside 
the housing is the stack of electrodes and elastomers which is held between two mounting plates. The lower 
mounting plate connects the stack with the housing; the upper mounting plate holds a thread which is lead 
through the housing to connect something to the actuator. The housing itself can be mounted by two M6 
screws. The outer dimensions of the actuator are 89x45x13 mm³. Figure 13b shows a photo of the actuator 
mounted on a base plate with the cover removed. The stack is prestressed using a rubber band. Figure 14 
depicts one of the experimental results of the quasistatic measurements. The actuator is driven with a high 
voltage sinusoidal input and the mechanical response is measured using a laseroptic system. The stroke 
increases with the voltage almost linearly, although the physical effect is quadratic in nature. The nonlinear 
stiffness of the system however seems to linearize the overall actuator again, which is a positive effect for 
most applications. At 1.9 kV the actuator displacement is about 200 μm, which equals about 5.8 % material 
strain in thickness direction. 

 

 
Figure 13: Microscope photo of electric breakthrough. 

 

       
 

Figure 13: a) CAD rendering of the actuator, b) Actuator with removed cover.  

 

 

a) b) 
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Figure 14: Actuator performance - quasi static movement at 2 Hz. 

 

 

CONCLUSIONS 

 

The new design seems to be a promising approach to build tailorable electro-active polymer (EAP) 
actuators for a wide variety of applications. More work will be necessary to optimize the electrode design 
and to standardize the manufacturing process. One of the mainly still unexplored areas is that of the 
reliability of EAP actuators. To get a first impression of the reliability of the stack actuator a long term test 
was carried out. The actuator was mechanically preloaded (m= 0.3 kg) and driven for approximately 17 
hours in the overcritical state with a 200 Hz signal, which results in ~107 load cycles. The velocity was 
detected with a laser vibrometer. As can be seen from the result shown in Figure 15 the performance 
increased constantly during the first few hours and reached a saturation level afterwards. The physical 
effects responsible for that will have to be studied in the future.  

 
Figure 15: Velocity over time for 107 load cycles. 
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ABSTRACT 

 

The development of a model-based approach for a damage severity assessment applied on a complex composite skin structure 

with stiffeners is presented in this article. Earlier investigations on composite structures with stiffeners revealed that a vibration 

based structural health monitoring approach employing the Modal Strain Energy Damage Index algorithm can detect and 

localise delaminations. The next step performed in the part of the research presented is to assess the severity of the damage. It 

is shown that parametric studies enhance the reliability of the damage severity assessment based on measured data, since a 

wide range of damage cases can be studied in advance, possibly under variable environmental conditions. The benefit of 

numerical models is also found in the ability to select measuring points in a smart way, hence optimising the efficiency of the 

data acquisition system. The amount of damage related information is maximised for a minimal number of sensor positions. 

 

INTRODUCTION 

 

A substantial amount of research effort is spent recently on Structural Health Monitoring (SHM) for civil, 
offshore, oil and aerospace applications [1,2]. The latter is a still relatively new area of research. This is due 
to the complexity of the components and the high demands on safety and reliability of the SHM-system. A 
range of technologies, comprising structural vibration and propagating wave technologies is employed for 
health monitoring purposes. The first method provides data that is relatively easy to interpret and relatively 
complex structures can be analysed but damage identification is limited to relatively large damages such as 
delaminations [3]. Wave propagation technologies employing higher frequencies, are considered to be more 
powerful as they are capable of detecting small damages such as cracks [4-6]. The downside is the more 
complex interpretation of the data, in particular in case it concerns non-flat structures.  

Here, the structural vibration approach is selected because both the structure (panel with stringers) and the 
material (multi-layered composite) are relatively complex and the initial goal is to identify relatively large 
damages such as delamination (hence: no micro cracks). A limitation of the current SHM technologies is 
the ability to estimate the severity of the damage accurately. The evolution from level 2 to level 3 
(diagnostic, see [3]) damage identification will be a crucial step forward to realise SHM-applications. 
Damage severity indices related to the modal strain energy are introduced [7-9] but lack confidence. It was 
suggested by others (i.e. [10]) that changes in the modal parameters can be used for a damage severity 
assessment, despite their damage localisation deficits. The combination of technologies is a potentially 
strong alternative and therefore explored here. 

 

 

COMPOSITE SKIN-STIFFENER STRUCTURES 

 

This research is part of a series performed by the authors concentrating on carbon fibre reinforced 
thermoplastic (PEKK) skins with multiple stiffeners, which are vulnerable for delamination damage. An 
overview of the studies is found in Table 1.  

These studies showed that delamination damage can be detected and localised by vibration based 
technologies combined with the Modal Strain Energy Damage Index (MSE-DI) algorithm (first introduced 
by Stubbs et al. [7]). The experiments were performed using a shaker induced random force excitation and a 
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An earlier result [14] pointed out that an impact damage is relatively uncontrollable. A controllable damage 
is preferred for validation purposes of the numerical model. This was achieved by adding a small mass to 
the structure (see Figure 2, for the exact location M1 where the mass was added). 

Dynamic measurements using a laser-vibrometer were performed on the structure with and without an 
added mass weighing 42 grams (~1.1% of the total weight).  

The measurements are discussed in [15]. A model-based approach is opted based on the previous 
experiences with both experimental work and numerical models. Combining these improves the 
interpretation of the data measured in an actual application. The numerical model is implemented in 
Abaqus®. Shell elements are employed, combined with the composite lay-up option implemented in 
Abaqus®, hence allowing specifying each individual layer of UD material separately, respecting its 
orientation relative to the global coordinate system. The transition zones from the thicker end sections to the 
16-layer mid-section are modelled according to the lay-up specifications provided by Fokker 
Aerostructures. 

 

 

DAMAGE DETECTION, LOCALISATION AND SEVERITY 

 

A distinction can be made between damage identification models that use frequency and modal parameters 
directly (direct modal based models), such as the natural frequencies and Modal Assurance Criterion 
(MAC) values [16], and those using derived modal parameters (extended modal based models), such as the 
modal flexibility and strain energy based algorithms [7,17]. The first type of models is generally only 
capable of detecting damage (level 1 damage identification [3]). The second type of models is also capable 
of localisation of the damage (level 2 damage identification [3]). 

The modal strain energy damage index (MSE-DI) algorithm is applied in this research and those referred to 
in Table 1. The motivation to use an extended modal based damage identification algorithm is twofold: 
Firstly, these algorithms tend to be more sensitive to damage, enhancing the detectability compared to direct 
modal based algorithms. Secondly, extended model based algorithms allow for damage localisation, hence 
allowing the step from level 1 damage identification to level 2. The natural frequencies and the mode 
shapes can be determined directly from the measurements. The response of a damaged structure will exhibit 
a shift of the natural frequencies and subtle change of the mode shapes compared to [16]. Both 
Experimental Modal Analysis (EMA) and Operational Modal Analysis (OMA) can be employed to extract 
the modal parameters from measurements, whereas general eigenvalue problem solvers (for example a 
Lanczos solver), combined with a frequency response analysis are used for numerical models.  

The change in the mode shapes (or difference between mode shapes if experimental and numerical results 
are compared) can be determined based on the MAC. This criterion is a mathematical comparison between 
to vectors φ1 and φ2 defined as 

ܥܣܯ  = ൫ఝభ೅ఝమ൯మ൫ఝభ೅ఝభ൯൫ఝమ೅ఝమ൯        (1) 

 

The MSE-DI algorithm belongs to the category of extended modal based identification methods. It is 
widely used and has also appeared in a number of different variants to improve the performance and 
robustness of the algorithm.  

The main characteristics of the algorithms are discussed prior to proceeding to a quantitative severity 
estimation of the damage. The base of the algorithm is found in the strain energy. The structure investigated 
in this research is bending compliant. Hence, the theory presented is limited to the bending strain energy U, 
which for a beam reads 

 ܷ = ଵଶ ׬ ൤ܫܧ௬ ቀడమ௨೥ሺ௫ሻడ௫మ ቁଶ൨ dݔ௟଴        (2) 
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with l the length of the beam EIy the bending rigidity and uz(x) the z displacement as a function of the x 
coordinate. The relations for a plate, derived by Cornwell et al. [18], merely leading to more tedious 
equations. Hence only the one-dimensional case is addressed. In a linearized system, a superposition of a 
number of modes Nfreq can describe the vibrations of the structure sufficiently accurate. Secondly, the beam 
is discretised in N elements over the length of the beam. Hence, the contribution of each element of each of 
the participating mode shapes uz

(n)(x) to the total strain energy is proportional to 

 																	ܷ = ∑ ቀߙ௡ ∑ ௜ሺ௡ሻே௜ୀଵݑ ቁே೑ೝ೐೜௡ୀଵ 	 	= ∑ ቆߙ௡ ∑ ቆଵଶ ׬ ቈ൫ܫܧ௬൯௜ ൬డమ௨೥ሺ೙ሻሺ௫ሻడ௫మ ൰ଶ቉ dݔ௭೔௭೔షభ ቇே௜ୀଵ ቇே೑ೝ೐೜௡ୀଵ  (3) 

 

where the sub- or superscript n denotes the mode number, i the element number and αn the modal 
participation factor. The various definitions of the damage index all compare the modal strain energy in the 
intact and damaged case (indicated by tilde sign). It is generally assumed that the total strain energy and 
total stiffness do not change significantly and that the damage is primarily located in a single element or a 
relatively low number of elements [17,18]. As a result, the change in the ratio of the strain energy in a 
single element over the total strain energy is of interest.  

Following the definition proposed in [18], the ratio of fractional element stiffnesses of the damaged over the 
reference structure provides the base of the damage index: 

 ఊ෥ೕሺ೙ሻ ఊ෥ሺ೙ሻൗఊೕሺ೙ሻ ఊሺ೙ሻൗ = ቀ׬ ௪෥ሺ೙ሻሺ௫ሻd௫೥೔೥೔షభ ቁቀ׬ ௪ሺ೙ሻሺ௫ሻd௫೥೔೥೔షభ ቁቀ׬ ௪ሺ೙ሻሺ௫ሻd௫೗బ ቁቀ׬ ௪෥ሺ೙ሻሺ௫ሻd௫೗బ ቁ     (4) 

 

where w(n)(x) represents the second term in the integrand of Equation 2 (the first term of the integrand, EIy, 
is dropped as it is assumed to remain constant) and γj

(n) the integral of w(n)(x) over element j and γ(n) the 
integral of w(n)(x) of the entire length l of the structure. This ratio is defined for each mode shape 
(superscript n). The information in each of the mode shapes is combined in the damage index β. There are 
several ways to achieve this. The most common methods are summarised in Equation 5, including 
references to various authors who introduced or used the method. In short it depends on how the modal 
information is summed. The value of one is added to both the numerator and denominator in Equation 4 for 
the first three equations (Equation 5a-c) by various authors, resulting in the second set of equations 
(Equation 5d-f). 

௝ߚ  = ∑ ቂఊ෥ೕሺ೙ሻ ఊ෥ሺ೙ሻൗ ቃಿ೑ೝ೐೜೙సభ∑ ቂఊೕሺ೙ሻ ఊሺ೙ሻൗ ቃಿ೑ೝ೐೜೙సభ  (Cornwell et al [18]; Ooijevaar et al [12,13]; Loendersloot et al. 

[11,14]       (5a) 

௝ߚ  = ∑ ቂఊ෥ೕሺ೙ሻఊሺ೙ሻቃಿ೑ೝ೐೜೙సభ∑ ቂఊ෥ሺ೙ሻఊೕሺ೙ሻቃಿ೑ೝ೐೜೙సభ   Choi et al. [19,20]   (5b) 

௝ߚ  = ଵே೑ೝ೐೜ ∑ ቂఊ෥ೕሺ೙ሻ ఊ෥ሺ೙ሻൗ ቃቂఊೕሺ೙ሻ ఊሺ೙ሻൗ ቃே೑ೝ೐೜௡ୀଵ  Alvandi and Cremona [17]  (5c) 

௝ߚ  = ∑ ቂቀఊ෥ೕሺ೙ሻାఊ෥ሺ೙ሻቁ ఊ෥ሺ೙ሻൗ ቃಿ೑ೝ೐೜೙సభ∑ ቂቀఊೕሺ೙ሻାఊሺ೙ሻቁ ఊሺ೙ሻൗ ቃಿ೑ೝ೐೜೙సభ  Srinivasan and Kot [21]   (5d) 
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௝ߚ = ∑ ቂቀఊ෥ೕሺ೙ሻାఊ෥ሺ೙ሻቁఊሺ೙ሻቃಿ೑ೝ೐೜೙సభ∑ ቂఊ෥ሺ೙ሻቀఊೕሺ೙ሻାఊሺ೙ሻቁቃಿ೑ೝ೐೜೙సభ  Stubbs et al. [7]; Farrar and Jauregui [22,23](5e) 

௝ߚ  = ଵே೑ೝ೐೜ ∑ ቂቀఊ෥ೕሺ೙ሻାఊ෥ሺ೙ሻቁ ఊ෥ሺ೙ሻൗ ቃቂቀఊೕሺ೙ሻାఊሺ೙ሻቁ ఊሺ೙ሻൗ ቃே೑ೝ೐೜௡ୀଵ   Yang et al. [24]  (5f) 

 

The list of definitions and interpretations of the damage index β presented here is far from complete. Other 
variants, partly discussed by the authors named as well, for example drop the assumption of a constant 
rigidity (ܫܧ௬ ≠  ௬). However, it is beyond the scope of this article to discuss all variants. These are theܫ෨ܧ
main approaches, covering the majority of the implementations of the MSE-DI algorithm. 

The summation, whichever way it is done, is an important and powerful aspect of the MSE-DI algorithm. It 
is not required to know a-priori which modes are most sensitive to damage. This is an important 
characteristic, since the location of the damage will affect which modes are most sensitive. The downside is 
that the modes that are not affected in a certain damage case dampen the value of the damage index β. This 
can cause a drop of the damage index below significance, resulting in a false negative damage notification 
(no notification, damage present). The set of modes must therefore be selected carefully in order to maintain 
sufficient sensitivity to damage while reducing the chance of undetected damages (see [8]). The sensitivity 
of the parameter γ is relatively high, since the curvature of the mode shapes is used. A small change in the 
mode shape, only resulting in a minimal change of the MAC value, can have a significant effect on the 
curvature [25].  

However, it also implies that the mode shapes must be determined with a high accuracy to avoid erroneous 
results due to a poor representation of the mode shapes. This results in a relatively high number of 
measuring points, whereas one of the objectives in the implementation of the MSE-DI algorithm also 
involves the reduction of the number of measuring points [11,12]. The participation of a mode in the actual 
vibration of the structure (α in Equation 3) is dropped in all formulations for the damage index β. This 
makes it impossible to link the value of the damage index directly to damage severity in terms of a stiffness 
loss ratio. The efforts done [8,9] resulted in an underestimation of the damage severity. The damage 
severity index is generally obtained by normalising the damage index β using the standard deviation σ and 
the mean µ of the damage index over all elements. This results in the value Z, defined in each element as: 

 

௝ܼ = ఉೕିఓఙ         (6) 

 

This normalisation is applied for all definitions of the damage index β, both strain energy and compliance 
based. The advantages are an increased value of the index at potential damage location and the possibility to 
directly assign a significance level. Discretisation of the mode shape curvatures, based on cubic spline 
interpolations, is described in [12]. It should be noted that equidistant grids are required to avoid unintended 
weighting of nodal displacements, resulting in a nodal density dependent damage severity. The spline fit 
parameters itself also affect the damage severity and should therefore be chosen with care. Numerically 
determined mode shapes can be used as an alternative for spline fits. However, the discrepancy between 
experimental and numerical results for higher frequencies limits the use of this method [14]. According to 
Choi et al. [26], mass normalisation of the modes and highest value normalisation for the curvatures is 
required to avoid a disproportional contribution of higher order modes as they have higher curvatures. The 
latter counts for the damage index as defined in Equation 5b and 5c, whereas the definition of Equation 5a 
is based on fractional values only. 

 

 

RESULTS AND DISCUSSION 

 

A numerical model was made in the commercial Finite Element package Abaqus®. A frequency analysis, to 
extract the natural frequencies and mode shapes, and a harmonic response analysis to extract the frequency 
response functions were subsequently performed. The frequency range for the harmonic response analysis 
was set equal to the frequency range of the measurements that were performed in parallel: 50 – 1050 Hz 
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[15]. The experimental results are used for validation of the FE model but are not discussed in this article in 
detail. The numerical analyses are run for eleven different cases: the reference case and ten cases with an 
added mass of 10 to 100 grams (~0.25-2.5% of the total mass). Firstly, the natural frequencies and MAC-
values are investigated. Secondly, the MSE-DI algorithm is applied to localise the added mass and finally 
an approach is discussed to estimate the added mass from the results, comparable to damage severity 
estimation. 

 

A measurement grid of 29 times 7 points was used (see Figure 2). Nodes are defined at these locations to 
determine the mode shapes for comparison with the experimental results. The first 20 natural frequencies 
calculated by the numerical model for all damage cases and the experimental natural frequencies are 
mutually compared. A reasonable correspondence (MAC>0.8) is found for the first 10 to 15 modes 
according to Figure 3 (red markers, filled squared markers indicate the diagonal of the MAC matrix, the 
triangles and circles the off-diagonal values). Small differences between the model and the real panel 
measuring inaccuracies and the high modal density complicate the comparison between the numerical and 
experimental results for higher frequencies. Potential sources of deviations between the model and the 
experiments are variations in fibre angle orientation and in the thickness. In addition, the boundary 
conditions used may not represent the real situation correctly. 

 

 
Figure 3: MAC values of the experimental versus numerical mode shapes (red markers, no added mass) and the MAC values 
for the numerical cases with an added mass of 10 grams (green markers) and 100 grams (blue markers). The filled, squared 
markers indicate the diagonal term of the MAC matrix, the triangles and circles indicate the off-diagonal terms. 

 

The change of the natural frequencies due to the added mass varies per mode but is relatively small: 0.05% 
up to 5%, with an average of less than 1%. In general, it is smaller than the difference currently observed 
between the numerical model and the experiments. A significant change of the MAC values is observed 
comparing the (numerical) cases with the added mass (Figure 3, green and blue markers). Two cases are 
shown: an added mass of 10 grams and of 100 grams. The change in MAC values clearly indicates that a 
change in the structure has occurred, where the amount of change is a qualitative indication of the amount 
of added mass. The change in MAC-values only provides limited information on the location of the 
damage: A change of mode shapes due to the presences of an added mass is reflected in the decrease of the 
MAC value of a certain set of modes. However, a very low MAC-value implies that the modes do not 
match at all and as a consequence the curvatures will differ significantly over the entire mode shape, rather 
than only in the neighbourhood of the damage. This can lead to a number of erroneous peaks in the damage 
index (or ‘noise’), potentially even to false positives (indication of damage at a location where no damage is 
present).  
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To this end, the number of modes that participate in the MSE-DI algorithm is limited to those modes that 
have a MAC-value between 0.5 and 1.0. This range provided the best results here, but it should be 
emphasized that this is not true in general. A 1D MSE-DI algorithm is applied using cubic spline fitted 
mode shapes of 128 data points over the length of the panel. This results in seven data sets of the damage 
index Z over the width of the panel (Figure 2, first data set is based on P1-P29, the 7th on P175-P203). The 
reason to use a 1D algorithm is that the sensitivity of the damage index algorithm in the direction of the 
lower stiffness is significantly lower than that in the stiffer direction of the panel – which corresponds to the 
direction of the stiffeners [13,14]. However, this limits the localisation abilities in the width direction. The 
normalised damage index Z for the different damage cases is shown in Figure 4. A clear peak indicates the 
location of the damage. For all cases, the location of the damage is predicted to be approximately at 
(x,y)=(1.025,0.068). The exact location of the added mass is (x,y)=(1.03,0.08), resulting in a relative 
deviation of 0.5% in the length direction and 15% in the width direction. The high deviation in the width 
direction is evidently caused by the use of a 1D algorithm in length direction only. A 2D algorithm is 
required to improve the accuracy. 

 

(a) 

 
(b) 

 

 
Figure 4: Normalised damage index Z for (a) an added mass of 10 grams and (b) an added mass of 100 grams. 

 

A secondary peak is also present. This is either a false positive (indication of damage, but no actual change 
in the structure) or a secondary effect of the added mass caused by the set of modes included in the 
algorithm. The latter is assumed to be the most likely explanation given the height of the peak and the 
consistency in the location. It is also observed that the maxima of all peaks converge to the same value, 
irrespective of the amount of added mass. This is visualised in Figure 5, which shows the maximum values 
of all peaks as a function of the relative amount of added mass (compared to the total mass of the panel). 
The secondary peaks remain significantly lower than the maximum peaks, but raise above the significance 
level (which is generally 2 or 3 depending on the confidence desired). This situation may be comparable to 
a situation with multiple, different added masses. Also here, a 2D implementation may help to distinguish 
false negatives from true positives. 

 
Figure 5: Maximum value for the normalised damage index Z as a function of the relative amount of added mass. The circles 
indicate the first peak, the squares the secondary peak. 
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The next step is to combine the results of the direct and extended modal based algorithms. The location of 
the damage is known (with certain accuracy) as well as the frequency response of the intact and damaged 
structure. The latter contains absolute values for the amplitudes and therefore has the potential to contribute 
to a more accurate severity estimation. The most apparent change in the frequency response function is the 
shift of the natural frequencies of some of the modes. An estimation of the damage severity (or: amount of 
added mass) requires a relation between the shift of the natural frequencies and the added mass. This 
relation is found by analysing the principle of generalised mass. The generalised mass matrix Mr is defined 
as: 

௥ܯ  = Φ௥்ܯΦ௥        (7) 

 

with M the mass matrix and Фr the normalised mode shapes. The generalised mass matrix is a diagonal 
lumped mass matrix that is derived by adding small masses to the structure [27]. The generalised mass mr

(n) 
of a certain mode n can be written as 

 ݉௥ሺ௡ሻ = ൫௙ሚሺ೙ሻ൯మ൫௙ሺ೙ሻ൯మି൫௙ሚሺ೙ሻ൯మ ∑ ൬Δ ௝݉ቀݔ௝ሺ௡ሻቁଶ൰ே௝ୀଵ   ≈ − ௙ሺ೙ሻଶ୼௙ሺ೙ሻ ∑ ൬Δ ௝݉ቀݔ௝ሺ௡ሻቁଶ൰ே௝ୀଵ    (8) 

 

with f(n) the nth natural frequency (tilde refers to the damaged case), ∆mj the jth of a total of N added masses, 
∆f(n) the frequency shift and xj

(n) the normalised displacement at the location of the jth added mass of the nth 
mode. The last step is achieved by ignoring the higher order terms and assuming that the frequency of the 
damaged case can be expressed as the frequency of the reference case plus a perturbation ∆f. In this case 
N=1, for which case the relation between the frequency shift and added mass reads 

 Δ݉ = ଶ௠ೝሺ೙ሻ௙ሺ೙ሻቀ௫ೕሺ೙ሻቁమ Δ݂       (9) 

 

Analysing the structure for a range of added masses allows establishing the relation in Equation 9. Non-
linearity can arise due to the higher order terms that were neglected in the derivation.  

The relation in Equation 9 is depicted in Figure 6 for a number of modes, which were matched based on a 
minimum MAC value of 0.85 (between numerical modes). The dashed line is based on calculated 
frequencies shift (by the numerical model) and known added masses. The added masses and frequency 
shifts are expressed as a percentage of the total mass and the natural frequencies of the reference 
(undamaged) situation. 

 

 
Figure 6: Relative mass change versus frequency shift for 6 cases. The lines connect the numerical results (filled markers) with 
10 to 100 grams of added mass, whereas the open markers are based on the measured data. Red: mode 8, green: mode 9, blue: 
mode 10, magenta: mode 11, light blue: mode 14 and orange: mode 16. 
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The relation is linear in most cases as is expected for a limited change of the mode shapes. The generalised 
mass matrix is based on the concept of linear perturbation. It is assumed that the added masses do not affect 
the response x(n), which is strictly taken not to be the case here. The open markers in Figure 6 indicate the 
experimentally determined frequency shifts [15] for the given added mass of 42 grams. The colours and 
markers of corresponding modes are set equal. The discrepancy between the simulations and the 
experimental results are explained by the differences between the model and the experiments discussed 
previously. However, the relation between the frequency shift and the added mass depends on the 
generalised masses mr

(n) and frequencies f(n) of the reference state and on the response of the point x(n) of the 
damaged case. For the first two, accurate models can be developed, for example using model updating 
techniques or a comprehensive experimental program.  

This only needs to be done once. The last parameter is obtained accurately employing a damage localisation 
method such as the MSE-DI algorithm discussed here. So far, the ‘damage’ was represented by an added 
mass. Normally, damage will be reflected in a decrease of the stiffness and an accompanying shift of the 
natural frequency. Hence, a similar procedure must be followed based on the generalised stiffness. 
However, the result of measurements on panels before and after a 10-50 J impact load [13,15] indicate 
lower shifts of the natural frequencies.  

Hence, further experimental and numerical investigation will be required to successfully implement a 
stiffness based damage severity estimation. 

 

 

CONCLUSION AND RECOMMENDATIONS 

 

The work presented here reflects the challenges encountered in damage severity estimations. One of the 
conclusions that can be drawn is that the road from level 1 to level 3 and even 4 or 5 cannot be taken with a 
single method. The methods developed successfully enhance the detection and localisation of the damage, 
but lack the ability for a reliable quantitative estimation of the damage severity, since the damage index is 
merely a mathematical rather than a physical quantity. This first conclusion certainly does not judge the 
extended modal based damage identification algorithms. Their detection and localisation capabilities still 
outperform the direct modal parameter based model capabilities. In conjunction however, the two families 
of algorithms offer the potential to proceed to the next level of damage identification. The method of 
combining localisation methods with the theory of generalised mass is shown to relate frequency shifts with 
the change of the structure in a quantitative manner. The numerical model must be matched with the 
experimental results more than is necessary to acquire an accurate prediction of the location of the change 
in the structure. Some work is still ahead to improve this match for the current application. Moreover, future 
investigation is required to adapt the method proposed for a change in stiffness rather than a change in 
mass. Theory indicates the possibilities, but experimental results have already indicated that this is a 
challenging task. 
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ABSTRACT 

 

This contribution presents a finite element based approach for the virtual design and simulation of smart lightweight membrane 
structures. Form finding is used to determine the optimal structural shape of tensile structures from an inverse formulation of 
equilibrium. Also the cutting pattern generation of membranes is integrated in order to consider fabrication effects already in 
the earliest possible stage. Active control is adopted for vibration suppression under external loads like e.g. wind. Controller 
design is based on a state space model that is derived from the finite element model and that preserves the geometrically non-
linear equilibrium state and the prestress effects of the membrane structure. Discrete time control via an optimal linear-
quadratic-Gaussian (LQG) regulator is applied. The methods and algorithms of all simulation and design steps presented are 
illustrated and verified at the example of a controlled 4-point tent. 

 

 

INTRODUCTION 

 

Nowadays, the engineering design process commonly starts with computational simulations. The system 
under consideration can be analyzed, optimized and even redesigned by a virtual computer model before the 
first prototype is built. Simulations of flexible mechanical structures are generally based on the finite ele-
ment method. In the case of thin and lightweight structures the aim of the computational design process is 
often to minimize weight while maintaining stress or vibration criteria. Prestressed membrane structures are 
well suited for lightweight structures due to the extremely low areal density and the optimal static load 
carrying behavior. Prominent examples in the civil engineering context are tents and stadium roofings. The 
numerical method of form finding is applied in order to determine structural shape from an inverse formula-
tion of equilibrium. This approach is comparatively robust and also suited for complex shapes. The cutting 
pattern generation of membranes is integrated in the computational simulation process in order to include 
decisive fabrication effects already in the design stage. 

This contribution presents a computational framework and the related algorithms for the virtual design and 
simulation of actively controlled lightweight membrane structures. Active control is adopted in order to 
reduce the vibrations induced by external loads. This is especially important in the context of lightly pre-
stressed membranes, as they exhibit very low mode frequencies in the out-of-plane direction and are thus 
prone to vibration even for small disturbing loads. Thus control can be used to increase functionality, im-
prove usability or to create even lighter structures [1,2]. In the context of structural control, it is a common 
approach to apply active or semi-active components in order to improve the behavior of an already given, 
passive system. In contrast to that, this work presents a design concept that aims for mechanically motivated 
control and adaptivity integration from the very beginning of the design process. The article will present the 
methods and algorithms of all design and simulation steps and will show a strategy about how to combine 
them into one computational simulation environment. The example of a controlled 4-point tent illustrates 
the methods and verifies the applicability of the approach presented. 

 

 

FORM FINDING AND CUTTING PATTERN GENERATION 

 

In a nonlinear continuum mechanical description, the unknown shape x of equilibrium can be identified as 
actual (deformed) configuration, which has to fulfill the equilibrium condition governed by the principle of 
virtual work. Using the prescribed Cauchy stress tensor σ and the external loading q (Figure 1, left), the 
total virtual work δw with its internal and external parts yields:  
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      (1) 

δd,x is the derivative of the virtual displacement with respect to the geometry x of the surface in equilibri-
um. The integration domain is the area a of the final equilibrium surface. The thickness of the membrane is 
denoted by t. 
Based on the second Piola-Kirchhoff stress tensor S and the deformation gradient F, it is now possible to 
transform the integration domain of the original problem from the yet unknown equilibrium surface to a 
known reference configuration X (Figure 1, right). The internal virtual work of Equation (1) can be written 
as: 

( ) ( ) δ⋅=δ⋅=δ=δ− −

AA

T

a
w dA:tdA:dettda,:t xint FSFFFσFuσ      (2) 

This transformation - often described as pull-back operation - is especially useful for the algorithmic solu-
tion of the form finding problem, as the known reference configuration can serve as a starting point for the 
solution. For the numerical solution, Equation (2) has to be discretized. Furthermore, as we are dealing with 
a geometrically nonlinear problem involving large displacements from the starting configuration to the 
actual equilibrium shape (Figure 1, right), a linearization of the resulting equation system is necessary, 
which follows the standard concept of incremental solution schemes [3]. 

As the geometry is coupled to the stress state of the structure, the equilibrium equations must be solved for 
the unknown geometry. However, a straightforward application of the method shown above is not possible 
due to the inverse nature of the problem: We are looking for the discretized equilibrium surface with a cer-
tain topology of the discretization parameters. However, the shape parametrization for the same geometry is 
not unique. That means that a generally applicable discretization technique like FEM must use some regu-
larization methodology to circumvent the above mentioned singularities. In this context the similar nature of 
shape control [4] and form finding should be pointed out, as both approaches have to overcome the singu-
larities of an inverse problem by regularization techniques. The most general method for regularization of 
the inverse problem of form finding is the updated reference strategy (URS).  
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Figure 1: Left: Tangential surface stress field. Right: Deformation of surface from reference configuration to actual configura-
tion. 

 

This method is consistently derived from nonlinear continuum mechanics of elastic bodies and performs a 
homotopy mapping between the original, singular problem and a stabilization term [5]. Starting from Equa-
tion (2), one can introduce a continuation factor λ and formulate: 

( ) ( ) ( ) 0dA:t1dA:dett =δ⋅λ−+δ⋅λ=δ  −

AA

Tw FSFFFσF       (3) 

Instead of assuming the Cauchy stress tensor σ of the unknown equilibrium surface to be given, the 2nd 
Piola–Kirchhoff stress tensor S referring to the arbitrary starting geometry is prescribed. If λ is chosen 
properly, the second term stabilizes the original expression and allows for the use of a standard finite ele-
ment discretization and solution. This modification has the convincing property that it disappears at the 
solution surface. By using Equation (3), we are thus able to calculate a unique equilibrium surface for the 
given PK2 stress state. The modified and stabilized expression is nonlinear with respect to the final geome-
try x and must be solved iteratively applying a Newton-Raphson scheme. However, the resulting Cauchy 
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stresses will differ from the targeted stress state depending on the choice for λ. This necessitates a second, 
outer iteration: The newly obtained actual configuration x� of the modified system (Equation 3), which is 
closer to the final equilibrium shape, can be used to update the reference geometry X for the next form find-
ing iteration. By repeatedly updating the reference geometry, the difference between the PK2 and Cauchy 
stresses is consequently reduced and the solution converges safely and robustly to the one of the unmodified 
problem (Figure 2). It should be noted that the speed of convergence is independent from the number of 
variables. Furthermore, the approach is capable of handling arbitrary stress states with or without external 
loading. 

 
Figure 2: Application of form finding via the updated reference strategy to a 4-point tent: form finding steps and final geome-
try. 

 

In general, membrane structures exhibit a doubly curved surface in order to establish a good load carrying 
behavior. This is important in the context of cutting pattern generation. For all surfaces that exhibit nonzero 
Gaussian Curvature, stresses occur through the flattening process. A very general approach for the genera-
tion of cutting patterns is the inverse engineering method [6] which is based on the description of the under-
lying mechanical problem. The three dimensional surface, which is defined through the form finding pro-
cess, represents the final structure after manufacturing. For this surface the coordinates in three dimensional 
space Ω3D and the finally desired prestress state σprestress are known. The aim is to find a surface in a two 
dimensional space Ω2D which minimizes the difference between the elastic stresses σel,2D→3D arising through 
the manufacturing process and the final prestress σprestress. Thus the cutting pattern generation leads to an 
optimization problem, were the positions of the nodes in the two dimensional space Ω2D are the design 
variables. Furthermore, as the width of textile materials is usually limited in the practical manufacturing 
process, it is important to divide the structure into several parts in order to get appropriate cutting patterns. 
An appropriate way to avoid too much loss of material is the usage of geodesic lines for the definition of the 
cutting lines. Geodesic lines are characterized by connecting two points on a surface with the shortest 
amount of distance. The calculation of geodesic lines on discrete surfaces (e.g. finite element mesh) is per-
formed in two steps (Figure 3). First of all an approximation of the geodesic lines along the edges of the 
elements of the discrete surface is calculated [7].  

The second step is to perform an optimization of the approximated geodesic lines to get the “shortest path” 
between two given points [8]. It should be mentioned that this method is applicable for different element 
types and is able to consider different material models and arbitrary prestress states.  

The final stresses under load and the boundaries of the structure are the major shaping parameters which 
clearly define the resulting geometry as shape of equilibrium.  
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Figure 3: Cutting pattern process. 

 

 

SIMULATION 

 

The next step of the virtual design process is the geometrically nonlinear transient analysis of the structure. 
The consideration of geometrically nonlinear effects is here indispensable, as large displacements arise 
already from the starting configuration to the actual equilibrium shape of the prestressed membrane, even if 
external loads are neglected. Adding to the total virtual work δw of Equation 1, the dynamic contribution 
due to inertia forces yields: 

  ( ) ( ) 0,wwww =δ−δ+δ=δ−δ+δ=δ drddrddMd text
T

int
TT

extintdyn
     (4) 

Additionally introducing damping that is proportional to the velocity field, the geometrically nonlinear 
dynamic equation yields in its semi-discrete form: 

  
( ) ( )

( ) ( ) ( ) 000000 ,,

,,

dddddd

drdrdCdM

======

=++

tttttt

textint




       (5) 

with the mass matrix M, the displacement field d, the vector of internal forces ( )drint  and the vector of ex-

ternal forces ( )dr ,text . The damping matrix C can be described in a simplified way as a linear combination of 

the mass matrix and stiffness matrix (Rayleigh damping):  

  geoel+⋅α+⋅α= KMC 21         (6) 

Here, the stiffness matrix geoel+K  of the membrane equilibrium state after form finding is used in order to 

include the effects of prestress and geometrical nonlinearity also in the context of damping.  

Even more realistic damping parameters can be obtained if the membrane structure is simulated and 
evaluated including the interaction effects with the surrounding air, as these fluid-structure interaction 
effects play a decisive role in the context of damping of membrane structures. For time integration, implicit 
methods like Newmark-β or Generalized-α are chosen. The solution of the related nonlinear equation 
system is done via complete linearization and iterative solution by the Newton-Raphson method with 
predictor-corrector scheme. 

 

 

CONTROL 

 

Structural control can now be applied to membrane structures in order to increase functionality, improve 
usability or to create even lighter structures. The design objective pursued in this contribution is to suppress 
vibrations in the membrane. This is challenging for the following reasons: Membranes, especially lightly 
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prestressed ones, exhibit very low mode frequencies in the out-of-plane direction and are thus prone to 
vibration even for small disturbance loads. Beyond that, attaching many sensors, actuators or dampers di-
rectly on the membrane is not recommended, as this disturbs the optimal membrane stress state and results 
in a heavier system. The controller design for a flexible mechanical structure like a membrane represents in 
general a multiple input – multiple output (MIMO) system, where the application of nonlinear and large-
scale finite element models is not suitable. Thus, as a first step, a linearization of the geometrically nonline-
ar system of Equation (5) is performed for controller design: 

  )()( ttgeoel uBfEdKdCdM +=++ +
         (7) 

Here, the stiffness matrix geoel+K  of the quasi-static nonlinear equilibrium state is used in order to include the 

effects of prestress, geometric stiffness and permanent loading also in the linearized model. The right hand 
side of Equation (7) contains the load contributions of external load and control input. The introduced ma-
trices E  and B  link the degrees of freedom of the external load and the actuator signal to the time depend-
ent functions of external load f(t) and control input u(t). The linearized representation of the finite element 
model obtained would in general yield to very high state-space dimensions. Thus an appropriate model 
order reduction scheme like the modal truncation technique has to be adopted. The latter method is com-
monly used in the context of flexible structures due to their low-pass characteristic, which allows for ne-
glecting higher-frequency dynamics. Starting point is the linearized eigenvalue problem of the structure: 

  ( ) 0MK =ϕλ−+ kkgeoel          (8) 

Figure 4 presents the three lowest axially symmetric eigenmodes of the 4-point tent. An evaluation of 
eigenmodes confirms that the vibrations of the membrane predominantly act in the out-of plane direction.  

Solving Equation (8) for r eigenvectors yields the )( rn×  modal matrix [ ]kϕϕϕ= |...|| 21Φ  and the )( rr ×  

spectral matrix ( )kdiag λ=Λ , where Φ  is orthonormalized with ΛΦKΦ =+ geoel
T  and 1MΦΦ =T . Inserting the 

modal coordinates zΦd =  into Equation (7), the large finite element system with n degrees of freedom can 
be reduced to a decoupled equation system of r modal degrees of freedom:  

  )()( tt TT uBΦfEΦΛzzΔz +=++          (9) 

Based on this approach, the presented model is reduced from 2881 to 10 modal degrees of freedom.  

 

 
Figure 4: Eigenvalue analysis of the 4-point tent: Lowest three symmetric eigenmodes (scaled deformation and highlighted via 
contour plot). 

 

Figure 5 shows exemplarily the displacement plot of the membrane midpoint by a transient analysis of the 
tent subjected to a half-sin pressure load of 250 mNq =  from below in the 4th eigenfrequency of the struc-
ture. The damping ratio for Rayleigh damping is set to 10%. The results of the nonlinear FE model, the 
linear FE model and the reduced model are compared. It can be observed that the linearization leads to an 
overestimation of the deformation, as displacement-dependent stiffness contributions are neglected. Beyond 
that, it can be seen that the reduced model is not able to exactly reproduce the initial deformation behavior, 
as the contributions of higher modes are missing. However, in general a good matching of the reduced 
model can be observed in this test example. 
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Figure 5: Transient analysis of the 4-point tent: Results of (a) the large nonlinear FE model, (b) the large linear FE model, (c) 
the reduced model. 

 

For controller design, a transformation to the state space is performed. Based on the modal degrees of free-
dom of the reduced model, the state vector is defined by 

  







=

z
z

c 
x            (10) 

Using the state vector cx , the reduced model of Equ. (9) is transformed into the modal form of the state 

space equation: 
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Besides to that, also the measurement equation can be formulated based on the finite element data: 

  )()( ttc FfDuCxy ++=          (12) 

Now the required information for controller design is prepared. It should also be pointed out that all matri-
ces A, B, E, C, D and F are derived from the finite element model and the related modal truncation. 

The selection and placement of sensors and actuators plays a decisive role in the design process of smart 
structures. This decision highly affects the controllability and observability of the controlled structure and 
has great influence on the required control effort to satisfy a given design objective and thus on the efficien-
cy of the control system. As explained before, the vibrations of membranes act predominantly in out-of-
plane direction, because the membrane’s in-plane mode frequencies are much higher than those in the out-
of-plane direction. Based on the evaluation of the dominant eigenmodes, the positions of 5 displacement 
sensors for the 4-point tent have been chosen according to Figure 6. 

 
Figure 6: Active control of the 4-point tent: position of displacement sensors and force actuators. 

 

The question of type and placement of effective actuators seems to be crucial, because attaching actuators 
directly on the membrane is in general not recommended due to detraction of the optimal membrane stress 
state. However, the presented form finding method itself suggests reasonable actuator types and places.  
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It has been shown that the form finding algorithm is a very effective alternative for the design of surface 
structures. The final stresses σ under load and the boundaries Γ of the structure are the major shaping pa-
rameters which have to be given and which clearly define the resulting geometry x as shape of equilibrium. 
These parameters can be chosen according to the individual preferences, e.g. depending on material, cross 
section, available design space, geometric restrictions etc. Beyond that, the prestress values and support 
conditions are as major shaping parameters predestinated to act as shape control parameters. By adaptively 
modifying the shape of the structure via the mentioned shaping parameters it is possible to maintain optimal 
behavior with respect to a specified criterion, like vibration reduction, while external effects like loading 
conditions are changing. Accordingly, four force actuators at the lower support cables have been chosen for 
the 4-point tent (Figure 6), two of them acting in-plane to the membrane and two of them acting out-of-
plane. From the mechanical point of view, these two actuator groups have in general two different types of 
effects on the membrane structure: The in-plane actuators manipulate the prestress of the membrane, while 
the out-of-plane actuators actually change via deformation the Gaussian curvature of the structure. Sum-
ming up, the sensor and actuator positioning driven by form finding characteristics leads in this example to 
non-collocated sensors and actuators, as the different modal contributions to the displacement field can be 
best observed within the membrane, while actuator forces should be positioned at the supported corners of 
the tent.  

The linearization at the operating state (prestressed membrane including permanent loads) led to the linear-
ized state and output equations: 

  
FfDuCxy

EfBuAxx

++=
++=

c

cc          (13) 

In this general form of the plant model according to Equation (13), f describes in general the disturbance 
which is assumed to be present in the state and the output equation. 

For discrete controller design, it is necessary to derive a discrete-time state space model of the plant struc-
ture. Performing a discretization of equation (13) with an appropriate sampling time T yields: 
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       (14) 

For active control of the shown 4-point tent, a linear-quadratic-Gaussian (LQG) regulator is chosen (Figure 
7). 

 
 

Figure 7: Closed loop LQG regulator. 

 

A Kalman estimator is used to obtain a state variable estimation  of the plant model based on the infor-
mation of the five sensors placed on the membrane. Based on the estimation of the state, the state feedback 
gain cK  is used to generate the actuator signal: 

  cct xKu ~)( −=           (15) 

Hereby the state feedback gain matrix cK  is chosen such that the feedback law of Equation 15 minimizes 

the performance index: 

  ( )
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0
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where Q and R are symmetric, positive definite matrices. Taking again the 4-point tent example, an appro-
priate regulator is designed in Matlab/Simulink. The state space matrices A, B, E and C are derived from 
the data provided by the FE model. The matrices D and F are set to be zero. The sampling interval for dis-
crete-time control is chosen to be T=0.01 sec. A pressure load of 220 mNq =  in the 5th eigenfrequency of 
the structure is applied as disturbing load case. Thus the possibility of resonance is provided. The weighting 
matrices for the optimal LQG controller design have been chosen like that: 4455 01.0, xx IRIQ ⋅== . The fol-

lowing simulation results were obtained in Matlab/Simulink (Figure 8). The displacement amplitude is 
reduced by a factor of 2.6 at sensor 1 and 2, by a factor of 2.3 at sensor 3 and 4, and by a factor of 5.2 at 
sensor 5 (midpoint of the membrane). Error sources like measurement errors induced by the sensing device 
have been ignored in the analyses of this example for simplicity. In future studies, these assumptions should 
be relaxed and the effect of these errors should be investigated. 

 
Figure 8: Sensor values for uncontrolled (thin line) and controlled (bold-printed line) system simulation in Matlab/Simulink. 

 

SIMULATION INCLUDING CONTROL 

 

In general, the feasibility of the structural behavior including control has to be verified and tested. Based on 
the large-scale and geometrically nonlinear finite element simulation it can be checked automatically, if e.g. 
wrinkling effects appear due to undesired compressive stresses in the membrane [9] or if all components 
comply with the maximum allowable stresses. The model described in the preceding chapters is now simu-
lated including control based on the large-scale and geometrically nonlinear FE model. For time integration, 
the implicit Newmark β-scheme is chosen. Again, a pressure load of 220 mNq =  in the 5th eigenfrequency 
of the structure is applied as disturbing load case. Control is activated at time step 200. Figure 10 shows the 
resulting displacement of the membrane midpoint. Via control, a reduction of the amplitude of the midpoint 
displacement by a factor of 2.4 is obtained. Beyond that, it can be identified that the vibration of the mid-
point is a bit shifted towards positive displacement values due to the control action. This is due to the fact 
that the actuators are only positioned at the lower tension cables of the 4-point tent (c.f. Figure 6). 

 
Figure 9: Geometrically nonlinear analysis of the 4-point-tent including control: Displacement of the membrane midpoint 
(control starts at time step 200). 

COMPUTATIONAL FRAMEWORK AND OVERALL DESIGN PROCESS 

 

The desired flexibility and variety to all these mentioned possibilities can only be guaranteed in a modular 
and modern computational framework. Flexible software modules for form finding, cutting pattern genera-
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tion, structural analysis and structural optimization are part of the in-house finite element software Carat++ 
(see e.g. [10,11]). The program is completely written in C++ in order to take advantage of object-oriented 
programming features. Consequently, easier maintenance of the code, easier implementation of complex 
algorithms and higher flexibility is assured. The software is capable to perform the overall design process in 
a parallel computation. Besides to that, a data interface has been implemented for convenient controller 
design in Matlab/Simulink. All other steps of the design and simulation process (Figure 10) are performed 
in the software Carat++. 

 

 

 
 

Figure 10: Overview of the overall design process and the used software packages.  

 

 

CONCLUSION 

 

An integrated computational framework and the related algorithms for the virtual design and simulation of 
controlled smart lightweight membrane structures have been presented. Form finding has been used to de-
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termine the optimal structural shape of tensile structures. Also the cutting pattern generation of membranes 
has been integrated in the design process in order to consider decisive fabrication effects already in the 
design stage. Active control for vibration suppression has been successfully adopted using a state space 
model that is derived from the finite element model and that preserves the geometrically nonlinear equilib-
rium state and the prestress effects of the membrane.  

The methods and algorithms of all simulation and design steps presented have been illustrated and verified 
at the example of a controlled 4-point tent. 
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MODULES 

 

M. Kurch & D. Mayer 

Fraunhofer Institute for Structural Durability and System Reliability LBF, Bartningstr 47, 64289 Darmstadt, 
Germany 

 

 

ABSTRACT 

 

Autonomous sensors enhance and widen the scope for structural health monitoring (SHM) of large lightweight structures, e.g. 
bridges, vessels. Systems for harvesting energy from vibrations on the basis of electromechanical transducers and mechanical 
resonators are often proposed for the power supply of those sensors. The utilization of mechanical vibration absorbers as 
resonators offers the perspective to integrate vibration reduction and structural health monitoring into a single device. The 
conversion of mechanical into electric energy for the supply of the sensor affects the necessary damping of the vibration 
absorber. Within this context it is essential to find optimum design parameters to maximize the energy generated and to 
provide the required damping. In this study described here a framework for the design of ‘Energy Self-Sufficient Vibration 
Absorber Sensor Modules’ is presented. After deriving the fundamental expressions for the power conversion, the framework 
is applied to an example application. 

 

 

INTRODUCTION 

 

Vibration phenomena are counted among the most challenging problems during the design and operation of 
lightweight structures, since they are the cause of cyclic fatigue, limited precision of machines and harmful 
noise radiation. Thus extensive work has been conducted during the last decades on passive and active 
systems for vibration reduction as well as on systems for structural health monitoring (SHM) and 
autonomous damage detection in mechanical structures [1]. On the other hand, vibrations are one of the 
preferred ambient energy sources being exploited by energy harvesting (EH) systems, which have been 
studied by several researchers during the last years [2]. In most cases, these systems aim at the supply of 
wireless sensor nodes, which are used to implement SHM systems at locations difficult to access or 
locations without an own power supply [3]. Potential applications include objects of civil infrastructure like 
bridges or mobile systems such as freight cars [4,5]. Within the work described here the integration of the 
basic principles of EH, SHM and vibration absorption into a single system is studied.  

Mechanical resonators often serve as baseline structures for energy harvesting systems but when designed 
with respect to a feedback on the characteristics of the host structure they are applied to, they serve as tuned 
vibration absorbers (TVA). The combination of both aspects results in an ‘Energy Self-Sufficient Vibration 
Absorber Sensor Module’. The design of the system is based upon data which can be gained from 
experiments, since in many practical situations no sufficient precise numerical models of the structure do 
exist. In the first step, the mechanical resonator is tuned to the structural vibrations and parameters for mass, 
stiffness and damping are estimated, which serve as input to the detailed design of the absorber-harvester 
system. A widely-used approach is the power harvesting from mechanical vibration energy by converting it 
into electric energy by means of piezoceramic (PZT) transducers. Among the different approaches the 
cantilevered beam with piezoceramic layers which is applied to a structure is the most popular harvester. 
The whole system is designed in such a way that the natural frequency where the strain in the PZT becomes 
maximum is tuned to the driving frequency. Therefore it is assumed that influence on this basis is negligible 
as the vibrating mass is small compared to the mass of the basis. A similar set up is chosen, when a tuned 
mass damper is mounted on structures to reduce the amplitude of mechanical vibrations. But for TVAs a 
significant influence has to be seen on the basis of the system feature. In the remainder of this article first 
the estimation of absorber parameters is described. Afterwards, the electromechanical design and the 
respective modeling method are introduced. In the last section, the application of the framework developed 
framework is discussed along an example of a freight car. 
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shunted resistance are changing the dynamical system properties a harmonic analysis was conducted in 
order to calculate the new lumped mass, damping ratio and resonance frequency. These parameters take the 
TVA’s feedback to the base into account, when energy is spent in the resistor. Using these parameters the 
resulting vibration spectrum can be calculated from Equation 8 and applied to the root point of the beam’s 
Finite Element model. Thus, another harmonic analysis of a base excited oscillator has to be executed to get 
the motion of the absorber and the generated power which is consumed in the resistor. Indeed, the design of 
the vibration absorber presented is generic. But the model features all necessary properties for the study of 
energy harvesting vibration absorbers and can be extended easily for the analysis of more complex designs. 

 

 
Figure 5: Generic Finite Element Model of the energy harvesting absorber. 

 

EXPERIMENTAL VALIDATION 

 

The method proposed is applied to design an energy harvesting vibration absorber for a freight car (Figure 
6). The wheel set mount is chosen as a potential position for the installation of a the vibration absorber in 
order to reduce bending resonances of the wheel set axle and gain energy for a condition monitoring system 
of the bearing or the axle. The point mobility at the wheel set is obtained from an accelerance measurement 
with an impulse hammer and a collocated accelerometer (Figure 7, left). Furthermore, accelerations were 
acquired during operation of the freight car. The observed acceleration levels vary with the current 
operation condition (Figure 7, right). Obviously, accelerations of the wheel set are much higher when the 
car passes a track switch compared to normal driving on a straight line. 

The vibration absorber is tuned to a resonance frequency of the wheel set at 189 Hz. First, the effect of 
different absorber masses on the potential vibration reduction and the dissipated energy is studied. For the 
first test, the damping coefficient is set to 0.03 and the mass is varied. As expected, a higher absorber mass 
effects in a better vibration reduction (Figure 8, left). The dissipated power in the absorber damper is 
calculated from Equation 10, using the acceleration spectrum measured during the passing of a track switch 
depicted above. The resulting power density spectrum is integrated in order to get the overall power. 
Obviously, a heavier absorber also dissipates more power. However, the power levels in the range of Watts 
have to be put into perspective: The necessary prominent acceleration levels only occur during the passing 
of a track switch, an event of a rather short duration which occurs only at certain times during operation.  

Secondly, the effect of varying the damping coefficient is investigated, while the mass of absorber is 
retained at 10 kg. Neither very low nor very high damping coefficients lead to good vibration reduction 
(Figure 9), which is a well-known fact of tuned vibration absorber design. The dissipated power of the 
damper is also maximal for a certain value of the damping coefficient. Thus, in contrast to the mass of the 
absorber, the damping coefficient has to be chosen with respect to both, the goals of vibration reduction and 
energy harvesting. This can be obtained by a proper choice of the electrical load of the system and suitable 
design of the electromechanical transducer integrated into the absorber. A design optimization goes beyond 
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parameter studies. For detailed investigations on the design, a generic Finite Element model was set which 
allows for the precise calculation of the expected power from the PZT transducer. The results showed that 
for the parameters considered only a fraction of the dissipated power is spent in the electrical network. This 
fraction has to be maximized in the further design process using the framework presented. 
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ABSTRACT 

 

Intermittent non-destructive inspection has been used since long time for checking the integrity of load-carrying structures and 
mechanical components. With the tremendous contemporary development of sensor technology, in conjunction with advanced 
wireless communications and the support of the massive computation facilities, continuous monitoring of structural damage 
during operation and time-continuously assessment of structural integrity, for the prediction of structural remaining life, in 
conditions of reliable and optimized costs of operation, is, nowadays, a vigorous endeavour for the next years to come.  The 
article addresses the scientific and engineering bases of Structural Health Monitoring (SHM) comparatively with the traditional 
approach to structural inspection and reliability assessment, outlining that beyond the new sensing sophisticated technology, 
much of the well-established methods based on models derived from fracture mechanics, quantitative non-destructive testing 
evaluation in probabilistic quantitative terms, are naturally integrated in SHM technology. The article is focused on civil 
aircraft structures outlining how the conjoint construct of Probabilistic Fracture Mechanics (PFM) and methods of quantitative 
non-destructive inspection (NDI) is implemented in SHM evaluations with the aid of massive computer simulations. 
Probabilistic substantiated of the warning time at the attainment of various levels of fatigue crack extension in the skin of a 
fuselage structure is assessed having as support a virtual SHM system which simulates acquired data processing performed on-
board or in remote stations by wireless data transmission.  A comparison of failure risk prediction is presented when aircraft 
operate under risk management applying intermittent NDI at scheduled inspection time (when the aircraft is grounded) on the 
one hand and continuous in time by SHM, on the other hand. The reported results are intended to demonstrate that by 
integration of existing assessment methodologies of PFM coupled with quantitative NDI can parallel SHM by massive 
computer simulation having as a result  refined prognostics and management of failure risks and optimization of operational 
costs. 

 

 

INTRODUCTION 

 

Intermittent non-destructive inspection has been used since a long time for checking the integrity of load-
carrying structures and mechanical components. Railroad hammer-tapping, in order to evaluate the emitted 
sound by “expert” interpretation, is a salient example. Developments along this way of approach have 
emerged in the nowadays state-of-the-art of non-destructive testing techniques (NDT). In this field, parallel 
inter-related developments are underway: improvement of sensing instrumentation, primary data processing 
quantitatively, in both deterministic and probabilistic format and, finally, their interpretation. Design and 
procedural inspection codes evolved on the basis of these developments having the main focus on assuring 
the structural integrity during the whole operational life, with maintenance costs kept as low as possible 
and, concurrently, assuring failure risks at very low levels, acceptable for the society from the standpoint of 
human life, environment and wealth protection. Obviously, there is conflicting interaction between high 
structural reliability and operational costs in which inspections, repairs or replacements of damaged parts of 
the structure may attain prohibitive expenditures. This issue has become more acute nowadays when 
increasing concern is manifested about the aging of load-carrying structures which operate under severe 
loading and environmental circumstances. From another perspective, with the development of a new 
generation of high-tech load-carrying structures, the benchmark of past experience and the ensuing 
projective model prediction methods become more and more irrelevant by obsoleteness.  

To advance on this front, structural health monitoring (SHM) has been developed, recently, as a new 
paradigm, in response to the traditional approach to structural reliability and operational effectiveness. At 
the core of SHM is continuous, on-line sensing of localized damage in a multitude of locations, “hot-spots”, 
in the structure. 

Concomitantly, the grate amount of recorded data is automatically processed, interpreted, ultimately, 
providing diagnosis of the current capacity of the structure to accomplish its operational tasks. Eventually, 
by means of automatic artificial intelligence, simulated suggestions may be stated for corrective measures 
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for maintaining in further operations high standards of safety. There is accumulated a sound cognizance on 
the hot-spot locations in heavy duty structures based both on prior design considerations and the wealth of 
experience accumulated over the years in operation as result of maintenance inspections and, not ultimately, 
from failures. For instance, in aerospace load-carrying structures, multi-site fatigue damage in fuselage 
structures or corrosion in hidden hard-to-reach locations typify hot-spot locations where major flaws, 
mainly cracks, are prone to occur, inevitably, in aged aircraft.  

These types of problems are addressed by SHM envisaged as a comprehensive rationale based on on-board 
implemented sensing network and subsequent data processing, locally, on-board and/or, wirelessly 
transmitted information to higher level data processing in a centralized monitoring station for decisions 
about adequate actions and information storage. There are many options for implementation of SHM in 
stationary structures, aerospace, automotive, on ground and see load carrying structures. Mostly used 
sensing systems are based, mainly, on ultrasonic and piezoelectric principles. Sensors of these types have 
miniature dimensions hence unobtrusive and easily implementable into the structure. Sensors with self 
excitation have being conceived which do not require cumbersome electric devices (e.g. Giurgiuţiu 2002). 
Selected overview information on SHM may be found in the works of Boller and Biemans [1], Boller and 
Mayendorf [2], Boller et al. [3], Giurgiuţiu et al. [4], Giurgiuţiu and Zagrai [5], Yolken and Matzkanin [6], 
Balageas et al. [7], Schmidt and Schmidt-Brandecker [8], Farrar and Lieven [9], Lloyd [10], Baker [11], 
Coppe et al. [12], obviously, the citation being by no means exhaustive.  

 

 

A SHORT OUTLINE OF STRUCTURAL HEALTH MONITORING APPROACH 

 

Continuous assessment of material damage during operation of a load-carrying structure is referred as 
structural health monitoring. It is a unifying view and a whole host of associated methods in structural 
integrity evaluation. SHM emerged from the tremendous developments in sensors technology, data 
acquisition and transmission, data processing and intelligent automatic evaluation for decision-making and 
mandating corrective measures in order to keep the failure risk at the lowest levels which are economically 
justified. Conceptual area of SHM incorporates various scientific and engineering approaches pertaining to 
structural integrity. Any physical system and process related with structural integrity can be envisaged as 
support for a SHM.  

SHM implies evaluation of operational conditions, data acquisition, data processing and damage feature 
extraction in statistical format, models development of features conditioning structural damage, 
discrimination into damaged / un-damaged components, failure risk assessment, preventing measures 
formulation, prognosis of economic remnant life, input data for structures management strategies for 
devising satisfactory reliability versus costs trade-off. Figure 1 shows, schematically, the interplay between 
goals, means and specific methods involved in SHM. The nowadays sensors technology makes possible to 
monitor the whole history of a structure, locally, in “hot spots”, or globally, by a network of distributed 
sensors attached or incorporated within the structure. Hot-spots are identified according to the past 
experience, components and structures real geometry on which is exercised computer simulation of stress 
and strain distribution. Figure 2 exemplifies hot-spots in a civil aircraft load-carrying structure such as 
fuselage, wings and rear stabilizers. 

Databases build-up in real time, together with computing algorithms appropriate to the specificity of the 
underlying materials damage mechanisms enable to project forward, in time, the evolution of the structural 
integrity. By this way, evolution of the material damage is brought under continuous scrutiny, enabling the 
prediction of the remnant life and further usage capacity, the risk of malfunction and, ultimately, the risk of 
failure, all being relevant information  for decisions-making. Ascertainment of places or components that 
need overhaul or replacement becomes a part, in its own rights, in the management and supervision of 
structural operation. From a pragmatic standpoint, SHM is a comprehensive and continuous way of 
performing non-destructive inspection (NDI) with inter-inspections time-intervals vanishing, at limit, 
towards zero.  
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ON IMPLEMENTATION PFM & QNDI IN SHM SIMULATION 

 

Data sources for monitoring fatigue damage by crack growth 

 

Probabilistic fracture mechanics enables to model and simulate the statistic variability in the growth of an 
already initiated crack in a structural element subjected to variable loading. The information on the 
probabilistic pattern of fatigue crack growth (FCG) stems from two main sources. The first one pertains to 
the statistic of the parameters in the FCG model (Paris rule) [13] and the statistics of material strength and 
deformation characteristics entering in the model of the end failure, i.e. the fracture occurring the last cycle 
of survival of the loaded structural component. The set of parameters implied in the FCG model are 
assessed, experimentally, on standard specimens in fatigue tests, planned with the aim of extracting 
statistical information which is relevant for reliability assessments. Primary monitored data are the crack 
size, a, as function of the number, n, of applied loading cycles. Data are fitted to analytical models, one 

salient example being the Paris-Klensil rule with inferior threshold:  m m
thda dn C K K    . Here,

K stands for the range of variation of stress intensity factor (SIF) – a global metric of the state of stress at 

the tip of an existing crack, of size a , and, thK , stands for the inferior threshold of SIF range under 

which fatigue crack growth becomes unobservable [13,14]. The end failure model adopted in this study 
pertains to the class of models based on the concept of Failure Assessment Diagram (FAD) which accounts 
on plasticity effects at the crack tip at the attainment of the critical (limit) state defined either by collapse in 
the cross-section owing to excessive plastic deformation spreading from the crack tip or, as in materials 
with low ductility, by component sudden fracture. 

 

 
Figure 1: Rationale of SHM systems  

 

FAD approach has at its base the Dugdale model of plastic deformation at the tip of a crack residing in a 
plate of rigid-perfect-plastic material. The theory and validation by experiments of FAD approach may be 
found in milestone references such as of Dugdale [15], R/H/R6 [16] and SINTAP [17], the citation being by 
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no means exhaustive. Statistics of material parameters implied in FAD approach are: static fracture 
toughness, Kc, ultimate tensile stress (UTS) and yield point (YP).  

The methodology of approach to fatigue damage owing to cracks growth under cyclic loading has been 
formalized in a probabilistic fracture mechanics construct by incorporating the outlined models of FCG and 
ultimate fracture, in the last survival loading cycle, as the end phase of the evolutionary damage process 
[18]. Analytics of the models in deterministic meaning are those which are well established in the present 
stage of fracture mechanics developments. As concerns the integration of probabilistic aspects of FCG, 
analytics of the models has been randomized by direct Monte-Carlo sampling of the basic random variables 
involved in the model, with distributions substantiated by statistical test. It should be emphasized that by 
this way it is circumvented the complicated probabilistic functionals, i.e. convolution integrals, which are 
intractable by finite functions requiring numeric approximations of doubtful degree of accuracy. Moreover, 
Monte Carlo simulation remains close to the physical phenomenology of FCG as it is reflected by the 
adequacy of prediction when it is adopted to the Paris-Klensil model of FCG.  The main shortcomings of 
Monte Carlo simulation method is claimed for results obtained at very low probability levels (<10-6) which 
requires a large number of sampling iterations (>109) to assure stable estimations. However, with the advent 
of massive computation technology this claim has fallen in desuetude. Another source of information 
derives from quantitative non-destructive inspection (QNDI). It encompasses flaws detection and their 
quantitative evaluation together with assessing variability and uncertainty (V&U) associated with a specific 
NDI technique. V&U encountered in NDI is quantified in terms of probability of detection (POD). 
Variability is the effect of chance and is function of the system. Variability is objective since it resides in 
the nature of the involved physical mechanisms underlying, in our case, material damage by fatigue. It is 
not reducible by either study or further testing and measurements. It may be reduced only by changing the 
system. Variability incorporates also our unawareness stemming from semantics, i.e. the meaning we attach 
to vectors of communication. Uncertainty associated with a probabilistic statement (as POD) stems from the 
assessor’s lack of knowledge about physical laws and parameters that characterize technical systems. 
Uncertainty is reducible by further experiments and study. The alternate concept the degree of certainty is 
our measure of how much we believe something to be true. In practice, certainty is validated by positive 
(confirming) experiments.   

 
Figure 2: Hot-spot points prone for fatigue damage initiation and where SHM systems are usually implemented in the load-
carrying structure of a civil aircraft. After [4] and [19]. 

 

NDI systems are driven to their extreme capability to find small flaws. To extreme capability, not all small 
flaws are detected owing to underlying V&U. NDI capability (reliability) is characterized in terms of 
probability of detection as function of the flaw size, a. A POD(a) function is defined as the proportion of all 
existing flaws of size a that will be detected by a given NDI system. Probability of non-detection (PND) is 
simply the complementary of POD, i.e. PND=1-POD. Probability of detection is estimated by statistically 
planned NDI experiments on specimens containing flaws of a-priori known size. A large experimental 
effort has been made in the last decades in order to elucidate this issue and extended literature is available 
about this subject (e.g. [20-22]). Integration of PFM and QNDI has been materialized in a theoretical 
construct transposed in a proprietary computer code and associated executable software identifiable under 
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the acronym pFATRISK (see [18,23-26]). Figure 3 illustrates the main steps in probabilistic FCG simulation 
until the ultitimte state at fracture in the last survival cycle. The component geometry model consists in two 
symmetric through-thickness propagating cracks emerging from the boundary of a hole, placed 
symmetrically in a thin strip (coupon). The width of material ligament is determined by inter-rivets 
distance. It has been considered both determinstic cyclic loading with constant stress amplitudes and 
random cyclic loading with stress peaks following Pareto distribution, the latter loading history being able 
to model rare events of high stress peaks interspersed among near-constant amplitude cyclic loading. Plates 
in Figure 3 are arranged in the sequence which is followed along the simulation path according to 
pFATRISK rationale. 

Figure 3 (i) portrays Paris-Klensil rule in deterministic and probabilistic format, in the latter case, with 
static strength parameters (UTS, YP and Kc ) described by 3-parameters Weibull distribution and FCG 

governing parameters (C, m and thK ) described by Normal distribution. Figure 3 (ii) shows SIF 

correction factors for the coupon geometry with two opposing pre-existent cracks as idealized body in 
which FCG occurs. Figure 3 (iii) shows the results of FCG simulation under constant amplitude loading 

(cycle ratio 0 1min max .   ) until the attainment of: case I -  various pre-set crack sizes  and case II – the 

attainment of a pre-set fatigue life. Concurrently is shown a FAD representation of FCG until failure. Figure 
3 (iv)  shows, in terms of cumulative probability density function (PDF), the fitting to a Log-Normal 
distribution of simulated data of the crack size, a, attained at a pre-set fatigue life (case II) and life scatter at 
pre-set warning crack size (WCS) level, case II. PDF vs. a, in case A is also shown. Figure 3 (v) 
exemplifies the deterministic assessment of the safety index (factor) accornding to FAD methodology and 
the counterpart probabilistic simulation (108 Monte Carlo iterations) of the failure risk in terms of 
probability of fracture or the inter-rivet ligament colapse by excessive plastic deformation. In this latter step 
the simulation of the influence of the quality of NDI can be implemented, quantified by experimentally-
based POD. This part of  pFATRISK simulation evinces the ample decrease in the probaility of failure by 
applying NDI of certain quality reflected in POD curves, having in mind the pre-supposition that a 
deffective element evinced in a simulation iteration is replaced or repaired at the initial load-carrying 
capacity. Obviously, this is an assessment at the time of inspection when the structure under consideration 
is at the disposal (e.g. an aircraft is grounded) for NDI according to regulatory prescriptions.  

 

 
Figure 3: Probabilistic simulation of FCG in a coupon with central hole mimicking a rivet hole in the fuselage skin of an 
aircraft. 
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The thoretical bases and the computation path outline Figure 3 for assessing fatigue failure risk are adapted 
for the traditional approach to fatigue damage tolerance (DT), widely applied in aircraft structural design. It 
appears, however, that this construct, in its theoretical premises, algorithms and computation 
(programming) codes is logically implementable into SHM methodology. In fact what is nowadays the 
traditional damage tolerance approach to failure risk is a section, at a certain time, in the multi-dimensional 
space encompassing all relevant variables in the fatigue damage process. By contrast, SHM can follow, in 
principle, the same algorithmic construct but it is performed continuously in time requiring an explicit time 
dependence of random variables pertaining to the computation model.  

However, as straightforward as it seems the similarity in algorithmic construct and the implementation in 
the damage models in the both ways of approach, the output of non-destructive sensing and the flow of 
monitored data towards processing places, locally or centrally in SHM assessments is significantly different 
in comparison with the traditional damage tolerance approach. Moreover, this difference imposes another 
decision making strategy and ensuing trade-off between reliability, maintenance and operational costs. 

 

A case study of virtual structural health monitoring  

 

In a real-life fleet of identical items, in the same congruent position of a specific hot-spot, the growth of a 
fatigue crack displays randomness owing to the variability of material properties, cyclic loading intensity, 
eventually, stemming from petite departures from constancy of manufacturing technology (e.g. riveting). 
Also due account is to be given to probabilistic uncertainties in data processing and interpretation. For 
setting warning at the attainment of a specific crack-size, beyond which the structural reliability is no more 
acceptable, probabilistic FCG simulation is the way to place this undertaking on the physics of the fatigue 
damage mechanisms and associated models. Under the given material response to loading circumstances, 
the knowledge of the variation of statistical scatter at achieving a pre-set crack size, sensed by SHM system, 
embodies the necessary input for the simulation of structural reliability. It may be expressed in various 
quantities.  Most common is the probability of failure in the hot-spot location, a general index of the 
momentary dangerousness, but of equal importance is the prognostication of the remnant life (structural 
usage) associated with an estimated probability of incidence. Obviously, there is an interplay between the 
randomness of the warning time, at the attainment of a specific crack size, and the ensuing probability of 
failure. Smaller is the crack-size warning level, implicitly the time to reach it, the smaller is the expected 
probability of failure, i.e. the higher the structural reliability. Probabilistic simulation of this trade-off is the 
goal of integration of PFM and QNDI in a virtual SHM dedicated for a better substantiation of decision-
making, either during operation or for setting the scheduled times for NDI (on grounded aircraft) and 
structural health evaluation. Virtual SHM, which will be further outlined, has a two-fold capability. I) to 
simulate the variability of FCG and evince the distribution of the time scatter for attaining a pre-set warning 
crack-size level. With other words, to estimate the probability of occurrence associated to a specific 
warning time. II) To simulate the crack-size statistics at pre-set warning time and, with this information as 
input, to assess the probability of failure. The latter assessment uses a model of end failure after stable FCG 
until the exhaustion of the component load carrying capacity. Figure 4 outlines the principles of this way of 
approach which has been carried on by simulation with pFATRISK methodology applied to fulfil task I and 
II outlined above.  

This case study refers to a fleet of 9.999 identical geometry items (locations of analysis) under the same 
nominal loading. The failure risk, reflecting the variability of the FCG among locations, is simulated 
probabilistically, as outlined above and schematized in Figure 4. In the exercise it is presupposed that the 
structure has incorporated a generic SHM of FCG, which is capable to sense the size of cracks from micro 
(e.g. 0.1 mm) to macroscopic range. Specifically, the sizing covers the range from cracks nucleation to an 
extension which exhausts, locally, the load-carrying capacity of the ligament between two rivets. As fatigue 
testing data on riveted panels evinces, is in consonance with fatigue damage simulation evincing that in few 
loading cycles it is expected to be triggered wide spread of fatigue damage in the entire panel. Under task II, 
schematized in Figure 4, the analysis may incorporate the simulation of the benefit which might be gained 
by performing at pre-set scheduled time a NDI of quality reflected by POD vs. crack size correlation. 
Obviously, by corrective measures, ensuing the NDI, structural reliability is enhanced. A detailed 
presentation of this approach is to be found elsewhere [18]. 

 

 



M

 

 

F
II
m

 

P

 

F
si
sh
p
F
a

 

F
pF

 

F
le

I
s

Model

Figur
I – S

metho

Prob

For p
imu
how

paral
Figu
attain

Figur
FAT

Figu
evel

 - W
set 

a)

b

lling 

re 4:
Simu
odol

babi

perf
ulati
ws t
llel 

ure 
nme

re 5:
TRIS

ure 5
ls. T

Ea
wa

War
wa

) FC

b) D

Wa

Cra

 PFM
ulati
logy

ilist

form
ion 
the 
rep
5a 
ent 

 Fat
SK si

5b i
The 

rlies
arnin

rnin
arni

CG s

Distr

arni

ck-s

M &
ion o

y, com

tic w

ming
has
grap

prese
and
of v

tigue
imul

illu
pro

st 
ng ti

p(

ng t
ing 

sim

ribu

ng l

size 

E

& QN
of cr
mpa

warn

g th
s be
phic
enta
d, b
vari

e cra
lation

stra
obab

ime 

ni) -
of W

tim
cra

mula

utio

evel

warn

Earlie

NDI 
rack

arativ

ning

he ta
een p
cal 
ation
b) th
ous

ack g
n co

ates 
bilit

n

 PD
WT 

e (W
ack

ation

on o

l  

ning

est w
W

imp
k-size
vely 

g tim

ask 
perf
repr
ns a
he 
 cra

grow
ode. 

the
ty a

n1 …
Wa

(

F 

WT
k-siz

n un

of si

g lev

warn
WCS 

plem
e di
und

me s

I o
form
rese
are 
pro

ack-

wth s

e fit
ssoc

… 
arni
(var

T) st
ze. 

ntil 

mu

vel -1

ning 

menta
strib

der n

simu

of as
med
enta
sho

obail
-size

simu

tting
ciat

sc

ni 

ng t
riabl

…

tati

cra

late

1 mm

tim

ation
butio
non-a

ulat

sses
d un
ation
wn:
lity 
e wa

ulatio

g in
ed t

Fa
catte

n
time
e) 

… 

stic

ack-

ed c

m 

e 

n in S
on   
appli

tion

ssin
ntil t
n, a
: a) 

dis
arni

on un

n a 
to si

atig
er s

nN 

e 

cs a

-size

crac

SHM
at p

icati

n of f

ng th
the 

as ge
cra

strib
ing 

ntil 

Log
imu

W
cr

Tim

ue l
imu

at p

e w

ck-s

C

M. I –
pre-s
ion a

fatig

he w
atta
ener

ack-
buti
leve

the 

g-N
ulate

Warn
rack

me (

ife 
ulatio

pre-

warn

size 

2 m

Crac

– Si
set w
and a

gue

warn
ainm
rate
size

ion 
els i

attai

orm
ed i

ning
k-siz

(cyc

on

-

ning

at v

mm

k-siz

imul
warn
appl

e da

ning
men
ed a
e sc
fun

in N

inme

mal 
i-ran

g 
ze

cles

g lev

var

ze w

ation
ning 
icati

mag

g tim
nt of
auto
atte

nctio
N=

ent t

dist
nked

) 

vel.

ious

warn

n of 
time

ion o

ge i

me 
f va

omat
er vs
on 
9.9

the le

tribu
d va

II –
tim

s w

ing 

f war
e an
of N

n a 

stat
ariou
tica
s. th
(PD

999

evel

utio
alue

p

– C
me

warn

leve

rning
nd pr

NDI. 

virt

tisti
us w

ally 
he n
DF) 
9 M

l of w

on o
es in

Cr
s

p(a)
cra

Crac
and

ning

el -2 

g tim
roba
 

tual

ics a
warn
by p

num
of 

Mont

warn

of si
n the

rack
scat

 - PD
ack-

ck-s
d fa

g lev

mm

me st
abilit

l SH

at p
ning
pFA

mber
the

te C

ning 

imu
e sa

k-siz
tter

Wa
(

DF o
size

size
ailu

vels

tatist
ty of

HM s

pre-s
g cr
ATR
r of 
e nu

Carlo

crac

ulate
amp

ze 

arnin
(pre

of 
e

e st
ure 

s. Lo

tics 
f fai

syst

set 
rack
RISK
app
umb
o ite

ck s

ed c
ple o

ng t
e-set

tati
pro

P

og-

3

C

at pr
ilure

tem 

crac
k-siz
K so
plied
ber 
erat

ize o

crac
of N

ime
t) 

stic
oba

Pf, p

Nor

3 mm

Crac

re-se
e sim

 

ck s
ze (
oftw
d lo
of 

tions

of 1,

ck-s
N ite

  

cs a
abil

prob
s

rma

m 

ck-si

et w
mula

size
(WC
ware
oadi

loa
s. 

, 2 a

size 
ems

at p
ity.

babi
simu

al di

ize w

warni
tion 

e, pr
CS) 
e. T
ng c
adin

and 3

at 
 has

pre-
 

FA

FA

lity 
ulatio

istri

warn

ng c
acc

roba
lev

Two 
cycl

ng c

3 mm

vari
s be

T

-se

AD 

AD 

of fa
on 

ibut

ning 

crack
cordi

abil
vels.

con
les, 
cycl

m, re

ious
een 

ime

t w

NO

WIT

ailur

tion

leve

k-siz
ing t

istic
. Fi
nco
sho

les 

espe

s w
com

 (cy

warn

O-N

TH-N

re 

n. 

el -3 

1

ze le
to F

c FC
gur

omit
own
at 

ectiv

warn
mpu

ycles

ning

DI 

NDI

mm

133

vel. 
AD 

CG 
e 5
tant 
n in 
the 

ely. 

ing 
uted 

s) 

g 

m 

 



Modelling 

134 

 

with the formula: Pi,N=(i-3/8)N (e.g. [28,29]). The smallest ranked (i=1) values, corresponding to a 
specific WCS level, is assigned with the probaulity P (i=1),N, as outlined above, resulting a probability of 
occurrence of 6.25 10-5. Table 1 gives, the fatigue life, N (i=1;WCS), at the smallest simulated rank, i=1, 
corresponding to various WCS levels. This may be interpreted as the minimum simulated life when the 
warning at the pre-set level is given in at least one item in the fleet. Table 3.1 also gives: the extrapolated 
warning life, at 106 probability of occurrence, N(P=10-6; WCS), a level of interest for reliability assessments 
according to the nowadays trends of airworthiness prescriptions.  

By this analysis it is evinced, computationally, that when the WCS is 2 mm,  the fatigue life attains, with a 
probability lower than10-6, at least 90.120 loading cycles. There are also given in Table 1 the median life 
N(P=0.5; WCS) and, for the purpose of  comparison of the extent of the scatter of the warning time (N), it is 
given the simulated life at the highest probability of occurrence in the simulation session i.e., 
N(P=0.99999;WCS)=190.659 cycles. It becomes obvious that the range of scatter of the fatigue life at 
warning, in the fleet stays in the ratio of two.  

The results given in Table 1 are represented in Figure 6. The resulted functional relationship expresses the 
variation of warning reliable timing, probabilistically substantiated, as function of the pre-set WCS levels. 
However, the appropriateness of WCS levels is dictated by SHM detection capability and needs a specific 
analysis in terms of POD (e.g. [30]). It is apparent from Figure 6 that seting the probability of attaining the 
WCS at sufficiently low values (e.g. 10-6 or lower) mandates early, definitly on the safe side, timing for 
corrective measures: repaires or more in-depth intervention as overall inspection and further decisions for 
ovehaul or retirement for cause.  

 

WCS 

mm 

Fatigue life (cycles) at warning crack-size 

Simulated*) 

 N i=1;WCS  

Prob.=0.0000625 

Extrapolated 

 6N P=10 ;WCS

Prob.=0.000001 

Median 

 0 5N P= . ;WCS
 Prob.=0.5 

Extrapolated 

 0 99999N P= . ;WCS
Prob.=0.999999 

0,1 74.300 69.364 90.500 118.576 

0.5 84.000 80.463 108.400 146.230 

1.0 89.800 85.390 117.300 161.464 

2.0 97.200 90.120**) 127.600 180.659 

3.0 104.300 93.850 135.000 193.338 

4.0 106.000 96.548 140.435 203.026 

5.0 107.700 96.604 142.500 211.094 

Table 1:*)  9.999 simulation iterations. **) case for further studies. 

 

 
Figure 6: Warning time at various pre-set crack-size levels for low and median probabilities of occurence that crack-size 
attains the warning level. 
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These results outline the trade-off between SHM and continuous assessment of  failure probability, general 
inspection schedule both issues being of relevance in  structural failure risk management.It should be 
emphsize that data in Table 1 and represented in Figure 6 have been derived by probabilistic simulation of 
the fatigue crack growth over a cupon (Figure 3), a representative idealized spot of the material ligament 
between two rivets in the fuselage skin of an aircraft. Simulation in this exercise refers, globally, to fatigue 
damage as function of the number of flights in the phase prior to triggering of wide spread fatigue over the 
entire fuselage structure. FCG simulation may be performed as an idependent task or paralleling, virtually, 
real life crack-size monitoring. It enables to obtain a data base which can be processed locally or wireless 
transmited to central points in the SHM network and, eventually backward retransmitted for current 
operational guidance (see Figure 2). Globally, incorporating SHM and parallel performing computer 
simulation of the fatigue damage process, results in a better substantiation of current operational decisions 
and management regarding inspections timing, repairments or replacements and, not the last, the prediction 
of reliable remnant lives. In the next section, for the same circumstances of the case study, and following 
the same way of approach based on Monte Carlo FCG simulation, an execise of probaility of failure 
prognosis at various inspection times (IT) will be outlined. 

 

 

Failure probabilities simulation for SHM at scheduled inspection time (IT)  

 

Task II outlined in Figure 4, which performs the simulation of failure probability at pre-set inspection time, 
is demonstrated under the same premises as in the previous exercise of Task I. Simulation mimiks FCG in 
the model coupon under pressurization/ depressurization loading cycles encountered by the aircraft fuselage 
structures. Crack size scatter has been probabilistically simulated in 9.999 iterations (result values items) 
until the attainment of various levels of pre-set fatigue lives, envisaged as times for evaluation of failure 
risk in a continuous process or inspection/evaluation times when the structure is out of operation (aircraft is 
grounded). Massive Monte Carlo simulation, in 107iterations, has been performed in order to obtain stable 
values of the probability of failure. In one iteration, material strength UTS, YP and fracture toughness Kc, 
considered as random variables involved in the FAD failure model, together with already simulated crack 
size distribution at the evaluation (NDI) time, are Monte Carlo sampled and FAD assessment is performed 
in each iteration. If in one iteration the representation of the state point falls beyond FAD limit curve, then 
the iteration is counted as simulating the failure and, consequently, the structural element is considered 
replaced or repaired at the initial capacity. The ratio of the number of failures, NF, to the number of total 

iterations, N , estimates the probability of failure: fN FP = N N . Further on, aligned to the suppositions 

taken in the case of task I (WCS=2 mm to which corresponds a fatigue life of approx. 900.000 cycles with 
probability of occurrence of 106), the simulated crack size distribution at this envisaged NDI time is used as 
probabilistic information for FAD analysis of the failure (fracture) risk, at this moment in the structure life. 
The crack-size warning level of 2 mm level is regarded, tentatively, as fairly detectable with nowadays 
SHM sensitivity (probability of detection) incorporating, nevertheless, a reasonable degree of conservatism 
against failure (mean FAD static safety index of 3.87, not documented here). 

Figure 7 shows the results of probabilistic FCG simulation until the attainment of 90.000 loading cycles 
which corresponds, according to data given in Table 1, and Figure 6, with the time when, with a probability 
of occurrence of 10-6, the propagating fatigue crack attains a size of 2 mm. Figure 7a illustrates the scatter 
of the crack size at the life of 90.000 cycles and Figure 7b gives the evolution of the state of damage in 
FAD representation until the attainment of this life. Though the scatter of the crack-size seems substatial (as 
apparently sugested by the enlarged view of Figure 7a, it encompasses, at the analysed time of loading 
history, crack-size values in the range of 0.02 to 0.7 mm. This fact makes that points “cloud” of the damage 
states in Figure 7b to be rather far-off the limit state FAD curve. However, it is important to stress that the 
representation in Figure 7 derives from the results from a session of only 9.999 simulations, not excluding 
the possibility of rare events with, for instance, 10-6chances of occurrence which may arise in random 
Monte Carlo sampling of the variables governing FCG law. In this case, FAD representative points may fall 
in the failure domain. Figures 3, 5c and d show PDF representation of the fitted crack-size by two-
parameters Weibull distribution of the inverse value of the crack size (1/a). PDF displays strong positive 
skewness evincing that cracks of large size associated with FCG, though rare events, are in the realm of 
possible occurence. 

For the case of simulated crack statistics illustrated in Figure 7, the results of probabilistic FAD analysis are 
shown in Figure 8. For a sample of crack-size data, simulated until the attainment of 90.000 cycles, the 



Modelling 

136 

 

probability of failure resulted in 
6P =1.8 10fN


. On the FAD simulation display it can be discerned, as is 

apparent in Fig. 8, few cases of failures which are in the realm of rare events, together with an 
overwhelming number of events of non-failures. Table 2 gives the simulated probabilities of failure as a 
function of the number of loading cycles experienced by the structure until various inspection times. For 
every pre-set inspection times, Monte Carlo simulations in 107 iterations have been repeated several times 
in order to check the stability of the estimated values of failure probabilities. Stable values have been 
obtained. However, at low probabilities, around 10-7, the number of iterations should be increased with at 
least one order of magnitude for obtaining better convergence towards the true value of probability.  

Figure 9 shows the graphical representation of the simulation results given in Table 2. A salient trend 
emerges from this part of the simulation exercise. The delay in application of an efficient NDI, beyond a 
life of 90,000 loading cycles (pressurizations / depressurizations in take-off / landing cycles), results, 
altogether, in a definitely increase of  failure risk by FCG with nearly three orders of magnitude in a short 
interval from 90.000 to 105.000 loading cycles.  

 
Figure 7: Probabilistic simulation of FCG until the pre-set NDI (evaluation) time at 90.000 cycles. Number of simulation 
iteration, 9.999. a) crack-size scatter; b) on-line FAD representation; c) crack-size data fitting into two-parameters Weibull 
distribution of the inverse value of the crack size (1/a), in cumulative probability representation; d) same as c) in PDF  
repesentation. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Probabilistic simulation of the 
failure risk in 107 Monte Carlo iterations. 
Probabilistic damage stage after 90.000 
cycles of pressurization / depressurization of 
fuselage structure. The simulated probability 
of failure is 1.8 10-6. 

a) b) 

Non-failure

Evaluation time
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d) c)
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Number of loading 
cycles 1) at IT 2)  

Crack size statistics at IT, mm Probability fNP  at 
IT 4) Median P=0.9999625  3)

80.000 0.0436 0.1692 <10-7 

90.000 0.0908 0.9125 7.0 10-7 

1.1 10-6 

1.8 10-6 

2.8 10-6 

95.000 0.1411 1.2347 2.27 10-5 

2.53 10-5 

2.57 10-5 

100.000 0.2267 2.1724 1.54 10-4 

2.30 10-4 

2.46 10-4 

105.000 0.3701 6.1578 6.93 10-4 

7.78 10-4 

7.81 10-4 

Table 2: 1) Constant amplitude loading Smax Smin=85 8.5 MPa ; 2) IT - Inspection time; 3) Rank 9.999, the greatest crack-

size in a sample of 9.999 Monte Carlo iterations; 4) 107 Monte Carlo simulation iterations. 

 

 
Figure 9: Monte Carlo simulated (107 iterations) of the probability of failure at various inspection / evaluation times. 

 

 

DISCUSSION AND CONCLUSION 

 

Computer simulation in science and engineering is gainning more and more areas of applications, being a 
rational way to enrich knowledge on the mechanisms underlying physical phenomena or to explore details 
not reachable by experiments.  Structural health monitoring is a new paradigm emerged in the last two 
decades, aiming to predict future behavior of technical systems, to foster operational reliability concurrently 
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with cost optimization. SHM is nowadays a comprehensive response to this challenge, beyond the means 
offered by traditional NDI.    

The article atempts to evince how already existing concepts, models and computation algorithms of 
quantitative NDI and probabilistic approaches to structural failure risk are integrated, logically, in generic 
or dedicated SHM systems. For specific SHM applications to fatigue life and reliability management of 
aircraft structures, a way of approach is to make explicit the failure risk in probabilistic terms, in correlation 
with the capability of NDI and SHM. Inspection or monitoring quality in this commission is quantified with 
the aid of POD models which are already in use when damage tolerance strategy is followed. The generic 
SHM model reported has probailistic-statistic format materialized in the pFATRISK rationale and its 
associated mathematical algorithms and executable computer code. Statistic-probabilistic background of 
pFATRISK stems from the experimentally legitimated input as concerns data on material strength, 
deformation and fracture toughness, and the parameters of a fatigue crack growth model. By this way, 
uncertainty and variability features are taken into account. The rationale is capable to follow, virtually, by 
simulation of a real-life operating SHM systems. With the pFATRISK “tool”, an assessment has been 
performed with twofold aims: (i) to derive probabilistically founded safe warning times, as relevant 
information for warning at safe times for taking corrective mesures, or (ii) to set overall NDI timing, as a 
function of the pre-set levels of the warning crack-size, substantiated on the basis of simulated probability 
of failure assessed as a function of the elapsed time of the component life. Massive Monte-Carlo 
simulations of  the FCG have been used in this undertaking. 

The results obtained met in evidence the potential of integrated probabilistic methods of fracture mechanics 
and quantitative non-destructive inspection, supported by massive computer simulations, to parallel, 
virtually, SHM systems with the end aim of refining prognostications and management of operational 
failure risks, assuring, not the last, optimal cost. 
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APPLICATION OF RISK BASED INSPECTION TO HEAT EXCHANGERS OF A CHEMI-
CAL PLANT 
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ABSTRACT 

A risk-based inspection methodology is presented that is able to cope with systems consistingof a large number of components. 
By detailed analysis the components of high risk can be identified and analysed in further detail resulting in a risk-based in-
spection plan. One of the options considered is permanent monitoring of those critical components. The methodology is further 
illustrated along a case study performed on an isotopic echange installation in a heavy water plant. 

 

 

INTRODUCTION 

 

Periodical inspection (time based inspection) of industrial equipment is the common procedure applied in  
industry. It is necessary to verify the safety of complex installations after a given period of exploitation. In 
chemical or petrochemical plants where materials used are heavyly loaded, damage mechanisms like corro-
sion, fatigue, creep, stress corrosion cracking, and similar can appear. In order to monitor all these phenom-
ena mainly non-destructive methods are involved. The national and international rules, regulations and 
standards prescribe very rigorous inspection intervals indicating what component has to be examined and 
which NDT method has to be taken. All the testing results are very scrupulously recorded so that the history 
of each component is well known. These periodical shutdowns of the equipment, foreseen by the regula-
tions, but not by a real necessity, result in significant losses of production for the stakeholders. Taking into 
account that a chemical or a petrochemical plant has a daily production of many millions of Euros, it is easy 
to understand that the owners of these plants are not so happy to stop production when the compulsory 
periodical inspection is to be completed. The practical experience of inspection has indicated that many 
components of a complex industrial installation consisting of hundreds of individual parts are generally less 
affected by the exploitation condition than others. That means that the inspection activity made periodically 
on these parts may bring nothing, but may rather cost a lot of money. How can the cost of inspections be 
mitigated without affecting the safety of equipment? The answer to this question is given by the risk-based 
inspection and maintenance. This means to move away from time based inspection, often governed by min-
imum compliance with rules, regulations and standards for inspection. The result consists in planning and 
executing only those inspections that are needed and so providing economic benefits such as fewer inspec-
tions, fewer or shorter shutdowns and longer run lengths. All this is made by safeguarding the integrity and 
reducing the risk of failure. 

 

 

RBI METHODOLOGY 

 

Risk-based inspection (RBI) and maintenance  concepts were developed in the U.S. between 1995-2005 
[1,2], the first by API (American Petroleum Institute) in chemistry and petro chemistry, followed by EPRI 
(Electrical Power Research Institute) for nuclear and thermal power plants and then in the European Union 
within the RIMAP project [3] for every industry field. Recently, a new standard in the field of risk man-
agement has been jointly developed by ISO (International Organization for Standardization) and IEC (In-
ternational Electrotechnical Commission) [4,5]. 
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terms of inspection activities, which mean that the inspection intervals can be significantly enlarged without 
losses of installation’s safety. The components having high risks associated have to be intensively checked 
in order to reduce either PoF or CoF. Generally it is difficult to mitigate the costs of failure of a component 
when environmental problems or production losses are involved. By intensifying the NDT through perma-
nent monitoring of the components and by changing the process parameters (if possible) the probability of 
failure can be reduced up to an acceptable level. Based on the risk evaluation of the components an inspec-
tion plan is elaborated concentrated on high risk components, followed by practical intervention on the 
component consisting in replacement, repair of defects, etc.. When this operation is finished a new assess-
ment of the components involved is made and the new risk level is estimated.  

The whole process of RBI is summarized in the Figure 3. The risk analysis is made on two levels: 

Level 1 – Qualitative risk analysis, simple brief prioritization of equipment (Screening) 

Level 2 – Quantitative risk analysis (detailed analysis). 

   

 
Figure 2 Schematic of probability of failure versus cost for a set of components of a system’s installation 

 

 

 
Figure 3 The Risk-Based Inspection (RBI) process 

 

During the first level data and information existing at the stakeholder are evaluated and put in the risk ma-
trix. Only components of the system showing high risk levels are involved in the second step of the risk 
analysis – the detailed analysis. The assessment procedure evaluates the remaining strength of the equip-
ment in its current condition, which may be degraded from its original conditions. Common degradation 
mechanisms include corrosion, localized corrosion, pitting and crevice corrosion, hydrogen attack, embrit-
tlement, fatigue, high-temperature creep, and mechanical distortion. Methods for evaluating the strength 
and remaining service life of equipment containing these types of degradation should be taken into account. 

Thus the degradation mechanism, the influence of exploitation parameters on the material, the thinning of 
the wall thickness, and if possible new non-destructive examination and even destructive material testing 
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performed is taken into account. Generally, a better knowledge of the component’s behavior allows a better 
positioning in the risk matrix. After this the risk ranking is remade it becomes possible to provide the neces-
sary information for the risk-based inspection plan. By application of the inspection plan the avoidance of 
unnecessary inspection is possible. Inspection intervals are based on the risks associated with the compo-
nent and therefore inspection personnel can spend most of its time on the high risk areas and less time in the 
low risk areas. 

The evaluation of risk in industrial equipment consisting of hundreds of components is not a simple work. 
This is why many institutes and software companies have developed specialised expert systems for different 
specific applications (chemistry, petro-chemistry, power plants, storage tanks, boilers, etc.).  So on the mar-
ket it is now possible to buy expert systems from API (USA),  Det Norske Veritas (DNV - Norway), The 
Welding Institute (TWI -UK), Tischuk (USA), Bureau Veritas (Belgium/France) or Steinbeis Advanced 
Risk Technologies-R-Tech (Germany). Generally the expert system uses large data bases for materials, 
damage mechanisms, hazardous fluids, costs of failures, etc., all absolutely necessary for the risk ranking. 

 

 

CASE STUDY 

 

The risk-based analysis was made on some equipment from an isotopic exchange installation of a heavy 
water plant in Romania. For the isotopic exchange in extracting heavy water, hydrogen sulphide is use. H2S 
is a very toxic chemical for humans and animals and is very corrosive for steels in general and for carbon 
steels in special. The screening risk analysis was made on 112 components on this complex installation. For 
the detailed analysis 8 heat exchangers connected together and one pressure release valve (Figure 4) were 
selected from the screening analysis results. These components were those having a high and medium high 
risk associated. The 8 heat exchangers were decomposed in 5 components each: the shell, the tube bundles, 
chamber, removable lid, and external lid. Together with the release valve 41 components were analyzed. 

 

 
Figure 4 Schematic of an isotopic exchange installation of a heavy water plant  
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nism, wall thinning diagram, consequence evaluation etc. Using all this information the expert system cal-
culates the failure likelihood, the cost of failure and the risk of the component. The output form of the ex-
pert system for the tube bundles is shown in Figure 7. 

 
 

Figure 6 Results of screening analysis 

 

The result of the evaluation by the detailed analysis using general data moves the component (in this case 
the tube bundles) from the medium high region of risk in the medium one. For all components a detailed 
analysis is made for hydrogen attack, piping fatigue calculation, wall thinning, external damage, stress cor-
rosion cracking, and of course for the consequences. Very useful are former or new inspection results which 
are necessary to perform probability of failure calculation. As an overall result of the detailed analysis all 
evaluated components leave the medium high region (Figure 8).  

The removable lids can be located into the low risk region and the external lids, the chambers and the pres-
sure release valve are in the yellow region corresponding to the lowest likelihood category. 

A little bit higher, in the yellow region, are the shells and the tube bundles. The detailed analysis for toxicity 
consequence (Figure 9) shows 8 components (approx. 20%) were placed in high risk areas, 25 components 
(60%) in medium - high risk level which all requires special treatment and 8 components (approx. 20 %) in 
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low risk area. The detailed analysis for fatality consequence shows 25 components (60%) in medium - high 
risk level which all requires special treatment and 16 components (approx. 40 %) in low risk area. 

 

 
 

Figure 7 Example of output from expert system 

 
 

Figure 8 Result of a detailed analysis 
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Figure 9 Results of detailed analysis for toxicity consequence 

 

According to risk criteria the influent risk requires specific treatment. In order to treat components placed in 
high and medium-high risk level, a detailed inspection program has been developed and specific measures 
for risk mitigation by on-line monitoring of critical parameters has been taken. The inspection program is 
presented in Table 2. 

 

*TM – Thickness Measurement; PT – Penetrant Test; VT – Visual Test 

Component 
Type 

Likelihood 
category 

Consequence cate-
gory 

Risk level Inspection Type Inspection  
interval [years] 

 
Chamber 

 
1 

 
C 

 
2. MEDIUM 

TM – layer, PT-welds 8 
VT 3 
TM – base material 15 

External Lid 1 B 1.LOW VT 3 
TM – base material 15 

 
Removable Lid 

 
1 

 
C 

 
2. MEDIUM 

TM – layer, PT-welds 8 
VT 3 
TM – base material 15 

 
Shell 

 
2 

 
C 

 
2.MEDIUM 

PT – welds 8 
VT 3 
TM – base material 8 

 
Tube Bundle 

 
3 

 
C 

 
2. MEDIUM 

PT-welds 5 
VT 3 
TM – base material 5 

Release Valve 1 C 2.MEDIUM Test 5 
 

Table 2 Detailed inspection programme considering risk mitigation by on-line monitoring 

 

In an earlier period thickness measurements of the shell were performed regularly every 6 months and visu-
al examination was performed for all components every annual review. By detailed analysis of operational 
parameters, materials and failure mechanisms of each component, using an expert system and the RBI 
method, the corrosion rate has been estimated (Figure 10) and the interval between successive inspections 
could be increased from initially 6 months to 8 years (Table 2).  

From Figure 10 it is evident that a 6 months inspection interval is unjustified since it only increases inspec-
tion cost without any safety benefits. 
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ABSTRACT 

 

The article deals with the numerical and experimental determination of multi-axial strain transfer in carbon-fiber reinforced 
laminated using fiber Bragg grating sensors integrated into the composite laminate. Based on small strain approximation 
theories a matrix formalism based on principal strains is formulated of which a core element is the multi-axial strain matrix 
TC. This matrix has been determined numerically and is further correlated with a K-matrix which is a correlation between 
wavelength-shifts and the strains respectively. A comparison between numerical and experimental results based on the TC-
matrix has shown good coincidence. 

 

 

INTRODUCTION 

 

Superior design flexibility and fatigue performance render composite materials attractive successors for 
traditional construction materials. However, due to their anisotropic nature, isotropic material design 
procedures are no longer valid. Additionally, more complex strain distributions and failure modes exist. 
Therefore, internal strain information can provide useful knowledge concerning composite behavior both in 
material characterization and online health monitoring (e.g. smart structures). Embedding optical fiber 
Bragg gratings (FBG) can even provide multi- axial strain information. Determining the total strain field in 
composite structures is of upmost importance, since they render valuable information on the integrity of the 
structure. 

 

 
Figure 1: (a) The coordinate system used for all equations in this paper. (b) & (c) The cross-sections of a dual- FBG 
configuration inside a cross-ply composite material (b) the first FBG, (c) the second FBG en-capsulated inside a capillary. 

 

In [1], the usability of 80 μm draw-tower gratings (DTG® [2]) embedded in carbon fiber reinforced 
composite is explored as a multi-axial strain sensor. DTGs are optical fibers in which the grating is 
inscribed during the drawing process with a single laser pulse. The response of such DTGs is, like any other 
FBG, dictated by Bragg’s law.  

Using a small-strain approximation and the centre strain theory (valid for conventional fibers), the 
temperature and strain sensitivity of an FBG along its polarization axes can be written as [3]: 

 ∆ఒಳ,భఒಳ = ଷߝ − ௡തమଶ ሾ݌ଵଵߝଵ + ଶߝ)ଵଶ݌ + ଷ)ሿߝ +  (1)    ܶ∆ߚ
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∆ఒಳ,మఒಳ = ଷߝ − ௡തమଶ ሾ݌ଵଵߝଶ + ଵߝ)ଵଶ݌ + ଷ)ሿߝ +  (2)    ܶ∆ߚ

 

in which p11 and p12 are the strain optic coefficients. The coordinate system is as depicted in Figure 1(a). 
The 1- and 2-axis are oriented according to the optical slow and fast axis. These will align with the principal 
directions of transverse strain. Using a dual-FBG configuration (Figure 1(b)-(c)), in which both FBGs are 
exposed differently to the strain field Equations (1)-(2) can be inverted to yield the strain-field from the 
measured wavelength shifts. In [1] and this paper, the second FBG is encapsulated in a capillary tube 
(Figure 1(c)), which isolates it from transverse stresses. As such, ε1 and ε2 are equal to −νε3, resulting in an 
equal shift of both wavelengths for this FBG. Temperature-compensation is achieved using an external 
sensor. The matrix-formalism yielding the principal strains from the measured wavelength shifts in this 
configuration can be written as: 

 

ێێۏ
−ۍێ ௡തమଶ ଵଵ݌ − ௡തమଶ ଵଶ݌ 1 − ௡തమଶ −ଵଶ݌ ௡തమଶ ଵଶ݌ − ௡തమଶ ଵଵ݌ 1 − −௡തమଶ ଵଶ0݌ 0 ቀ1 − −௡തమଶ ଵଶቁ݌ + ௙߭ ௡തమଶ ଵଵ݌) + ۑۑے(ଵଶ݌

ଵିېۑ

ێێۏ
ێێێ
஻,ଵ,௔ߣ∆ۍێ ஻,ଶ,௔ߣ∆஻,௔൘ߣ ஻,௕ߣ∆஻,௔൘ߣ ஻,௕൘ߣ ۑۑے

ۑۑۑ
ېۑ = ൥ߝଵߝଶߝଷ൩ (3) 

 

with νf , the Poisson-coefficient of the optical fiber. The matrix relating wavelength-shifts and strains are 
called the K-matrix. 

 

 

STRAIN TRANSFER 

 

The optical fiber can be regarded as an inclusion inside the material (Figure 1(b,c)). Because mechanical 
strains and stresses will be redistributed in the vicinity of the optical fiber, the mismatch in material 
properties between the composite and the optical fiber has to be taken into account (Figure 2).  

As a result, the strains deduced from Equations (1)-(2), which represent those measured at the center of the 
optical fiber core, will differ from the actual strains that would exist in the undisturbed composite. When 
strain-gradients are limited, the strains that would occur in an undisturbed structure will be equal to the 
strains at a certain distance from the fiber. The multi-axial transfer of strain from the composite (e.g. the 
actual strains) to the fiber core (e.g. measured strains) was modeled in [4]. It was shown that axial strain 
transfer is usually in the vicinity of 100%, while transverse strain transfer is dependent on many parameters 
such as ply lay-up and material properties [4]. 

 

 
Figure 2: Transverse strain disturbance for a thin laminate [0]4 loaded in the transverse out-of-plane direction. The optical 
fiber sensor is embedded in the middle of the laminate [4].  
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In [4] a general method of modeling the strain transfer using matrix formalism is proposed: 

 ሾߝ௖ሿ = ሾܶܥሿሾߝ௦ሿ        (4) 

 

where εs symbolizes the sensed strains, and εc the composite strains, TC is called the multi-axial strain 
transfer matrix. Using numerical simulations, the TC-matrix has been calculated for the case of [02, 902]2s 
cross- ply carbon-fiber reinforced thermosetting polymer (CFRP) laminates with embedded 80μm optical 
fibers. The TC-matrix was found to be (The matrix was transformed to match the coordinate system in this 
paper (Figure 1)): 

ሾ଴మ,ଽ଴మሿమೞܥܶ  = ൥ 7,64 −1,23 0,82−1,24 7,62 0,810 0 1 ൩     (5) 

 

Equation (4) can be extended with the aforementioned K-matrix, leading to a direct correlation between 
composite strains and wavelength shift: 

 ሾߝ௖ሿ = ሾܶܥሿሾܭሿିଵቂ∆ߣ ൗߣ ቃ       (6) 

 

 

EXPERIMENTAL RESULTS 

 

Using Equation (6), the numerical TC-matrix has been validated experimentally. Different CFRP samples 
with [02,902]2s lay-up were created according to Figure 3. 

 

 
Figure 3: Dimension and lay-out of experimental samples. 

 

According to [4] 3 different loading conditions are required to determine the TC-matrix. Both tensile 
loading in the length direction (1-direction for Type 1, 3-direction for Type 2) according to the ASTM 
D3039 standard and through-the-thickness compression loading (2 direction) were performed. All tests 
were performed three times. The wavelength shifts for the different loading conditions were recorded for 
the different samples (Figure 4). The results show an almost perfect linear behavior for loading along the 2-
direction and 3-direction. Significantly more scattering is visible on the wavelength response of the 
capillary Type-1 sample (black squares in Figure 4(a)). In the future, more samples will be created to better 
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study the behavior of this sample-type. These wavelength shifts are then translated to sensor strains (εs) 
using the K-matrix by substituting νf = 0.17, n = 1.456, p11 = 0.111 and p12 = 0.247 in Equation (3). 

The composite strains εc are determined using finite element simulations, for which the material properties 
have been determined previously. Using the three different strain fields εc and εs – corresponding to the 
three distinct loading conditions –, the TC-coefficients can be found from Equation (4). 

ሾ଴మ,ଽ଴మሿమೞܥܶ  = ൥ 7,49 −2,01 0,69−2,45 7,87 0,77−0,01 −0,01 0,96൩     (7) 

 

 

 
 

Figure 4: Wavelength shifts for loading in the (a) 1-direction, (b) 2-direction and (c) 3-direction. 

 

If one compares Equation (7) to Equation (5), a more than decent correspondence between experiment and 
simulation has been found. Both matrices clearly show almost perfect axial strain transfer. In contrast, only 
a part of the transverse strains is transferred and both matrices show a significant cross-sensitivity to 
transverse strains. This cross-sensitivity is higher for the experimental matrix than for the numerical matrix. 
This could be caused by the large spread in the response of the capillary Type-1 sample. The good 
correspondence can be further validated and refined using additional testing. 

 

 

CONCLUSIONS 

 

Despite the manual lay-up procedure for the experimental samples it is clear that there is a strong 
correspondence between experimental and numerical TC-matrix described in Equations (7) and (5) 
respectively. This entails that numerical simulations can be used to determine the TC-matrix for more 
complex structures. Additionally, it is clearly illustrated that the proposed experimental set-up is capable of 
accurately determining the strain transfer. Finally, the experimentally and numerically determined TC-
matrix shows the importance of translating the measured strains to the actual strains, which can 
significantly differ from each other. 
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ABSTRACT 

 
A passively as well as an actively monitoring system for plate and shell structures is presented which allows for impact 
localization as well as damage detection and localization. The monitoring procedure proposed is based on the runtime of waves 
which are due to the impact or reflection at the damage and which are analyzed from data captured by a sensor network. 

 

 

INTRODUCTION 

 

With increasing application of advanced materials for lightweight structures, such as carbon fiber reinforced 
plastics, new types of damage occur, e.g. delamination, fracture of fibers or intermediate fiber fraction. 
These damages are often not perceptible visually from outside the structure, but cause especially under 
pressure load a strong loss in firmness and rigidity, cf. [1]. This may lead to failure of the entire composite 
structure. Apart from structural design methods which allow damage tolerance to be increased with respect 
to impact loading, there is a variety of other types of hybrid material systems and structures discussed as 
well as thermoplastic matrix or plies of the outside layers of those systems [2] and in that regard also 
methods are to be developed, which minimize the disadvantages of classical non-destructive testing of 
materials. The classical scanning procedures are either not applicable at all or only under inadequate effort. 
The time-consuming manual inspection of large surfaces, for example by ultrasonic, thermography, eddy 
current or X-ray techniques may be gradually replaced by integrated systems for monitoring a structure’s 
load history or structural integrity. Therefore, approved monitoring methods have to be adapted to the 
specific needs required and new methods have to be developed in respective regards. Tobias [3] already 
presented a theory based on triangulation, which is able to detect damage in a plate by using three sensors. 
The underlying problem was modeled by three intersecting circles, which are in each case placed centrally 
around a sensor and whose radii are determined by the differences of the arrival times of wave packets at 
the sensors. Jeong and Jang [4], presented a similar triangulation-based model, which first evaluated the 
signals of two sensors. The location of the damage is defined by the intersection of two hyperbolas. Wang 
et al. [5] developed a four sensor model using an optimization strategy for the first time apart from the 
running time of wave packets. Further models of Kehlenbach and Hanselka [6], as well as of Sohn et al. [7] 
are based on the same principles. However, the signal analysis was extended by wavelet transformation in 
those cases. Common to all these models is their classification to structural health monitoring because all 
the investigations are related to active systems. In all of those cases piezo-electric patches were used as 
sensors and actuators. The continuous detection, analysis and evaluation of signals combined with the 
required efficiency of the algorithm necessary for passive monitoring systems in the sense of loads 
monitoring with regard to impact loading on composite structures have not been published in literature so 
far as to the knowledge of the authors. 

This article intends to fill this gap by a migration-based optimization model for impact and damage 
detection and localization. The theoretical investigations are validated experimentally. For this purpose, a 
passively working loads monitoring system which allows for impact localization in plate and shell 
structures is presented. Monitoring is based on the runtime of waves which are due to the impact and which 
are detected by a piezoelectric sensor network which converts the deformations occurring due to 
mechanical waves into high frequency alternating current signals. Based on the same methodology, active 
damage localization becomes possible after integration of an additional actuator which generates elastic 
waves. Hence, statements about actual loads and damages, required maintenance and the residual structural 
life such as after impacts should become possible. Time and cost consuming maintenance procedures can be 
optimized and statements regarding life span consumption can be specified or predicted more precisely. 
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OPTIMIZATION MODEL FOR IMPACT AND DAMAGE LOCALIZATION 

 

Waves propagating in thin elastic media, particularly in plates or shells, resulting from an impact load or 
being excited by a piezo-actuator result in guided or Lamb waves specifically, the latter being named after 
Horace Lamb. The respective equations are commonly given as Rayleigh-Lamb wave equations and read 
for structures with isotropic material behavior as follows [8]: 

 

 

12

2 2 2

tan( ) 4
0,

tan( ) ( )
q p q

p q

k h k k k
k h k k

±
 

+ =  −         

(1) 

with   
4

2 2
q 2

k k
2

ϖ= −
 λ + μ
 ρ 

and 
4

2 2
p 2

k k
ϖ= −
 μ
 ρ 

.  

 

Here, h is the plate thickness, ϖ  the excitation frequency and k is the wave number. λ and μ are the Lamé 

coefficients and ρ the density. The exponent +1 describes symmetric, -1 antisymmetric wave modes. The 

group velocity gc , interpretable as the propagation speed of a wave packet with slightly different frequency 

components, can be calculated by the differential relationship 

 

g

d
c

dk

ϖ=   

 

Yet, an analytical solution of equation (1) is not known.  

Time of flight measurements and geometrical considerations allow for the determination of damage 
localization without use of the wave equation [4,9]. In case of isotropic material behaviour the wave front 
shape initiated by an impact or due to damage can be described by a circle. When the wave front reaches a 
sensor i, the source of the wave is located on a circle around this sensor. The running time of the waves 
∆ti=ti-ts describes the time that a wave needs for passing the distance Si between the point of impact s and 
the sensor i. Thereby, ts and ti are the times when the wave is released in the point of impact and the wave 
arrives at the sensor i. The piezo-electric sensors used detect strains, which are caused by the wave 
propagation. 

Introducing the velocity of the wave propagation c  that is uniform in each direction, the distance covered 
by the waves can be written as Si=c(ti-ts). The point of impact with the coordinates (xs; ys) is the geometric 
locus, where the circles, defined by centre (xi; yi) and radius ri=si, intersect each other. The centers of the 
circles (xi; yi) are also the positions of the sensors i.  
 

 
 

  

a) b) c) 
Figure 1: Principle of migration based localization for a) isotropic, b) anisotropic and c) orthotropic material behavior with 
four sensors. Calculated location: intersection point; Propagating wave front shape: Dotted lines; Sensor: Rhomb. 
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The set of equations resulting from these considerations reads 

 
2 2 2 2( ) ( ) ( ) ;          1..s i s i i sx x y y c t t i n− + − = − =     (2) 

 

and contains the 4 parameters xs, ys, c and ts which are computed from the n sensor signals. In anisotropic 
materials the velocity of the propagating waves is direction dependent (see Figure 1). To capture this effect, 

the set of Equations (2) is supplemented by the dimensionless propagation coefficient iΞ [10]: 

 
2 2 2 2 2( ) ( ) ( ) ;          1.. .s i s i i i sx x y y c t t i n− + − = Ξ − =     (3) 

 

The identification of the direction dependent propagation parameter ( )iαΞ  is based on material properties 

or experimental results by laser vibrometry (see Figure 2b). 

 

 

 

 

a) b)  
 

Figure 2: a) Plate under consideration and b) measured form of the wave propagation [11]. 

 

Approximating the group velocity gc  of the first Lamb wave mode by the group velocity of a bending 

wave  

 

( )
2

24
2

( )

12 (1 ( ) )
b

E hc αα = ϖ
ρ − ν α

,       (4)  

 

the propagation form only depends on Young’s modulus E(α) and Poisson’s ratio v(α). Both material 
parameters can be calculated using classical laminate theory. For the plate under consideration (see Figure 
2a) the results are shown in Figure 3. 

Parameterization of the wave front shape in a polar coordinate system with azimuth α is possible by 
superposition of aj-weighted ellipses with their principal axes in the dominant fiber directions φj  of the 
laminate: 

 

[ ] [ )2

1
( ) ; 0;2 ; 0;1 .

1 cos ( ) j
j j j

a
a

α α π
α φ

Ξ = ∈ ∈
− +     (5) 

For the parameter ( )iαΞ  this yields to  

 

2 2
1 2

1 1
( )

1 cos 1 cos ( / 2)a a
Ξ α = +

− α − α + π
.      (6) 
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Replacing α by Cartesian coordinates one gets   

 

2 2
1 2

2 2 2 2

1 1
( , , , )

( ) ( )
1 1

( ) ( ) ( ) ( )

s s i i
s i s i

s i s i s i s i

x y x y
a x x a y y

x x y y x x y y

Ξ = +
− −

− −
− + − − + −

   

(7) 

 

Combining equation (3) with equation (7) the system of equations is rewritten as  

 

2 2 2 2

2 2
1 2

2 2 2 2

1 1
( ) ( ) ( )

( ) ( )
1 1

( ) ( ) ( ) ( )

s i s i i s
s i s i

s i s i s i s i

x x y y c t t
a x x a y y

x x y y x x y y

− + − = + −
− −

− −
− + − − + −

,  (8) 

 

and still contains the 4 parameters xs, ys, c and ts (see Figure 1c).  

 

  
a) b) c) 

Figure 3: Material parameters and calculated form of the wave propagation: a) ( )E α , b) ( )ν α , c) ( )bc α . 

 

 

 

  a) b)  

Figure 4: Overlay of wave propagation parameter  ( )αΞ  (dotted): a) Result by laser vibrometry, b) ( )bc α . 

 

A typical method to find solutions to this ill-posed inverse problem is using optimization techniques. By 
squaring and adding Equations (8), an optimization problem with objective function F is formulated. 

It allows for the integration of restrictions and for extension of the sensor number n: 
2

2 2 2 2
2 2

1 2
2 2 2 2

1 1
( ) ( ) ( ) min

( ) ( )
1 1

( ) ( ) ( ) ( )

s i s i i s
n s i s i

s i s i s i s i

F x x y y c t t
a x x a y y

x x y y x x y y

 
 
 = − + − − + − →
 − −− − − + − − + − 

   (9) 
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A robust and common algorithm for the solution of this global, non-linear optimization is the sequential 
quadratic programming (SQP) [12], which is used for all optimizations in this work. The SQP algorithm 
approximates the objective function for each iteration by a square function, while the constraints are 
replaced by linear approximations. The solution of the square sub-problem takes place under use of the 
reduced gradient method. The wave propagation due to damage is calculated by using the difference of the 
signals of the damaged and the undamaged structure (see Figure 5).  

 

  

 
 
 

           

a) b) c) 
Figure 5: Principal of damage localization: Wave propagation in the a) damaged and b) undamaged structure, c) due to damage 
by subtraction. 

 

 

SIGNAL ANALYSIS 

 

The difference in time-of-flight (TOF) is calculated by cross-correlation. Due to the low-frequency and 
broadband excitation of wave propagation of an impact it is advantageous to carry out a wavelet 
transformation in advance in order to allow for an unambiguous assignment (see Figure 6) [4,6,7]. A 
complex Morlet wavelet as mother wavelet is used to ensure precise identification of the time of arrival of 
the waves.  

In the case of active damage detection the sensor signals are much more pronounced so that the arrival of 
the incoming wave can be determined without wavelet transformation. 

 

  
   a) b) 

  
   c) d) 
Figure 6: Captured sensor signals: a) Sensor 1, b) Sensor 2 and Wavelet transformed sensor signals: c) Sensor 1, d) Sensor 2. 

 

 

EXPERIMENTAL VERIFICATION 

 

For impact localization a carbon fiber reinforced plastic plate (1000 mm × 1000 mm × 2 mm) has been 
loaded by a hammer impact. Signal acquisition is done by 8 sensors glued to the plate. Edge reflections of 
the waves at the plate boundaries are absorbed with modeling clay. The electrical signals caused by the 
wave induced strains are measured with two four-channel persistence oscilloscopes (see Figure 7a). For 
validation of the computations the identification of 31 impacts at various locations is shown in Figure 8. 
The influence of the wavelet transformation is shown in Figure 9. Here, the localization errors of the 31 
impacts shown in Figure 8 are depicted. Without the transformation less than 25% of the localization results 
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are within an area of 1% of the plate surface around the real impact location. Using the complex Morlet 
wavelet transformation before cross correlation the results improve to more than 90% (see Table 1). 
Therefore, the precise determination of the time of flight must be considered as an important issue. 

 

 
a) b) 

Figure 7: Experimental setup for: a) Impact localization, b) Damage Localization. 

 

Figure 8: Calculated damage location using 8 sensor signals and wavelet transformation. Calculated location: Cross; Real 
impact: Crosshair with 1% plate surface marker; Sensor: Rhomb. 

 
a) without wavelet transformation   b) using complex Morlet wavelet 

Figure 9: Error in the localization of 31 impacts. Accurate result: Crosshair with 1%, 2% and 3% plate surface marker; Cross: 
calculated result. 
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Localization within 
100% 3% 2% 1% 
of the plate surface 

Complete 15 4 5 7 
Complex Morlet 3 0 0 28 

 

Table 1: Influence of the wavelet transformation. 

With increasing number of sensors evaluated , the accuracy and reliability increase and the result is less 
affected by measurement errors of individual sensors. This is shown in Figure 10. It is clearly visible, that 
results become more precise with increasing number of sensors. It should be noted that the impact location 
is close to the edge of the plate where reflections occur and being not within the inner area built by the 8 
sensors. 

 

  
a) i=4 b) i=6 c) i=8 
Figure 10: Calculated impact location with different number i of sensors. Calculated location: Cross; Impact: Crosshair with 
1%, 2% and 3% plate surface marker; Sensor: Rhomb. 

 

Finally, the methodology developed is used for damage detection. For this purpose, a sine signal with an 
amplitude of 2 V and a frequency of 25 kHz is sent to a piezoelectric actuator in the center of the plate (see 
Figure 7b). 76 different damage locations are simulated by means of magnets which are placed opposite at 
both plate surfaces and which work as additional masses. With one exception, all the damages were 
localized within 0.4% of the plate surface around the true location of the damage as can be seen in Figure 
11. It is visible, that the precision of the damage localization is high in the inner area built by the actuators 
but that it becomes worse in the outer regions of the plate. 

 

 

Figure 11: Localization error in [mm] and in [%] of the plate surface for 76 damage localizations using 8 sensor signals. 

 

 

CONCLUSION 

 

The intention of these investigations is the detection and localization of damaging events and damages at 
planar anisotropic structures by using a piezo-electric sensor network. For that purpose, an optimization 
model based on migration strategies has been presented. This model is able to localize the location on the 
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basis of the form of the wave propagation and the signal running times of waves between the point of 
impact or damage and the sensor. The optimization model presented was verified with experimental 
measurement. The evaluation of the time signals provided by piezo-electric sensors as a reaction of the 
wave propagation provides information that the damages or damaging events can be detected and localized 
successfully. The difference between real and computed location during the experimental investigations are 
mainly based on inaccuracies of the signal analysis. The attainable accuracy allows now to apply 
subsequent scanning methods strictly locally. 
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ABSTRACT 

 

Nonlinear vibro-acoustic modulations are used for crack detection in an aluminium plate. The focus is on the effect of low-
frequency piezo-based excitation on modulation intensity. Two low-profile, surface-bonded piezoceramic actuators are used 
for low-frequency modal excitation in nonlinear acoustics tests. Low-frequency modal and high-frequency ultrasonic piezo-
based excitations are introduced simultaneously to an aluminum plate. Modulated ultrasonic responses – due to fatigue crack 
damage – are captured using low-profile piezoceramic sensors. Both piezo-actuators used lead to similar nonlinear modulation 
effects despite different strain levels generated. 

 

 

INTRODUCTION 

 

Fatigue crack detection is of great importance in maintenance of many engineering structures. Ultrasonic 
testing is one of the most widely used approaches in practice. Various methods based on ultrasonic wave 
propagation have been developed over the last forty years. Recent developments include techniques based 
on nonlinear wave propagation phenomena. Classical approaches relate to frequency shifting and generation 
of higher harmonics well known for many years. Numerous inspection techniques based on generation of 
higher-harmonics, frequency mixing, analysis of slow dynamics, reverberation analysis and signal 
modulations have been developed. Literature examples include work from Van Den Abeele et al. [1,2], 
Duffour et al., [3], Nagy et al., [4], Guyer et al., [5], Parsons and Staszewski [6] and Antonets et al. [7].  It is 
generally agreed that nonlinear methods are more sensitive to detect small severities of damage than 
classical linear approaches. 

More recently, non-linear vibro-acoustic modulations have been investigated [3,8-10]. The method utilises 
low-frequency modal excitation and high-frequency ultrasonic excitation for contact type damage detection. 
Ultrasonic wave modulations produced by nonlinear interactions are then used for damage detection. 
Nonlinear vibro-acoustic modulations approach has been used for crack detection in homogenous (e.g. 
aluminium) and micro-inhomogeneous (e.g. concrete) materials, crack detection in glass, damage detection 
in composites and composite sandwich structures or fracture detection in bones.  

There are two major problems associated with this method. Firstly, physical understanding of various 
nonlinear mechanisms involved is not yet fully understood. Despite many research efforts, there is still very 
little understanding of what the physical mechanisms related to these nonlinearities are. These phenomena 
can be explained in many ways using: nonlinear elasticity (e.g. nonlinear form of the Hooke’s law 
describing the relationship between stress and strain) [11], contact acoustics nonlinearity arising from the 
asymmetry of stiffness characteristics and leading to stiffness parametric modulations or unstable 
oscillations [12,13] or nonlinear coupling between strain and temperature field generated by damage [14-
16]. A summary of recent developments in this area can be found in [16]. One of the main problems 
associated with the method is that similar nonlinear effects can be manifested by different mechanisms and 
vice versa. For example energy dissipation can be modeled using frictional, hysteretic or thermoelastic 
mechanisms. Hysteresis in turn involves both elasticity and dissipation, and could be linear or nonlinear. 
Nonlinearities not related to damage (e.g. due to boundary conditions or measurement chain) also contribute 
to the problem.  It is often very difficult – if not impossible - to separate all these mechanisms involved.  

Recent experimental research work presented in [16] show a strong evidence that nonlinear vibro-acoustic 
modulations  are related rather to dissipative than to elastic effects. This confirms previously proposed 
physical models [15,17]. Secondly, previous experimental studies show that nonlinear vibro-acoustic effects 
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involved are difficult to measure using classical electric or piezoelectric strain gauges. This approach was 
used to estimate strain levels associated with low-frequency modal excitation. The experimental results - for 
different vibration modes investigated and both piezoceramic stack actuators used - are given in Figure 7 
and 8 (see next page). The results show that the strain level in the vicinity of the crack increases with the 
applied voltage, as expected. It is also clear that the estimated strain level for the NOLIAC CMAR03 ring 
actuator is much larger than for the PI Ceramics PL055.31 stack actuator for the same voltage applied. The 
out-of-plane vibration exhibits much larger amplitudes than the in-plane vibration for both actuators, as 
expected.  

 

 
 

Figure 7: Strain amplitudes in:  
(a) in-plane X-direction,  
(b) in-plane Y-direction and  
(c) out-of-plane Z-direction.  
Aluminum plate was excited by the PI Ceramics PL055.31 stack 
actuator using the 1st, 3rd, and 6th vibration modes. 
 

Figure 8: Strain amplitude in:  
(a) in-plane X-direction,  
(b) in-plane Y-direction and  
(c) out-of-plane Z-direction.   
Aluminum plate was excited by the NOLIAC 
CMAR03 ring actuator using the 1st, 3rd, and 6th 
vibration modes. 
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Most of the estimated dynamic strains in in-plane X- and Y-directions have values smaller than 1.0 µ-strain 
for the stack actuator.  Although, the equivalent strain amplitudes for the ring actuator are of the same order 
(always smaller than 3.5 µ-strain), the results are less scattered and exhibit increasing trends with excitation 
amplitudes. The in-plane X-direction results are similar for all vibration modes investigated. The in-plane 
Y-direction strain levels exhibit the largest values when the plate is excited with the 6th vibration mode 
using the ring actuator. The out-of-plane Z-direction strain amplitudes always show the largest values for 
the 1st vibration mode and the smallest values for the 3rd vibration mode when both actuators are used. It is 
important to note that the method used for strain estimation is not accurate. However, the major interest in 
these investigations was in the order of the estimated strain and relative values with respect to different 
piezoceramic actuators and excitation frequencies used. 

 

FATIGUE CRACK DETECTION USING NONLINEAR ACOUSTICS 

 

Once the frequencies of modal/vibration excitation were established and strain levels near the vicinity of the 
crack estimated nonlinear acoustic tests were used for crack detection. In fact the focus of these 
investigations was rather not on crack detection but on the analysis of modulation intensity for various 
excitation actuators and frequencies used.  The research performed attempts to answer a number of 
important questions: (a) which crack mode causes the largest intensity of modulations? (b) does modulation 
depend on the strain level in the vicinity of the crack? (c) are the results similar for different piezoceramic 
actuators used? The last question is the most important one in the work performed.  

 

EXPERIMENTAL ARRANGEMENTS 

 

The crack detection experiment with nonlinear acoustics utilized the piezoceramic stack actuators for low-
frequency excitation. The ultrasonic continuous sine wave (frequency equal to 60 kHz and amplitude equal 
to 20 V) was introduced to the plate by a surface-bonded, low-profile PI Ceramics PIC155 transducer. The 
frequency of ultrasonic excitation was established using a trial-and-error approach to obtain good signal-to-
noise ratio results. Once the ultrasonic wave propagated in the plate, the specimen was simultaneously 
vibrated using one of the piezoceramic stack actuators. The low-frequency excitation signal was also a 
continuous sine wave with the frequency equal to one of the selected vibration modes, as explained in one 
of the sections before.  A PI E-505 LVPZT high-voltage piezo-amplifier was used to control the amplitude 
level for the PI Ceramics PL055.31 piezoceramic stack actuator. Figure 10 shows a schematic diagram 
illustrating experimental arrangements for the nonlinear acoustic test with piezoelectric excitation. 

 
Figure 10: Experimental arrangements for the nonlinear acoustic tests. 
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CRACK DETECTION BY WAVE PROPAGATION IN OVERHEAD TRANSMISSION LINES 
 
L. Gaul, T. Haag, H. Sprenger, S. Bischoff  
Institute of Applied and Experimental Mechanics, University of Stuttgart, Stuttgart/Germany 
 
 
 
ABSTRACT 
 

In this study, a concept of continuous monitoring for load-carrying cables of bridges and overhead transmission lines is con-
sidered. A sending/receiving piezoelectric transducer is used to generate an ultrasonic longitudinal wave in the cable strands. 
An interaction between the first longitudinal wave mode and vertical cracks in a single rod is investigated. Moreover, this work 
analyzes how the elastic energy of a propagating wave is distributed between adjacent wires via friction. An energy-based 
model is developed to approximate the coupling behavior in a two-rod system. Finally, the numerical predictions are verified 
by experimental data. 
 

 

INTRODUCTION 
 

The focus of this work is crack detection in multi-wire cables, which are widely used in numerous engineer-
ing applications, for example, as load-carrying structures of bridges, on elevators and as overhead power 
transmission lines. Cracks are usually caused by excessive mechanical loads from wind excitation or corro-
sive influences and can grow to large defects as cable age increases.  
To detect deteriorations, power line installations are periodically inspected using both on ground and heli-
copter-aided visual inspections. Factors including sun glare, cloud cover, close proximity to power lines, 
and rapidly changing visual circumstances make airborne inspection of power lines a particularly hazardous 
task. To reduce the risk associated with aerial inspection of power line installations, the structural health 
monitoring of these cable structures is of importance. 

 

Figure 1: Interrogation of load-carrying structures of bridges using ultrasonic signals. 
 

An experimental setup for identifying wire cracks in overhead transmission lines is illustrated in Figure1. A 
more detailed description can be found in [1]. As shown in Figure1, piezoelectric transducers serve as send-
er and receiver of elastic waves. The sending transducer converts the electric excitation signal into mechan-
ical energy via the piezo-electric effect. In this way, an ultrasonic wave propagating in the axial direction is 
generated in the multi-wire cable, which is reflected at the surface crack and returns to the receiving trans-
ducer. If the amplitude of the reflected wave, sensed by the receiving transducer, is above a threshold value, 
the presence of a defect can be assumed. 

 

Figure 2: Time signal of excited wave (A), reflection at crack (B), reflection at free end (C) and further reflections (D, E). 
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In Figure2 the electrical output from the receiving transducer is depicted for an experimental investigation 
of a short cable with several wires. The initial signal burst (A) corresponds to the left bound wave after 
reflection, while the second signal burst (B) results from the right bound wave which has been reflected at a 
surface crack.  
This work covers several aspects of analyzing defect cable structures. First, the interaction of guided waves 
in cylindrical structures with cracks is tackled, followed by a section on modeling energy propagation in 
friction coupled rods. Findings of both sections are incorporated in finite element and experimental anal-
yses. It is shown that a wave traveling in one wire of a two-wire cable transmits energy to neighboring 
wires. This allows for the interrogation of subsurface cracks in a multi-wire cable, which cannot be detected 
by visual inspection. The two-rod system treated in this study serves as a fundamental concept for energy 
based descriptions of multi-wire wave propagation in cables. In future efforts, the energy based model will 
be validated for other frequency ranges and multi-wire configurations, including real twisted cable struc-
tures, such as overhead transmission lines and bridge cables.  
 
WAVE PROPAGATION IN CYLINDRICAL STRUCTURES 
 

Cable structures consist of several individual cylinders, which act as waveguides for ultrasonic waves fea-
turing characteristic displacement fields (mode shapes). The displacement field of guided waves can be 
written as [2] 
 

                                                 ,eyx,tz,y,x, ωt)j(kz−= )()( ûu                                                     (1) 

with stress field 

                                                   ,eyx,ˆtz,y,x, ωt)j(kz−= )()( σσ                                                     (2) 

 

by introducing circular wave number k, circular frequency ω  and coordinate system (x, y, z), where the z-
axis points in the direction of propagation.  
In cylindrical waveguides, three types of propagation modes may be identified: longitudinal (L), flexural 
(F) and torsional (T) modes. For low frequencies, only three fundamental waves L(0,1), F(1,1) and T(0,1) 
propagate through cylindrical structures. For increasing frequency, complex roots in the k-plane move onto 
the real axis, i.e. evanescent modes transform into propagating modes for higher frequencies. The particular 
frequency at which a waveguide mode appears as propagating mode is referred to as cutoff frequency. 
Moreover, diagrams in Figure3 illustrate that wave propagation is dispersive, i.e. group and energy propa-
gation velocity of the distinct propagation modes depends on frequency. 
 

 

Figure 3: Dispersion curves for a cylindrical aluminum alloy waveguide with radius 2 mm. 
 

 

DEFECT DETECTION STUDIES 
 
Local Method 
 
An experimental setup for identifying wire breaks in an overhead power line is depicted in Figure 4. The 
transmission line consists of a seven-wire stainless steel central load-bearing layer surrounded by 3 concen-
tric layers of aluminum conductor wires (12, 18, 24 wires in the respective layers). The individual wires 
have diameters of 3.5 mm. Additionally, an artificial defect is generated by breaking a single surface wire at 
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a distance of 780  z =Δ mm from the sending transducer. A function generator drives a sending transducer 
with a single cycle of a 450 kHz sinusoid. The sending and receiving transducers (10 mm diameter, 2 mm 
thick, piezoceramic disc) are attached to the same surface wire on the transmission line. Experiments have 
shown that at this excitation frequency, the ultrasound is confined to the immediate vicinity of the driven 
wire, so that no significant mode structure in the transmission line as a whole is produced. The sending 
transducer converts the input electrical energy into mechanical energy via the piezoelectric effect, and a 
transient stress wave is thereby generated in the surface wire. The stress wave propagating through the 
surface wire, is reflected at the surface break, and returns to the receiving transducer. The mechanical stress 
is converted into an electrical signal at the receiving transducer via the inverse piezoelectric effect. The 
signal is amplified using a current amplifier, low-pass filtered, and finally sent to an oscilloscope for digital 
storage.    
 

 

Figure 4: Experimental setup for local defect detection in a transmission line 
 
The electrical output from the receiving transducer is depicted in Figure 2. The initial signal burst (A) is 
referred to as the “main bang”. It corresponds to the stress wave which is generated at the sending transduc-
er and immediately sensed by the receiving transducer. Transducer ringing is evident in the main burst, but 
this ringing dies out relatively quickly. The second burst (B) corresponds to the stress-wave which has been 
reflected from the surface break. Time of flight calculations are used to predict the location of the break, 
and this value accurately predicts the physical location of the break. The additional bursts (C–E) in the 
diagram correspond to longer propagation paths of the elastic wave. Attempts at locating subsurface wire 
breaks using a single transducer pair located on the surface remain unsuccessful. 
The local detection method allows for clear identification of a single broken surface wire using modest 
drive levels (20 Vpp) and a simple analog receiving circuit. Additionally, the 450 kHz excitation frequency 
(as opposed to lower frequencies) allows for better spatial resolution. The main disadvantage of the local 
method is that an array of transducers and an appropriate addressing scheme is required to ascertain the 
cable health. Single array elements could be individually addressed in order to assess the health of the sur-
face wires; and, it might be possible to interrogate subsurface wires by addressing multiple surface trans-
ducers. 
 
Global Method 
 
An alternative wave-based detection method is described by Branham et al. [1]. In that study, a pulser-
receiver is used to drive a piezoelectric ring with an electrical spike input, which in turn generates an elastic 
wave in a 33-wire transmission line having an overall diameter of 28 mm.  
 

 

Figure 5: Experimental setup for global defect detection in a transmission line. 
 
The experimental setup is shown in Figure 5. Since the inner surface of the piezoelectric ring is in contact 
with all of the surface wires, the elastic wave is globally generated at the surface of the transmission line. 
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The elastic wave is reflected from artificial cuts (ranging from a 2 mm deep cut to a complete cut) in the 
transmission line, and the reflected wave is sensed by the piezoelectric ring. The signal from the ring is 
received and amplified by the pulser-receiver.  
 

 

Figure 6: Transducer output for a damaged and an undamaged transmission line. 
  
The time domain responses for cut and uncut transmission lines are compared in Figure 6. A discernible 
difference between the waveforms is seen around 0.3ms due to the reflection of the elastic wave from the 
cut. Laser-based measurements on the free cable end revealed the presence of elastic energy in all wires, 
including the innermost ones. As opposed to the local detection scheme, it can be concluded that there is 
appreciable coupling of energy between the wires at lower frequencies (~100 kHz in this global detection 
study), and thus, monitoring of subsurface wires is clearly possible. Although the global detection method 
allows for monitoring of both surface and subsurface wires, ringing of the transducer is problematic. That 
is, continued vibration of the ring transducer, even after removal of the drive signal, causes generation of 
voltage which can mask defect-reflected signals. Due to this ringing effect, the global method cannot relia-
bly detect cuts whose depths are less than 25% of the transmission line diameter. Future work includes 
development of passive mechanical or active electrical means of transducer damping, which would lead to a 
more sensitive damage detection scheme. 
 
ENERGY BASED MODEL  
 
Due to computational limitations, transient analysis of ultrasonic wave propagation in real multi-wire cables 
using finite elements is virtually impossible. An energy based method has thus been developed to model 
wave propagation in adjacent rods. An extensive list of literature on energy flow analysis techniques can be 
found in [2]. To gain a better understanding of the coupling which occurs between adjacent wires in a cable, 
a simplified model is considered which consists of two straight rods having a friction contact between them. 
This can be considered as a precursor to multi-wire modeling.  

 

Figure 7: Power balance for a differential section of the coupled two-rod system 
 
Figure7 depicts the power balance for a differential section of the two-rod assembly. Here, elements 1 and 2 
are assumed to be cross sections of the active and passive rods, respectively. As a finite pulse of elastic 
energy traverses the element pair, a loss of energy in each element due to material damping and an ex-
change of energy due to friction coupling occur. 
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Including the effect of material damping and assumption of time-harmonic, longitudinal, elastic wave prop-
agation the actual power P becomes [4] 
 

                                     z2k2

2

s
g e

2
v

αcP(z) −=             (3) 

 
where cg is the group velocity of the wave package, sv  the radial velocity component, α  represents a con-

stant and k2 is the imaginary part of a complex circular wavenumber. The power loss from the i th rod ele-
ment due to material damping is then given by 
 

( ) ( ) ( ) 21,idz,zPcdz
z
(z)PdzzPzPP im

i
ii

m
i ==

∂
∂−=+−= ,                              (4)

  

 
where the superscript m indicates a power loss caused by material damping, and 2m k2c = , the material 

damping coefficient. According to Eq.(4), the average power loss due to material damping in a rod element 
is proportional to the input power and distance the elastic wave propagates. The energy coupling mecha-
nism is modelled using a distributed dashpot which connects the differential elements. The instantaneous 
mechanical power transferred from/to the elements is 
 

                                                       
( )
( )dzvvvcP~

dzvvvcP~

212d
c

2

211d
c

1

−=

−=
                                                        (5) 

 
where the superscript c indicates a power loss/addition due to inter-element coupling, cd is the distributed 
dashpot coefficient, and 21 v,v  are the instantaneous velocities of the differential rod elements. Since the 

square root of the time average power is related to the velocity amplitude, one obtains 
 

                                
( )
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where cc is the overall coupling coefficient. Finally, a balance of energy on the individual rod elements 
yields  
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                                            (7) 

 
This set of nonlinear differential equations is solved using the ode45 routine in Matlab. The material damp-
ing parameter mc , the coupling parameter cc , and the boundary conditions, ( ) o

1ozz1 PzP =
=

 , ( ) o
2ozz2 PzP =

=
 , 

are determined using a least squares fit with experimental data [3].  
 
 
NUMERICAL AND EXPERIMENTAL ANALYSES 
 
In the following sections, the previously described energy based model of wave propagation in a two-rod 
system is used in simulations and predictions. Results are compared with experimental data and finite ele-
ment simulations [4]. 
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Experiment 

 
The two-rod experimental setup is illustrated in Figure8. The rods are made from aluminum and have a 
length of 3 meters and a diameter of 4 mm. They are pressed together along the entire length using rubber 
bands. A piezoelectric transducer disc (10 mm diameter, 2 mm thick,) is glued to one end of the active rod 
[5]. The piezoelectric transducer is driven with 2 cycles of a 450 kHz sinusoid. A longitudinal elastic wave 
is thereby generated in the active rod. The energy is coupled to the passive rod along the line of contact as 
the elastic wave propagates. The radial surface velocity of the rods is measured at several points along the 
axial direction using a laser Doppler vibrometer. 
  

 

 
Figure 8: Experimental setup for measuring wave propagation in contacting rods. 
 
The coupling of energy between the rods and the dispersive nature of the incident longitudinal wave is 
evident. The dispersive behavior of elastic waves in the cylindrical waveguide is predicted by the Poch-
hammer-Chree theory. An experimental group velocity of 4310 m/s has been determined at 450 kHz, which 
agrees well with predictions using the Pochhammer-Chree theory. At each measurement point the time 
average power is computed from the measured velocity. The dispersive nature of wave propagation compli-
cated this computation. Therefore, the raw velocity signal is multiplied by a roving 4-period Hanning win-
dow with a 4-period width (based on a center frequency of 450 kHz) and is assumed to propagate with the 
experimentally determined group velocity at 450 kHz. Because the frequency content of the windowed 
signal is sufficiently narrowband, it propagates non-dispersive. Thus, the theoretical development in the 
previous section may be applied to compute the time average power.   
In Figure 9, the experimental power distribution in the two-rod system is compared to that computed by the 
energy based model and the FE model [4]. There is consistent agreement between the experiment and the 
simulations. The FE simulation required ~2 hours, whereas the energy based model simulation required ~2 
minutes. It is clear from these investigations that the energy based model can be used to accurately and 
efficiently predict wave propagation in a cable structure with several wires. 
 

 

Figure 9: Measured and simulated time average mechanical power distributions in the two-rod system. 
 
 



Applications 
  

183 
 

CONCLUSIONS 
 
In this study a better understanding of the inter-wire coupling in cable structures with several wires was 
gained. Friction contact in a two-rod system was investigated and the results were confirmed experimental-
ly. It was shown that a wave traveling in one wire of a two-wire cable transmits energy to neighboring 
wires. This allows for the interrogation of subsurface cracks in a multi-wire cable, which cannot be detected 
by visual inspection.  
In future efforts, the energy based model will be validated for other frequency ranges and multi-wire con-
figurations, including real cable structures, such as overhead transmission lines and bridge cables.  
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CONTEXT 
 
Air transport is facing two major conflicting requirements in the ever-increasing demand, both for 
individuals and goods, and the ever-increasing ecological standards and price of energy. This calls for 
innovative solutions in the design and operation of aircraft, one of the main axes of improvement being the 
reduction of weight by increasing its functional efficiency. It can be performed through several aspects, 
such as the use of new materials, of lightweight structural design and of smart structures (see [1] e.g.). 
 

 
 
Figure1 – Concept of the Bladed Drum (BluM®) [source: Safran – Techspace Aero] 
 

These 3 aspects are coupled in our case study: the Bladed Drum (or BluM®) developed by Safran - 
Techspace Aero (Fig. 1) [2,3]. The low weight of this design with respect to the classical assembly 
approach comes at the expense of a very low level of inherent damping (ξ ≈ 0.01%) that, in more 
conventional bladed structures, is provided by the friction between the elements. It also cancels existing 
solutions to increase passively the damping, such as adding a layer of viscous material in the joints between 
the blades and the drum (e.g. [4]). Unfortunately, low levels of damping deteriorate the performance in 
terms of noise production, aerothermodynamics and high cycle fatigue, which is critical regarding safety. 
Therefore, the need for increasing the modal damping calls for new solutions amongst such as the use of 
shunted piezoelectric patches. 
 
 
BASICS OF PIEZO-ELECTRIC SHUNT DAMPING 
 
Piezoelectric materials have the ability to convert mechanical energy into electrical energy (a detailed 
discussion is provided in [5]); this property can be used to increase the structural damping. A patch of 
piezoelectric material, equipped with two electrodes on opposite faces, is glued on a structure (Fig.2). When 
subjected to mechanical loads (e.g. vibrations), electrical charges appear on the electrodes, as well as a 
voltage between them. This electrical energy, which is extracted from the mechanical one, may be 
dissipated in a dedicated shunt circuit, either passive or semi-active, connected to the electrodes of the 
patch, therefore inducing a dissipation. 
The ability of a given patch to convert energy from a particular resonance mode is measured by its modal 
effective electromechanical coupling factor, Ki², eq.(1) [5]. The larger Ki², the larger the amount of 
mechanical energy from mode i that can be converted into electrical energy. 
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௜ଶܭ ≈ 	 ݇ଶݒ௜1 − ݇ଶ 					(1) 
 

 
Figure 2 – Top: Patch of piezoelectric material glued on a structure. Bottom: Examples of circuits for shunt damping, either 
passive (R and RL-shunts) or semi-active (Switch Shunt Damping on Inductor – SSDI). 
 

This equation shows the two contributions to Ki²: k² is the electromechanical coupling factor, a material 
property that quantifies the efficiency of the energy conversion (expressed in m/V); ݒ௜ is the fraction of 
modal strain energy in the patch when the structure vibrates according to mode i, which is both a function 
of the geometry of the patch and of its location on the structure. 
 
Classical passive shunts include the resistive R-shunt and the inductive RL-shunt [6]. Many semi-active 
solutions exist, some based on electronic switches that alternatively open and close the circuit to increase 
the performance, like the Switch Shunt Damping on Inductor (SSDI) [7,8,9,10]. Another interesting class of 
semi-active solutions is that combining a negative capacitance to the shunt circuit, to improve its 
performance by compensating most of the inherent capacitance of the piezo patch [11,12,6]. 
 

 
 
Table 1 – Comparison of the classical shunt circuits. 
 

A comparison of these 3 classical solutions for general applications is provided in Table 1 and Fig.3. R-
shunt proves the simplest and most robust solution, but also provides the poorest performance. RL-shunts 
give much higher performance, but they require a precise tuning, and if weight is an issue, synthetic 
inductors may be required (making the circuit semi-active, thus requiring external power). Finally, semi-
active solutions such as switch techniques may prove very efficient but require external power; moreover, 
the practical implementation of the switching logic proves difficult in real applications (broadband 
excitations, noise, need for a sensing device, …). 

 
Figure3 – Left: Sensitivity of the performance of R- and RL-shunts to the tuning of their characteristic frequency with respect 
to that of the targeted mode [6]. Right: Comparison of the modal damping ξ generated by the 3 different shunts, as a function 
of Ki² (limited to values of practical interest) [12]. 
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DAMPING BLADED STRUCTURES 
 
The preceding discussion applies to any structure; for an application like the BluM®, the particular features 
of damping lightweight rotating bladed structures must be discussed. Fig. 4 illustrates the fact that 
resonance frequencies of blade modes families are very close: In the case depicted here, each step 
corresponds to modes where the blades of a given wheel vibrate according to their first bending mode (the 
geometry of the blades slightly changes from one wheel to another and, hence, so do their resonance 
frequencies). There are as many combinations of phase shifts between blades as there are blades per wheel 
(these modes are known as nodal diameters modes [13]). Moreover, the mode shapes and associated 
resonance frequencies are very sensitive to the elastic coupling between the blades and the drum, and to 
dispersion errors in the manufacturing of the structure, well known as the mistuning effect [14]. Therefore, 
in the view of providing a cost-effective solution for an industrial application, this calls for a choice of a 
shunt circuit that is both simple, systematic and robust to mistuning effects. The trade-off between 
performance and mass is also critical for an application like the BluM®. 
 

 

 
 
Figure 4 – First 250 resonance frequencies of a simplified finite element model of the BluM®. 
 
 
The next issue is the location of the patches. Our goal is to damp bending and torsion modes of the blades. 
According to eq.(1), the location of the patch should be chosen so as to maximize the modal strain energy 
density ݒ௜ that is intercepted by the patch. For that purpose, maps of strain energy densities may be plotted, 
such as that presented in Fig.5. This map shows that, in the case of bladed structures, the ideal location of 
the patches is on the blades themselves, near their roots, where the strain energy is maximum. But the 
implementation of patches is difficult without affecting the flow in the booster or favoring a concentration 
of stresses. As a consequence, engine manufacturers won’t consider this option as valid and develop 
methods of integration unless substantial benefits may be demonstrated. The alternative is to locate the 
patches on the support, under the root of the blades as, in the case of the BluM®, this space is empty and 
quite protected from severe environmental conditions. However, this comes at the cost of a substantial loss 
of efficiency (a decrease of the damping by a factor of roughly 10). Therefore only high performance shunt 
circuits can be considered for that purpose. 

 
Figure 5 – Map of modal strain energy density of a bladed rail for a combination of first bending modes of the blades. 
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SENSITIVITY OF RL-SHUNTS TO MISTUNING 
 
The approximate values of the inductance LOPT and of the resistance ROPT of an optimal RL-shunt can be 
approximated by [5]: 
ை௉்ܮ  = 1/(߱௘ଶ		ܥௌ்஺்)		, ܴை௉் =  (2)      					(ௌ்஺்ܥ		௘߱)/௜ܭ2
 
where ߱௘ is the resonance frequency of the targeted mode [rad/s], ܥௌ்஺் is the static capacitance of the 
piezoelectric patch [F] and ܭ௜ is the generalized electromechanical coupling factor of the targeted mode 
[eq.(1)]. It results that, for a given patch at a given location (i.e. given values of ܥௌ்஺் and ܭ௜), the value of 
the inductance is fully determined by the targeted frequency ߱௘. 
Fig. 6 shows a detailed plot of the influence of the tuning of the electrical circuit of a RL-shunt on the modal 
damping generated in the structure. It shows that an error on the tuning of 5% still guarantees that half of 
the optimal damping may be obtained. This fact is independent of the structure. Moreover, the frequencies 
of a family of blade modes of the BluM® are expected to lie in a tight interval (Fig.4) around a mean value: ഥ߱ ±5% in the worst case expected (the half-length of the interval should lie between 3% and 5%). 
Therefore, a RL-shunt tuned with respect to the mean frequency ഥ߱ should still provide a significant level of 
modal damping for very lightly damped structures like the BluM®. 
 

 
 
Figure 6 – Influence of the tuning of a RL-shunt ߱௘ with respect to the frequency of the targeted mode  ߱௜ on the modal 
damping generated. 
 
This fact has been demonstrated experimentally on a bladed rail that is representative of the BluM®, 
depicted in Fig.7. Two patches are glued under the support: One is used as the input to excite the rail, the 
other is used to create damping. The Frequency Response Function (FRF) as a function of the shunt circuit 
is depicted in Fig.8, where the frequency bandwidth shows 4 out of the 5 first bending modes of the blades. 
The attenuation provided is a function of the shift between the frequency of the mode and that of the RL-
shunt (߱௘), modulated by the authority of the patch over the corresponding mode (given by ܭ௜). 
 
 
PROPOSED SOLUTION: “MEAN” RL-SHUNT 
 
In the light of the general comparison of the shunt techniques and of the particular features of the dynamics 
of bladed structures, RL-shunts appear the most suitable solution as: 
 

• R-shunts should be rejected because of their comparably much lower performance. 
• The complexity of the trigger logic of switch techniques makes their sound implementation in 

structures like the BluM® very difficult. 
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Figure 7 – Top: Bladed rail representative of the BluM®. Bottom: Two piezoelectric ceramic patches (55x25x0.3mm³) glued 
under the support of the rail. 
 
 

 
 
Figure 8 – Experimental measurements of the Frequency Response Function of the bladed rail between the tension applied to 
patch 1 and the displacement of blade 1 when patch 2 is used to provide damping (the frequency of the RL-shunt is given by ߱௘). The intrinsic modal damping of the bladed rail ߦ௜ varies between 0.01% and 0.03%. 
 
 

 
 
Figure 9 – Principle of the proposed solution to damp the BluM®. 
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The proposed approach, referred to as the "mean shunt" is the following:  
 

• Several patches are distributed under the support (Fig.9), each patch having its own RL-shunt; each 
patch has a roughly additive contribution to the modal damping generated. 

• All the RL-shunt circuits are built with the same components (R and L). 
• The shunts are all tuned on the expected mean resonance frequency of the targeted family of blade 

modes ߱௘∗ = ഥ߱ = ଵே∑߱௜; the tightness of the interval around ഥ߱ ensures a good authority of the 

patches over the whole frequency bandwidth. 
• R*, is chosen using eq.(2); as a first approximation, Ki* is taken as the maximum authority of the 

chosen patches over the modes of interest: Ki* = max௣௔௧௖௛	௝	 max௠௢ௗ௘	௜	(ܭ௜,௝) . 
 
This “mean shunt” approach tackles the high level of complexity and uncertainties of the structure by taking 
average values. It is very simple and robust. In the view of an easy gluing on a structure like the BluM®, 
one may imagine all the patches and their shunt circuits (in the form of integrated circuits) embedded in a 
soft strip that could be glued in place. For that purpose, Macro Fiber Composites may be used instead of 
ceramic patches. This implementation would meet the requirements of being lightweight and easy to 
implement in an industrial process. 
 

MEAN SHUNT: NUMERICAL VALIDATION 
 
The validity of the proposed solution has been studied numerically on the simpler structure of the bladed 
rail of Fig.7, supported by experimental tests (not reported here). A finite element model of the rail has been 
built in SAMCEF (Fig.10), including piezoelectric plate elements [15]. The modal analysis of this model is 
depicted in Fig.11, where the steps correspond to families of blade modes. In the following, we focus on the 
first bending modes of the blades (1F) (Fig.12). 

 
Figure 10 – Finite element model of the bladed rail. 
 

 

 

Based on the model, the coupling factors Ki² of the 5 patches have been computed for each mode (Table 2). 
From this information, it is possible to select a minimum configuration of patches guarantying a reasonable 
authority over the 5 modes at the same time. In this case, we have favored combinations giving a better Ki

2 
for the first and last 1F modes, as their frequencies are the furthest from that of the mean RL-shunt. For that 
purpose, we restrict ourselves to patches 1, 3 and 5 to generate damping. Using patch 2 or 4 instead of patch 
5 would have increased the attenuation of mode 4 at the expense of that of mode 3. The performance of the 
“mean shunt” approach is compared in Fig.13 to that of a classical approach based on an independent 
tuning of the shunt circuits of each patch (patch 1 is tuned on mode 4, patch 3 is tuned between modes 3 
and 5, and patch 5 between modes 1 and 2). Although the independent approach shows better results for the 
modes with the furthest frequencies, the performance of the mean shunt are still very good. Furthermore, 
the independent approach, although very simple in principle, is in fact difficult to implement, even in 
laboratory conditions, on a structure as simple as the bladed rail, because it requires the full characterization 
of the modes of interest. Therefore, it appears totally unpractical for an industrial application. In all cases, 
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these results show that a sound design allows the damping of the 5 modes with only three patches of 
reasonable size. 
The robustness of the mean shunt approach with respect to the tuning frequency ߱௘ and to the value of the 
resistance R has then been tackled using the following procedure: 
 

1. the design of the RL-shunts (߱௘ and R) of all the patches is identical, 
2. for each pair, the FRF is computed for a given input/output pair: ܪ௜௝(߱) = 	 ௜ܺ/ܨ௝  (Fig.10), 

3. the corresponding RMS response is computed according to   ߪோெௌଶ = ׬ ݀߱ஶ଴	ܵ଴(߱)		௜௝(߱)|ଶܪ|  , 
where ܵ଴(߱) is a band-limited white noise (equal to 1 over the bandwidth of Fig. 13, and to 0 
elsewhere). This value is compared to ߪ଴, the RMS response of the undamped rail under the same 
conditions. 

4. the values of ߱௘ and R are changed and steps 2 and 3 are repeated. 
 

 
 
Figure11 – Modal density of the model of bladed rail. 
 
 
 
 

 
 
Figure12 – The family of the five first bending modes of the blades (1F). 
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Table 2 – Effective electromechanical coupling factors Ki² of the 5 patches for the 1F modes. 
 

 
 
Figure 13 – FRF between F2 and X4 as a function of the type of shunt. The frequency of the mean shunt, ߱௘∗ = ഥ߱ and those of 
the individual shunt are shown by the vertical dotted lines. 
 
The results are depicted in Fig.14 for an input force on blade 2 and an output displacement measured at 
blade 4. The surface formed by the iso-curves exhibits a single minimum corresponding in a reduction of 
the RMS response of the blades of 71%. Moreover, in this region, the gradient is small enough to warrant a 
good robustness of the performance with respect to: 
 

• changes in the resonance frequencies, of either the structure (߱௜) or of the circuit (߱௘, related 
either to the material properties and dimensions of the patch or to the electrical components); 

• changes in the authority of the patches, either due to variations in the mode shapes or in the 
material properties [as R ∝  ௜ , eq.(2)], or to variations in the manufacturing of the resistors, orܭ
even to a drift in time. 

 
As a consequence, although the performance using the simple design rule of the mean approach does not 
correspond to the optimum, it is still very close to it with a reduction of 69% in the RMS response. Such a 
reduction is significant in the context of resistance to fatigue. Furthermore, we see that the choice of R* 
does not require a precise knowledge of the ܭ௜ of the patches: Knowing its order of magnitude is enough, 
either from a finite element analysis (even quite rough) or from a measurement over a representative 
prototype. We finally note that the performance is quite robust to overestimations of R*. 

 
Figure 14 – Robustness of the mean shunt in the reduction of the RMS vibration of the blades, with respect to parameter 
changes. The dotted lines correspond to the mean shunt. 
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Figure 15 – FRF between F2 and X4 as a function of the type of shunt. The frequency of the mean shunt, ߱௘∗ = ഥ߱ , is shown by 
the dotted red line. 
 
Fig. 15 compares the attenuation provided by the mean approach to that provided by an independent tuning 
of the 3 RL-shunts that minimizes the RMS response of the rail over the bandwidth of interest (ߪ௢௣௧/ߪ଴		= 
0.18). We can see that, although the mean approach provides less attenuation than the optimal solution for 
the given configuration, the difference remains moderate. Furthermore, it should be emphasized that such 
an optimal tuning would be very difficult (if not impossible) to achieve for a given bladed structure and, if 
achieved, the dispersion errors due to the manufacturing would make it less efficient for another similar 
structure. 
σRMS is, in general, a function of the input/output pair considered and so is the ratio ߪ௠௘௔௡/ߪ௢௣௧ . Curves 
similar to those of Fig.14 and 15, and the corresponding RMS values, have been generated for several 
input/output pairs (collocated or not) using the same configuration of 3 patches and the same general 
tendencies as above have been observed. Therefore, we can conclude that the mean approach provides a 
very simple rule of design for the RL-shunt, with a good level of attenuation and robust performance with 
respect to inherent mistuning phenomena. 
 
 
COMMENTS 
 
Some differences will occur when considering structures with a rotational symmetry, as opposed to the 
bladed rail considered here. In particular, the mode shapes will exhibit a more homogeneous distribution of 
the strain energy density at the level of the support. On one hand, this will induce a better distribution of the 
authority in the candidate locations for the patches, making the actual knowledge of the values of Ki

2 for 
each patch unnecessary for the choice of a subset of locations. On the other hand, this selection will have to 
take other considerations into account regarding nodal diameter modes or the breaking of the symmetry (to 
avoid creating an undamped subset of modes). 
When considering a network with more patches, the results may be improved by dividing the patches in two 
sets, each with a different mean shunt approach designed to optimize the damping over half of the 
frequency bandwidth. 
 
 
CONCLUSIONS 
 
The damping of bladed structures with piezoelectric shunts, based on their specific features, has been 
briefly discussed. A design rule for RL-shunts has been proposed: The complexity and variability of the 
modal behavior is tackled by tuning the circuits to the mean value of the resonance frequencies. The 
proximity of these frequencies ensures a good attenuation of the blade modes over which the patches have a 
sufficient authority, in spite of the slight detuning. The choice of the resistance requires only a rough 
estimation of the coupling factors. This design rule is very simple, proves efficient and robust with respect 
to all parameters change in the system. 
A campaign of laboratory tests is currently lead on a 1/2 scale model of a one-stage BluM®; one of the 
pursued goals is to assess the validity and the limits of the mean shunt approach. 
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displacements of the bridge to develop without transmitting significant loads. In order to avoid unseating, 
the code states that new bridges must be provided with appropriate overlap lengths between supporting and 
supported members at movable connections. 

While these new design strategies aim to mitigate the potential unseating problems in new bridges, there are 
still many existing bridges susceptible to span unseating, due either to the lack of adequate seismic 
detailing, like the shorter seats usually associated with old constructions, either to potential stronger shaking 
than the one considered in the original design. These structures require seismic retrofitting in order to 
modify the seismic response of the bridge, controlling the deck displacements and preventing the unseating 
of spans. In the case of retrofitting existing bridges, connections implemented by seismic links may be used 
as an alternative to the provision of the minimum overlap length. Seismic links may also be used between 
adjacent sections of the deck, at intermediate separation joints, located within the spans. In this case, 
according to Eurocode 8 [1], the linkage elements may be designed for an action equal to 1.5 g S Md, where 
g is the design ground acceleration on type A ground, S is the soil factor and Md is the mass of the section of 
the deck linked to a pier or abutment, or the least of the masses of the two deck sections on either side of the 
intermediate separation joint. 

The traditional approach for this type of restraining systems usually relies on the use of steel cables, which, 
if designed to remain elastic, lack the ability to dissipate energy and are responsible for the transmission of 
large seismic forces to other structural components. After yielding, these elements tend to accumulate 
plastic deformations in repeated loading cycles that can also result in unseating [2]. Several other devices 
have been presented in the past decades as unseating prevention devices for bridges, namely in the form of 
fluid-viscous dampers and metallic dampers [3]. Although these devices are able to dissipate energy, they 
lack the capacity for re-centering, which is a very important asset in order to control hinge opening in 
bridges during seismic actions. The installation of external hinge extenders prevents the supported section 
of the superstructure from dropping off from its support but has no effect on controlling the deck 
displacements, which may lead to structural damage in other important components. To overcome the 
limitations presented by these devices, and taking advantage of the recent advances in Material Sciences, an 
alternative solution for seismic retrofitting of structures has been proposed, based on the so called smart 
materials [2]. Among them the shape-memory alloys (SMAs), a unique class of metallic alloys, exhibit a 
peculiar thermo-mechanical property called superelasticity (SE). This property enables the material to 
withstand large cyclic deformations (up to 8%) without residual strains while developing a hysteretic loop, 
which translates into the ability of the material to dissipate energy. SMAs based seismic damping devices 
are aimed to concentrate energy dissipation in controlled locations by taking advantage of the superelastic 
effect. The high inherent damping exhibited by these alloys combined with repeatable re-centering 
capabilities and relatively high strength properties encouraged the research community to progressively 
introduce the SMAs in new technological applications related to energy dissipation in civil engineering 
structural design. 

Several authors have studied the retrofit and rehabilitation of bridges using SMA restraining cables [2,4-7], 
confirming their efficacy when used as seismic links. Analytical models showed that the SMA restrainers 
reduce relative hinge displacements at the abutment much more effectively than conventional steel cable 
restrainers [5-7].  

The main objective of this paper is to study the influence of the total cross-section of the SE restraining 
solution in the seismic response of a bridge. To perform this analysis, a numerical framework has been 
developed and a rate-dependent constitutive model has been implemented and calibrated with a set of 
experimental tensile tests. 

 

 

CONSTITUTIVE MODEL 

 

In a typical SMA constitutive model the mechanical law relates stress (σ) to strain (ε), temperature (T) and 
martensite fraction (ξ ). Martensite fraction is an internal state variable that represents the extent of the 
transformation in the material and can be regarded as the fraction of the produced phase. The transformed 
phase fraction is considered to be in series with the elastic fraction of the response. Several approaches for 
the mathematical modeling of this elastic component exist in the literature [8]. Among them, the Voight 
model [9] used in the present paper contemplates two different crystallographic phases, austenite and 
martensite, not distinguishing between the twinned and the detwinned martensite. It considers a parallel 
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distribution of austenite and martensite within the material and the corresponding Young’s modulus is 
calculated by a rule of mixtures from the values of the pure austenite phase modulus EA, and the pure 
martensite phase modulus EM, yielding the following mechanical law, 

 

 σ = [ξ EM + ( 1 − ξ ) EA ] ( ε − εL ) + θ (T − T0)      (1) 

 

where θ is the thermal coefficient of expansion,  εL the maximum residual strain and T0 is the temperature 
at which the thermal strain is defined to be zero [10]. 

In order to complete the constitutive model, the mechanical law (1) is coupled with the transformation 
kinetic equations which describe the evolution of the martensite fraction with stress and temperature. 
Exponential kinetic relations, based on the Magee’s transformation kinetics equations [11], are used in the 
present paper, yielding, 

 

 ξAM = 1 − exp [ aM( Ms − T ) + bM σ ], with  σ > CM ( T − Ms )   (2) 

 

for the forward transformation, Ms being the temperature at which the transformation starts in the stress-
free state, and 

 

 ξMA = exp [aA ( As − T ) + bA σ ], with   σ ≤ CA ( T − As )     (3) 

 

for the inverse transformation, where As is the temperature at which the transformation starts in the stress-
free state. The temperatures at which the forward and inverse transformations end are defined as Mf and Af , 
respectively. The exponential law equations (2) and (3) are well known and widely used in the literature 
[12] once the material constants CM, CA, aM, bM, aA and bA are identified [13,14]. When quasi-static 
loading conditions are present, the heat exchanges between the SE material and its surrounding environment 
generates almost isothermic processes. However, as the rate of the dynamic loading increases the total 
amount of generated energy per time increases accordingly.  

Since the dissipation capacity of the thermo-mechanical system is limited by the heat convection 
mechanism the generated and the dissipated energy become unbalanced for fast dynamic cycling causing 
changes in the specimen’s temperature and the shape of its hysteretic loop. For a SMA constitutive model to 
conveniently apprehend this phenomenon it is necessary to couple an adequate heat balance equation 
together with the mechanical and kinetic transformation laws [12]. The heat transfer system consists of a 
cylindrical wire with circular cross section fixed at both extremities and surrounded by air at temperature Tf. 
There are internal energy sources within the wire deriving from the enthalpy of the martensitic 
transformations and internal friction, both occurring during a hysteretic superelastic cycle. Assuming the 
heat conduction through the wire’s extremities to be negligible, the energy equation may be expressed [15] 
as, 

 

 − ρ c V dT / dt = h A ( T − Tf ) − qgen V with T(0) = Tf     (4) 

 

In the above equation ρ is the density of the material, c the specific heat, V the volume of the sample, A the 
interface surface and h the mean convection coefficient. The power generated per unit volume qgen is 
defined [12] as, 

 

 qgen = cL ρ dξ / dt + dW / dt        (5) 

 

 

The first term is related to the martensitic fraction, assuming constant latent heat of transformation cL, and 
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ACTIVE CONTROL OF FLOW-INDUCED ACOUSTIC RESONANCE INSIDE 
DOWNSTREAM CAVITIES THROUGH SURFACE PERTURBATION 

 

L. Cheng, Z. B Lu, D. Halim,  

Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong  
 

 

ABSTRACT 
 
The control of the vortex-induced acoustic resonance inside a downstream cavity was experimentally investigated through 
actively controlled surface perturbation. The technique made use of piezo-ceramic actuators embedded on the surface of an 
upstream test model in a cross flow to generate a controllable motion to alter the vortex formation as well as the subsequent 
acoustic resonance. Experiments were conducted using various configurations using both open and closed-loop control. It was 
observed that, the flow-induced acoustic resonance could be effectively reduced after applying surface perturbation technique. 
This was caused not only from an impairment of the vortex shedding strength, but also from a shift in the shedding frequency 
resulting from the control action. The vortex strength abatement mechanism was discussed and the estimation of the frequency 
shift phenomenon as well as its effect on the impairment of acoustic resonance was experimentally assessed.  

 

 

INTRODUCTION 

 

Bluff bodies are widely utilized in various engineering applications, such as in the branches of aeronautics, 
mechanical, chemical and civil engineering. Downstream a bluff body placed in a cross flow, vortices can 
be generated, creating alternating lift and drag forces on the rear surface of the body [1]. This phenomenon, 
referred to as vortex shedding, can lead to potentially severe bluff body vibration and excessive acoustic 
noise at the same time. The problem is accentuated when a downstream cavity exists and the shedding 
frequency coincides with the natural frequency of the cavity [2,3]. This phenomenon is generally referred to 
as flow-induced acoustic resonance which can be classified as a type of flow-structure-sound (FSS) 
interaction problems. Because of the importance of FSS problems to a large variety of engineering 
applications, there has been a significant research interest in attempting to study these problems in the last 
few decades. Flow-induced acoustic resonance can be controlled by using passive or active control schemes 
[4]. The passive control schemes do not use an external energy input, and it may include surface 
modifications with roughness, splitter plate and small secondary control cylinder [5-7]. The active control 
scheme, on the other hand, injects external energy into the system to modifiy its characteristics using 
appropriate actuators.  

The active control scheme can further be classified as open- and closed-loop control depending on whether 
feedback signals are used in the control process. Open-loop control includes rotary, streamwise, transverse 
oscillations of a bluff body and inflow oscillation [8-11]. However, the open-loop control performance is 
limited since the control actuation does not directly correspond to the system response. To get around this 
problem, active closed-loop control can be used by continuously adjusting the control actuation based on 
the system response, monitored via feedback signals acquired by sensors. Berger [12] introduced the single-
sensor feedback control by actuating a bimorph cylinder with signals from a hot-wire sensor located in the 
wake. Huang and Weaver [13] utilized the fluctuating acoustic pressure inside the cavity as feedback 
signals, to drive the loudspeakers at the entrance of the tunnel. Cattafesta et al. [14-16] used an oscillating 
flap hinged near a cavity leading edge to disturb the shear layer separation, using feedback signals taken 
from the fluctuating acoustic pressure measured by a microphone within the cavity. These works, however, 
are mainly focused on controlling individual element such as the flow field, structural vibration or acoustic 
noise. Because of the coupling nature of vortex-vibration-noise system, it is reasonable to think that 
simultaneous control targeting all these elements can be more effective.  

Based on this consideration, a surface perturbation technique was proposed by Cheng et al. [17], aiming at 
the simultaneous control of both flow field and structural vibration. The technique makes use of curved 
piezo-ceramic actuators, embedded underneath the structural surface, to generate a controllable transverse 
motion on a structural surface for altering fluid-structure interactions.  

Using the THUNDER (THin layer composite UNimorph Driver and sEnsoR) actuators [18], the 
effectiveness of this control technique was experimentally assessed through a series of investigations in 
Zhang et al. [19-22]. The works demonstrated that the actively controlled perturbation could successfully 
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alter the interactions by synchronizing the motion of the bluff body’s upper surface and vortex shedding, 
leading to the simultaneous attenuation of both vortex shedding strength and the vortex-induced structural 
vibration. Using an open-loop control scheme with a similar arrangement of piezoelectric actuators, Zhang 
et al [23] further investigated the control of the flow-induced acoustic resonance in a duct system 
comprising an upstream structure as a vortex generator and a downstream acoustic cavity.  

The work focused on controlling the acoustic resonance when the vortex shedding frequency coincided with 
the first acoustic resonance of downstream cavities. Experimental results demonstrated a 8.2dB reduction in 
the sound pressure level inside the resonant cavity due to the piezo-driven actuation. Apart from the 
apparent control performance, however, the underlying physical mechanism behind the control action still 
remained unknown. The sound reduction was interpreted as a direct consequence of the vortex strength 
impairment, the reason behind which, however, could not be explained either. 

The present work reports an experimental study on the control of flow-induced acoustic resonance based on 
the surface perturbation technique. Major objectives are fivefold: 1) to provide a comprehensive assessment 
on the efficiency of the surface perturbation technique using an improved actuator configuration in the 
open-loop scheme. 2) to establish a general closed-loop control strategy using the surface perturbation 
technique. Due to the practical vibration characteristic limitation of the THUNDER actuators, the feedback 
signals used were dealt with a special signal processing which was based on the down-sampling theory; 3) 
to assess the effectiveness of the closed-loop control by comparing with the open-loop case. Closed-loop 
control test results provide additional evidence towards a better understanding of the underlying physics. 4) 
to provide experimental evidences for further explanation on the control mechanism of the surface 
perturbation technique in attenuating flow-induced sound. 5) to investigate the control mechanism behind 
the additional sound reduction in the cavity, as well as to formulate a mathematical description for 
predicting the perturbation-induced shedding frequency shift. 

 

 

EXPERIMENTAL CONDITION 

 

A closed circuit acoustic wind tunnel, with an 1820-mm-long square test section of 100mm x 100mm, was 
used to conduct the experiments as depicted in Figure 1. A parabolic contraction at the inlet was used to 
improve the uniformity of the flow velocity profile, and reduce the boundary layer thickness. A flat-walled 
diffuser at the downstream of the working section, with a half angle of 14°, was used to increase pressure 
recovery. The maximum flow velocity was 50m/s with a turbulence intensity of less than 0.1% in the 
upstream section. Low background noise was achieved in this wind tunnel since noise of the motor and fan 
was mostly absorbed by acoustic duct linings. A rigid thick plate with an angle of attack of zero, called the 
‘test model’, was installed at 370mm downstream of the exit plane of tunnel contraction in the flow duct. 
The two ends of the test model were rigidly fixed on the walls of the duct and served as vortex generator.  

 

 

Figure 1: Sketch of the wind tunnel system. 

 

At the downstream of the duct, two identical cavities with square cross sections were installed and they 
were symmetrical to the stream wise flow line. The test model, cavity dimension, and flow speed were set 
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so that acoustic resonance took place inside the cavities at the vortex shedding frequency. Details of the test 
model are shown in Figure 2. It had a semi-circular leading edge and a height of h = 11mm and a width of w 
= 23mm. Its dimension w/h was within the range that ensured that only one vortex separated from the 
leading edge of the plate might develop along the plate at any instant [24]. Two curved THUNDER piezo-
ceramic actuators, with a length of 63mm and a width of 14mm, were embedded in a slot of 16mm wide 
and 7mm deep on the top side of vortex generator and 1.0mm from the test model trailing edge. The 
actuators were installed in a cantilever manner to create a maximum perturbation displacement in the 
transverse y-direction. A thin plastic plate of 1.2mm thick, called a ‘vibration plate’, was mounted flush 
with the upper surface of the plate, and connected with the cantilevered end of the THUNDER actuators by 
using a double-sided tape. The vibration plate driven by the actuators would oscillate to create a span-wise 
uniform transverse vibration along the y-direction of the test model, which were confirmed by the 
measurement of velocity over the plate using a laser vibrometer. Figure 3 shows the entire test configuration 
together with the measurement system.  

 

 

Figure 2: The test model in detail (a) Installation; (b) Top view A-A; (c) Side view B-B. 

 

 

Figure 3: The experimental setup, control system and measurement system. 

 

The depth (L) and width (B) of the two side cavities were chosen to be 487mm and 70mm, respectively. 
Based on the test configuration, the first acoustic resonance frequency of the cavity (f’a) was estimated as 
f’a=c/(2(2L+d))≈160Hz [25], where c was the sound speed and d was the height of the duct. The 
corresponding critical flow velocity Ucr=fsh/St at resonance, when shedding frequency fs=f’a  , was estimated  
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to be about 8.2 m/s, using a Strouhal number St of 0.22, as suggested by Welsh et al. [26] for similar w/h 
ratios. The flow velocity was not very stable during the measurement, therefore, the vortex shedding 
frequency could only be adjusted approximately to f’a. To generate the control perturbation, two cantilever 
actuators were simultaneously activated by a sinusoidal signal with controllable frequency, using the 
dSPACE rapid control prototyping system, and then amplified by a dual-channel PZT amplifier (Trek PZD 
700), as shown in Figure 3. The actuators were simultaneously activated in two different ways: 1) by a 
sinusoidal signal at a tunable frequency to form an open-loop control scheme; 2) by feedback signals 
acquired from system response to form a closed-loop control scheme. The acoustic pressures were 
measured by two 1/2" condenser microphones (B&K 4189).  

Microphone 1, referred to as Mic.1 hereafter, was flush-mounted on the top wall of the duct at x=23mm. 
Another microphone, Mic.2, was flush-mounted at the center of the top side-wall of the cavity. Two sets of 
5 μm tungsten single hot wire were deployed to measure the fluctuating flow velocity at various positions 
around the test model. Hot wire 1 was fixed at the leading edge of test model at x=0mm and y=11mm, while 
hot wire 2 could be located at any positions around the test model depending on the requirement of the 
measurement. A Polytec Series 3000 Dual Beam laser vibrometer was also used to measure the perturbation 
displacement produced by actuators. All measurement signals were recorded for about 11s using a personal 
computer through a 12-bit A/D board at a sampling frequency of 5890Hz per channel. The closed-loop 
control process is described in Figure 3. In principle, the control can utilize any feedback signals acquired 
from the system, which may be from the hot wire 1, hot wire 2, Mic.1 or Mic.2. The feedback signal is then 
adjusted using the developed down-sampling algorithm via dSPACE system, before being applied to the 
PZT amplifier. The down-sampling theory used for control is detailed in the closed-loop section. 

 

 

OPEN-LOOP CONTROL USING THE SURFACE PERTURBATION 

 

The open-loop control using the developed surface perturbation configuration was investigated first in this 
work. Open-loop control experiments were carried out at smU /2.8=∞

  ( 5980Re = ) and the control 

performance was evaluated in the sound field and flow field simultaneously. The control frequency fp and 
control voltage Vp of the controller were first determined. It was observed that the best performance was 
obtained when fp=30Hz with the highest permissible voltage of Vp=160V. Figure 4(a)-4(d) shows the sound 
pressure variation at the two microphone positions in time domain before and after control. All time-domain 
signals were filtered by a 5Hz-band-pass filter around the shedding frequency. It can be seen that, upon the 
control deployment, the sound pressure both in the duct and inside the cavity underwent significant 
reductions in the time domain. Noticing the difference in scale, the acoustic pressure was far more intense 
inside the cavity than that in the duct, due to the acoustic resonance effect. The reduction level inside the 
cavity after the control was also higher than that in the duct. For further observation in the frequency 
domain, the spectra of the signals were obtained using the Fast Fourier Transform with a frequency 
resolution of 0.1Hz.  

 

The fine resolution was needed for an accurate determination of the locations as well as the values of the 
resonance peak corresponding to the shedding frequency. From the results shown in Figure5(a) and 5(b), 
upon the control deployment, the sound pressure level at Mic.1 decreased from 80.7dB to 64.8dB (a 
reduction of 15.9dB) at the shedding frequency as shown in Figure5(a). Meanwhile, Mic.2 recorded a 
decrease from 96.7dB to 76.0dB (a reduction of 20.7dB, as shown in Figure 5(b)), which was 4.8dB larger 
than the reduction measured by Mic.1. Meanwhile, higher order harmonics of the resonance frequency also 
experienced reduction to different extents after control. Based on the higher reduction of the acoustic 
resonance inside the cavity compared to that in the duct, one can surmise that, in additional to the reduction 
in the vortex strength which serves as the excitation of the acoustic field, there should be other important 
physical phenomena involved during the control process.  
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Figure 4: Time-domain results for the open-loop control performance in sound field; the signals were filtered by a 5Hz band-
pass filter. The hot wire 2 was located at x = 34 mm and y =8.25 mm. (a) Without control: measured in the duct; (b) With 
control: measured in the duct; (c) Without control: measured inside the cavity; (d) With control: measured inside the cavity; (e) 
Without control: measured by hot wire 2; (f) with control: measured by hot wire 2. 

 
A careful examination of the dominant peak revealed that, in the present case, the shedding frequency was 
shifted from 161.1Hz to 158.2Hz. This frequency shift phenomenon, albeit not very obvious, as well as its 
impact on the acoustic resonance inside the cavity, will be investigated further in the later section. 
Corresponding changes in the flow field, measured by hot-wire at x = 34mm and y=8.25mm, were 
examined in time domain (Figure 4(e) and 4(f)) and in frequency domain (Figure5(c)), respectively. It can 
be seen that control has also successfully reduced the vortex strength as evidenced by a significant 
reduction of the hot-wire signal in time domain, and the corresponding reduction in power spectral density 
Eu at the shedding frequency. In fact, Eu decreased from 4.1e-3 to 6.3e-4, corresponding to a reduction of 
about 85%.  

 

 

(d) 

(e) 

(c) 

(f) 

(a) (b) 
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Figure 5: Control performance of open-loop control in the sound field and flow field. The hot wire 2 was located at x = 34 mm 
and y =8.25 mm. (a) SPL measured by Mic.1; (b) SPL measured by Mic.2; (c) Eu measured by hot wire 2. 

 

 

CLOSED-LOOP CONTROL USING THE SURFACE PERTURBATION 

 

Next, closed-loop control experiments were undertaken using the same surface perturbation configuration. 
In standard closed-loop control, a mainly-tonal feedback signal can be amplified by a control gain, resulting 
in a closed-loop control actuation dominated by the primary tone of the feedback signal. However, in the 
current experimental set-up utilizing THUNDER actuators, there was a main difficulty in directly 
implementing such a control configuration due to unique vibration response characteristic of THUNDER 
actuators. To illustrate this, the vibration characteristics of the test model, with embedded THUNDER 
actuators at a control voltage of 160V, were measured by using a laser vibrometer at varying control 
frequencies as shown in Figure 6.  

 
Figure 6: Vibration characteristics of the test model at various control frequencies. The control voltage was set to 160 V.  
 

It was observed that the test model’s frequency response peaked at around 30Hz, and rapidly decreased in 
magnitude as the control frequency increased. This also explains why the optimum excitation frequency for 
open-loop control was also 30Hz. The displacement of control actuation of the test model was measured to 
be only 0.016mm at the vortex shedding frequency of 160Hz, compared to the maximum displacement of 
0.900mm at approximately 30Hz. Such a small actuation of only 1.8% of the test model’s maximum 
capability would be insufficient for achieving a satisfactory control performance.  

Therefore, to avoid such a control actuation problem, a down-sampling control method was proposed to 
bring down the frequency of the control actuation closer to the optimal operating frequency of test model at 
approximately 30Hz. Consider a feedback signal acquired from a sensor, containing information about the 
vortex shedding process. A typical Fourier spectrum of the vortex shedding system U0(f) with its dominant 
response at and around the vortex shedding frequency fsource=fs is shown in Figure 7. The spectrum is 
symmetric about zero frequency because the feedback signal is real-valued. Such a typical spectrum 
contains two dominant negative- and positive-frequency narrow-band spectrum around the negative and 
positive vortex shedding frequencies, each with the frequency bandwidth of BF. In this case, the frequency 
bandwidth for both narrow-band spectra is f∈[-fsource-BF/2,-fsource+BF/2] ∪[fsource-BF/2, fsource+BF/2]. 
These narrow-band spectra contain most of the spectrum energy associated with the vortex shedding and 
flow-induced acoustic resonance processes. Thus, it is imperative that the down-sampling method should 
focus on shifting these narrow-band spectra to lower frequencies with minimal distortion so effective 
control can be implemented to the system.  

  

(c) 
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Figure 7: The schematic of the down-sampling process. (a) Original spectrum ( )fU 0  
and image spectra ( )fU 1−  

and 

( )fU1 ; (b) Final spectra after down-sampling process.  

 

As a consequence of sampling process, image spectrum are generated from the original spectrum shifted by 
integer multiples of the sampling frequency fNS [27]. In a standard sampling process according to the 
Nyquist-Shannon sampling theorem [28], fNS needs to be at least greater than twice the highest frequency of 
the band-limited continuous signal. This is to avoid the aliasing where the reconstructed sampled signal 
differs from the original continuous signal. However, the interest in this work is to generate the image 
narrow-band spectrum at low frequencies so that the reconstructed signal can be used as a feedback signal 
to drive the THUNDER actuator at its optimal operating frequency. To achieve this, a down-sampling 
method is utilized, using a sampling frequency lower than that recommended by the Nyquist-Shannon 
sampling theorem. Let spectrum Un(f), with subscript n being a non-zero integer number, to be the image 
spectrum associated with n multiples of fNS. As shown in Figure 7, U1(f) is the image spectrum associated 
with n× fNS(n=1) in the positive f axis, while U-1(f) is the image spectrum associated with n× fNS(n=-1) in 
the negative f axis. To simplify the illustration, only spectrum U0(f), U1(f) and U-1(f) and are shown in the 
figure, excluding spectra with higher integer multiples of fNS.  The task now is how to choose an appropriate 
sampling frequency such that the peak of the narrow-band spectrum at the vortex shedding frequency fsource 
can be shifted to the target frequency ftarget which is the THUNDER actuators’ optimal operating frequency. 
Considering the original spectrum U0(f) and its positive-frequency image spectrum U1(f) in Figure 7, the 
target frequency can be related to the vortex shedding and down-sampling frequencies as follows:  

sourceNSett fff −=arg         
(1) 

The significance of Eq. (1) is that since fsource can be evaluated based on the observation of vortex shedding 
process, one can choose a proper down-sampling frequency fNS correspondingly to shift the narrow-band 
spectrum to a lower target frequency. As the result, two low-frequency narrow-band image spectra centered 
at    -ftarget and ftarget were generated as depicted in Figure 7. However, although the narrow-band image 
spectra have been shifted to lower frequencies, a problem still needs to be resolved. Due to the down-
sampling process, overlapping image spectra associated with integer multiples of the sampling frequency 
fNS, can in fact distort the overall spectrum, leading to a distorted reconstructed signal with multiple tonal 
components. To avoid such a distortion, a band-pass filter with the pass-band frequency of f∈[ftarget-BF/2,ftarget+BF/2] is utilized to reject the off-bandwidth spectrum contributions as shown in Figure 7. This 
way, the narrow-band image spectrum located at and nearby the target frequency will be the only primary 
spectrum to be reconstructed. 

Furthermore, although multiple narrow-band spectrum were also generated at integer multiples of down-
sampling frequency, their spectrum contributions within the pass-band frequency BF, centered at ftarget, are 
minimal because of their narrow-band spectrum characteristics. The down-sampled image spectrum can 
then be reconstructed to obtain the low-frequency continuous signal to be used for closed-loop control using 
the test model.  

Based on the developed down-sampling method, a real-time closed-loop control experiment was performed. 
The closed-loop control was aimed to impair the vortex shedding process, whose shedding frequency was at 
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approximately 160 Hz, by using the surface perturbation of the test model. The down-sampling frequency 
fNS needed to be chosen first, considering the target frequency of 30 Hz, which was the optimal operating 
frequency of test model. For the simplicity of down-sampling implementation, fNS 

 was chosen to be an 
integer multiple of the original sampling frequency of 5890 Hz. Based on these control criteria, fNS 

 was 
determined to be 190Hz from Eq. (1). A real-time down-sampling control system was then implemented via 
dSPACE/Simulink system as shown in Figure 8.  

 
Figure 8: The down-sampling algorithm for closed-loop control. 

 

The control modules consisted of the followings: (1) A band-pass filter with a pass-band frequency from 
150 Hz to 170 Hz, called ‘Band-pass filter 1’, was used to capture components of feedback signal that 
contained most of the vortex shedding energy. (2) A Zero-Order Hold (ZOH) module was then used to 
down-sample the feedback signal from 5890Hz to 190Hz by holding the signal value fixed over a multiple-
sample interval at a time step of st 00526.0=Δ , corresponding to the down-sampling frequency fNS 

 of 
190Hz. (3) A Rate Transition module was used to update the sampling time step from the original 

st 00017.0=Δ  to the down-sampled time step of st 00526.0=Δ . (4) A narrow band-pass filter with a pass-band 
frequency from 29Hz to 31Hz , called ‘Band-pass filter 2’, was utilized to reject the off-bandwidth image 
spectra. (5) Finally, the Gain and Transport Delay modules were respectively used to adjust the magnitude 
A  and phase delay Ø of the down-sampled signal for closed-loop control. 

With the proposed closed-loop control method, further experiments were performed to investigate the 
impact of closed-loop control to the flow and sound fields. Direct feedback control was implemented with 2 
tunable primary control parameters, the magnitude A  and phase delay Ø relative to the down-sampled 
signal. The parameters could be systematically adjusted for control performance analysis and the 
identification of optimal control parameters. Initially, closed-loop control using multiple feedback signals 
from the hot wire 1, hot wire 2, Mic.1 and Mic.2 was investigated. Various measurements were conducted 
to check the control performance obtained by using the combination of feedback signals. However, it was 
found that no obvious improvement was obtained by using multiple feedback signals, compared to using a 
single feedback signal from hot wire 2. One plausible reason is that all signals contained the same 
information of the mainly tonal vortex shedding response in the flow or sound fields. Another reason is that 
microphones could be affected by the background acoustic noise, negating the advantage of having multiple 
feedback signals for control. Thus, it was decided that closed-loop control experiments would focus on 
using a single feedback signal from hot wire 2.  

In the experiment, the phase delay was initially kept at Ø=0, whilst the control magnitude A was varied, 
causing the control voltage Vp 

 to vary. The effect of varying Vp on the noise reduction of flow-induced 
acoustic resonance in the cavity is shown in Figure 9 in terms of sound pressure level reduction (∆SPL). 
Note that for comparison, the open-loop control results are also included in the figure, which will be 
discussed further in the next section. The control voltage was limited by the maximum voltage allowable for 
THUNDER actuators, which was about 160 V. As expected, the closed-loop control performance at low 
control voltage was minimal, which justified the need to use the proposed down-sampling control method to 
optimize the control actuation of the test model. Furthermore, microphones in the duct and cavity both 
recorded the same general trend of increasing noise reduction as the control voltage was increased.  

 
Figure 9: The open- and closed-loop control performance in terms of sound pressure level reduction for varying control 
voltages. The feedback signal was obtained from hot wire 2, which was located at x=35.5 mm, y=11.0 mm. 
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For the present case, the best control result was obtained when the control voltage Vp=155V, resulting in a 
SPL reduction of 17.1dB in the duct and 21.5dB inside the cavity, respectively. Figure 10 shows the control 
performance when the phase delay relative to the down-sampled signal was varied, whilst the control 
voltage was fixed at Vp=155V. The general trends of noise reduction measured by microphones in the cavity 
and duct were similar, indicating a consistent physical mechanism occurred in the system. The best control 
performance occurred when the control phase delay was approximately °288 , with the obtained noise 
reduction of 17.4dB in the duct and 22.6dB inside the cavity. The results thus indicate the existence of the 
optimal control phase delay for an efficient closed-loop noise control inside the cavity and in the duct. 

Based on the optimal control voltage and phase delay configuration, the closed-loop control performance 
was investigated in both sound and flow fields. Figures 11(a) and (b) depict the sound pressure spectrum 
obtained from Mic.1 and Mic.2. It can be seen that, upon deployment of control, the sound pressures in the 
duct and inside the cavity underwent significant reductions. The spectrum indicated that with control, the 
SPL in the duct decreased from 81.3dB to 63.8dB (a reduction of 17.5dB) at the vortex shedding frequency. 
Meanwhile, the SPL measured inside the cavity decreased from 97.8dB to 75.1dB (a reduction of 22.6dB), 
which was much larger than the noise reduction measured in the duct. Such a phenomenon will be 
discussed in detail in the later section about the vortex shedding frequency shift.  

The results demonstrated that an effective closed-loop control in the sound field could be achieved.  
Furthermore, the effect of closed-loop control in the flow field was investigated in terms of power spectrum 
density of flow velocity Eu measured by two hot wires, located at the leading edge with x=0mm, y=11mm 
and at downstream of the test model with x=34mm, y=11mm, again referred to as hot wire 1 and hot wire 2, 
as shown in Figs. 11(c) and (d). From the figures, it can be seen that Eu has decreased from 3.1e-4 to 4.4e-5 
(a reduction of about 86%) measured by hot-wire 1 and 4.2e-3 to 7.2e-4 (a reduction of about 83%) 
measured by hot-wire 2. Therefore, the closed-loop control in the flow field was also effective in reducing 
the flow velocity strength caused by the vortex shedding. The corresponding control performances in time-
domain were shown in Figures 12, where the signals were filtered by a 5 Hz band-pass filter centered at the 
vortex shedding frequency. Upon deployment of closed-loop control, the noise and flow velocity reductions 
were clearly observed in all four hot wire and microphone sensors, indicating that the vortex shedding was 
successfully impaired by the control action. These results demonstrate that the proposed closed-loop control 
using the down-sampling method can effectively alter the sound and flow fields generated by the vortex 
shedding with a desirable consequence of noise reduction inside the cavity.  

 
Figure 10: The closed-loop control performance for varying control phase delays. The feedback signal was obtained from the 
hot-wire 2, located at x=35.5 mm, y=11.0 mm. The control voltage was 155 V. 

 

 

(a) (b) 

(c) 
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Figure 11: The best control performances in frequency-domain for closed-loop control. (a) Measured by hot wire 1 at x=0 mm, 
y=11.0 mm; (b) Measured by hot-wire 2 at x=34 mm; y=11.0 mm. (c) Measured in the duct; (d) Measured inside the cavity. 

 

 

COMPARISON OF CLOSED-LOOP CONTROL WITH OPEN-LOOP CONTROL 

 

To justify the use of closed-loop control over the open-loop one, closed-loop control performance was 
compared to that of open-loop control. The test model was actuated at varying control voltages and 
measurements from sensors were recorded. Figure 9 shows the level of sound pressure level reduction in the 
cavity when open-loop control was implemented. It can be observed that the open-loop and closed-loop 
control shared the same trend of sound reduction, although the closed-loop control could achieve a greater 
noise reduction. One plausible explanation is that the vortex strength abasement mechanisms for open-loop 
and closed-loop control are similar. A further observation on the open-loop control results shows that the 
best open-loop control performance achieved 1.3dB less reduction than that of the best closed-loop control 
performance as shown in Figure 10 Such results were expected because the open-loop control actuation was 
independent of what was occurring in the system, while the closed-loop control actuation was directly 
influenced by the system response as reflected by the feedback signal. The results show that the closed-loop 
control scheme can provide a more effective surface perturbation for impairing the generated vortices, 
leading to weaker vortex shedding and acoustic resonance inside the cavity. 

 

 

 

(d) 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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Figure 12: Time-domain results for the control performance in the sound field; the signals were filtered by a 5Hz band-pass 
filter: a) Without control, measured in the duct; b) With control, measured in the duct; c) Without control, measured inside the 
cavity; d) With control, measured inside the cavity. e) Without control, measured by hot wire 1; f) With control, measured by 
hot wire 1; g) Without control, measured by hot wire 2; h) With control, measured by hot wire 2. 

 

Another experiment was done to further study the physical mechanisms of the vortex shedding process over 
the test model. For this purpose, the spectral phase relationship between two measured flow velocities along 
the up-surface of test model, u1 and u2, was analyzed. Here, u1 was measured by hot-wire 1 which was 
located at leading edge with x=0mm, y=11mm, while u2 was measured by hot-wire 2 which was moved 
along the line of y=11mm so the vortex shedding characteristic over the test model could be investigated. 
Figure 13 shows the spectral phase at the vortex shedding frequency for three different cases: without 
control, with open-loop control, and with closed-loop control. The results showed that without control, each 
cycle of vortex shedding began at the trailing edge of the test model. Between the leading edge and trailing 
edge, there was no clear vortex shedding as indicated by no significant spectral phase shift over this region. 
In this case, the flow over the leading edge and trailing edge was rather in-phase. The spectral phase for the 
region 0≤ x ≤5.5mm was relatively small, however the spectral phase shift began to increase significantly 
for the region x>5.5mm. Such a spectral phase shift indicated that the flow structure over this region had 
started to change, leading to a full generation of vortex shedding at the trailing edge.  

When either open- or closed-loop control was implemented using a surface perturbation in the region 
5.5mm< x < 23.0mm, it was observed that there was generally no vortex shedding that dominated within 
this range. Instead, the boundary layer dominated the flow field in this region. Since the boundary layer was 
very complex, the measured spectral phase shift was rather irregular. However, at the trailing edge of the 
test model, vortex shedding was fully developed and propagated downstream. From Figure 13, a clear trend 
of monotonically decreasing spectral phase shift was observed. In the majority of regions downstream the 
test model, the value of the spectral phase shift for controlled system was larger than that of the 
uncontrolled system. The increase of the spectral phase shift value might imply that more time was required 
for a vortex to travel from the trailing edge to the downstream of the flow duct. This is consistent with the 
frequency shift phenomenon to be discussed in the later section where the vortex shedding frequency was 
slightly shifted to a lower frequency after control. However, further observation indicated that there was a 
generally larger spectral phase shift for system with closed-loop control than that of open-loop control, as 
can be seen in Figure 13.  

 

Figure 13: The spectral phase between 1u  and 2u  at the vortex shedding frequency. Here, 1u  was measured by hot-wire 1 

which 

was located at x=0 mm, y=11 mm, while 2u  was measured by hot-wire 2 which was moved along y=11 mm. The feedback 

signal was obtained from hot-wire 1 for closed-loop control. 
 

The result suggests that for the closed-loop control, the active surface perturbation has generated a more 
significant change to the vortex shedding structure than that of open-loop control. This implies that the 
closed-loop control scheme could achieve higher reduction in the vortex energy and flow-induced noise in 
the duct and inside the cavity, compared to the open-loop control scheme. This is as expected since the 
closed-loop control utilized a feedback signal that contained the vortex shedding information, so an 
effective reduction of the vortex energy could be obtained. Based on this investigation, an optimal control 
strategy using the developed control technique could be proposed by optimally tuning the phase-delay term 
of the control actuation to create effective changes in vortex shedding structure, as observed by the spectral 
phase shift in the flow field. 

 



Applications 

216 

 

 

VORTEX ABASEMENT MECHANISM 

 

The observed control effect on vortex shedding may also be commented and explained from the pressure 
distribution viewpoint. Hourigan [29] showed that the trailing edge vortices can only be formed between the 
passing of leading edge vortices or the redeveloped shear layer. A pressure pulse from the vigorous trailing 
edge shedding then feeds back upstream and controls the redeveloped shear layer. The schematic of this 
feedback loop of vortex shedding for a semi-circular leading edge bluff body is shown in Figure 14. This 
process is called the impinging leading edge vortex instability (ILEVI), a combination of redeveloped shear 
layer and trailing edge vortex shedding (TEVS). Using the present system, measurements were carried out 
to identify the existence of the pressure pulse which was the key factor for the generation of TEVS. The 
peak values of Eu2 (the auto-spectrum of signal from hot wire 2) at the vortex shedding frequency fs for 
various hot wire 2 measurement positions in the duct were shown in Figure 15. It can be verified from 
Eu2spectrum that peaks in Eu2, albeit very small, existed even for measurement positions between the 
leading edge and the trailing edge. Since the TEVS only started from the trailing edge [23-25], therefore, 
the observed peak in Eu2 at the vortex shedding frequency fs for positions between the leading edge and 
trailing edge came from the pressure pulse. Compared with the peak value in the strongest vortex shedding 
region, the pressure pulse was indeed very small. After the open-loop control deployment, the pressure 
pulse was obviously reduced as shown in Figure 15. Based on the above observation, the reduction in the 
vortex strength due to the control can be further explained when taking the pressure pulse into account.  

In the process of feedback loops of vortex shedding for a semi-circular leading edge bluff body, the 
pressure pulse is not very strong but it is a key factor for generating the subsequent vortex shedding. The 
surface perturbation generates a small local perturbation in the region between leading edge shear layer and 
trailing edge. This small local perturbation continuously changes the surface of the bluff body in a timely 
manner which disturbs the feedback of the pressure pulse on the trailing edge to the shear layer over the test 
model, and then damage the generation of next vortex shedding. More specifically, the perturbation velocity 
alters the flow structure around the surface of the test model, which further disturbs the entrainment of the 
leading edge shear layer to the trailing edge and the feedback of the pressure pulse to the leading edge shear 
layer. This process alters the generation of trailing edge vortex shedding, leading to a reduction of the 
vortex strength. This understanding is important for control design because this implies that a relatively 
small surface perturbation applied at correct timing can influence the vortex shedding generation effectively. 
This observation in fact confirms the previous investigation about the existence of optimal control phase 
delay, which is directly associated with the optimal timing for the surface perturbation used in the test 
model. 

 
Figure 14: Schematic of vortex shedding feedback loop for a semi-circular leading edge bluff body. 
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Figure15 Peaks of 
2uE  measured by hot wire 2 from the leading edge to the downstream of test model. 

 

 

VORTEX SHEDDING FREQUENCY SHIFT AND ITS IMPACT ON ACOUSTIC 
RESONANCE 

 

Experiments have found so far that the sound reduction inside the cavity was larger than that in the duct. 
This work proposes an explanation for such a phenomenon based on the shedding frequency shift 
phenomenon. Initially, an investigation was undertaken by measuring the vortex shedding frequency fs from 
Mic.1, for varying perturbation displacement of the vibration plate based on the open-loop scheme. The 
displacement of the vibration plate dp was measured by a laser vibrometer at the center of the plate and the 
results are shown in Figure16. It was observed that the shedding frequency fs generally decreased as the 
perturbation displacement level was increased. A trivial fs 

reduction of less than 1 Hz occurred for a small 
perturbation level of typically less than 0.4mm.With a higher perturbation level dp, however, the reduction 
in fs became more appreciable. In particular at the optimum control configuration (fp=30 Hz and Vp= 160 V) 
with dp= 0.83 mm, the reduction in fs reached 2.9 Hz. The effect of this frequency shift on the control 
performance turns out to be very important, which will be assessed next.  

The shift of the shedding frequency to lower frequencies can be attributed to the effect of perturbation. In a 
way, the perturbation can be regarded as a way to increase the effective thickness of the test sample. 
Physically, the vortex shedding frequency is determined by the distance between two shear layers around 
the test model. Under the surface perturbation, the distance between two shear layers has actually changed, 
resulting in a shift in the vortex shedding frequency. The effect of the perturbation can actually be loosely 
represented by an equivalent increase (

pd ) in the thickness of the plate, h. The perturbed shedding 

frequency 
spf  can be expressed as:    

( ) ( )( )hdhUSdhUSf ptptsp +=+= ∞∞ 1        
(2) 

Since h  is much larger than 
pd , therefore 1<<hd p

 and 

( ) ( )( ) ( )( ) ( )hdfhdhUShdhUSf psptptsp −=−≈+= ∞∞ 1111 0
    (3) 

where fs0 is the unperturbed vortex shedding frequency. The corresponding frequency change 
spfΔ can then 

be estimated by 

( ) 00 spspssp fhdfff =−=Δ          (4) 

Equation (4) shows that the reduction ∆fsp is linearly related to ¯dp, which can be estimated by using the 
measured vortex shedding frequency shift data in Figure 16 and Eq. (3). To illustrate this, the variation of 
¯dp relative to dp for open- and closed-loop control schemes, is plotted in Figure 17. Furthermore, the 
relationship between measurement points can be approximated using a linear regression fitting line, with a 
gradient ¯dp/dp= 0.209 for the open-loop control scheme. The determined gradient for closed-loop control 
of 0.205 was in fact almost similar to that for open-loop control. Comparing two fitting lines for both open- 
and closed-loop control in Figure 17, it can be observed that the lines are relatively close to each other. This 
is reasonable considering uncertainties that normally arise for these particular experimental measurements. 
The results confirm that the vortex shedding frequency shift phenomenon occurs mainly due to the change 
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of effective thickness associated with the surface modification of test model, regardless the control scheme 
used. 

 

Figure 16: The shift of vortex shedding frequency at varying maximum displacement of the vibration plate pd . The control 

frequency Hzf p 30= , the shedding frequency was obtained in the data measured by Mic.1 

 

 

 

Figure 17: The effective perturbation displacement of the vibration plate, pd  was the displacement of the vibration plate 

measured by the laser vibrometer and pd was the effective displacement of the vibration plate.  

 

The sound pressure level spectra measured by the two microphones are compared in Figure 18 in terms of 
∆SPL =SPLm2-SPLm1, with SPLm2and SPLm1 being the sound pressure levels at Mic.2 and Mic.1, 
respectively. Three regions with unique characteristics can be identified from the figure. In the low 
frequency range (Region A), ∆SPL tottered around zero, indicating comparable SPLs in the duct and in the 
cavity. This suggests that the sound inside the duct was simply transported into the cavity. In a region 
around the first cavity resonance frequency f’a (Region B), the SPL inside the cavity was obviously higher 
than that in the duct, indicating that sound was amplified by the cavity resonance effect. For example, the 
SPL difference reached about 20dB at the resonance f=f’a. In the region further away from the resonance 
frequency (Region C), ∆SPL decreased, indicating a weaker acoustic field inside the cavity compared with 
that in the duct. One plausible reason is that at higher frequencies, sound dissipations increase with the 
decrease of wave length. Therefore, sound became much weaker when reaching the Mic.2 position which 
was at the far end of the cavity. In order to explain the higher noise reduction inside the cavity as compared 
to that in the duct, the acoustic resonance bandwidth was determined. To this end, a series of tests were 
conducted to document the sound pressure level measured by Mic.1 and Mic.2 at the shedding frequency fs 
under varying flow velocities before the control was deployed. As shown in Figure 19, the peak values of 
sound pressure level at fs measured by Mic.1, monotonously increased as the flow velocities increased. 
Furthermore, the peak values of sound pressure level at fs measured by Mic.2, reached a peak value of 
96.7dB when U ͚=U cr= 8.2 m/s (i.e. fs=f’a=161.1 HZ, f’a is the first resonance frequency of the downstream 
cavities).  
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Figure18 The sound pressure level difference between the in the duct and inside the cavity. The depth of the downstream 
cavity was mmL 487= . 

 

Figure 19 Sound pressure level obtained at the vortex shedding frequency at varying flow velocities. No control was deployed. 

 

Using the conventional definition of the bandwidth corresponding to 3dB reduction from the peak value, the 
bandwidth of the resonance peak was determined as 3.4Hz from 159.0Hz to 162.4Hz, corresponding to a 
flow velocity variation from 8.0m/s to 8.3m/s. Furthermore, Figure 20 shows the effect of control on the 
previously defined ∆SPL at fs at varying flow velocities with fp= 30 Hz and Vp=160 V. It can be seen that 
apart from the resonance region, sound reductions in the duct and in the cavity were almost the same, which 
should be attributed to the weakened vortex strength discussed previously. Around the cavity resonance, 
sound reduction inside the cavity exceeded that in the duct by as much as 4.8dB. This can be attributed to 
the control-induced shift in the vortex shedding frequency. In fact, a 2.9 Hz shift in fs exceeded the half 
bandwidth of the cavity resonance, and this alone should bring about at least 3 dB reduction in the SPL. 
Thus, the successful control of the acoustic resonance inside the cavity is the fruit of a dual process: the 
impairment of the vortex strength and the off-set of vortex shedding process away from the acoustic 
resonance due to the shift in vortex shedding frequency. 
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Figure 20 The effect of control on 12 mm SPLSPL −  at sf  at varyings flow velocities in open-loop control scheme. Here, 

Hzf p 30=  and VVp 160=
.
 

 

 

CONCLUSIONS 

 

The control of flow-induced acoustic resonance was experimentally investigated by using active open-loop 
and closed-loop control schemes. It was found that the noise contributed by the flow-induced acoustic 
resonance could be effectively reduced by the implementation of the proposed surface perturbation 
technique. The present work leads to the following conclusions: 

(1) Using the optimum open-loop control scheme, the sound pressure level at the vortex shedding frequency 
was reduced by 15.9dB in the duct and 20.7dB inside the cavity, respectively. This control performance was 
found to be repeatable and reliable. 

(2) The closed-loop control method was developed by using a down-sampling method to utilize the high 
control actuation of THUNDER actuators embedded in the test model. It was found that the flow-induced 
acoustic resonance can be effectively reduced by the implementation of the developed closed-loop surface 
perturbation technique. At the optimum control voltage and control phase delay for the present experiment, 
noise reduction of 17.5dB in the duct and 22.6dB inside the cavity was obtained.  

(3) The closed-loop control could achieve a better control performance than that of the open-loop control. 
The surface perturbation of test model in open-loop control scheme was independent of what was occurring 
in the system. In contrast, the closed-loop control scheme allowed the active surface perturbation to be 
adjusted according to the feedback response measured by a hot wire sensor. In particular, the phase delay of 
control actuation could be optimally tuned so that the strength of vortex shedding energy could be 
minimized, leading to a better noise reduction in the duct and cavity. This process was evident from the 
spectrum phase shift results for the closed-loop control case, where the vortex traveling time has been 
delayed at downstream of the test model. Therefore, an optimal control strategy was proposed by utilizing 
an optimal phase-tuned active surface perturbation to create sufficient changes in the vortex shedding 
structure, leading to an effective noise reduction in the system. 

(4) The reduction of flow-induced noise in the duct is mainly due to the impairment of the vortex strength 
upon deployment of control. It is proposed that the local perturbation alters the flow structure around the 
surface of the test model, which further disturbs the entrainment of the leading edge shear layer to the 
trailing edge and the feedback of the pressure pulse to the leading edge shear layer. This process alters the 
generation of trailing edge vortex shedding, leading to a reduction in the vortex strength. 

(5) The vortex shedding frequency shift phenomenon was observed in both open-loop and closed-loop 
control cases. This phenomenon allowed additional noise reduction inside the cavity than in the duct. The 
mechanism for the vortex shedding frequency shift in the closed-loop control is consistent with the open-
loop control. As such, the frequency shift can be predicted based on the proposed formula given in Eq. (4). 
As observed from the open-loop control experiment, the frequency shift phenomenon led to a further sound 
pressure reduction of 4.8dB inside the acoustic cavity, compared to that in the duct. Therefore, two control 
mechanisms for flow-induced acoustic resonance had been demonstrated in this work: (a) The impairment 
of vortex shedding at downstream of the test model, influencing the correlated sound field inside the cavity. 
(b) The shift of vortex shedding frequency that allows additional noise reduction inside the cavity, 
particularly when the shedding frequency shift exceeds the acoustic resonance bandwidth. 
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ABSTRACT 

 

Presently, the important trend of “greening” the modes of transport is widely observed worldwide. One of the serious air-
transport problems is the necessity of expensive recycling of degraded technical fluids, e. g. hydraulic oil, which is utilized in a 
wide class of air-vehicles being currently in service. Moreover, an important disadvantage of the hydraulic instal-lations in the 
aeronautic vehicles is their large weight. To overcome these problems (in the field of aircraft undercarriages) a new type of 
shock absorber has been proposed, which eliminates the usage of the hydraulic fluid. The device utilizes a gas cylinder with a 
piston equipped with a fast actuated valve in order to control the reaction force of the absorber in real-time. This paper presents 
a study on an impact energy dissipation method by the use of the pneumatic impact absorber and the results of an experimental 
verification of the concept based on a technical demonstrator of such device (a shock absorber for a landing gear fabricated for 
an UAV). The study focuses on the energy absorbing capabilities of the device. A landing gear shock absorber is used as an 
example, but the general idea of the device is considered to be useful in other fields of application.  

 

 

INTRODUCTION 

 

Presently, the important trend of “greening” the modes of transport is widely observed worldwide. One of 
the serious air-transport problems is the necessity of expensive recycling of degraded technical fluids, e. g. 
hydraulic oil, which is utilized in a wide class of air-vehicles being currently in service. Moreover, an 
important disadvantage of the hydraulic installations in the aeronautic vehicles is their large weight. To 
overcome these problems (in the field of aircraft undercarriages) a new type of pneumatic shock absorber 
has been proposed, which eliminates the usage of the hydraulic fluid. The device utilizes a gas cylinder with 
a piston equipped with a fast actuated valve in order to control the reaction force of the absorber in real-
time. Pneumatic absorbers (e.g. protective air bags) are incorporated in some methods of minimizing the 
contact force between an impacting body and the obstacle during a collision. In classical solutions dedicated 
to the dissipation of the kinetic energy of the impacting body, no adaptive control of braking force is 
applied [1,2].  

However, in some applications it is necessary to tune the level of the force during the process, in order to 
minimize its long term destructive influence [3-6]. The techniques proposed previously usually incorporated 
advanced fluids, which are expensive, heavy and difficult to recycle. Therefore, a new technique of the 
control of the deceleration process was proposed [7]. The adaptive impact absorber consisted of a cylinder 
with a piston and a piezo-valve in a by-pass configuration. The intensity of the gas flow through the valve 
in the by-pass was controlled in order to achieve the optimum deceleration level. The piezoelectric actuator 
was used to ensure sufficiently quick opening and closing of the valve. The advantage of the proposed 
semi-active approach was the decrease of the peak braking force in comparison to the passive braking of the 
impacting object. Furthermore, the semi-active control allowed to adapt the behaviour of the device to the 
predetermined level of the impact energy and therefore to optimize the braking process. Possible 
applications for the device are rail cars, landing gears, air-vehicles bogie dampers or precise docking 
systems. 

The research presented was focused on an improved solution of the impact absorber with the piezo-valve 
positioned inside of the piston. This article presents a study on an impact energy dissipation method by the 
use of the pneumatic impact absorber as well as the results of an experimental verification of the concept 
based on a technical demonstrator - a shock absorber for a landing gear for Unmanned Aerial Vehicle 
(UAV). The study was focused on the energy absorbing capabilities of the device. The landing gear shock 
absorber was used as an example, but the general idea of the device is considered to be useful in other fields 
of application. 
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RESEARCH CONDUCTED  

 

The investigation presented was divided into three phases: a) problem definition, numerical analysis and 
determination of design requirements, b) development and verification of the piezo-actuated valve, c) 
development and tests of the adaptive absorber with the valve. At the first stage, the concept of the valve 
actuated by piezoelectric stacks was developed and numerically proven. On the basis of numerical 
simulation the piezo-valve and absorber were designed and fabricated. The following studies were devoted 
to testing of the devices on dedicated laboratory stands. 

 

 

 

NUMERICAL ANALYSIS OF ADAPTIVE PNEUMATIC LANDING GEAR 

 

A numerical model of the adaptive pneumatic absorber was developed and analyzed by the authors and 
presented in [8]. The model utilizes the assumption of uniform distribution of gas parameters in each 
chamber and an analytical model of the gas flow through a controllable valve. The model proposed enables 
to conduct simulations of the process of energy dissipation and to test various strategies of valve opening. 
The aforementioned model was utilized to design the adaptive pneumatic landing gear intended to be 
applied on a UAV, i.e. to find optimal geometry of the absorber, optimal initial pressure and required 
properties of the valve. The initial data for the design of the landing gear included: 

 

 mass of the UAV: kgM 5,8 , maximum touchdown velocity: smV /3,30   

 maximum admissible vertical deceleration during landing: 2
max /70 sma   

 maximum overpressure in compressed chamber of the absorber: atmp 15max
2  . 

 

Basic parameters of the adaptive absorber were determined by using the balance of the energy of the 
landing object and the conditions of the static equilibrium of the system after landing. With this the 
following parameters were obtained: 

 

 length of the absorber: mh 11,00  , length of the compressed chamber: mh 095,002   

 cylinder diameter: md 032,0 ,  

 piston rod diameter: mdT 012,0  

 initial pressure in absorber chambers: atmp 60   

 

Furthermore the thermodynamic part of the model was utilized to determine the required parameters of the 
controllable valve:  

 

 maximum pressure difference for which the valve remains airtight: atmp 5,8   

 maximum mass flow rate required: sgq /8,14max   (corresponding pressure difference: atmp 8,7 , 

corresponding upstream pressure atmp 2,132  ). 

 

In the following step the numerical model of the pneumatic landing gear was developed and simulations of 
the landing process were conducted (see Figure 1). 

Two control strategies were implemented: 

 

 adjustment of time instant and level of constant valve opening,  
 real-time control of the valve opening during landing (Pulse Width Modulation). 
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In the first strategy the valve remains closed during the initial stage of landing in order to enable a fast 
increase of the force generated by the absorber. The time of valve opening and flow resistance coefficient 
(representing valve opening) are adjusted by means of optimization procedure which minimizes force 
generated by the absorber, taking into account the constraint imposed on maximum absorber stroke. In the 
second strategy the valve also remains closed during the initial stage of the process. The optimum level of 
force generated by the absorber is determined by using the energy conservation law, which indicates the 
equality of potential and kinetic energy of the landing object and energy dissipated by the absorber and the 
wheel.  

WHEELABSORBERPKPK DDEEEE  2211  
 

a)        b) 

    
Figure 1: a) Considered model of adaptive pneumatic landing gear, b) Visualization of the landing process: intermediate and 
final stage of landing. 

 

Alternatively, the time of valve opening can be determined from the kinematical condition: 
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where md 085,0max   is assumed and denotes maximum stroke of the absorber. In a further part of the 

landing process the valve is simultaneously opened and closed in order to maintain constant force generated 
by the absorber. The signal that controls valve opening nI  depends on actual value of force generated by 

the absorber:  

TOLOPTn FFFI  if1  

TOLOPTn FFFI  if0  

TOLOPTTOLOPTnn FFFFFII   if1  
where: TOLF  is assumed as the tolerance of the force level. The above strategy enables to stop the landing 

object by using a minimum level of the force generated by the absorber and therefore with minimum 
deceleration of the landing object. 

During the final stage of the process, when velocity of the landing object is relatively small, the force 
generated by the absorber is gradually reduced in order to obtain the state of static equilibrium of the 
landing object. The results are depicted in Figures 2 to 4 and summarized in Table 1. 

 

 

 

 

 

 

Figure 2: Control signal simulation with single-stage (left) and real-time control (right). 
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Figure 3: Numerical simulation of the landing with single-stage (left) and real-time control (right) 

 

 

 

 

 

 

 

 

 

Figure 4: Force generated by the absorber with single-stage (left) and real-time control strategy (right). 

 

 

TEST OF PIEZO ACTUATED VALVE 

 

The core element of the Adaptive Impact Absorber (AIA) is a piezo-valve – shown in cross-section view in 
the two pictures below (Figure 5). This valve enables the flow of fluid between two sides of the piston 
inside the cylinder of the absorber. When the gas flow ratio is controlled, the reaction force of the absorber 
can be adjusted. 

 

a)     b) 

 
Figure 5: Cross-sectional view through the valve: a) closed, b) opened. 

 

Figure 5 depicts the piezo-valve schematically in closed (a) and opened (b) position. Two plates with holes 
are tight when they are aligned. Moving one plate apart from the other enables the fluid to flow through the 
valve. To ensure small dimensions and a compact structure of AIA it is advisable to locate the valve in the 
piston of the absorber. This results in dimensional constraints of the valve. Short operating time also 
requires the use of the piezo-stacks for opening and closing the valve. As shown in the pictures, the opening 
of the valve is achieved by elongation of the piezo-stack (marked on the right hand sides of both pictures) 
and closing is done by the spring connecting one of the plates with housing. 

To predict the value of the kinetic energy of the impacting body that could be efficiently dissipated by the 
use of the absorber equipped with the piezo-valve, a set-up was developed (Figure 6) consisting of two 
containers [9,10], three pressure sensors p0, p1, and p2, three thermocouples T0, T1, and T2, a pressure 
regulator and the piezo-valve investigated. In order to acquire its characteristics the valve was examined 
experimentally under a variety of flow conditions. 
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Figure 6: Scheme of the set-up applied to examination of the valve. 

 

The dependencies of the mass flow rate in the function of inlet pressure p1 and pressure drop on the valve 
p1-p2 were obtained (Figure 7). The surface presented resulted from was spanning the surface on the curves 
obtained in the series of experiments. The result shown indicates that mass flow rate depends on the 
pressure difference on the valve and on inlet pressure level. 

 

 
Figure 7: Mass flow rate dependency in the function of the inlet pressure p1 and the difference between the inlet and outlet 
pressures (p1-p2). 

 

 

EXPERIMENTAL VERIFICATION ON THE DROP TEST STAND 

 

During the third phase of the investigation, the outcomes of the numerical computations were verified 
versus the results of experiments conducted with a model of the adaptive landing gear (Figure 8). The 
experimental program for the part of the research presented was aimed at confirming the design 
assumptions and correctness of the packaging concept. The development of the optimum control strategy 
for the device was outside of the scope of the study presented. 

At the stage of the investigation presented the drop-test stand was used with the absorber mounted to the 
drop-weight of 9 kg at initial height of 0,1 m, which corresponds to the initial velocity of 1,4 m s-1, where 
the impact energy was estimated for 8,3 J. The experimental procedure included two stages: the first, where 
the absorber operated as passive pneumatic device with the valve closed during impact and the second 
where the valve’s operation was controlled in order to maintain a predefined value of pressure difference 
between the absorber’s chambers and therefore to maintain the reaction force of the absorber on the 
predetermined level. In both cases the initial gas pressure in the absorber was 450 kPa and the predefined 
level of expected pressure difference was 210 kPa.  The data acquisition setup included: gas pressure 
sensors inside the absorber’s chambers, accelerometer fixed on the drop-weight, displacement sensor 
indicating position of the drop-weight in reference to the base plate of the stand. 

AN OUTLET 
CONTAINER 
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Table 1: Comparison of quantitative results obtained for adaptive pneumatic landing gear with single-stage and real-time 
control strategy. 

 

 
Figure 10: Pressure difference on the piezo-valve during the impact loading in the domain of the piston displacement. 

 

 

CONCLUDING REMARKS 

 

The study presented was divided into numerical and experimental phases. Numerical experiments 
conducted indicated that: 

 the proposed concept of dissipating kinetic energy of the landing object by means of double-
chamber pneumatic absorber is feasible. 

 both control strategies proposed allow to avoid rebound of the landing object and to obtain 
favorable, almost constant level of force generated by the absorber. Real-time control of valve 
opening enables to obtain unprecedented very high efficiency of the absorber which exceeds 90%. 

The results of experimental research indicated that: 

 The maximum flow rate measured on the piezo-valve fabricated was in accordance to the numbers 
predicted for the numerical design. 

 The absorber under impact loading responds fast enough to be controlled in real-time (0.5 kHz 
update rate). 

 The measured efficiency of the landing gear was 71% and was in agreement with the numerical 
predictions. 

 

 

REFERENCES 

 
1  Harris C. M. and Piersol A. G., 2002. Shock and vibration handbook, McGraw-Hill, London 
2  Conway H. G., 1958. Landing gear design, Chapman & Hall Ltd., London 

 Single-stage control Real-time control 

Maximum force generated 712N 654N 

Maximum deceleration 79,19m/s2 71,94 m/s2 

Absorber efficiency 83,9% 90,4% 

Landing gear efficiency 72,6% 76,7% 



Applications 

230 

 

3  Mikułowski G. and Holnicki-Szulc J., 2007. Adaptive landing gear concept - feedback control valida-tion. 
Smart Materials and Structures 16, pp. 2146-158 
4  Batterbee D. C., Sims N. D., Stanway R. and Wolejsza, Z., 2007. Magnetorheological landing gear: 1. A 
design methodology. Smart Materials and Structures 16, pp. 2429. 
5  Batterbee D. C., Sims N. D., Stanway R. and Rennison M., 2007. Magnetorheological landing gear: 2. 
Validation using experimental data, Smart Materials and Structures 16(6), pp. 2441-452. 
6  Mikułowski G. and Jankowski Ł., 2009. Adaptive landing gear: Optimum control strategy and potential 
for improvement, Shock and Vibration 16, pp. 175-94 
7  Mikułowski G., Graczykowski C., Pawłowski P., Sekula K., Mróz A. and Holnicki-Szulc J., 2008. A 
feasibility study of a pneumatic adaptive impact absorber, Proc. of the Fourth European Conference on 
Structural Control, 4ECSC, St. Petersburg, Russia, 8 – 12 September 2008 
8  Mikułowski G., Pawłowski P., Graczykowski C., Wiszowaty R. and Holnicki-Szulc J., 2009. On a 
pneumatic adaptive landing gear system for a small aerial vehicle, Proceedings of the IV Eccomas thematic 
conference on Smart structures and materials, 13-15 July, Porto. 
9  Iwaszko J., 1999. Opory przepływu powietrza przez elementy pneumatyczne, Editing House of Warsaw 
University of Technology, Warsaw 
10  Beater P., 2007. Pneumatic drives, Springer-Verlag, Berlin 
11  Currey N., 1988. Aircraft Landing Gear Design – Principles and practices, AIAA 

 

 



 
Applications 

231 
 
 
 

THERMOELECTRIC ENERGY HARVESTER FOR A SMART BEARING CONCEPT 

 

Michał Lubieniecki & Tadeusz Uhl 

 

AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department 
of Robotics and Mechatronics, Al. A. Mickiewicza 30, 30-059, Krakow, Poland 

 

 

ABSTRACT 

 

The article presents fundamental design considerations of a thermoelectric harvester to be used in applications for machine 
condition monitoring (MCM) or condition based maintenance (CBM). The power to be harvested is the thermal power loss of 
the bearing. The aim of the harvester is to maintain the energy neutral operation. By the numerical analysis of the system 
equivalent model, the pulse width of the associated sensor active state is analyzed together with the power capacity of the 
harvester and its operation cycle length. The article contains an analysis of the influence of design parameters onto the system 
performance. The assumed design variables are: thermal resistances of the heat sink, insulating partition and the number of 
thermoelectric modules. The electrical circuitry is described by the energy buffer capacitance, sensor active state duration, 
equivalent resistance of the adjoined circuitry during the passive and active state. The continuous and burst mode of operation 
is taken into consideration. The preliminary experimental proof of the concept is presented as well. 

 

 

NOMENCLATURE  

 

Isource  – thermal power loss in a bearing [W]; equivalent current source  [A] 

Rc  – thermal resistance of the rotating shaft resulting from convective heat transfer  [K/W] 

RTEG  – thermal resistance of the generator [K/W]; equivalent resistance   [V/A] 

RHS  – heat sink thermal resistance  [K/W] 

Rpart  – insulating partition thermal resistance  [K/W] 

Rstr  – thermal resistance of the structural system components  [K/W] 

Rconv  – thermal resistance connected with the natural convection phenomenon  [K/W] 

Rcntct  – contact thermal resistance  [K/W] 

Rhsin  – thermal resistance of the heat sink    [K/W] 

Dz – outer diameter of a bearing   [m] 

dm – mean diameter of a bearing  [m] 

A – surface area of the adjoined shaft    [m2] 

Ω,n – angular velocity   [s-1] 

ρ(T) – air density  
 [kg/m3] 

μ(T) – air dynamic viscosity   [kg m-

1 s-1] 

k(T) – air heat transfer coefficient   [W m-

2 K-1] 

Fr  – radial load   [N] 

Fa  – axial load   [N] 

R1, R2, R3  – rolling bearing geometry constants  [-] 

S1,S2, S3  – sliding frictional moment constants   [-] 

Xnteg  – number of  parallel thermoelectric generators  [-] 
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Voc  – open circuit voltage at the thermoelectric generator’s terminals  [V] 

α  – Seebeck coefficient   [V/K] 

T  – temperature  [K] 

I – current in an equivalent electric circuit   [A] 

Vsource  – voltage output of the generator under load condition   [V] 

Rs  – equivalent resistance of the sensor node in the sleep state   [V/A] 

Ra  – equivalent resistance of the sensor node in the active   [V/A] 

RinHV  – internal resistance of the energy management unit being a function of VOC  [V/A] 

C  – storage buffer capacitance   [F] 

E0  – initial energy stored in the ideal energy buffer   [J] 

η  – charging efficiency   [-] 

Ps – power output of the energy source   [W] 

Pc  – power consumed   [W] 

Pleak  – leakage power of the energy buffer   [W] 

 

 

INTRODUCTION 

 

As new constructions have to increasingly meet stricter demands with regard to reliability and functionality, 
a growing number of sensors and supplementary electronics are integrated into machines designed 
nowadays, to all of which power has to be supplied. Energy harvesting may be the answer to the energy 
needs of many of those decentralized measurement units. Various forms of energy are available for such 
systems. Most frequently referenced energy sources are: mechanical, thermal, solar, wind and acoustic [1]. 
A broad survey of the power density characteristic of different harvesting techniques can be found in [2,3], 
where the piezoelectric conversion of vibrational energy is said to be the most efficient way to power 
autonomous systems. However, some researches [4,5] have proven thermoelectricity to outperform the 
piezo-based harvester’s power capacity. That is noteworthy, as the conversion efficiencies of the two 
mentioned technologies would equal for the characteristic number of the thermoelectric generator being 4 
[6] what is not yet available among the commercial modules.  

There are many examples of successful implementation of piezoelectric harvesting technology, mainly in 
the form of kinetic harvesters [7,8,9]. Despite their relatively high power density, piezo-based harvesters 
have limited application capability due to their narrow-band response and mechanical coupling issues [10]. 
On the other hand, thermoelectricity can operate well in industrial environment as long as persistent thermal 
gradients exist [9]. Still, low conversion efficiency is an obstacle in many potential applications [11]. The 
low efficiency results from the low achievable temperature gradients and energy cost of heat removal from 
the cold side of the generator, even though high efficiency (up to 18%) solutions are achievable in the form 
of combustion systems [12]. Many researches have been conducted on the topic of human body heat energy 
harvesting, starting with [13], through ones on Body Area Network applications [14,15], to those on 
implantable bio-sensors [16]. The wireless network based on a thermoelectric generator was presented in 
[17]. The theoretical considerations of such a network, from the point of view of a single node, are 
presented and analyzed in [18]. The possible power management strategies and adaptive duty cycling for 
the wireless sensor nodes are presented in [19]. 

Despite the fact that the first research on thermoelectricity and bearing cooling is dated back to 1963 [20], 
and continued in [21], the idea of an energy harvesting system using heat waste of rotating bearing was not 
introduced until the year 2004 [22] and in the form of housing-integrated device in [23]. There are no 
research papers on successful implementation of thermoelectric harvesters in the machine bearing node, 
however, the research topic has been noticed and is being explored [24-26]. The generator is located on the 
side of the still bearing ring working on a small thermal gradient (the research targets the specific 
application with favorable thermal conditions) or mounted on the rotating bearing ring and equipped with 
small heat sink as in [24]. None of the designs so far have assumed strong integration of the harvester and 
bearing housing. That makes the harvester rather a module than a mechatronic design. The article presents 
the concept of the energy harvester integrated in the bearing’s housing. The influence of the design 
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parameters on the system power output is presented from both, the mechanical and electrical domain of the 
system. 

The article is organized as follows: section 2 introduces the general concept of the harvester. Section 3 
presents methods for modeling the phenomena involved in the output power level computation. Section 4 
shows the constraints imposed on the harvesting circuit as a result of the concept of energy neutral 
operation. Then, the influence of the design variables on the output power level is explained and, as a 
consequence, the power output available for continuous and burst mode operation is shown. In section 5 the 
proof of the concept is presented. The article is concluded in section 6. 

 

 

SYSTEM TOPOLOGY 

 

The general scheme of the bearing node with the harvesting circuit is shown in Figure 1. To adapt this 
scheme to the specific construction of a bearing node two topologies of the mechanical part of the system 
are proposed (Fig. 2): a) the bearing housing is thermally linked to the machine base but insulated from the 
bearing, additional heat sinks are required or b) the bearing housing is thermally insulated from the machine 
base and the heat source (i.e. bearing) to act as a heat sink. While the heat flux passes from the bearing to 
the environment, a bottleneck of that process are the natural convection boundary conditions, thermoelectric 
modules and insulating partitions that are all characterized by low heat conductivity values. Neglecting 
small thermal resistances of the bearing and housing components, the proposed model assumes that all 
surfaces of the system components are isothermal. This leads to significant simplification and as a result the 
problem is reduced to 2-dimensonal heat transfer. 

 
Figure 1: The general scheme of the harvester. 

 

As electric analogy was used for the thermal system description, both solutions can be presented as resistive 
networks (the heat capacity is neglected as only steady state is being considered). Only the second system 
topology will be further investigated due to presumably higher volume energy density and its independency 
of other heat sources, what makes the considerations more general in nature. 

 

Figure 2: Proposed system topologies; a) The bearing housing is thermally linked to the machine base but insulated from the 
bearing, additional heat sinks are required; b) The bearing housing is thermally insulated from the machine base and the heat 
source and acts as a heat sink. 
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The above system representations result from the simplification of a more detailed system model presented 
below. This model can be used for analysis of all possible system configurations, regardless of the thermo 
electric generator’s (TEG’s) connection layout, mechanical layout or insulation partitions placement. 

 

 
Figure 3: The general representation of the bearing housing with thermoelectric generators and possible insulating partitions. 

 

Some thermal resistances can be assumed insignificant, e.g. the thermal resistance of the structure (due to 
relatively high thermal conductivity values), branch describing the natural convection on free housing surfaces 
(due to the limited surface area and low heat transfer coefficient for the convection process at the same time) 
etc. Although the contact resistances cannot be neglected while predicting the system performance, they will 
be omitted along this article as the goal is to show sensitivity of the design parameters, namely: thermal 
resistance of the insulating partitions, number of generators, heat sink thermal resistance and capacitance of an 
energy buffer. 

 

 

MODELS OF APPLIED SUBSYSTEMS 

 

There are several distinct elements of the housing that account for different physical phenomena. Those are: 
thermoelectric generator, heat sink, convective boundary condition on rotating shaft and bearing power loss. 
The models of each element are described below.  

 
Thermoelectric Generator (TEG) 
 

Different numerical models were tested and compared with the experiment, including finite element method 
(FEM), thermal network modeling (TNM) and analytic solutions. The experiment was organized as to keep 
constant ∆T across TEG while changing the load resistance and measuring the voltage output of the 
generator. The parameters describing thermoelectric generator model were assumed after Lineykin [27] and 
based on the data supplied by the module manufacturer. The energy generation rate was computed 
analytically on the basis of Rowe [6], assuming that the current involved phenomena are insignificant for 
small ∆T conversion. The 〖Bi〗_2 〖Te〗_3 material parameters were considered temperature dependent. The 
results obtained analytically proved to be in good accordance with work of Jeagle [28] that additionally 
takes into account the generator geometry while solving the problem in Comsol Multiphysics. An Ansys 
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solver was used for comparison. Some sample results are shown in Figure 4. The exact description of the 
performed experiment and numerical studies can be found in [29]. 

 

Heat Sink  
 

A heat sink model and the convection boundary conditions were examined with the dimensional analysis 
and the models are described in [30]. Air properties change significantly with temperature which was 
introduced in the model equations. The model of isothermal u-channel fins of the heat sink is reported to 
agree well with the experimental figures for a Rayleigh number greater than 200, while beyond this limit 
giving the underestimated values of the heat transfer coefficient. The geometric shape of the heat sink was 
chosen because of this limitation as well as the assumptions of possible outline dimensions of the whole 
housing (Fig. 13). 

 

 

 

 

 

 

 

 

 

 
Figure 4: Numerical-experimental verification of the generator models ∆ܶ=25K; left: no contact resistances included, right: 
thermal contacts included in the model; module consisted of 16 N-P pairs, module dimensions 8x8 [mm]. 

 

 

Rotating Shaft 
 

The convective heat transfer from a horizontal rotating cylinder was described by Ozerdem [31]. The 
limitation of the model results from the rotating Reynolds number range (〖Re〗_r), however, for expected 
temperature range and rotating shaft speeds 〖Re〗_r it does not exceed the specified values. The thermal 
resistance of the rotating shaft can be described by Equation 1: 

 ܴ௖ = ஽೥଴.ଷଵ଼൬ಈీ౰మಙ(౐)మഋ(೅) ൰బ.ఱళభ௞(்)஺                         (1) 

 

Bearing Power Loss 
 

In comparison to the widely described and used Palmgren’s model [32] the SKF bearing model [33] proved 
to be more precise when calculating the total frictional moment at a given load. The model was used 
together with the Walther viscosity model for grease lubricant. 

௧௢௧ܯ  = ܴଵ݀௠ଵ.ଽ଻ሾܨ௥ + ܴଷ݀௠ଷ.ହ݊ଶ + ܴଶܨ௔ሿ + ଵܵ݀௠ି଴.ଵଶሾ(ܨ௥ + ܵଷ݀௠ଷ.ହ݊ଶ)ଵ.ଶହ + ܵଶܨ௔ଵ.ଶହሿ		 (2)
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Circuit Analysis 
 

Irrespective of the harvesting circuit operation being continuous or burst mode the energy neutral operation 
is guaranteed by maintaining the energy conservation law [34], that is: 

଴ܧ  + ߟ ׬ ሾ ௦ܲ(ݐ) − ௖ܲ(ݐ)ሿା݀ݐ − ׬ ሾ ௖ܲ(ݐ) − ௦ܲ(ݐ)ሿା݀ݐ − ׬ ௟ܲ௘௔௞(ݐ)݀ݐ ≥ 0	∀ܶ ∈ ሾ0,∞)଴்଴்଴்   (3) 

 

where []+ operation stands for: ሾݔሿା = ቄݔ		ݔ ≥ ݔ		00 < 0ቅ 

 

The first integral in the above equation represents the power that is being stored in the buffer during the 
passive sensor state, while the second integral represents the power consumed during the active sensor state. 
As the device is to operate continuously (no matter the duty cycle) assuming that the harvesting device (i.e. 
thermoelectric module) delivers the power at constant rate and the cycle time is so small that the influence 
of non-ideal buffer capacitance can be neglected, the time interval to be investigated can be limited to the 
single cycle duration and the above equation can be rewritten: 

଴ܧ  + ߟ ׬ ሾ ௦ܲ(ݐ) − ௖ܲ(ݐ)ሿା݀ݐ − ׬ ሾ ௖ܲ(ݐ) − ௦ܲ(ݐ)ሿା݀ݐ	 ≥ ܶ∀		଴ܧ	 ∈ ሾ0, ௖ܶሿ೎்்ೌ்ೌ଴    (4) 

 

After n-cycles such that T_c n→∞ the operation is preserved to be neutral. However, the most power 
efficient operation does not allow the harvested energy to be shunted due to buffer overflow. The equation 
(Eq. 4) can be thus further reduced: 

ߟ  ׬ ሾ ௦ܲ(ݐ) − ௖ܲ(ݐ)ሿା݀ݐ = ׬ ሾ ௖ܲ(ݐ) − ௦ܲ(ݐ)ሿା݀ݐ		∀ܶ ∈ ሾ0, ௖ܶሿ೎்்ೌೞ்଴          (5) 

 

meaning that energy drop on the capacitor during the active cycle has to be compensated during the sleep 
time of the sensor which is satisfied when the P_s>P_c and by the long enough cycle T_C. As the energy 
drop of the capacitor is strictly connected with its voltage, as long as the voltage on the capacitor buffer can 
be restored during the passive cycle, the whole system maintains the energy neutral operation mode. 

 

 

Continuous Operation Mode 
 

Using the basic circuit algebra one can notice that the open circuit voltage on the single thermoelectric 
generator (circuit defined in Figure1) can be expressed as follows: 

 ைܸ஼ = ߙ ூோ೎ோ೅ಶಸ൬ோ೅ಶಸାோ೓ೞାோ೎ାೃ೎൫ೃ೅ಶಸశೃ೓ೞ൯ೃ೛ೌೝ೟ ൰                     (6) 

 

It is obvious that if the Rpart tends to zero, the heat flux bypasses the generator circuit and therefore there is 
no energy present for the smart bearing operation. If the thermal resistance of the insulation tends to 
infinity, the maximum power gained will be dependent on the power loss in the bearing, machine 
construction and heat sink resistance. The power capacity of the harvester for different load condition and 
wide speed range can be seen on Figure 5. Curves obtained are shaped mainly by the bearing power loss. 
The number of thermoelectric generators can be varied and result in harvester power density increase, 
however, the ratio of thermal resistance of the generators parallel/in-series connection and heat sink 
resistance plays a role of performance indicator. In this particular example with heat sink of fixed 
dimensions no more than 2 generators should be used (Figure 6) to observe any harvested power increase. 
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When the heat sink and thermoelectric generator compose an in-series circuit and the heat source can be 
treated as voltage source (isothermal), the optimal heat sink resistance is reported to be equal to the thermal 
resistance of the generator [6]. 

In the case of the system investigated, the smaller the heat sink resistance the more power is harvested 
(Figures 7 and 8). This is due to the fact that the heat source behavior can be represented by the current 
source rather than constant voltage source. Small heat sink resistance is also desirable as it influences the 
bearing temperature rise, which may influence the bearing lifespan for a heavy loaded bearing.  

The heat sink resistance tends to increase for low thermal gradients that result from low bearing power 
losses. In such conditions Ra-number connected with convection on the heat sink boundaries approaches the 
limit and causes accuracy problems. In this condition the adopted model gives an evident increase in 
thermal resistance of the heat sink and lowers power gain. At the same time the thermal resistance of the 
rotating shaft decreases, what additionally influences the level of the power harvested.    

 
Figure 5: Power harvested as a function of rotating speed, preload and axial bearing load. 

 

 
Figure 6: Influence of parallel connection of the generators; preload 200[N], number of generators alter from 1 to 3. 
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On the basis of the proposed model the trade-off between the thermal resistance of the insulating partition 
and the harvesting system performance can be determined (Figure 9). Moreover, the value is found to be 
independent of load conditions for constant shaft speed. The thermal resistance at the level of 5-7[K/W] is 
feasible and can be achieved in practical realization. 

 

 
Figure 7: Influence of the heat sink thermal resistance to harvester power capacity; preload 200[N], load 500 [N]. Other load 
values make the relation analogous. 

 
Figure 8: Maximum system temperature difference (solid) and the temperature difference on the generator (dashed), Sample 
curves for preload of 200N and rpm of 4000rpm; 

 
Figure 9: Influence of the insulating partition resistance on the harvester power capacity. Load 500N, preload 200N. 
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Burst Operation Mode 

 

Any smart bearing operation will base on either continuous operation or burst mode composed of active and 
passive intervals.  The section above shows the theoretical continuous power level that could have been 
harvested if only the load resistance was matched with the source (TEG). This assumption is usually not 
met and moreover, voltage levels have to be adjusted (DC conversion) and kept in regulation in order to 
successfully power more complex adjoined circuitries. The actual electronic devices for energy harvesting 
and energy management can rarely be represented by a simple set of switched resistances. Therefore, the 
following circuit topology is proposed for the whole energy harvesting circuit analysis (Figure 10). The 
circuit topology proposed by [18] assumes that the load can operate on arbitrary voltage, which in most 
cases is not true. The model referenced would be representative if the open circuit voltage of the generator 
would be at an appropriate level or the voltage step-up conversion would be nearly lossless. In the model 
proposed the current output of the harvester is an arbitrary function of voltage of the thermoelectric source 
under load condition. All following analyses were conducted with the use of a behavioral model of 
LTC3108 step-up converter and power management unit on assumption that the storage capacitor never 
reaches saturation i.e. it is charged or drives current to the load. 

 

 
Figure 10: Left: Harvester topology by [9]; Right: Behavioral harvester model where Isource = f(VRin HV). 

 

On the basis of findings described before it is assumed that the source voltage should never drop below a 
certain level, which could reasonably be 10% below the nominal value during the active cycle and the 
voltage should restore fully throughout the remaining part of the cycle: 

 ଴ܷ ≥ (ݐ)ܷ ≥ 0.9 ௢ܷ   - 10% voltage drop off acceptable, no saturation ܷ( ௖ܶ) = ଴ܷ     - full recuperation at the end of the sleep cycle 

 

The voltage on storage capacitor can be expressed by the formula:  

 ௨(௧)ோ − ܫ + ቀௗ௨(௧)ௗ௧ ቁ ܥ = 0                         (7) 

 

solving for the voltage: 

(ݐ)ݑ  = (0)ݑ) − ష೟಴ೃ݁(ܴܫ +  (8)                       ܴܫ

 

therefore: Maximum allowable burst time for energy neutral operation is: 

 ௔ܶ = ܴ௔݃݋݈ܥ௘(ଵ଴ோೌூିଵ଴௨(଴)ଵ଴ோೌூିଽ௎(଴) )                       (9) 
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and required recuperation time for given ௔ܶ: 

 

௦ܶ = ܴ௦݃݋݈ܥ௘(ቆ(ோೞିோೌ)௘ ೅ೌೃೌ಴ቇூି௨(଴)
ோೞ௘ ೅ೌೃೌ಴ூି௨(଴)ோೞ௘ ೅ೌೃೌ಴ )=	ܴ௦݃݋݈ܥ௘(௎೅ೌିோೞூ௨(଴)ିோೞூ)	 	         (10) 

 

which results in duty cycle of: 

 ்ೌ்ೞ = ோೌ௟௢௚೐(భబೃೌ಺షభబೠ(బ)భబೃೌ಺షవೠ(బ) )ோೞ௟௢௚೐(ೆ೅ೌషೃೞ಺ೠ(బ)షೃೞ಺)                         (11) 

 

The reciprocal relation of active and passive cycle duration time is determined by the open circuit voltage of 
the thermoelectric source.  

Active burst duration is predominantly dependent on the capacitance while the constant power delivered by 
the harvester determines the recuperation time. The bigger the storage capacity the longer the allowable 
active state and the longer recuperation time are. For further analysis it is assumed that equivalent resistance 
in the active state is 100 [Ohm] and for passive or sleep state equals 100 [kOhm]. Active time of operation 
equals 50 [ms] and the cycle length results from the harvester output as well as capacitance of storage 
element (here ideal capacitor). The usable voltage output should be within the 2.97-3.3 [V] which means 
10% permissible drop off. The above assures that during the active sensor time the near constant power will 
be driven to the sensor/load. 

The power harvested in different operational conditions and conversion efficiencies were plotted in Figure 
11 (top). It is important to notice the relation between the power generation rate with the minimum passive 
cycle length that was plotted on the same graph for clarity. Although the harvester energy level is capable to 
power the wireless sensor node, the efficiency of energy conversion is between 10-30% (Figure 11 bottom), 
which means the thermoelectric source has to be appropriately oversized. The higher the open circuit 
generator output is the smaller the difference in total cycle duration becomes. Lower conversion efficiency 
with respect to continuous operation mode (Figure 11, bottom) results from the fact that power harvested in 
this ideal case is always greater than with the use of any actual harvesting circuit due to the input impedance 
mismatch. 

 

PROOF OF CONCEPT 

 

The possibility of energy harvesting based on the power thermal loss in a bearing was experimentally 
verified. The experimental set up was organized as follows: the high-speed spindle drives a two point 
supported shaft, the third bearing on the shaft can be shifted giving only the radial load to the bearings. The 
bearings used are medium sized typical steel self-aligning ball bearings (bearing means a diameter of 46 
mm). The power harvested was measured on the resistance matched for a single and in-series connection of 
up to 9 thermoelectric generators. The power output of the simple harvesting circuit was measured. For the 
sake of simplicity, after preliminary bearing model verification, the bearing was replaced by the controlled 
resistive heater and the power level harvested was measured. The bearing model verification was based on 
the measured temperature growth of the bearing and its housing during the work under constant load which 
was correlated to the thermal transient analysis of the detailed system model. 

The power that could be harvested with respect to the theoretical power loss in a bearing is presented on 
Figure 12. The conversion efficiency drops as the bearing loss rises what agrees with the results of Section 
4.  

The power level available for burst operation mode is maintained at the proper level for a typical sensor and 
wireless transmission even for low power losses in a bearing. At the same time the total cycle length does 
not exceed 30 seconds, which means that the measurements can be taken twice a minute in the worst case 
scenario. That is sufficient in case of the bearing monitoring installations. 
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Figure 11: Top: Power harvested with respect to the rpm for different load values (solid);Recuperation time needed for 
Ta=0.05[s] (circles); Bottom: Energy conversion efficiency with respect to the matched resistance case in continuous operation 
mode.  

 
Figure 12: Theoretical power level harvested with respect to the power dissipated in a bearing during the continuous operation 
mode (red circles) and burst mode 0.05[s] (blue circles); The minimum cycle length (triangles, right axis) measured 
experimentally. 
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Figure 13: The experimental setup: 1) the bearing housing equipped with thermoelectric modules, 2) radial load excitation, 3) 
bearing housing, 4) high speed electric spindle. 

 

 

CONCLUSION 

 

The theoretical considerations lead to the conclusion that a standard medium sized bearing can be a 
sufficient source of power to be harvested for a continuous or cyclic operation of a measurement node. First 
of all the power capacity of a harvester circuit strongly depends on the bearing preload (that can also be a 
design parameter). For a system topology it was considered that heat sink thermal resistance is the second 
most important parameter. The thermoelectric generators can be stacked in series or put in parallel giving 
another 20% of energy on average. It was possible to find a feasible value of the insulating partition, 
however, it should be noticed that introducing thermal insulation may decrease the bearing node stiffness. 
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ABSTRACT 

 

A theoretical static-aeroelastic modeling and optimization of a variable-camber morphing airfoil that employs surface-induced 
forces via smart material actuators (instead of conventional internal and lumped mechanisms) is presented. The structural 
parameters are determined using a set of design criteria optimized via a Genetic Algorithm. The optimization is conducted to 
achieve maximum change-in-lift-coefficient-per-excitation-voltage. A coupled treatment of the fluid-structure interaction is 
employed which allows the realization of a design that is not only feasible in a bench top experiment, but that can also sustain 
aerodynamic loads in the wind tunnel. 

 

 

INTRODUCTION 

 

Smooth control surface designs have been a research interest since the beginning of modern aviation, the 
first controlled, powered and heavier-than-air flight by the Wright Brothers in 1903. During the past few 
decades, smart materials have been proposed and tested successfully to control the shape of smooth 
aerodynamic surfaces. There are several benefits of using shape control via solid-state smart materials over 
the discrete trailing-edge control using conventional control surfaces in aircraft. However, for smart 
material actuated morphing devices, the challenge is found in operating a relatively compliant structure 
(desirable for smart material actuators) at high dynamic pressures to extract controlling forces. Establishing 
a wing configuration that is stiff enough to prevent flutter and divergence, but compliant enough to allow 
the range of available motion is the central challenge in developing a morphing wing with smart materials. 

The rapid development and the reduced cost of small electronics in the last decade led to the interest in 
using piezoelectric materials in small unmanned (and/or remotely piloted) fixed- and rotary- wing and 
ducted-fan aircraft. The 2002 Virginia Tech Morphing Wing Design Team (Eggleston et al. [1]) 
experimented with the use of piezoceramic materials, shape-memory alloys, and conventional servomotors 
in small unmanned aircraft.  

Wind tunnel testing showed the feasibility of the smart material systems. Barrett et al. [2] employed 
piezoelectric elements along with elastic elements to magnify control deflections and forces in aerodynamic 
surfaces. Vos et al. [3,4] conducted research to improve the Post-Buckled-Precompression concept for 
aerodynamic applications. Roll control authority was increased on a 1.4 m span unmanned air vehicle. Kim 
and Han [5,6] designed and fabricated a flapping wing by using a graphite/epoxy composite material and a 
Macro-Fiber Composite (MFC) actuator. A twenty percent increase in lift was achieved by changing the 
camber of the wing at different stages of flapping motion. Bilgen et al. [7] presented an application for 
piezocomposite actuators on a 0.76 meter wingspan morphing wing air vehicle. Adequate roll control 
authority was demonstrated in the wind tunnel as well as in flight.  

Bilgen et al. presented static flow vectoring via an MFC actuated thin bimorph variable-camber airfoil [8], 
and an MFC actuated cascading bimorph variable-camber airfoil [9,10]. Wind tunnel results and analytical 
evaluation of the airfoils showed comparable effectiveness to conventional actuation systems and no 
adverse deformation due to aerodynamic loading. Paradies et al. [11] implemented MFCs as actuators into 
an active composite wing. A scaled prototype wing was manufactured and models were validated with 
static and preliminary dynamic tests of the prototype wing. Wickramasinghe et al. [12] presented the design 
and verification of a smart wing for an unmanned aerial vehicle. The proposed smart wing structure 
consisted of a composite spar and ailerons that had bimorph active ribs with MFC actuators. The 2010 
Virginia Tech Wing Morphing Design Team [13-15], of the Department of Mechanical Engineering) 
developed a completely servo-less, wind-tunnel and flight tested remotely piloted aircraft. The team 
designed and fabricated lightweight control surfaces and the necessary driving high-voltage DC-DC 
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converters, culminating in a landmark first flight of the completely MFC controlled aircraft on April 29, 
2010.  

This vehicle became the first fully MFC controlled, flight tested aircraft. It is also known to be the first fully 
solid-state piezoelectric controlled, non-tethered, flight tested fixed-wing aircraft.   

The motivation for the current research is to model and optimize the static-aeroelastic effectiveness of a 
variable-camber morphing airfoil. The proposed concept employs piezoceramic materials that provide the 
actuation forces and moments, and they also create the surface of the airfoil. The research focuses on 1) 
fundamental static-aeroelastic characteristics, quantified in terms of conventional two-dimensional 
aerodynamic coefficients and 2) optimization of the static-aeroelastic response. 

 

 

STATIC-AEROELASTIC ANALYSIS  

 

The high structural deflection requirement (of aerodynamic applications) creates the need for semi-solid-
state mechanisms and distributed boundary conditions to be employed along with piezoelectric actuation.  

A Macro-Fiber Composite actuator is chosen for actuation in the proposed concept. The MFC actuator was 
developed at NASA Langley Research Center [16,17] and offers structural flexibility and high actuation 
authority. The in-plane poling and subsequent voltage actuation allows the MFC to utilize the 33 
piezoelectric effect, which is higher than the 31 effect used by traditional PZT actuators with through-the-
thickness poling [18].  

A piezocomposite airfoil was previously designed and evaluated in Bilgen et al. [19] and it serves as a 
baseline to the design proposed in this paper. The baseline design employs two active patches in the top and 
bottom surfaces of the airfoil which are pinned at the trailing-edge. These active surfaces are chosen to be 
MFC actuated bimorphs. A compliant parallelogram (box structure) is used to create the desired boundary 
conditions to the leading section of the curved bimorph surfaces. Wind tunnel experiments were conducted 
previously to compare the prototype variable-camber airfoil to other similar (in shape) fixed-camber 
airfoils.  

The lift and drag measurements were conducted at 15 m/s and at a chord Reynolds number of 127,000. A 
lift curve slope of 0.144 per-degree was measured, which exceeds the NACA 0009 lift slope (0.083 per-
degree) by 72%. The results showed the clear advantage of the lift generation by coupled camber-AOA 
change induced by voltage. The variable-camber airfoil produced a maximum lift-to-drag ratio (L/D) of 
13.4 at 1500 V (AOA=5.78°) and an L/D ratio of -11.2 at -1500 V (AOA=-5.20°). The NACA 0009 airfoil 
produced a maximum L/D ratio of 16.3 at AOA=4.21° and an L/D ratio of -12.3 at AOA=-4.97°. The 
variable-camber airfoil has comparable L/D performance when compared to the fixed-camber airfoils with 
similar thickness. A relatively high experimental drag was observed for the morphing airfoil due to its blunt 
(elliptical) leading-edge (LE) when compared to the LE of NACA 0009 airfoil. The baseline variable-
camber airfoil, described above, did not have a continuous surface as desired due to in-house fabrication 
limitations and this is one of the issues addressed by the current paper. In the prototype of the baseline 
design, the gap between the solid leading-edge and the variable-camber trailing-section (with variable-
length) was covered using a flexible strip of plastic which allowed the active bimorph surface to slide 
forward and backwards with respect to the fixed LE geometry. Another issue is that the solid-state 
compliant box mechanism (formed by four “live” hinges) introduced extra weight and complexity due to 
limited in-house fabrication capabilities. 

In the current concept, illustrated in Figure 1, the authors propose a continuous airfoil surface and a set of 
“simpler” boundary conditions to remedy these problems. The continuity in the airfoil surface is achieved 
by using a single substrate that wraps around the airfoil shape. This substrate forms the surface of the airfoil 
and it serves as the host material for the two cascading bimorph actuators. This airfoil is attached to a three-
dimensional spar structure (e.g. a rectangular spar box with spanwise taper) at two locations. In Figure 1, 
the locations of these two boundary conditions (Pin1 and Pin2) are exaggerated to aid visibility. 

 
Figure 1: A simplified illustration of the variable-camber airfoil design. Actuated and non-actuated states are shown. 

AOA

Pin2
Pin1

TE
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In Figure 1, the label “AOA” represents the geometric angle-of-attack. The boundary conditions in the 
design are pinned-pinned (similar to a simply-supported beam) for ease of implementation; however one 
can choose the second boundary condition (Pin2) as a slider (allowing motion in the chordwise axis and 
restricting motion in the lift axis). A pair of pinned-pinned boundary conditions theoretically creates a 
nonlinear displacement response but this is not a dominant effect in an actual implementation of the airfoil 
(with desirable aeroelastic characteristics). Starting with the baseline design, multiple configurations can be 
generated by changing the location of the pins. The two extreme configurations occur when: 1) the first pin 
is moved to the LE and the second pin is moved to the trailing-edge (TE) which is similar to a sail or a 
simply-supported beam; 2) both the first and second pins are moved to the leading-edge, hence the airfoil 
becomes equivalent to a cantilevered beam. The airfoil examined here (without electrical excitation and 
aerodynamic loading) has a profile that is similar to a NACA 0009 airfoil. The TE is formed by pinning the 
two bimorph surfaces and it is assumed to have a finite thickness of 0.05% chord.  

 

 

STATIC-AEROELASTIC ANALYSIS METHOD 

 

A thin shell-like morphing airfoil (with reasonable chordwise stiffness and displacement output) is possible 
with an MFC actuator given that the boundary conditions and structural features are favorable. Therefore, 
the support system for the variable-camber device is determined here using the static-aeroelastic model. A 
MATLAB [20] based program is used to solve the static fluid-structure interaction (FSI) problem by 
iterating between a panel method software XFOIL [21,22], and a finite element code ANSYS [23].  

Before the iteration starts, the non-aero-loaded airfoil shape is analyzed in XFOIL to initialize the FSI. 
XFOIL calculates lift and drag coefficients and the pressure distribution and the program enters the iteration 
loop. First, the pressure distribution is applied to the airfoil geometry in ANSYS which calculates the aero-
loaded (deformed) airfoil shape. Second, the deformed airfoil shape is analyzed in XFOIL to calculate 
change in the lift and drag due to the change in pressure induced deformation. These two steps are 
continued until no change is observed in the parameters of interest (i.e. deformation and aerodynamic 
coefficients). Due to the static nature of the problem, the solution converges after a few iterations. Note that 
the dynamic effects are known to be negligible (and ignored in the analysis) because of previous 
experimental observations. The analysis in this paper considers only chordwise distribution of aerodynamic 
loads and structural deformations. 

For the XFOIL simulations, a 0.07% (of the mean velocity) turbulence level is assumed, which is consistent 
with the turbulence level in a typical wind tunnel. It must be noted that XFOIL predictions for AOA above 
the maximum lift angle are not accurate . Due to the limitation of the deflection of the piezocomposite 
bimorph, the XFOIL analysis presented here (for a 9.0% thick airfoil) never passes beyond this AOA. 
Approximately 400 panels are used in XFOIL to achieve numerical convergence for the airfoils considered 
in this section. As reported in the literature, XFOIL predicts slightly higher lift coefficients and lower drag 
coefficients when compared to experimental results; therefore the predictions must be viewed as an upper 
limit to the actual lift coefficient and lift-to-drag ratio. 

The passive material in the airfoil is modeled as a homogeneous 2D area mesh using PLANE82 high-order 
quadrilateral (Q8) type element in ANSYS.  

The MFC actuator is modeled as a monolithic piezoelectric layer using a homogeneous 2D area mesh 
consisting of PLANE223 high-order quadrilateral (Q8) coupled-field elements. The plane element type is 
chosen (instead of the beam element type) because of the dense, non-uniform and distributed loading at the 
leading-edge with significant components in the in-plane direction as well as the out-of-plane direction. An 
experimental evaluation of the peak-to-peak deflection-voltage relationship (deduced from previous data) is 
used to determine the material properties of the MFC actuator in the finite-element (FE) model. 
Approximately 20,000 elements are used to ensure convergence of the finite element model for all airfoil 
models evaluated in the study. The number of elements chosen is relatively high to accommodate the highly 
non-uniform pressure distribution data from XFOIL. Figure 2 shows an example of the finite element model 
used in the study. There is a high concentration of aerodynamic loading (shown with arrows normal to the 
surface) at the leading-edge. Note that most of the features on this figure are exaggerated to aid the 
visibility. In reality, the thickness of the substrate and the PZT layer is very small compared to the 
maximum thickness of the airfoil. 
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Figure 3: Theoretical angle-of-attack for the proposed airfoil subjected to a free-stream velocity of 15 m/s. 

 

Figure 4 presents the lift coefficient and lift-to-drag ratio for the proposed airfoil subjected to a free-stream 
velocity of 15 m/s. Note that a fixed leading section substrate thickness and a fixed Pin1 location are 
assumed. 

 
Figure 4: Theoretical (2D) a) lift coefficient and b) lift-to-drag ratio for proposed airfoil subjected to a free-stream velocity of 
15 m/s. Rechord = 1.27x105. 

 

The analysis shows that placing Pin2 at or around 60%c and using a trailing section thickness of 
approximately 50.8 µm results in the highest lift output. Note that this is not the optimum solution (but a 
local-optimum) because the parametric study assumes other parameters as constants such as the Pin1 
location and leading section substrate thickness.  

 

 

OPTIMIZATION STUDY 

 

The approach to determine and optimize the internal passive structure of the variable-camber morphing 
wing is based on a Genetic Algorithm [24]. Genetic algorithms belong to the larger class of evolutionary 
algorithms, which generate solutions to optimization problems using techniques inspired by natural 
evolution, such as inheritance, mutation, selection, and crossover. Each individual (or configuration to be 
estimated) is characterized by its own “genetic code” or chromosome, generated as a set of values selected 
within suitable intervals for each optimization parameter. Some intelligence is integrated by the authors 
within the Genetic Algorithm in terms of parameters available to the optimization process, together with 
their degrees of freedom and constraints (range of variation for each parameter), to fulfill the proposed 
design criteria and achieve a suitable final structure.  

The optimization process, illustrated in Figure 5, starts with the creation of a trial airfoil structure for each 
individual according to the genetic methodology, based on the random selection of a value, within the 
established range, for each parameter being part of the optimization. 

The proposed static-aeroelastic analysis method, able to solve the static fluid-structure interaction problem, 
is then executed for each individual of a generation of individuals. The performance is estimated by the 
fitness function, quantified in terms of the change-in-lift-per-excitation-voltage (F= ΔCl / ΔV) of the 
morphing wing. To maximize the objective function, the typical steps of genetic evolutionary algorithms 
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are applied. Selection, cross-over and mutation operators are all executed to create a new generation starting 
from the best fit individuals of the previous one. Convergence towards the approximate global optima is 
achieved when a steady state is reached in the maximum fitness function (no more improvements, 
generation after generation, on the best fit individual). One must observe that the optimal solution is not 
only capable of maximum performance, according to the selected fitness function, but also satisfies the FSI 
problem. The structural solutions which are not capable of carrying aerodynamic loads are discarded. 
Figure 6 shows an example of the convergence of the maximum and average fitness for each generation. 

 

 

 
Figure 5: Genetic Algorithm optimization process. 

 

 

 
Figure 6: Convergence of fitness for the proposed airfoil at a free-stream velocity of 15 m/s. Rechord = 1.27x105. 

 

After the optimization is complete, the chromosomes of the best fit individuals are examined. The optimum 
structural parameters (for a free-stream velocity of 15 m/s) are: 1) Pin1 location, Pin1 = 0%c; Pin2 location, 
Pin2 = 50%c; 3) leading-section substrate thickness, tsubs = 178 µm; and 4) trailing-section substrate 
thickness, tpzts = 50.8 µm. Figure 7 shows the operational response of the airfoil at 15 and 45 m/s free-
stream velocities. 

In the figure, two velocities are presented. At 15 m/s, the dynamic pressure is relatively low; therefore the 
flow induced deformations are small. Similar deformations are observed at 30 m/s (not shown here). At 
high dynamic pressures (i.e. 45 m/s) the flow induced deformations are significant. It is important to note 
that the identified optimum structural parameters apply to a specific range of dynamic pressures and when 
this range is exceeded, the structure is no longer “optimized” and the assumption of static-aeroelastic 
behavior will be invalid (i.e. at 45 m/s). Figure 8 shows three operational states of the optimum 
configuration. Note that the x and y axes are equally scaled. 
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Figure 7: Theoretical (2D) static-aeroelastic response: a) lift coefficient and b) lift-to-drag ratio of the variable-camber airfoil 
to piezoelectric excitation voltage. 

 

 
Figure 8: Operational states of the airfoil that corresponds to the highest change in lift coefficient output subjected to a free-
stream velocity of 15 m/s. Rechord = 1.27x105. 

 

 

CONCLUSIONS 

 

This article presents the static-aeroelastic modeling and optimization of a variable-camber airfoil that 
employs surface-induced deformations instead of the more typical internal actuation.  

The coupled treatment of the fluid-structure interaction allows the realization of a design that is not only 
feasible in a bench top experiment, but that can also sustain large aerodynamic loads. The effects of four 
important structural parameters are studied to achieve the highest possible lift coefficient. The highest lift 
coefficient change is achieved by the optimized configuration with the following parameters: 1) Pin1 
location at 0%c, 2) Pin2 location at 50%c, 3) leading section substrate thickness of 178 µm and 4) trailing 
section thickness of 50.8 µm. The substrate material is assumed to be a stainless-steel, and the active 
material electromechanical properties are equivalent to the Macro-Fiber Composite actuator. The results are 
presented for a free-stream velocity of 15 m/s, chord Reynolds number of 127,000 and an assumed 
turbulence level of 0.07%. In comparison to the baseline variable-camber airfoil (with solid-state internal 
hinges and 9.0% chord thickness), the proposed airfoil (with a pinned and a pinned-sliding boundary 
conditions) produces a higher lift coefficient and a slightly lower lift-to-drag ratio. The advantages of the 
new concept are: 1) it has a continuous surface and 2) it requires more practical internal boundary 
conditions when compared to the baseline design. 
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ABSTRACT 

 

Demonstration of the performance of adaptive structures on air vehicles in general has been a rather difficult subject. Different 
reasons such as cost, risk, actuator capability, time and possibly others have prevented performance of adaptive aeronautical 
structures to be demonstrated exhaustively. Although operating at lower Reynolds numbers a means to alleviate some of the 
reasons preventing smart technologies to be applied is to demonstrate those adaptive structures’ capabilities on a micro aerial 
vehicle (MAV) which is what is presented along this article. Based on a modular MAV design it is shown how within minutes 
if not even seconds wings, tails or the propulsion systems can be easily changed resulting in differences of the MAV’s perfor-
mance. Principally based on the same fuselage this allows different features of adaptive structures to be performance and 
analyzed such as a change in a wing’s thickness, aspect ratio, stiffness or angle of attack, or a vector thrust propulsion system, 
before an adaptive structures’ solution is practically realized. The performance of all these features has been demonstrated in 
flight tests and the results obtained have been validated through analytical and numerical analysis, mainly from the point of 
flight performance stability and manoeuvrability which will be described and explained throughout the article. The effects of 
passive versus active adaptive wing will be briefly explained. Special emphasis is also made with regard to a vector thrust 
propulsion principle which besides enhancing manoeuvrability also allows a MAV’s payload and/or endurance to be enhanced 
significantly. 

 

 

INTRODUCTION 

 

A micro aerial vehicle (MAV) is a non-conventional small and hence unmanned aircraft that faces a chal-
lenge because its size aerodynamically (low Reynolds’ numbers) as well as structurally. Since an MAV is 
small and light weight, its structure and resulting aerodynamics are often designed for one flight condition 
only. However this does limit an MAV’s performance, specifically for a fixed wing one, which is designed 
for a comparatively long distance flight at high speed but may have to maneuver significantly when being 
used for observation with a sensor system attached such as a camera or any other type for sensing device 
providing a continuous and hence time dependent signal. Flight stability has also a significant impact on 
sensor signal quality, where adaptive structures can significantly contribute. Furthermore efficiency in flight 
performance does also lead to a longer endurance which helps a sensing mission to be optimized.  

During the early times of smart structural design around twenty years ago a lot of emphasis has been placed 
on aspects such as attenuation of dynamic loads by means of an active wing-fuselage interface  (based on 
piezoceramics), flutter suppression and vibration reduction by means of adaptive stiffness tuning and adap-
tive control of the wing camber (in these cases the application of shape memory alloys were seen to be 
efficient), active internal noise cancellation, adaptive stiffness control, or adaptive wing-engine pylons [1]. 
Different of those aspects have been initially explored but failed final realization mainly as a result of an 
actual system’s complexity but also as a matter of cost. Overviews on developments with respect to adap-
tive structures in aeronautics can be found in [2-7]. 

Shape control and thus actively influencing flow of aerodynamic profiles is an ultimate desire in aeronautics 
where expectations are high with respect to adaptive structures. As a consequence, different programmes 
were launched in the past, where the Smart Wing Programme [8] run in the USA in the early 90ies can be 
considered as the pilot study. It was quickly learned that neither actuators possibly machined from bulk 
shape memory material nor piezoelectric wafers attached to an aerodynamic profile’s surface would meet 
any requirements mainly on a real aeronautical structure for reasons of the energy required or the additional 
weight imposed. It could therefore be very quickly concluded that any solution for adaptive wings would 
only hold if they would still stay with the principles of conventional solid state actuators and that these 
actuators could be made from an actuation material such as a piezoelectric. The next step therefore resulted 
in a much more conventional mechanical solution actuated by piezoelectric travelling wave ultrasonic mo-
tors [9]. This solution was then built into a 30% downscaled model of an uninhabited combat air vehicle of 
which the control surfaces consisted of a conventional flap solution on the left side of the aircraft and a 
segmented continuously deforming smart solution on the right side. Along a wind tunnel test at 0.8 Mach 
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wind speed and 300 psf dynamic pressure the smart solution showed a 17% improvement in rolling moment 
coefficients at 15 degrees of control surface deflection when compared to the conventional flap solution 
[10]. 

The Smart Wing Programme together with various other programmes related to adaptive aerodynamic pro-
files was placed under the NASA Morphing Wing Programme [11] which emphasized a strategic direction 
and the need to place different disciplines under one umbrella. Another major DARPA programme run was 
the Compact Hybrid Actuator Programme (CHAP) from which SAMPSON [12] emerged as a key project. 
SAMPSON dealt with an adaptive air inlet duct of the engine of an F-15 that allowed the cowl to rotate, the 
lip to deflect, the air intake wall to deflect and the lip to blunt. This was achieved by mainly using SMA 
actuators being either configured as a rod of 60 SMA wires, or wires placed in a flex skin panel. Wind tun-
nel tests were performed to determine the gains in noise reduction. Other solutions for engine noise reduc-
tion include chevrons around the engine exhaust which are actuated by SMA actuators in accordance to an 
aircraft’s flight level position.  

Studying adaptive aeronautical structures at smaller scales inhibits other challenges. The advantage of oper-
ating at those scales is the lower cost, lower risk and time in realizing different prototypes and exploring 
different technologies. This article therefore describes different ideas of adaptive aeronautical structures for 
multi-role mission demand including wing thickness and stiffness variation, a variable V-tail and a vector 
thrust mechanism which have been developed over the past and have been published in more explicit detail 
in [13,14]. 

 

 

WING THICKNESS VARIATION 

 

Looking at effects in nature a bird can morph its wing to perform different flight conditions. One of those 
features is that a bird’s wing tends to morph to a thicker profile when it is flying in a gust and to a thinner 
profile during steady flight. Such a principle can even be applied to a MAV when the wing consists of an 
upper and lower panel and forces are applied in a way this is schematically shown in Fig. 1.  

 

 
 

Figure 1:  Front view of the MAV showing when the wing is fully extracted (dashed line) and fully contracted (solid line). 

 

The dynamic change of the wing shape can even further result in dynamic forces that may have an influence 
on the stability of the MAV. However, simulation of the fully dynamic behaviour within Fluid-Structure-
Interaction (FSI) to understand the dynamic behaviour does require very large computational power. To 
simplify verification of the wing thickness effect three discrete model wings have been generated (see 
Fig.2.) which allowed this effect to be understood.  

 
Figure 2:  Morphing-wing MAV CAD models 

 

The wing shape schematically described in Fig. 1 has been modeled by 3D FE assuming Depron the materi-
al. A vector of force in the y and x direction was applied onto the bottom plane of the wing, which can be 
seen in the Fig.3 left (front view of the MAV wing) and the resulting deformation as a dashed line on the 
right hand side of Fig. 3. For a 300 mm span MAV a max. wing thickness change of 7 mm was determined.  
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The settling time is related to the value of the damping ratio, and the experiment shows that the higher the 
thickness of a wing is the higher the damping ratio of the wing becomes, which in other words means, a 
thicker wing has a better natural stability, which results in better performance when flying in gusty winds. 

To realize the wing thickness change in hardware and during flight normal R/C servos were installed as 
actuators inside the wing such as shown in Fig. 6 below. This solution allowed the wing thickness to be 
changed during flight of the MAV from the ground. 

 
 

 
 
Figure 6:  Dynamic morphing-wing prototype: fully contracted (top) and fully extracted (bottom). 

 

Following the simulation the thicker wing MAV shows better natural stability. Flight tests performed for 
validation were focused on the pilot’s review considering not only flight stability but also overall flight 
efficiency in terms of flight time. For comparative reasons all three different wing thicknesses were tested 
separately but on the same day to cope for similarity in weather conditions. The recorded flight times and a 
pilot’s review on the stability are listed in Tables 1 and 2 below. 

 

 

MAV wing model  Flight time (min) 

1. Fully contracted >20 

2. Half-extracted 18~20 

3. Fully extracted < 18 

 

 

MAV wing 
model 

Natural 
stability 

Manoeuvrability 

Fully con-
tracted 

Less Good 

Half  
extracted 

Better but more 
thrust required 

Slightly less 
than before. 

Fully ex-
tracted 

Best but power 
consuming 

Clearly reduced. 

 

Table 1:  Comparison of flight times recorded   Table 2: Flight stability recorded by pilot 

 

The flight results show that the simulated results follow the trend with the thicker wing providing the better sta-
bility and the thinner wing the higher endurance. Hence a wing being able to adapt the variable conditions such 
as in gusts could be a great advantage for a MAV’s stability and endurance. 

 

 

 

ADAPTIVE WING STIFFNESS 
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Background 

 

Since MAV configurations allow a variety of different aerodynamic profile configurations to be tested this may 
allow fairly unconventional and hence even adaptive aerodynamic profile designs to be determined. It is known 
that birds and insects can change the flexibility of their wings remarkably and that they can use this capability to 
enhance their flight performance. The MAV group at the University of Florida [15] was possibly the first group 
to explore the effect of enhanced MAV wing flexibility. It was found that their flexible wing had a higher lift 
coefficient at higher angles of attack, which also resulted in a major increase in the stall angle when compared to 
conventional rigid wings. However what was also found was that flexible wings result in an increasing effect of 
fluid-structure interaction and that this needs to be analyzed in terms of aeroelastic behavior [14]. 

 

 

Multiple one-way Fluid-Solid Interaction 

 

The theory behind multiple one-way fluid structure interaction (FSI) is that once the CFD model has been calcu-
lated, the results are passed to the FE model to determine the deformation and stress. This deformation, which 
includes twisting and bending of the aerodynamic profile considered, is passed back to the parameters in the 
CAD model, so that a new CAD model of the deformed wing can be generated. The new CAD model is later 
used to generate the CFD mesh, and converted to a CFD model again for simulation; thus, the step is repeated 
until the de-formation converges when compared to the previous CAD model. This method is more computation 
efficient since there is a separation of the structure and the CFD model. Therefore the memory consumption is 
much lower and there is no ‘negative value’ of the cell deformation of the wing because the mesh is rebuilt in 
each iteration step. The resulting process of this procedure is shown in Fig. 7. 

In order to find out what parameters are required for the CAD model modification, a sample FSI result model is 
used, which can be seen in Fig.8. The resulting deformation image is superimposed to the normal CAD model 
(with 1:1 ratio) to work out the exact parameters which are required to be added into the CAD model. 

The main parameters for the wing deformation are the displacement along the y axis (global coordinate system 
form Fig.8) and wing twist. Inserting these two parameters into the CAD drawing allows the model to deform 
and twist whatever the value is required, which leads to a flexible CAD model. Fig.9a. shows twisting of the 
wing and Fig.9b bending of the wing in y-axis respectively. 

 

 

Stability Modelling and Comparison with Rigid Wing MAV 

 

Simulation of the longitudinal and lateral stability was performed for a flexible and a rigid wing. Fig.10 shows 
the result for the longitudinal stability, which demonstrates an enhancement in natural stability when making the 
wing more flexible in excess of the gains already achieved in lift. Determination of the lateral stability becomes 
more complex since the wing will become asymmetric in the XY plane during a lateral disturbance. A 5 degree 
yaw will lead the left wing to behave asymmetrically to the right. This requires the natural stability model to be 
rewritten, while still allowing the parallel FSI approach mentioned before to be applied. Fig.11 shows the result-
ing wing deflections in which the asymmetries between the left- and right-hand wing deflections can be ob-
served. 

A comparison in lateral stability between the rigid- and the flexible-wing models is shown in terms of change in 
side-slip rate, roll rate, yaw rate and roll angle in Figs.12 to 15. It can be seen that an increase in flexibility re-
duces the roll rate significantly and thus the roll angle, with no significant penalties in the side-slip rate. The yaw 
rate may increase slightly and yawing will behave slightly different, which may have an effect on the size of the 
fin rudder and possible control algorithms to be applied. The results obtained can be taken to explain why a flex-
ible wing may result in better flight performance, at least up to a certain degree. Further details can be found in 
[16]. 
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Figure 12:   Lateral stability modelling in terms of change in 
side-slip rate 

 
Figure 13:  Lateral stability modelling in terms of change in 
roll rate. 

 

 
Figure 14:  Lateral stability modelling in terms of yaw rate. 

 

 
Figure 15: Lateral stability modelling in terms of roll angle

Flight tests were done in windy conditions. The flexible-wing MAV turned out to be more stable when compared 
to the rigid-wing MAV, which was felt by the pilot through easier handling and longer endurance, resulting from 
less power being required to stabilize the MAV. However, the flexible-wing MAV shows a disadvantage in hand 
launch capability and maneuverability being less due to the higher natural stability. Table 3 provides a summary 
of the observations made during flight. Another practical advantage of the flexible-wing MAV model is its ease 
in back-packaging. Fig.16 shows how it can be easily rolled and stored in a tube of the size of a large 2 liter PET 
bottle being also a means for safe transportation of the MAV. 
 

Rigid wing Flexible wing 
 Less stable  
 Good maneuverability  
 Less controllable during 

gusty wind conditions 

 More stable in gusts (but more thrust required)  
 Gliding distance slightly less 
 Difficult to control during take off 
 Easier packing 
 Less damage after crash 

>20 min endurance >22 min endurance 
 

Table 3:  Flight observations with rigid- and flexible-wing MAVs 

 

 

VARIABLE V-TAIL MAV (CONTROL SURFACES) 

 

Background 

 

MAVs are on the scale of birds in terms of size and speed. Therefore biomimetic inspiration is allowed with 
respect to aerodynamics and stability control. Bio-inspiration here been related to active morphing and a passive 
flexible wing in a way this is shown in Fig. 17. For MAVs directional control is either by a rudder or vector 
thrust while directional stability is largely provided by the vertical tail. However, birds and insects do not have 
any vertical tail, but still can maintain their lateral stability. The main reason why birds do not need a vertical tail 
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Figure 21: V-tail at different angles (controlled by servo).  

 

 

Flight Test Analysis 

 

A summary of the flight tests performed and qualitative observations made is provided in Table 5. Tests were 
only possible to be performed with a V-tail angle of > 5 deg due to poor flight stability otherwise. A condition 
where the MAV performs similar to the rigid wing is at a V-tail angle of 20 deg, which can also be observed 
from the numerical results shown in Fig. 20 and is a proof of the numeric model’s validity. 

 

Angle of V-tail 
(degree) 

Can it take off? Stability (com-
pared with refer-
ence MAV) 

Flight speed 
(compared with 
reference MAV) 

Response to di-
rection control 

30 Yes  Less Slightly faster Faster 
25 Yes Less Slightly faster  Faster  
20 Yes Very close, slight-

ly less 
Slightly faster Similar 

15 Yes Less Faster Faster  
10 No A lot less Similar Similar 
5 No No flight test No flight test No flight test 
0 No No flight test  No flight test No flight test 
 

Table 5:  Flight results of the V-tail MAV 

 

 

VECTOR THRUST MAV 

 

Background 

 

MAVs are intended to operate in urban areas. This requires high manoeuvreability, being not in the nature of a 
fixed wing MAV. Control surfaces have good efficiency when the dynamic pressure is high [17], however, this 
is not the case in low Reynolds’ number aerodynamics. In order to increase the efficiency of yaw and bank mo-
ment at low speed, a constant force therefore needs to be present. For this reason a1 degree of freedom (DOF) 
thrust vectoring can be deployed. 

 

 

Vector Thrust Control Modelling 

 

The combination of a vector thrust system and conventional control surfaces is complex, not just in terms of the 
mechanical system, but also with regard to the mathematical model. To simplify the problem, the rudder (control 
surface) is therefore fixed. Forward thrust provided by the motor is 120 g (1.2 N), and for comparison, the de-
flection is also set to 5 degrees, such that only a small amount of side force will be created, which can be seen in 
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This leads to  

02.176
Iz

rQSCn
rN

 .  

  
These two values are then put back into the control model and compared with the ‘original’ model. It can be seen 
from the simulation results shown in Fig.24 that the vector thrust system can create more roll and yaw angle with 
the same amount of servo input provided. Due to the size of the motor for the vector thrust version the position 
of the battery had to be shifted which led to a slight shift of the CG and moment of inertia as well and further 
contributed to an enhancement of the overall natural stability when compared to the original MAV model [13]. 
Flight results obtained are shown in Table.6. The simple vector thrust unit proved to be more effective than the 
normal control surface in both simulation and test flight, leading to an increase in the MAVs endurance by more 
than 20%, based on the flight testing results obtained. Moreover maneuverability has increase significantly with-
out altering natural stability. 
 

  
Figure 24: Simulated results with control input and initial disturbance  

 

Wind tunnel testing 

 

In order to confirm the results of the mathematical simulation of the vector thrust MAV, a wind tunnel test was 
carried out. Normally a full wind tunnel test does involve a 6 degrees of freedom (DOF) force balance to meas-
ure all aerodynamic forces and moments applied on the MAV. Since a 6 DOF force balance is a huge investment 
specifically within the scales of an MAV an easier means of measurement was determined by using a force bal-
anced limited to 2 axes only. Such a force balance being used to measure lift and drag of a MAV only and is 
shown on Fig. 25 (right) simply needed to be turned around the vertical axis to measure the side forces as shown 
in Fig. 25 (left). Each of the forces along the 3 axes were recorded and later processed in MATLAB where the 
results are matching the simulated results really well, which can be seen from the results shown on Figs. 26 - 28. 

 
Figure.25. MAV set up for the Wind tunnel test 
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Apart from flight stability and control modeling test in wind tunnel, of the static force measurement experiment 
were also carried out. This experimental is simple but also proved the evident of usefulness of vector thrust on 
the MAV. The set up was that the MAV is originally sit in 0m/s wind speed, and side force is then recorded 
when the vector thrust is activated, then, this force value is latter used to compare with the side force value when 
the flow speed is set to be in the cruise speed (8m/s). 

 

Flow speed (m/s) 0 8 

Total side force (N) 0.24 0.28 

 

Table. 6. The results of static side force test for the vector thrust MAV. 

 
Figure.26. Roll response 

 
        Figure.27. Yaw response 

 
Figure.28. Sideslip Response 
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Simulated results
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Result from Table.6 shows that more side force was generated when the MAV is in the cruise, this is because 
apart from the side force from the thrust, also some aerodynamic forces are formed from the wing, which cause 
the MAV turns more. 

 

MAV type Maneuvera-
bility 

Flight 
time 

Stability 

Normal 
(with 1500 
kv motor) 

All right 25+ 
min 

Good 

Smaller 
motor 

All right 40+ 
min 

Good 

Vector 
thrust 

Very good 50+ 
min 

Good 

 

Table 7: Flight endurance, maneuverability and stability results of the MAVs  

 

 

CONCLUSIONS 
 

The modular design of an MAV allows a variety of technology options to be explored in relatively short term. 
This even applies to adaptive and hence morphing aircraft features. Designing an aircraft such as an MAV on a 
modular basis has the advantage that different components can be easily replaced by others without having to 
replace the rest of the aircraft. Although operating at different Reynolds numbers MAVs can serve as a valuable 
first attempt to demonstrate the effectiveness of adaptive structures aircraft technology at rather low cost when 
compared to large scaled manned aircraft. 
 
When considering adaptive structures different of a structure’s condition can be easily validated as a static dis-
play before any of the actuation principles have to be developed. Wing thickness is an issue with regard to an 
aircraft’s maneuverability and this even for small as well as for large aircraft. A thicker wing however generates 
more drag and hence consumes more energy and it is thus that actuation mechanism must exist, that allows the 
wing to become thicker only when there is a need. In the case described here this has been simply done by a RC-
controlled servo that mainly ‘bumped’ the wing skin. However more sophisticated solutions may be considerable 
in the sense of a smart/adaptive morphing structure.  
 
Another adaptive effect of significance is the variation in wing stiffness. A softer wing provides more stability 
and even enhanced endurance together with ease in packaging when compared to the rigid where maneuverabil-
ity is superior. A means on having spars with adaptive stiffness in that regard looks to be a solution of specific 
interest. Flight stability is also controlled by control surfaces where V-tails are an interesting option to be pur-
sued with MAVs and may be also with manned aircraft too. Again actuation can be provided with a simple servo 
actuator providing remarkable flight performance improvements indeed. 
  
Vector thrust propulsion has indicated that it cannot only enhance an MAV’s maneuverability but also endurance 
and payload. This concept is worth to be explored in much more detail in the future and has possibly the largest 
effect of all adaptive structures concepts explored here so far. 

 

Principally the introduction of adaptive structures concepts with aeronautical vehicles is an approach very much 
worth to be pursued. However the partially large deformations induced by the actuators used can cause structural 
problems such as fatigue and fracture of the structure in the longer term. Hence the bigger the aeronautical struc-
ture becomes the bigger this problem may become and it therefore that the exploration of adaptive aeronautical 
structures may be first done at the small scale, not just from a cost issue point of view only.    
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 Roll axis x Pitch axis y Yaw axis z 

Angular rate p q r 

Velocity components u v w 

Aerodynamic force compo-
nents  

X Y Z 

Aerodynamic moment 
component 

L M N 

Moment of inertia about 
each axis 

Ix Iy Iz 

Products of inertia Iyz Ixz Ixy 

 

Cy: Side force coefficient 

Cyξr: Side force coefficient with rudder angle  (in this case, vector thrust angle) 

Cn: Yaw moment coefficient  

Cnξr: Yaw moment coefficient with rudder angle   (in this case, vector thrust angle) 

Yξr: Side force with rudder angle  (in this case, vector thrust angle) 

Nξr: yaw moment with rudder angle (in this case, vector thrust angle) 
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