Publications

Export 75 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
E
Caeiro, F., & Mateus A. (2022).  Exponential versus Generalized Exponential Distribution: a Computational Study. AIP Conference Proceedings. 2425, Abstract
n/a
Caeiro, F. A. G. G., Mateus A. M. X. F., & Ramos L. P. C. (2015).  Extreme value analysis of the sea levels in Venice. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014. , 2015: American Institute of Physics Inc. Abstract

The number of floods in the city of Venice has increased substantially in the last decades and can be explained bythe sea level rise and land subsidence. Using Statistics of Extremes we shall model the extreme behaviour of the sea level inVenice and quantify risk through the estimation of important parameters such as return periods of high levels.The number of floods in the city of Venice has increased substantially in the last decades and can be explained bythe sea level rise and land subsidence. Using Statistics of Extremes we shall model the extreme behaviour of the sea level inVenice and quantify risk through the estimation of important parameters such as return periods of high levels.

F
Caeiro, F., Martins A. P., & Sequeira I. J. (2015).  Finite sample behaviour of classical and quantile regression estimators for the Pareto distribution. Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2014, ICNAAM 2014. 1648, , 2015/3/10: American Institute of Physics Inc. Abstract

The Pareto distribution is a well known and important model in Statistics. It has been used to study large incomes, city population size, size of losses, stock price fluctuations, number of citations received by papers and other similar phenomena. In this work we compare the finite sample performance of several estimation methods, namely the Moment, Maximum Likelihood and Quantile Regression methods. The comparison will be made through a Monte-Carlo simulation study.The Pareto distribution is a well known and important model in Statistics. It has been used to study large incomes, city population size, size of losses, stock price fluctuations, number of citations received by papers and other similar phenomena. In this work we compare the finite sample performance of several estimation methods, namely the Moment, Maximum Likelihood and Quantile Regression methods. The comparison will be made through a Monte-Carlo simulation study.

I
Mateus, A., & Caeiro F. (2022).  Improved Shape Parameter Estimation for the Three-Parameter Log-Logistic Distribution. (Qichun Zhang, Ed.).Computational and Mathematical Methods. 2022, 1–13., feb: Hindawi Limited AbstractWebsite
n/a
Caeiro, F., Cabral I., & Gomes I. M. (2018).  Improving Asymptotically Unbiased Extreme Value Index Estimation. Contributions to Statistics. 155–163.: Springer International Publishing Abstract
n/a
L
Penalva, H., Gomes M. I., Caeiro F., & Neves M. M. (2020).  Lehmer{'}s mean-of-order-p extreme value index estimation: a simulation study and applications. Journal of Applied Statistics. 47, 2825-2845., Number 13-15 Abstract
n/a
Caeiro, F., Gomes M. I., & Henriques-Rodrigues L. (2013).  A location invariant probability weighted moment EVI-estimator. : Notas e Comunicações do CEAUL 30/20132013_30_port-ppwm-final.pdf
Caeiro, F. A. G. G., Gomes I. M., & Henriques-Rodrigues L. (2016).  A location-invariant probability weighted moment estimation of the Extreme Value Index. International Journal of Computer Mathematics. 93(4), 676 - 695., 2016/4/2 AbstractWebsite

The peaks over random threshold (PORT) methodology and the Pareto probability weighted moments (PPWM) of the largest observations are used to build a class of location-invariant estimators of the Extreme Value Index (EVI), the primary parameter in statistics of extremes. The asymptotic behaviour of such a class of EVI-estimators, the so-called PORT-PPWM EVI-estimators, is derived, and an alternative class of location-invariant EVI-estimators, the generalized Pareto probability weighted moments (GPPWM) EVI-estimators is considered as an alternative. These two classes of estimators, the PORT-PPWM and the GPPWM, jointly with the classical Hill EVI-estimator and a recent class of minimum-variance reduced-bias estimators are compared for finite samples, through a large-scale Monte-Carlo simulation study. An adaptive choice of the tuning parameters under play is put forward and applied to simulated and real data sets.The peaks over random threshold (PORT) methodology and the Pareto probability weighted moments (PPWM) of the largest observations are used to build a class of location-invariant estimators of the Extreme Value Index (EVI), the primary parameter in statistics of extremes. The asymptotic behaviour of such a class of EVI-estimators, the so-called PORT-PPWM EVI-estimators, is derived, and an alternative class of location-invariant EVI-estimators, the generalized Pareto probability weighted moments (GPPWM) EVI-estimators is considered as an alternative. These two classes of estimators, the PORT-PPWM and the GPPWM, jointly with the classical Hill EVI-estimator and a recent class of minimum-variance reduced-bias estimators are compared for finite samples, through a large-scale Monte-Carlo simulation study. An adaptive choice of the tuning parameters under play is put forward and applied to simulated and real data sets.

Caeiro, F., & Gomes D. S. R. P. (2015).  A log probability weighted moment estimator of extreme quantiles. Theory and Practice of Risk Assessment - ICRA5 2013. 136, 293 - 303., 2015: Springer New York LLC Abstract

In this paper we consider the semi-parametric estimation of extreme quantiles of a right heavy-tail model. We propose a new Probability Weighted Moment estimator for extreme quantiles, which is obtained from the estimators of the shape and scale parameters of the tail. Under a second-order regular variation condition on the tail, of the underlying distribution function, we deduce the non degenerate asymptotic behaviour of the estimators under study and present an asymptotic comparison at their optimal levels. In addition, the performance of the estimators is illustrated through an application to real data.In this paper we consider the semi-parametric estimation of extreme quantiles of a right heavy-tail model. We propose a new Probability Weighted Moment estimator for extreme quantiles, which is obtained from the estimators of the shape and scale parameters of the tail. Under a second-order regular variation condition on the tail, of the underlying distribution function, we deduce the non degenerate asymptotic behaviour of the estimators under study and present an asymptotic comparison at their optimal levels. In addition, the performance of the estimators is illustrated through an application to real data.

M
Caeiro, F., Gomes I. M., Beirlant J., & de Wet T. (2016).  Mean-of-order p reduced-bias extreme value index estimation under a third-order framework. ExtremesExtremes. 19(4), 561 - 589., 2016/12/1 AbstractWebsite

Reduced-bias versions of a very simple generalization of the ‘classical’ Hill estimator of a positive extreme value index (EVI) are put forward. The Hill estimator can be regarded as the logarithm of the mean-of-order-0 of a certain set of statistics. Instead of such a geometric mean, it is sensible to consider the mean-of-order-p (MOP) of those statistics, with p real. Under a third-order framework, the asymptotic behaviour of the MOP, optimal MOP and associated reduced-bias classes of EVI-estimators is derived. Information on the dominant non-null asymptotic bias is also provided so that we can deal with an asymptotic comparison at optimal levels of some of those classes. Large-scale Monte-Carlo simulation experiments are undertaken to provide finite sample comparisons.Reduced-bias versions of a very simple generalization of the ‘classical’ Hill estimator of a positive extreme value index (EVI) are put forward. The Hill estimator can be regarded as the logarithm of the mean-of-order-0 of a certain set of statistics. Instead of such a geometric mean, it is sensible to consider the mean-of-order-p (MOP) of those statistics, with p real. Under a third-order framework, the asymptotic behaviour of the MOP, optimal MOP and associated reduced-bias classes of EVI-estimators is derived. Information on the dominant non-null asymptotic bias is also provided so that we can deal with an asymptotic comparison at optimal levels of some of those classes. Large-scale Monte-Carlo simulation experiments are undertaken to provide finite sample comparisons.

Caeiro, F., Henriques-Rodrigues L. {\'ı}gia, Gomes I. M., & Cabral I. (2020).  Minimum-variance reduced-bias estimation of the extreme value index: A theoretical and empirical study. Computational and Mathematical Methods. , may: Wiley AbstractWebsite
n/a
Caeiro, F., & Gomes M. I. (2008).  Minimum-variance reduced-bias tail index and high quantile estimation.. REVSTAT. 6, 1-20., Number 1 Abstract

{Summary: Heavy tailed-models are quite useful in many fields, like insurance, finance, telecommunications, internet traffic, among others, and it is often necessary to estimate a high quantile, i.e., a value that is exceeded with a probability $p$, small. The semiparametric estimation of this parameter relies essentially on the estimation of the tail index, the primary parameter in statistics of extremes. Classical semi-parametric estimators of extreme parameters show usually a severe bias and are known to be very sensitive to the number $k$ of top order statistics used in the estimation. For $k$ small they have a high variance, and for large $k$ a high bias. Recently, new second-order ``shape'' and ``scale'' estimators allowed the development of second-order reduced-bias estimators, which are much less sensitive to the choice of $k$. Here we study, under a third order framework, minimum-variance reduced-bias (MVRB) tail index estimators, recently introduced in the literature, and dependent on an adequate estimation of second order parameters. The improvement comes from the asymptotic variance, which is kept equal to the asymptotic variance of the classical Hill estimator [ıt B. Hill}, Ann. Stat. 3, 1163–1174 (1975; Zbl 0323.62033)] provided that we estimate the second order parameters at a level of a larger order than the level used for the estimation of the first order parameter. The use of those MVRB tail index estimators enables us to introduce new classes of reduced-bias high quantile estimators. These new classes are compared among themselves and with previous ones through the use of a small-scale Monte Carlo simulation.}

N
Mateus, A., & Caeiro F. (2020).  A new class of estimators for the shape parameter of a Pareto model. Computational and Mathematical Methods. , nov: Wiley AbstractWebsite
n/a
Caeiro, F., & Gomes M. I. (2006).  A new class of estimators of a ``scale'' second order parameter.. Extremes. 9, 193-211., Number 3-4 Abstract

{Let $X_i$ be i.i.d. r.v.s with heavy-tailed CDF $F(x)$ such that $$1-F(x)=(x/C)^{-1/\gamma}((1+(\beta/\rho)(x/C)^{\rho/\gamma} +\beta'(x/C)^{2\rho/\gamma}(1+o(1))),$$ where $\gamma$ is the tail index ($\gamma>0$), and $\rho<0$ and $\beta$ are the ``second order parameters''. The authors construct an estimator for $\beta$ based on the ``tail moments'' $$M_n^{(\alpha)}=(k)^{-1}\sum_{i=1}^k [łog X_{n-i+1:n}-łog X_{n-k:n}]^\alpha. $$ Consistency and asymptotic normality of the estimator are demonstrated. The small sample properties of the estimator are investigated via simulations.}

Caeiro, F., & Mateus A. (2023).  A New Class of Generalized Probability-Weighted Moment Estimators for the Pareto Distribution. Mathematics. 11, 1076., feb, Number 5: {MDPI} {AG} AbstractWebsite
n/a
Gomes, I. M., Brilhante F. M., Caeiro F., & Pestana D. (2015).  A new partially reduced-bias mean-of-order p class of extreme value index estimators. Computational Statistics & Data AnalysisComputational Statistics & Data Analysis. 82, 223 - 227., 2015 AbstractWebsite

A class of partially reduced-bias estimators of a positive extreme value index (EVI), related to a mean-of-order-p class of EVI-estimators, is introduced and studied both asymptotically and for finite samples through a Monte-Carlo simulation study. A comparison between this class and a representative class of minimum-variance reduced-bias (MVRB) EVI-estimators is further considered. The MVRB EVI-estimators are related to a direct removal of the dominant component of the bias of a classical estimator of a positive EVI, the Hill estimator, attaining as well minimal asymptotic variance. Heuristic choices for the tuning parameters p and k, the number of top order statistics used in the estimation, are put forward, and applied to simulated and real data.A class of partially reduced-bias estimators of a positive extreme value index (EVI), related to a mean-of-order-p class of EVI-estimators, is introduced and studied both asymptotically and for finite samples through a Monte-Carlo simulation study. A comparison between this class and a representative class of minimum-variance reduced-bias (MVRB) EVI-estimators is further considered. The MVRB EVI-estimators are related to a direct removal of the dominant component of the bias of a classical estimator of a positive EVI, the Hill estimator, attaining as well minimal asymptotic variance. Heuristic choices for the tuning parameters p and k, the number of top order statistics used in the estimation, are put forward, and applied to simulated and real data.

Gomes, M. I., Pestana D., & Caeiro F. (2009).  A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator.. Stat. Probab. Lett.. 79, 295-303., Number 3 Abstract

n/a

Caeiro, F., Marques F. J., Mateus A., & Atal S. (2016).  A note on the Jackson exponentiality test. International Conference of Computational Methods in Sciences and Engineering 2016, ICCMSE 2016. 1790, , 2016/12/6: American Institute of Physics Inc. Abstract

In this paper we revisit the Jackson exponentiality test. We study and provide functions in R language to compute theoretical moments, the distribution function and quantiles of the statistic test. Approximations to the exact distribution function and quantiles are also provided and their precision discussed. In addition, we provide an application of the Jackson test to real data.In this paper we revisit the Jackson exponentiality test. We study and provide functions in R language to compute theoretical moments, the distribution function and quantiles of the statistic test. Approximations to the exact distribution function and quantiles are also provided and their precision discussed. In addition, we provide an application of the Jackson test to real data.

O
Caeiro, F., & Gomes M. I. (2014).  On the bootstrap methodology for the estimation of the tail sample fraction. COMPSTAT 2014: 21th International Conference on Computational Statistics. 546-553., Genevecaeiro_gomes_compstat2014_reprint.pdf
Cabral, I., Caeiro F., & Gomes M. I. (2022).  On the comparison of several classical estimators of the extreme value index. Communications in Statistics - Theory and Methods. 51, 179-196., Number 1 Abstract
n/a
P
M.I., G., F. C., & L. H. - R. (2012).  PORT-PPWM extreme value index estimation. Proceedings of COMPSTAT 2012. 259-270., Jan Abstract2012_compstat2012.pdf

n/a

Caeiro, F. (2015).  Preface of the "2nd Symposium on Computational Statistical Methods". AIP Conference ProceedingsAIP Conference Proceedings. 1702, , 2015/12/31 AbstractWebsite
n/a