Publications

Export 6 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M [N] O P Q R S T U V W X Y Z   [Show ALL]
N
Mateus, A., & Caeiro F. (2020).  A new class of estimators for the shape parameter of a Pareto model. Computational and Mathematical Methods. , nov: Wiley AbstractWebsite
n/a
Caeiro, F., & Gomes M. I. (2006).  A new class of estimators of a ``scale'' second order parameter.. Extremes. 9, 193-211., Number 3-4 Abstract

{Let $X_i$ be i.i.d. r.v.s with heavy-tailed CDF $F(x)$ such that $$1-F(x)=(x/C)^{-1/\gamma}((1+(\beta/\rho)(x/C)^{\rho/\gamma} +\beta'(x/C)^{2\rho/\gamma}(1+o(1))),$$ where $\gamma$ is the tail index ($\gamma>0$), and $\rho<0$ and $\beta$ are the ``second order parameters''. The authors construct an estimator for $\beta$ based on the ``tail moments'' $$M_n^{(\alpha)}=(k)^{-1}\sum_{i=1}^k [łog X_{n-i+1:n}-łog X_{n-k:n}]^\alpha. $$ Consistency and asymptotic normality of the estimator are demonstrated. The small sample properties of the estimator are investigated via simulations.}

Caeiro, F., & Mateus A. (2023).  A New Class of Generalized Probability-Weighted Moment Estimators for the Pareto Distribution. Mathematics. 11, 1076., feb, Number 5: {MDPI} {AG} AbstractWebsite
n/a
Gomes, I. M., Brilhante F. M., Caeiro F., & Pestana D. (2015).  A new partially reduced-bias mean-of-order p class of extreme value index estimators. Computational Statistics & Data AnalysisComputational Statistics & Data Analysis. 82, 223 - 227., 2015 AbstractWebsite

A class of partially reduced-bias estimators of a positive extreme value index (EVI), related to a mean-of-order-p class of EVI-estimators, is introduced and studied both asymptotically and for finite samples through a Monte-Carlo simulation study. A comparison between this class and a representative class of minimum-variance reduced-bias (MVRB) EVI-estimators is further considered. The MVRB EVI-estimators are related to a direct removal of the dominant component of the bias of a classical estimator of a positive EVI, the Hill estimator, attaining as well minimal asymptotic variance. Heuristic choices for the tuning parameters p and k, the number of top order statistics used in the estimation, are put forward, and applied to simulated and real data.A class of partially reduced-bias estimators of a positive extreme value index (EVI), related to a mean-of-order-p class of EVI-estimators, is introduced and studied both asymptotically and for finite samples through a Monte-Carlo simulation study. A comparison between this class and a representative class of minimum-variance reduced-bias (MVRB) EVI-estimators is further considered. The MVRB EVI-estimators are related to a direct removal of the dominant component of the bias of a classical estimator of a positive EVI, the Hill estimator, attaining as well minimal asymptotic variance. Heuristic choices for the tuning parameters p and k, the number of top order statistics used in the estimation, are put forward, and applied to simulated and real data.

Gomes, M. I., Pestana D., & Caeiro F. (2009).  A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator.. Stat. Probab. Lett.. 79, 295-303., Number 3 Abstract

n/a

Caeiro, F., Marques F. J., Mateus A., & Atal S. (2016).  A note on the Jackson exponentiality test. International Conference of Computational Methods in Sciences and Engineering 2016, ICCMSE 2016. 1790, , 2016/12/6: American Institute of Physics Inc. Abstract

In this paper we revisit the Jackson exponentiality test. We study and provide functions in R language to compute theoretical moments, the distribution function and quantiles of the statistic test. Approximations to the exact distribution function and quantiles are also provided and their precision discussed. In addition, we provide an application of the Jackson test to real data.In this paper we revisit the Jackson exponentiality test. We study and provide functions in R language to compute theoretical moments, the distribution function and quantiles of the statistic test. Approximations to the exact distribution function and quantiles are also provided and their precision discussed. In addition, we provide an application of the Jackson test to real data.